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Beyond LIF Neurons on
Neuromorphic Hardware
Mollie Ward* and Oliver Rhodes

Department of Computer Science, University of Manchester, Manchester, United Kingdom

Neuromorphic systems aim to provide accelerated low-power simulation of Spiking

Neural Networks (SNNs), typically featuring simple and efficient neuron models such as

the Leaky Integrate-and-Fire (LIF) model. Biologically plausible neuron models developed

by neuroscientists are largely ignored in neuromorphic computing due to their increased

computational costs. This work bridges this gap through implementation and evaluation

of a single compartment Hodgkin-Huxley (HH) neuron and a multi-compartment

neuron incorporating dendritic computation on the SpiNNaker, and SpiNNaker2

prototype neuromorphic systems. Numerical accuracy of the model implementations

is benchmarked against reference models in the NEURON simulation environment,

with excellent agreement achieved by both the fixed- and floating-point SpiNNaker

implementations. The computational cost is evaluated in terms of timing measurements

profiling neural state updates. While the additional model complexity understandably

increases computation times relative to LIF models, it was found a wallclock time

increase of only 8× was observed for the HH neuron (11× for the mutlicompartment

model), demonstrating the potential of hardware accelerators in the next-generation

neuromorphic system to optimize implementation of complex neuron models. The

benefits of models directly corresponding to biophysiological data are demonstrated: HH

neurons are able to express a range of output behaviors not captured by LIF neurons;

and the dendritic compartment provides the first implementation of a spiking multi-

compartment neuron model with XOR-solving capabilities on neuromorphic hardware.

The work paves the way for inclusion of more biologically representative neuron models

in neuromorphic systems, and showcases the benefits of hardware accelerators included

in the next-generation SpiNNaker2 architecture.

Keywords: SpiNNaker, dendritic computation, Hodgkin-Huxley, neuronal modeling, neuromorphic computing,

spiking neural networks

1. INTRODUCTION

A vast array of brain modeling techniques exist to simulate brain activity with a view to gaining
understanding of the human brain. These techniques range from mathematical representations
of individual molecules within neurons to whole-brain simulations. One widely used method for
simulation of brain activity is through the use of neural networks. Spiking Neural Networks (SNNs)
use biologically-inspired models of neurons to carry out computation with the aim of simulating
neural activity and have applications in a number of research areas including computational
neuroscience, machine learning, and robotics.
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State-of-the-art large scale SNN simulations such as those
described by the Blue Brain Project (Markram et al., 2015) aim
to mimic brain activity through the use of complex neuron
models to advance understanding of the human brain. Scientists
were able to accurately reproduce anatomical and physiological
features of real biological networks when simulating 0.29 mm3 of
the rat brain. Despite these recent achievements in the complexity
and scale of SNNs simulated, simulation of these SNNs consumes
considerable power (megawatts) for simulation of very small
regions of the brain (Markram et al., 2015). The full simulation
involved over 30,000 different neuron models incorporating 13
different ion-channel models, each neuron comprised on average
20,000 differential equations representing synaptic connections
and ion-channels. The full simulation required solving of over
two billion equations for every second of biological time
(Kumbhar et al., 2019). This power consumption is not required
in the human brain which demonstrates a remarkable ability
for large amounts of fine-scale computation at a fraction of the
power (up to 20 watts) and much faster than SNNs simulated on
conventional computer hardware which do not run in real-time
(Cox and Dean, 2014).

Energy-efficient neuromorphic systems are designed to mimic
the brain and provide low-power platforms for simulation
of SNNs, providing a potential solution for the high energy
requirements of large scale simulations. As neuromorphic
computing platforms target real-time large-scale simulations of
SNNs, the biological plausibility of neuron models has been
largely ignored in favor of simple, efficient neuronmodels such as
the Leaky-Integrate-and-Fire (LIF) neuron model. Such models
are favored due to the ease of solving the equations involved:
the differential equations can be solved exactly with a small
number of addition and multiplication operations. These simple
neurons have allowed large-scale SNNs in real-time such as the
cortical microcircuit simulated on SpiNNaker (Rhodes et al.,
2020). This SNN simulated≈ 1mm2 of mamillian neocortex, and
while this demonstrated the potential of neuromorphic hardware
as a neuroscience research tool, the model does not exhibit
the fidelity typically explored by the neuroscience research
community.

