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Abstract. Federated learning (FL) is a machine learning approach that allows multiple devices or sys-

tems to train a model collaboratively, without exchanging their data. This is particularly useful for autono-
mous mobile robots, as it allows them to train models customized to their specific environment  
and tasks, while keeping the data they collect private. Research Objective to train a model to recognize and 
classify different types of objects, or to navigate around obstacles in its environment. Materials and me-
thods we used FL to train models for a variety of tasks, such as object recognition, obstacle avoidance, lo-
calization, and path planning by an autonomous mobile robot operating in a warehouse FL. We equipped 
the robot with sensors and a processor to collect data and perform machine learning tasks. The robot must 
communicate with a central server or cloud platform that coordinates the training process and collects 
model updates from different devices. We trained a neural network (CNN) and used a PID algorithm to 
generate a control signal that adjusts the position or other variable of the system based on the difference 
between the desired and actual values, using the relative, integrative and derivative terms to achieve  
the desired performance. Results through careful design and execution, there are several challenges to im-
plementing FL in autonomous mobile robots, including the need to ensure data privacy and security, and  
the need to manage communications and the computational resources needed to train the model. Conclu-
sion. We conclude that FL enables autonomous mobile robots to continuously improve their performance 
and adapt to changing environments and potentially improve the performance of vision-based obstacle 
avoidance strategies and enable them to learn and adapt more quickly and effectively, leading to more ro-
bust and autonomous systems. 
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Аннотация. Федеративное обучение – это подход к машинному обучению, который позволяет 

нескольким устройствам или системам совместно обучать модель без обмена данными. Это особен-
но полезно для автономных мобильных роботов, поскольку позволяет им обучать модели, адаптиро-
ванные к их конкретной среде и задачам, сохраняя конфиденциальность собираемых ими данных. 

___________________ 
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Цель исследования состоит в том, чтобы научить модель распознавать и классифицировать раз-
личные типы объектов или обходить препятствия в окружающей среде. Материалы и методы: ис-
пользовано федеративное машинное обучение для обучения моделей различным задачам, таким как 
распознавание объектов, обход препятствий, локализация и планирование пути с помощью авто-
номного мобильного робота, работающего на складе. Робот оснащен датчиками и процессором для 
сбора данных и выполнения задач машинного обучения. Робот должен связываться с центральным 
сервером или облачной платформой, которая координирует процесс обучения и собирает обновле-
ния моделей с разных устройств. Нейронная сеть обучена с использованием алгоритма PID для ге-
нерации управляющего сигнала, который регулирует положение или другую переменную системы на 
основе разницы между желаемыми и фактическими значениями, используя относительные, интегра-
тивные и производные условия для достижения желаемой производительности. Результаты. Даже 
при условии тщательного проектирования и исполнения существует несколько проблем при реали-
зации федеративного обучения в автономных мобильных роботах, включая необходимость обеспе-
чения конфиденциальности и безопасности данных, а также необходимость управления коммуника-
циями и вычислительными ресурсами, необходимыми для обучения модели. Заключение. Был сде-
лан вывод о том, что федеративное обучение позволяет автономным мобильным роботам постоянно 
повышать свою производительность и адаптироваться к изменяющимся условиям, а также потенци-
ально улучшать эффективность стратегий обхода препятствий на основе зрения и позволяет им бы-
стрее и эффективнее учиться и адаптироваться, что приводит к созданию более надежных и авто-
номных систем. 

Ключевые слова: федеративное обучение (FL), нейронная сеть (CNN), Интернет вещей (IoT), 
визуальный обход препятствий, роботы на основе зрения, мобильные роботы 
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Introduction 
Federated learning (FL) is a machine learning approach that allows multiple decentralized devices, 

such as smartphones or drones, to collaborate and train a model without sharing their data directly [1]. 
This approach can be particularly useful for vision-based obstacle avoidance, as it allows the devices to 
improve their ability to detect and avoid obstacles while preserving the privacy of their data [2]. 