The LIF model falls short of biological plausibility in two
main areas: membrane conductance and structure. Membrane
conductance is described with a single term in the model but
is actually governed by a number of different ion-channels
spanning the neural membrane. The flow of ions through
these channels gives biological neurons a wide range of firing
capabilities not captured with the LIF model, e.g., the ability
to respond to identical inputs differently depending on the
current state of the neuron and its ion-channels. Structure
is simplified in the LIF model to a single point, however in
biology, neurons are complex and elongated and incorporate
vast branched extensions called dendrites. Dendrites are active
structures capable of generating their own action potentials and
are believed to contribute significant computational function
to biological neurons (Dayan and Abbott, 2005; Poirazi and
Papoutsi, 2020).

Neuron models can increase in complexity to capture these
simplified biological features and a wide range of spiking

neuron models exist. Hodgkin and Huxley (1952) described a
biologically inspired model incorporating equations for sodium
and potassium ion channels which govern the progression of
the action potential. Other models, such as the Izhikevich
model (Izhikevich, 2004), aim to capture certain biological
characteristics with more efficient non-biologically plausible
equations. However, this lack of biological plausibility takes away
the ability to explore the effects of incorporating different ion-
channels and more complex morphologies than a single point
neuron structure. Accurate and efficient ion-channel modeling
on neuromorphic hardware would therefore allow exploration
of a wide range of biologically inspired models including multi-
compartment models describing complex neural morphologies
with dendritic compartments (Markram et al., 2015; Gidon et al.,
2020). Implementation of more complex neuron models onto
neuromorphic systems could provide low-power solutions for
large-scale SNN simulations.

Neuron models with increased complexity have been tested
in analog and digital neuromorphic systems, demonstrating the
importance of this kind of modeling. For example, individual
ion-channels have been modeled in an analog circuit (Abu-
Hassan et al., 2019). Here, the aim was to design a biologically
accurate neuromorphic circuit that responds identically to a
biological neuron under any injected current. The authors
were able to reproduce biological voltage recordings with
94–97% accuracy. These neurons were built to demonstrate
the potential for making synthetic neurons with therapeutic
potential for implementation into the central nervous system,
therefore do not easily scale up to large SNNs and do
not incorporate structural morphology. However, this work
demonstrates accurate representation of ion-channel models
on neuromorphic systems. Multi-compartment neuron models
have also been tested on neuromorphic systems. BrainScalesS
(Schemmel et al., 2010) is an analog neuromorphic system that
features an Adaptive-Exponential Integrate-and-Fire (AdExp)
neuron model. Schemmel et al. (2017) and more rec ently Müller
et al. (2022) and Kaiser et al. (2022) expanded this neuron
model to capture dendritic computation in multi-compartment
approaches. Intel’s Loihi (Davies et al., 2018) also offers support
for dendritic computation by offering the opportunity to model
neurons with multiple compartments. Here, the additional
compartments are effectively identical, the only difference being
that the “somatic” compartment generates spike output and
the “dendritic” compartments do not. While this does enable a
concept of dendritic computation through the ability to distribute
synaptic input across individual units, there is a lack of biological
plausibility as dendrites are actually much more computationally
complex, exhibiting non-linear processing of synaptic inputs
(Gidon et al., 2020; Poirazi and Papoutsi, 2020).

1.1. Neuromorphic Hardware
While a range of neuromorphic computing systems are currently
developed across industry and academia (Schemmel et al.,
2010; Benjamin et al., 2014; Furber et al., 2014; Merolla et al.,
2014; Davies et al., 2018; Pei et al., 2019), the application of
this technology remains limited. While these systems boast
impressive performance figures in terms of energy and processing
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speed, their bespoke architectures are often tailored to particular
applications, making it hard to adapt these systems to emerging
research problems. The SpiNNaker neuromorphic computing
system is selected as the research platform for this work, as
its flexibility enables exploration of the target neural models,
while constraints such as co-location of memory and processors
mean findings remain relevant for the wider neuromorphic
research community. The SpiNNaker system is currently an
active research platform, with a 1M core machine operating and
maintained by the University of Manchester, UK. In parallel
to exploring SNN applications on this system, research and
development into next-generation hardware is also on-going
in the form of the SpiNNaker2 system (Mayr et al., 2019).
The two platforms are explored in this work, implementing
models on both the SpiNNaker system and a SpiNNaker2
prototype chip (Jib2), to enable comparison and evaluation
of performance.

1.1.1. SpiNNaker
SpiNNaker is a massively-parallel many-core digital computing
platform, designed for large-scale real-time simulation of SNNs.
The system comprises chips assembled into a two-dimensional
mesh network, enabling the system to scale to 1M cores. Each
individual chip houses 18 cores, network on chip (NoC) and
external RAM controller; while each core contains an ARM968,
direct memory access controller, communications controller, two
timers and other peripherals. Each core has 32 kB instruction
and 64 kB data tightly coupled memory (ITCM and DTCM,
respectively), with single cycle access. Each chip has an additional
128MB shared memory, typically accessed via DMA, and used
to store larger SNN data-structures such as synaptic matrices.
Cores operate at 200MHz, running an event-driven operating
system enabling efficient neural processing (Rhodes et al., 2018).
Individual cores simulate a collection of neurons using software
to solve mathematical models representing neural dynamics.
These models are solved in discrete time, with the goal of
matching the simulation timestep to the time required to process
the state update, in order to achieve real-time simulation.
Models are programmed in C, and compiled into ARM code
using the GCC toolchain. As the core has no floating-point
unit, all models are coded using fixed-point arithmetic, with
the ISO standard accum type favored for the majority of
variables. This 32-bit type is a signed representation, with
16 integer and 15 fractional bits, and lower/upper limits of
0.000030517578125 and 65535.999969482421875, respectively
(Rhodes et al., 2018). While transcendental functions are
also not supported in hardware, division and exponential
functions are available in software, requiring approximately
100 clock cycles each. This framework enables real-time
implementation of multiple neuron models, including the
current- and conductance-based LIF and Izhikevich neurons
(Rhodes et al., 2018).

1.1.2. Jib2—SpiNNaker2 Prototype
While the architectural principles are similar, the goals of
SpiNNaker2 are to increase the number of cores by a factor of
10, and to increase the number of simulated neurons by a factor

of 50, while staying within the same power budget. The system
will use an ARM cortex M4 core, with adaptive body biasing
to enable increased clock frequencies during periods of high
load—switchable from 150 to 300MHz. Additional performance
increases are expected from inclusion of hardware accelerators
for specific operations common in neural processing, including
random number generation, ex, and a single-precision floating
point unit (Mikaitis, 2020). The experiments reported in this
work are performed on a SpiNNaker2 prototype system known
as Jib2, containing 8 processing elements (PE) arranged in
two quad processing elements (QPEs) (Höppner et al., 2021).
Each PE has an ARM cortex M4 in addition to the above
mentioned accelerators, and runs compiled C code in a similar
fashion to SpiNNaker (Section 1.1.1), again compiled with the
GCC toolchain. PEs each have 128 kB of fast access SRAM, for
combined instruction and data storage. Jib2 has variable voltage-
frequency levels enabling low-power operation and workload-
dependent scaling of clock frequency. The experiments reported
in this work are performed with the core running with voltage-
frequency settings of 0.5 V–150MHz and 0.8V–300MHz.