In a FL system for vision-based obstacle avoidance, the devices would each have a local model that 
they use to make predictions about the environment around them. These local models would be updated 
regularly through the FL process, in which the devices share model updates with a central server without 
sharing the underlying data [3]. The server would then aggregate the model updates and use them to up-
date the global model, which would be shared back to the devices to improve their local models (Fig. 1). 

 

 
Fig. 1. Central case for FL process 
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1. Related work 
The article of [5] proposed a unified learning approach for vision-based obstacle avoidance in mo-

bile robots, allowing multiple robots to train a common deep neural network model without exchanging 
their data. They evaluated their approach on a dataset of real-world images captured by a robot moving 
in a crowded environment. In a similar vein. 

In an article of [6] the authors demonstrated the use of FL to enable a group of mobile robots to col-
laboratively learn a model for obstacle avoidance. The robots are equipped with cameras, and use their 
camera images to learn a model that can predict the probability of an obstacle in a particular location. 
Bots communicate with each other and share their model updates, collectively allowing them to improve 
model accuracy over time. One major advantage is this could help improve the robustness and generali-
zability of the learned model, and enable robots to adapt to a wide variety of environments and situa-
tions. 

In an article of [7] also proposed a unified learning approach for vision-based navigation in mobile 
robots, allowing multiple robots to train a shared deep neural network model without exchanging their 
data. The FL approach is particularly useful for privacy-sensitive applications, such as vision-based ob-
stacle avoidance, where devices may not want to share sensitive information about their surroundings.  
It can also be useful in situations where data is distributed across a large number of devices, such as In-
ternet of Things (IoT) applications, or when data privacy is a concern. 

Overall, this paper demonstrates the potential of unified learning to enable collaborative learning in 
mobile robotics applications, and shows how it can be used to improve the performance of vision-based 
obstacle avoidance tasks. 

In article [8] suggested a combined learning-based approach for vision-based barrier detection and 
avoidance in mobile robots. The proposed approach allowed multiple robots to learn collaboratively to 
model common obstacle detection and avoidance, while maintaining the privacy of their individual data. 
The authors demonstrated the effectiveness of the proposed approach through simulation and real-world 
experiments.  

In article [9] proposed a learning approach for obstacle detection and avoidance in mobile robots 
and the authors demonstrated the effectiveness of a distributed deep learning approach for collaborative 
detection and obstacle avoidance in mobile robots. 

As for article [10] presented a distributed deep learning approach for vision-based obstacle detec-
tion and avoidance in mobile robots and demonstrated the effectiveness of the proposed approach 
through simulations and real-world experiments.  

The textbook of [11] covers deep learning techniques, which are commonly used in federal learning 
for robotics. It discusses the process of collecting and labeling training data, training a machine learning 
model using backpropagation, and evaluating the model's performance. It also covers techniques for im-
proving the performance of the model, such as regularization and data augmentation. A survey article of 
[12] covers robot learning from demonstration, which is a federal learning method that involves collec-
ting and labeling training data by observing a human demonstrating the desired behavior. It discusses  
the importance of defining the task, selecting appropriate sensors and actuators, and designing a control 
system that can generalize from the demonstrated behavior to new situations. It also covers techniques 
for evaluating and improving the performance of the learned behavior. 

The survey article of [13] covers meta-learning for robotics, which is a federal learning method that 
involves learning how to learn from a set of related tasks. It discusses the importance of defining  
the task and selecting appropriate sensors and actuators, as well as the challenges of designing a control 
system that can generalize to new tasks. It also covers techniques for evaluating and improving the per-
formance of the learned behavior, such as using a meta-learner to adapt to new tasks. 

These are just a few of the many works that have been published on FL to avoid vision-based barri-
ers. There is still much room for further research in this area, including the development of more effi-
cient and effective algorithms, the integration of other sensors (eg, lidar, radar), and the application of 
FL to more complex tasks such as simultaneous localization and mapping (SLAM). 