1.2. NEURON Simulation Environment
New models implemented on neuromorphic hardware need to
be benchmarked again standard methods used in the industry
in order to ensure the models are accurate and valid. NEURON
is a widely used platform for simulation of individual neuron
models and networks of neurons and was designed specifically
to simulate equations describing nerve cells. NEURON was
chosen as the benchmark for models as it is a standard
tool in the research field. It provides an environment for
implementing biologically realistic models with a focus on
incorporation of multiple ion-channel models and complex
branched neuronal morphologies (Hines and Carnevale, 1997).
The activity of neurons is modeled using the cable equation
in which neurons are treated as trees consisting of a number
of compartments. Each compartment is an unbranched cable
which can be split into sections and each section can contain
its own biophysical properties through different ion-channels.
Each section is described by its membrane potential and a set of
coupled differential equations are solved for each section within
a neuron to compute the evolution of membrane potential inside
the neuron over time. The general form of the cable equation for
each section, j is:

cj
dvj

dt
+ I

j
m =

∑

k

vk − vj

rjk
(1)

where cj is the membrane capacitance of the section, vj is
the membrane voltage of the section, t is time, the ionic

component I
j
m includes all currents through ion-channels.∑

k
vk−vj
rjk

represents the sum of axial currents entering from

neighboring sections, vk is the membrane voltage of the
neighboring section and rjk is the resistive coupling between
compartments. This differential equation is coupled to an
additional set of differential equations describing the active
states of any ion-channels incorporated into the model. This
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FIGURE 1 | (A) Single-compartment HH model of a L2/L3 pyramidal neuron. The soma of the cell is modeled with a leak current, IL, as well as sodium, INa, and

potassium, IK , currents. Current can be injected into the model, Ie, and it can receive multiple synaptic inputs, Isyn. (B) Two-compartment model of an L2/L3 pyramidal

neuron consisting of a somatic and a dendritic compartment. The dendritic compartment incorporates a calcium ion channel current, ICa, and a leak current, IL. The

somatic compartment incorporates the same leak current, IL, as well as sodium, INa, and potassium, IK , currents. The compartments are connected by coupling

conductances, gsoma,dend and gdend,soma. Current can be injected into either compartment, Ie, and each compartment can receive multiple synaptic inputs, Isyn.

leads to a set of coupled differential equations which need
to be solved at each simulation time step. NEURON uses a
backward Euler implicit integration method as standard (Hines
and Carnevale, 1997). Each time step update is divided into
a set of operations which are performed in order to progress
from one time step to the next. These operations include a
spike delivery step where synapses are activated by incoming
spikes, a matrix assembly step where the ionic and synaptic
currents are calculated, a matrix resolution step in which the
membrane potential is calculated, a state variable update step
in which the ion-channel states are updated, and a threshold
detection step in which membrane voltages are checked against
threshold values to determine whether a firing condition has
been met (Kumbhar et al., 2019). The NEURON platform was
designed specifically to model systems of neurons incorporating
easy to configure biological data (branched morphologies and
ion-channel models) and is therefore widely used by the
computational neuroscience community.

2. METHODS

This work involves modeling a L2/L3 pyramidal neuron1. These
neurons comprise approximately two-thirds of neurons in the
cerebral cortex of human brains and are key for a large number
of cognitive processes, making them prime candidates for
mathematical modeling and simulation. Differential equations

1All models discussed in the text are available at https://github.com/mollie-ward/

beyondLIFNeurons, and can be compiled and run on any GCC compatible

platform.

are used in individual models of spiking neurons to calculate
a neuron’s membrane potential over time. The change of the
membrane potential is proportional to the rate of change of
charge build up, i.e., the rate of change of ion flow into and
out of the cell, and hence is proportional to the amount of
current entering the cell. The amount of current entering the
cell is based on the membrane and synaptic conductances and
any current injected into the cell. The soma of the neuron is first
modeled as a single compartment Hodgkin-Huxley (HH) (1952)
model with sodium and potassium ion-channels. This single-
compartment model is then expanded to a two-compartment
model to capture a dendritic compartment which incorporates
a calcium ion-channel model (Figure 1).