 
2. Methodology 
The methodology for federal learning of a robot has been discussed in literature by various authors. 

Some common steps involved in the process of federal learning for a robot have been highlighted (Fig. 2). 
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The article of [14] identifying the sensors and actuators 
that the robot will use to perceive and interact with its envi-
ronment has been emphasized. This involves selecting the ap-
propriate sensors and actuators based on the specific needs and 
requirements of the task or tasks that the robot will be perfor-
ming. 

The article of [15] defining the task or tasks that the robot 
will be trained to perform has been suggested as the initial step. 
This involves identifying the specific actions and behaviors 
that the robot should be able to perform, as well as the condi-
tions under which it will be expected to perform them, collec-
ting and labeling training data has been highlighted as a critical 
step in the process. This involves gathering a large dataset of 
examples that demonstrate the desired behavior of the robot, 
and labeling the data to indicate the correct actions for the ro-
bot to take in each situation. 

The article of [16] designing and implementing a control 
system for the robot has been proposed as the next step. This 
involves developing the algorithms and software that will be 
used to control the robot's sensors and actuators in order to 
achieve the desired behavior by testing and evaluating the per-
formance of the robot has been proposed as an essential step in 
the process. This involves using the trained machine learning 
model to control the robot and evaluating its performance on  
a variety of tasks and in different environments. 

The article of [17] training a machine learning model  
using the collected and labeled data has been suggested as  

the next step. This involves using the collected and labeled data to train a machine learning model that 
can predict the appropriate actions for the robot to take in various situations. 

 
3.1. Sim-to-real for robot federal learning 
Sim-to-real refers to the process of transferring knowledge or skills learned in a simulated environ-

ment to a real-world environment. This can be particularly useful in the field of robotics, as it allows for 
efficient and safe training and testing of robots without the risk of damaging the physical hardware [18]. 

One approach to sim-to-real transfer in robotics is federated learning, which is a machine learning 
technique that allows multiple robots to learn from their own data and experiences while still collaborating 
and sharing information with each other. In FL, the robots are able to learn from their own data without  
the need to share sensitive or private information with a central server or other robots. This can be useful 
for improving the performance and reliability of robots in complex and dynamic environments [19]. 

There are many challenges and open questions in the field of sim-to-real transfer and federated 
learning for robots, including how to effectively transfer knowledge between different robots and envi-
ronments, how to handle noise and uncertainty in the real world, and how to ensure that the learned be-
haviors are safe and robust. Despite these challenges, sim-to-real transfer and FL have the potential to 
significantly advance the capabilities of robots and enable them to perform a wider range of tasks and 
functions [20]. 

 
3.2. Deep learning for vision-based obstacle avoidance 
One way to implement vision-based obstacle avoidance using deep learning is to use a convolution-

al neural network (CNN) to process images from a camera or other visual sensors. The CNN can be 
trained on a dataset of images that includes a variety of different types of obstacles, such as walls, furni-
ture, and other objects. The network can then be used to classify the objects in the images and predict 
their location relative to the robot or vehicle [21, 22]. 

Once the CNN has been trained and is able to accurately classify and locate obstacles, it can be used 
in real-time to avoid collisions as the robot or vehicle moves through the environment. For example,  

 
Fig. 2. Shows the specific goals and tasks 
a robot is being trained to perform  
in the federal robot learning methodology 
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the network could output steering commands to steer the robot around an obstacle or could trigger  
a braking system to stop the vehicle before it collides with an obstacle [23]. 

There are many challenges involved in implementing vision-based obstacle avoidance using deep 
learning, including the need for large amounts of high-quality training data and the need to carefully 
tune the network architecture and hyperparameters to achieve good performance. However, with careful 
design and training, it is possible to achieve effective obstacle avoidance using deep learning techniques 
[24, 25]. 