2.1. Ion-Channels and HH Neurons
A single compartment HH neuron model is built to represent
the somatic membrane potential of a typical L2/L3 pyramidal
neuron. The model describes the region in which action
potentials are generated (Figure 1A). The somatic model
incorporates sodium (INa), potassium (IK), and leak (IL) currents
with corresponding maximal conductances gNa = 0.12 S/cm2,
gK = 0.036 S/cm2, and gL = 0.0003 S/cm2, and reversal
potentials ENa = +50 mV, EK = −77 mV and EL = −54.3
mV. The rate functions for somatic ion channels are modeled as
described by Hodgkin and Huxley (1952) and total membrane
current in the somatic compartment is calculated as the sum of
these three individual currents:

Isoma = gL(Vsoma − EL)+ gKn
4(Vsoma − EK)

+gNam
3h(Vsoma − ENa) (2)
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where n, m and h are gating variables for the ion channels; n
and m are activation variables for K+ and Na+ ion channels,
respectively, and h is an inactivation variable for Na+ channels.
n,m, and h, like Vsoma, all vary over time and can be modeled by:

τn(V)
dn

dt
= n∞(V)− n (3)

where

τn(V) =
1

αn(V)+ βn(V)
and n∞(V) =

αn(V)

αn(V)+ βn(V)
(4)

with similar equations for m and h. αn(V) and βn(V) are
the opening and closing variables for the K+ channel, αm(V)
and βm(V) are the opening and closing variables for the Na+

channel and αh(V) and βh(V) are the key inactivation and de-
inactivation variables for the Na+ channel. Rate functions for K+

and Na+ conductances are parameterized according to (Dayan
and Abbott, 2005):

αn =
0.01(Vsoma + 55)

1− exp(−0.1(Vsoma + 55))

and βn = 0.125 exp(−0.0125(Vsoma + 65)) (5)

αm =
0.1(Vsoma + 40)

1− exp(−0.1(Vsoma + 40))

and βm = 4 exp(−0.0556(Vsoma + 65)) (6)

αh = 0.07 exp(−0.05(Vsoma + 65))

and βh =
1

1+ exp(−0.1(Vsoma + 35))
(7)

The soma fires action potentials in response to injected current
(Ie) and excitatory synaptic input (Isyn). The progression of the
membrane potential is governed by the ion channel currents
described. Figure 2 shows the somatic membrane potential over
time in response to two current injections, and corresponding
ion-channel parameters m, n, and h. A small, constant current
injection can cause one somatic action potential to fire as the ion-
channel parameters stabilize and adapt to the injected current
(Figure 2A). A larger, constant current injection causes repeated
firing of somatic action potentials and as the ion-channel
parameters do not stabilize, firing is constant (Figure 2B). A
LIF neuron is not able to adapt in this way and is either firing
constantly or not firing at all.

2.1.1. Numerical Methods
The neuron is modeled as an equipotential sphere such that
the same electrical potential exists across the whole surface and
hence the entire neuron can be described with a single membrane
potential in a single compartment model. The ion-channels
described in Section 2.1 (Equations 2–4) are incorporated into
the general equation for a single compartment neuron in
which the membrane voltage (Vsoma) is modeled over time.

The progression of membrane voltage is calculated at discrete
timesteps with interval 1t = 0.1ms.

Cm
dVsoma

dt
= −Im +

Ie

A
(8)

Membrane capacitance (Cm) is uniformly set to 1 µFcm2 over
the neuron. The conductance per unit area (im) is defined in
Equation (2) (S/cm2), I

µ
e is the total electrode current flowing

into the compartment (nA) and A is the area of the neuron
(mm2). Equation (8), combined with Equations (2), (3), and
the corresponding equations for m and h, make up a system
of ordinary differential equations (ODEs) where the rates of
change of more than one variable are described: membrane
voltage (Vsoma), sodium activation parameter (m), sodium
inactivation parameter (h), and potassium activation parameter
(n) (Figure 2).

2.2. Multi-Compartment Modeling
A two-compartment neuron morphology consisting of a
somatic compartment and a dendritic compartment is designed
incorporating ion-channel currents. Inspiration is drawn from
the multi-compartment neuron model presented by Gidon et al.
(2020) with the aim of simplifying this model in order to
make it suitable for implementation on neuromorphic hardware
while preserving the higher level L2/L3 pyramidal neural
cell capabilities demonstrated. The dendritic compartment
represents the apical dendrites and the somatic compartment
represents the soma and basal dendrites (Figure 1B). For
the somatic compartment, HH sodium and potassium ion-
channels described in Section 2.1 are implemented. For the
dendritic compartment, a calcium channel introduced by Gidon
et al. (2020) is implemented in an attempt to capture the
L2/L3 pyramidal neural cell firing dynamics demonstrated
by the authors.