 
3.3. Vision-based obstacle avoidance models 
Machine learning models, including vision-based obstacle avoidance models, are essential for au-

tonomous vehicles and robots to navigate environments safely using camera input to detect and avoid 
obstacles [26]. 

1. Classification is an approach in which the model is trained to classify each image as containing 
an obstacle or not, and the model predicts the presence of an obstacle in the current frame [27]. 

2. Object detection is another approach in which the model is trained to detect and classify specific 
types of obstacles, such as pedestrians or vehicles, and identify the location and type of any obstacles in 
the current frame [28]. 

3. Depth estimation is the third approach in which the model estimates the distance to obstacles in 
the camera's field of view and determines the proximity of obstacles to navigate around them [29]. 

To build a robust and accurate vision-based obstacle avoidance model, it is crucial to have a diverse 
and representative training dataset, regardless of the approach used [30]. 

 
3.4. The details of training 
The process of training a neural network for obstacle avoidance can be divided into several steps 

(Fig. 3). As stated by [31] the first step is data collection, where a dataset of images representing obsta-
cles likely to be encountered by the robot in its environment is gathered. The dataset should include ima-
ges of various obstacles, such as walls and furniture, and clear paths annotated with labels indicating 
whether the path ahead is blocked or free. 

The second step, data preprocessing, involves preparing the collected images for training. Accor-
ding to the article of [32] this may include resizing or cropping the images to a consistent size, applying 
image augmentation techniques to increase the diversity of the dataset, and normalizing the pixel values 
to a standard range. 

Next, the architecture of the CNN model needs to be designed, as mentioned by [33]. This includes 
deciding on the number and size of the convolutional layers, the number and size of the fully connected 
layers, and the activation functions to use. It may also involve choosing the appropriate loss function and 
optimizer for the task. 

Once the model architecture has been de-
signed, the model can be trained using the col-
lected and preprocessed dataset. As described in 
the article of [34] during training, the model is 
presented with images from the dataset and their 
corresponding labels, and the weights of the mo-
del are updated based on the error between  
the predicted labels and the true labels. Training 
continues until the model reaches a satisfactory 
level of accuracy on the training dataset. 

After training, the model should be evaluated 
on a separate dataset to assess its performance. 
This will help identify any overfitting or under-
fitting and allow for adjustments to be made to 
the model or training process as needed. 

Finally, once the model has been trained and 
evaluated, it can be deployed on the robot for use 
in obstacle avoidance. The model can be used to 

 
Fig. 3. Steps of convolutional neural network (CNN)  

training to avoid obstacles 
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classify images captured by the robot's sensors and predict whether the path ahead is blocked or free
allowing the robot to navigate its environment safely.

 
3.5. A vision-based obstacle avoidance strategy for mobile robots 
To implement this approach, the training data from both simulated agents and real robots would need 

to be collected and aggregated 
The shared model would then be trained using this aggregated data, with the goal of learning a generaliz
ble obstacle avoidance strategy that can be applied to a variety of different rob

One benefit of using a FL approach in this context is that it allows the model to be trained using 
a larger and more diverse dataset, which can improve its performance and generalizability [36]. Add
tionally, because the data remains on the device, there are privacy and security benefits to using a FL 
approach. 

Typically, obstacle avoidance involves using a sensor, such as a camera, to capture images of 
the environment and then processing those images to identify obstacles tha
In the case described, the convolutional neural network (CNN) is trained to classify the environment 
ahead as either “blocked” or “free”, based on the input images it receives. This allows the robot to make 
decisions about how to navigate its environment and avoid obstacles. The performance of the CNN
based obstacle classifier will depend on the quality and diversity of the training data, as well as the 
sign of the CNN itself (Fig. 4) [37].

It is important to note that using a C
plified approach, and in practice, real
may need to be handled differently. A more sophisticated obstacle avoidance strategy may 
sifying obstacles into multiple categories and defining specific behaviors for each category.

 

Fig. 4. Architecture
 
A deep convolutional neural network (CNN) is a type of machine learning model that is commonly 

used for image classification tasks [37]. CNNs are particularly effective at learning features and patterns 
in images, and have been successful in a wide range of image
image segmentation, and facial recognition.

 

Fig. 5. Components of CNNs that consist of multiple layer
 
CNNs are composed of multiple layers of artificial neural networks, which are inspired by the stru

ture and function of the brain. They consist of an input layer, one or more hidden layers, and an output 
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classify images captured by the robot's sensors and predict whether the path ahead is blocked or free
allowing the robot to navigate its environment safely. 

based obstacle avoidance strategy for mobile robots  
To implement this approach, the training data from both simulated agents and real robots would need 

to be collected and aggregated in a centralized location, such as a server or cloud
The shared model would then be trained using this aggregated data, with the goal of learning a generaliz
ble obstacle avoidance strategy that can be applied to a variety of different robots and environments [35].

One benefit of using a FL approach in this context is that it allows the model to be trained using 
a larger and more diverse dataset, which can improve its performance and generalizability [36]. Add

remains on the device, there are privacy and security benefits to using a FL 

Typically, obstacle avoidance involves using a sensor, such as a camera, to capture images of 
the environment and then processing those images to identify obstacles that the robot should avoid. 
In the case described, the convolutional neural network (CNN) is trained to classify the environment 
ahead as either “blocked” or “free”, based on the input images it receives. This allows the robot to make 

navigate its environment and avoid obstacles. The performance of the CNN
based obstacle classifier will depend on the quality and diversity of the training data, as well as the 

[37]. 
It is important to note that using a CNN to classify obstacles as either “blocked” or “free” is a si

plified approach, and in practice, real-world environments may contain a wide variety of obstacles that 
may need to be handled differently. A more sophisticated obstacle avoidance strategy may 
sifying obstacles into multiple categories and defining specific behaviors for each category.

Fig. 4. Architecture of neural network (CNN) 

neural network (CNN) is a type of machine learning model that is commonly 
used for image classification tasks [37]. CNNs are particularly effective at learning features and patterns 
in images, and have been successful in a wide range of image-based tasks, including object recognition, 
image segmentation, and facial recognition. 

Fig. 5. Components of CNNs that consist of multiple layers of artificial neural networks

are composed of multiple layers of artificial neural networks, which are inspired by the stru
ture and function of the brain. They consist of an input layer, one or more hidden layers, and an output 
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classify images captured by the robot's sensors and predict whether the path ahead is blocked or free, 

To implement this approach, the training data from both simulated agents and real robots would need 
in a centralized location, such as a server or cloud-based platform.  

The shared model would then be trained using this aggregated data, with the goal of learning a generaliza-
ots and environments [35]. 

One benefit of using a FL approach in this context is that it allows the model to be trained using  
a larger and more diverse dataset, which can improve its performance and generalizability [36]. Addi-

remains on the device, there are privacy and security benefits to using a FL 

Typically, obstacle avoidance involves using a sensor, such as a camera, to capture images of  
t the robot should avoid.  

In the case described, the convolutional neural network (CNN) is trained to classify the environment 
ahead as either “blocked” or “free”, based on the input images it receives. This allows the robot to make 

navigate its environment and avoid obstacles. The performance of the CNN-
based obstacle classifier will depend on the quality and diversity of the training data, as well as the de-

NN to classify obstacles as either “blocked” or “free” is a sim-
world environments may contain a wide variety of obstacles that 

may need to be handled differently. A more sophisticated obstacle avoidance strategy may involve clas-
sifying obstacles into multiple categories and defining specific behaviors for each category. 

 

neural network (CNN) is a type of machine learning model that is commonly 
used for image classification tasks [37]. CNNs are particularly effective at learning features and patterns 

including object recognition, 

 
s of artificial neural networks 

are composed of multiple layers of artificial neural networks, which are inspired by the struc-
ture and function of the brain. They consist of an input layer, one or more hidden layers, and an output 
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layer. The hidden layers of a CNN are typically composed of convolutional layers, which apply a set of 
learnable filters to the input data and produce a set of output feature maps. These feature maps are then 
processed by additional layers, such as pooling layers and fully connected layers, to extract and combine 
the relevant features for the task at hand (Fig. 5). 