2.2.1. Dendritic Currents
The dendritic compartment is modeled with the same leak
current (IL) as the soma and a calcium current (IdCaAP) as
described in Gidon et al. (2020). The calcium current in the
dendritic compartment gives the compartment the ability to
fire its own action potentials (independent of the somatic
action potentials). These dendritic calcium action potentials
are known as dCaAPs. The dCaAP current is activated when
the dendritic membrane potential (Vdend) crosses a threshold
value (Vthresh = −36mV):

IdCaAP = −ωK(v)(A− B) (9)

with weight, ω = 3 (dimensionless). When Vdend crosses the
threshold, Vthresh, the dCaAP is activated: the activation function
of the dendrite, K(v), is calculated and the time of dCaAP
activation, t′, is set to the current timestep, t.

K(v) = exp(
−F(Vdend − Vthresh)

τK
) (10)

where F is a normalization factor F = 1/(Vthresh−Vrest) and τK is
the dCaAP amplitude decay constant τK = 0.3 (dimensionless).
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FIGURE 2 | (A) Single-compartment model of a L2/L3 pyramidal neuron with injected current Isomae = 0.3 nA and corresponding dimensionless ion-channel activation

parameters m, n, and h which govern sodium, INa, and potassium, IK , currents. (B) Current injection of Isomae = 3 nA and corresponding m, n and h progression.

The dCaAP current has a 200ms refractory period in which it
cannot fire.

A and B describe the rise and decay of the dCaAP current and
are described by sigmoidal functions:

A =
1

1+ exp(− (t−t′)
τA

)
(11)

B =
1

1+ exp(− (t−(t′+1t′)
τA

)
(12)

where t′ is the time of dCaAP activation, 1t′ = 21ms, τA = 3ms
and τB = 0.4ms.

The total membrane current in the dendritic compartment is
calculated as the sum of the dCaAP current and the leak current:

Idend = gL(Vdend − EL)+ IdCaAP (13)

Current flows from the dendritic compartment to the somatic
compartment such that injected current into the dendrite can
cause somatic action potentials to fire (Figure 3A) slightly
after dendritic action potentials. Firing dynamics of the two
compartment model in response to injected current into each
compartment is presented in Figure 3. Increasing input to the
dendritic compartment causes the amplitude of dCaAPs to
decrease, this in turn causes somatic action potentials to stop
firing as the current flowing to the somatic compartment will
decrease with decreased amplitude of dCaAP (Figure 4).

2.2.2. Numerical Methods
The single compartment model is described with a single
membrane potential, however, membrane voltages actually vary
considerably across the expansive surface of a neuron. It is
possible to analyse signal propagation within neurons using
a mathematical analysis known as “cable theory” (Dayan and
Abbott, 2005). A two-compartment neuron is modeled using
cable theory which assumes that the membrane potential varies
with longitudinal distance along the axon, x, enabling it to be
expressed as a partial differential equation (PDE) as a function
of x and time, t, V(x, t):

cm
∂V

∂t
=

a

2R

∂2V

∂x2
− Im + Ie (14)

where R is the intracellular resistivity (M�mm2) and a is the
radius (mm2). Appropriate boundary conditions are defined as
the neuron is split into two compartments (soma and dendrite)—
assuming membrane potential does not vary across the surface
of the compartment—each with their own voltage (Vsoma and
Vdend). This allows the continuous membrane potential, V(x, t),
to be approximated by a set of membrane potential values in each
compartment. Applying these boundary conditions simplifies the
PDE to a system of ODEs for each compartment such that each
compartment is described by its own membrane potential. For
the somatic compartment, Vsoma:

cm
dVsoma

dt
= −Isoma

m +
Isoma
e

Asoma
+ gdend,soma(Vsoma − Vdend) (15)
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FIGURE 3 | (A) Action potential initiation in dendritic and somatic compartment in response to a 3 nA injected current into the dendritic compartment. Dendritic