We applied moving a robot with a mass of 10 kg in the presence of obstacles using federated lear-
ning and equipped with a camera and other sensors, and has the ability to process visual data and make 
orientation decisions using control algorithms. The robot was placed in an environment with many ob-
stacles, and tasked to navigate around them as it moved through the environment. 

To enable the robot to learn to detect and avoid obstacles using federated learning, we performed 
the following process: 

1. The robot collects visual data as it moves through the environment using a camera and other sen-
sors. 

2. The visual data is used to train a local model to detect and avoid obstacles, using machine lear-
ning algorithms such as deep learning. 

3. The local model is used to guide the robot's behavior as it moves through the environment, and to 
generate routing commands to avoid obstacles. 

4. The process is repeated over time, with the bot constantly updating its local model as it collects 
more data and experience. 

To represent the relationships between visual data, the location of obstacles, and required steering 
commands, using equations and algorithms such as convolutional neural networks (CNN) to process 
visual data and identify obstacles, and control theory algorithms such as PID controllers to generate 
steering commands based on the location and shape of obstacles [38]. 

The robot is moving in a straight line and encounters an obstacle in its path. The camera takes  
an image of the obstruction, and the CNN processes the image and determines the location and shape of 
the obstruction. The PID controller then calculates the steering command needed to direct the robot 
around the obstacle using equations such as: 

Steering command = Kp · (desired position – current position) +  
+ Ki · integral error + Kd · derivative error. 
The equation  
Steering command = Kp · (desired position – current position) +  
+ Ki · integral error + Kd · derivative error 

is a form of the PID (Proportional-Integral-Derivative) control algorithm, which is a widely used control 
method in robotics and other fields. The PID algorithm is designed to control the position, velocity, or 
other dynamic variables of a system by comparing the desired value of the variable (the “setpoint”) with 
the actual value as measured by sensors (the “process variable”).  

In the equation 
Steering command = Kp · (desired position – current position) +  
+ Ki · integral error + Kd · derivative error,  

the “steering command” is the output of the PID controller, which is used to control the movement of 
the robot. The “desired position” is the target location that the robot is trying to reach, and the “current 
position” is the actual location of the robot as measured by the sensors [39]. 

The Kp, Ki, and Kd terms are constants that determine the responsiveness of the controller. Kp is 
the proportional gain, Ki is the integral gain, and Kd is the derivative gain. The proportional gain deter-
mines the extent to which the controller responds to the current error between the desired and actual po-
sitions. The integral gain helps to eliminate steady-state error by accounting for the accumulated error 
over time. The derivative gain helps to stabilize the control loop by responding to the rate of change of 
the error. 

The “integral error” and “derivative error” terms are calculated based on the error between the de-
sired and actual positions at different points in time. The integral error is the sum of the errors over time, 
and the derivative error is the changein the error over time. These terms help to fine-tune the control  
action and prevent oscillations. 

Overall, the PID algorithm is used to generate a control signal that adjusts the position or other vari-
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able of the system based on the difference between the desired and actual values, using the proportional, 
integral, and derivative terms to achieve the desired performance. 

This approach of using PID control for robotic obstacle avoidance has been widely used in the field. 
For instance, in the work of [40] a PID controller was used to guide a mobile robot through a cluttered 
environment. Additionally, the use of federated learning for obstacle avoidance has also been explored 
in recent literature, such as in the work of [41] where a federated learning approach was used to train  
an autonomous vehicle to navigate a complex urban environment. 

 
4.1. Approaches to FL, and the deep learning models used for vision-based obstacle avoidance 
Centralized learning is simple and efficient, but it has some limitations. One limitation is that it re-

quires a large amount of data to be collected and transmitted to the central location, which can be costly 
and time-consuming. Additionally, there may be privacy concerns associated with collecting and trans-
mitting sensitive data to a central location [42]. 

On the other hand, federated learning is a machine learning approach in which each device or lo-
cation trains a local model on its own data, and the models are then aggregated to create a global 
model [43]. 

In terms of deep learning models for vision-based obstacle avoidance, one approach is to use convo-
lutional neural networks (CNNs) to process images and identify obstacles. CNNs are particularly well-
suited for image processing tasks because they are able to extract features from images and recognize 
patterns. 

There are several ways to create customized simulation environments for use in federated learning 
of robots: 

1. One option is to use a general-purpose physics engine, such as Bullet or ODE to simulate the dy-
namics of the environment and the robot's movement within it. Bullet is an open-source physics engine 
designed for real-time simulations. It is known for its high performance and accuracy, making it a popu-
lar choice for use in video games and other interactive applications. Bullet provides a wide range of fea-
tures, including support for rigid body dynamics, kinematics, and collisions, as well as soft body dyna-
mics and deformable objects [44]. 

 ODE is another open-source physics engine that is widely used in the gaming and simulation in-
dustries. It is designed to simulate the dynamics of rigid bodies and articulated bodies, and includes sup-
port for a variety of contact models and collision detection algorithms. ODE is known for its fast and 
stable performance, making it well-suited for use in real-time simulations [45]. 

There are many other physics engines available, each with its own set of features and capabilities. 
Some other popular physics engines include Havok, PhysX, and Unity's built-in physics engine.  
The choice of which physics engine to use will depend on the specific requirements of your application 
and the trade-offs that you are willing to make in terms of performance, accuracy, and complexity. 

2. Another option is to use a specialized robot simulation platform, such as: 
 Gazebo or V-REP. Gazebo is an open-source robotics simulation platform developed by OpenAI 

that is widely used in robotics research and education. It has a large user community and is compatible 
with a variety of robot hardware platforms and software frameworks, including ROS (Robot Operating 
System). It provides a 3D physics engine and a flexible plugin architecture that allows you to easily add 
new models, sensors, and actuators to your simulation [46]; 

 V-REP (Virtual Robot Experimentation Platform) is a commercial robot simulation platform de-
veloped by Coppelia Robotics. It has a user-friendly interface and a wide range of features, including 
realistic physics simulation, support for a variety of programming languages, and integration with vari-
ous robot hardware platforms. V-REP also includes a library of pre-built models of robots and environ-
ments, and allows you to create custom models using its built-in modeling tools [47]. 

Both Gazebo and V-REP can be useful tools for simulating robots and their environments, and can 
be used to test and develop robotics algorithms, perform virtual prototyping and testing, and teach robo-
tics concepts. 

Regardless of the approach you choose, it is important to carefully design and test your simula-
tion environment to ensure that it accurately reflects the real-world conditions in which the robot will 
operate. This will help ensure that the results of your federal learning experiments are reliable and 
meaningful. 
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4.2. Some FL applications 
FL has been applied in various sectors, such as healthcare, FinTech, insurance, IoT, and other tech-

nologies (Table 1).  
 In the healthcare industry, FL has been used to address the lack of resources, especially during  

the pandemic crisis. With FL, participating institutions can train the same algorithm on their own inter-
nal data pool, which creates a data source from which they can draw knowledge. This technique enables 
medical professionals to focus their efforts on improving patient care, without compromising the securi-
ty and privacy of sensitive information [48]. 

 In the FinTech sector, businesses that utilize technology to conduct their financial activities,  
FL has become a popular solution. The regulations governing data protection are constantly expanding, 
making it difficult to obtain permission and legal approval, preserve data, and transfer data across net-
works. However, FL offers a quick fix by utilizing edge hardware and edge processing capability, which 
enables collaborative machine learning training on dispersed data without the requirement for data trans-
fer between participants. FL has created a framework for FinTech that reduces risks, develops cutting-
edge strategies for customers and organizations, and justifies trust between the two parties [49]. 