compartment regularly fires dCaAPs with a refractory period of 200 ms. dCaAPs propagate to the somatic compartment and cause somatic action potentials. The

dCaAP therefore precedes somatic action potentials (B). (C) Spiking dynamics of the dendritic compartment in response to increasing current injections into the

dendrite, the frequency of dendritic spikes remains constant but the amplitude decreases as the current injection increases. (D) Action potential initiation in somatic

compartment in response to a 10 nA injected current into the somatic compartment, the dendritic compartment does not fire in response to this injected current (E).

(F) Spiking dynamics of the somatic compartment in response to increasing current injection into the soma, the frequency of somatic spikes increases as the current

injection increases.

For the dendritic compartment, Vdend:

cm
dVdend

dt
= −Idendm +

Idende

Adend
+ gsoma,dend(Vdend − Vsoma) (16)

where Isoma
e and Idende is the total electrode current flowing

into the compartments (nA) and Asoma and Adend is the area
of the compartments (mm2). The constants gsoma,dend and
gdend,soma (nA/mm2) determine the resistive coupling between
neighboring compartments. The membrane current for each
compartment, Isoma

m and Idendm are described in Equations (2)
and (9). At each timestep, the voltage update equation and
corresponding activation parameters (Equations 15 and 16) must
be solved, along with the corresponding activation parameters
for any present ion channels such as Equation (3) for both
compartments. A backwards Euler integration scheme is used
due to its robust stability (Hines and Carnevale, 1997) by
exploiting the conditional linearity of the ion-channel update
equations (Dayan and Abbott, 2005).

2.3. Synaptic Model
Where synapses are incorporated into the model, synaptic
currents are modeled as

Isyn = gsyn(Vµ − Esyn) (17)

where Esyn is the reversal potential for the synaptic current (mV),
and gsyn is the synaptic conductance (S/cm

2). All synapses model
excitatory NMDA connections, therefore Esyn = 0 mV (Dayan
and Abbott, 2005). Synaptic conductance is modeled as:

gsyn = gmax ∗ Ps (18)

where gmax = 0.05 is the maximal conductance and Ps is the
probability of neurotransmitter release, modeled as:

Ps = Pmax ∗ (e
−t
τs ) (19)

where the maximal probability of neurotransmitter release
Pmax = 1 and τs = 10 ms. All synapses were activated
at 20 Hz for simulations and are incorporated into dendritic
(Idend, Equation 13) or somatic (Isoma, Equation 2) currents as an
additional term.

2.4. SpiNNaker Implementation
To make the models suitable for implementation on
neuromorphic hardware, modifications to the system of
equations are sought to decrease the computational load of
simulation. Neuron models on SpiNNaker are written in C
and compiled into ARM executable code. The SpiNNaker
ARM968 CPU provides an energy-efficient core on which to
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FIGURE 4 | (A) Increasing injected current into the dendritic compartment results in a decrease in dCaAP amplitude. (B) The shape of the dCaAP is governed by the

dendritic activation function, K(v) (Equation 10), which exhibits a characteristic shape in which the threshold current for dCaAP firing is the maximum dCaAP activation

and hence the maximum dCaAP amplitude, the amplitude then decays with decay constant τK = 0.3 (dimensionless) (Equation 10). (C) Resulting somatic membrane

voltage with increasing injected current into the dendritic compartment. Amplitude of somatic action potentials decreases with decreasing dCaAP amplitude. The

all-or-nothing nature of these action potentials causes a lack of firing in the soma when the dendritic stimulus intensity gets higher. (D) Somatic action potential

amplitudes are maximum when the dCaAP activation threshold is reached, they then decrease until the firing threshold for somatic action potentials is no longer

reached and the soma stops firing.

TABLE 1 | Time taken to update the membrane voltage in models in µs on the SpiNNaker and Jib2 neuromorphic hardware in one 0.1ms timestep.