 In the insurance sector, fraudulent actions frequently take place, which limits the insurance com-
pany's ability to help the insured. However, FL can address this problem by enabling businesses to de-
termine the patterns of their consumers without breaking the data clause. The goal of FL is to stop illegal 
or fraudulent activities and not compromise the insured's privacy. Therefore, FL can be used to train and 
direct the algorithms with the data without sharing data sets [50]. 

 In IoT, FL is being utilized by several enterprises to train their algorithms on a variety of datasets 
without trading data. FL seeks to protect the information gathered through several channels and keep 
important data close at hand. By utilizing FL, personalization can be achieved, and devices' functionality 
in IoT applications can be improved [51]. 

 FL has been used in other sectors and technologies, such as enhancing predictive texts, Siri's 
voice recognition, blockchain technologies, and cybersecurity. Google's Android Keyboard and Apple's 
Siri have utilized FL to improve their functionality without compromising the user's sensitive infor-
mation. FL is essential to cybersecurity as well, as it protects the device's info and solely distributes that 
model's updates throughout linked networks [52]. 

 
Table 1 

Advantages of FL for Vision-Based Obstacle Avoidance in Mobile Robots in a nutshell 

 
4.3. The future of FL 
This approach has the potential to be particularly useful for robots, as it allows them to learn from 

data generated by their own interactions with the environment, rather than relying on a central server or 
cloud-based service to provide training data. One potential application of federated learning for robots is 
in the development of more robust and adaptable control systems. For example, a robot that uses FL to 
train a control model based on its own sensor data could potentially learn to adapt to different environ-
ments or tasks more quickly and effectively than a robot that relies on a fixed control model. 

FL also has another potential application for robots, in the development of more intelligent and au-
tonomous systems. As discussed in the article of [52], a robot that uses FL to learn from the data gener-
ated by its own interactions with the environment could potentially develop a more accurate understand-
ing of its surroundings, leading to more efficient and effective decision-making. 

Moreover, the bright future of FL for robotics is emphasized in the article of [51], as it has the po-
tential to enable robots to learn and adapt faster and more efficiently, leading to more robust and auton-
omous systems. Another potential application for FL is for bots in Privacy-Preserving Machine Learning 
for healthcare services [48]. 

Advantage Description 

Improved performance Training on a larger, more diverse dataset can improve the performance 
of the model 

Improved generalizability Training on a diverse dataset can improve the model's ability to generalize 
to new situations 

Privacy and security benefits Data remains on the device, protecting sensitive data 
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Conclusion 
A FL approach can be used to train a deep convolutional neural network (CNN) for vision-based 

obstacle avoidance. This approach has the advantage of allowing the model to be trained using a larger, 
more diverse dataset, which can improve its performance and generalizability. Additionally, because  
the data remains on the device, there are privacy and security benefits to using a FL approach. While 
more research is needed to understand the full potential of this approach, it has the potential to improve 
the performance of vision-based obstacle avoidance strategies for mobile robots. 

In summary, FL is a powerful tool for training vision-based obstacle avoidance systems for mobile 
robots. By aggregating data from multiple sources and training the model on a diverse dataset, FL can 
help to improve the generalizability and performance of the obstacle classifier. It also has the added 
benefit of keeping the data private and secure, which is an important consideration when training models 
with sensitive data. Therefore, FL is a viable solution for implementing a vision-based obstacle avoi-
dance system for robots. 

In the future, other approaches can be developed to avoid visual barriers, using recurrent neural 
networks (RNN) or long term memory networks (LSTM) to process image sequences, or using adapters 
or attention mechanisms to estimate the importance of different features in images. Ultimately,  
the choice of a deep learning model will depend on the specific requirements of the obstacle avoidance 
task and the available data. 
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