HH Two comp LIF

No LUT LUT No LUT LUT

SpiNNaker 99.6 8.34 153.67 12.91 0.32

Jib2 300 MHz 2.59 0.73 3.22 1.09 0.09

150 MHz 5.19 1.45 6.45 2.18 0.19

Values for the time taken to update neuron state in a Leaky-Integrate-and-Fire neuron is also presented for comparison (values from Rhodes et al., 2018).

simulate large-scale neural networks. This core has no floating-
point hardware so fixed-point arithmetic is the preferred data
representation. Two 32-bit fixed-point arithmetic types are used
in this study which are defined in the ISO standard 18037 and
are implemented by the GCC compiler. Variables and constants
assuming values greater than 1 are defined as an ISO 10837 s16.15
accum fixed-point type: a signed 16-integer and 15-fractional
bit number. Variables and constant taking values exclusively
between 0 and 1 (for example m, n, and h) are defined as ISO
10837 u0.32 unsigned long fract fixed-point type: an unsigned 32-
fractional bit number. Previous efforts to model more complex

neuron models on SpiNNaker (Hopkins and Furber, 2015)
reported spike time lag in comparison with reference models,
however, later work (Hopkins et al., 2020) demonstrated
that errors can be reduced by introducing various rounding
techniques including round-to-nearest rounding. These methods
are implemented here to reduce arithmetic error between the
SpiNNaker implementation and the reference model. While
most modern processors include hardware support for common
arithmetic operations, SpiNNaker lacks hardware support for
division and exponential operations. Simplifying assumptions
which still give a biologically faithful model were sought enabling
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pre-calculation of operations such as divisions and exponentials.
For example, in Equation (10), F and τK are constant to avoid
the need to calculate a division at runtime. Lookup tables (LUTs)
were also used to eliminate a number of costly calculations:
Equations (3)–(7) are replaced by lookup operations.

2.4.1. Ion-Channels and HH Neurons
For potassium and sodium ion-channels, LUTs (using 12 kB
of memory) remove nine exponential and twelve division
calculations involved in the calculation of gating variables for the
ion-channels (Equation 3) which greatly improves the efficiency
of the simulation (Table 1). Inspiration was taken from the
NEURON simulation environment (Hines and Carnevale, 1997),
in which LUTs are used as standard for Hodgkin-Huxley style ion
channels. In NEURON, values of τn, τm, τh, n∞, m∞, and h∞
are pre-calculated for values of Vsoma at 1 mV intervals between
values of −100 and +100 mV and the value of Vsoma is used
with interpolation to retrieve corresponding parameters from the
table. Here, a similar table is tested in which instead of values
of τn, τm, and τh, values of exp(1t/τn) (and similar for m and
h) with 1t = 0.1 were pre-calculated for each value of V to
further decrease the amount of computation required at each
timestep. While use of this table did decrease the computational
requirements, the change from NEURON’s standard LUT meant
that discrepancies were introduced. To rectify this, an identical
LUT to NEURON’s was created, along with a LUT which stores
values of exp(1t/τn) with 1t = 0.1 for values of τn (and
similar form and h). Therefore, instead of the complex equations
required to solve Equation (3) and the similar equations for
m and h, each state update then requires only three look-up
operations per activation parameter followed by one addition
and multiplication.

2.4.2. Two-Compartment Model
The same LUT described in Section 2.4.1 is used for the somatic
compartment in the two-compartment model. For the dendritic
compartment, another LUT (using 1.6 kB of memory) is used in
the calculation of the dCaAP current (IdCaAP) again improving
efficiency. Here, A and B in IdCaAP are each described by two
divisions and an exponential operation which are particularly
costly on SpiNNaker hardware. However, as the two terms are
not themselves voltage dependent, calculating each term at every
timestep is unnecessary; A and B have characteristic sigmoidal
shapes which describe the rise and decay of the dCaAP current
which can be pre-calculated and loaded onto the SpiNNaker
chips such that the A− B calculation:-

1

1+ exp(− (t−t′)
τA

)
−

1

1+ exp(− (t−(t′+1t′)
τA

)
(20)

is replaced by a single look-up operation.

3. MODEL VALIDATION

To assess the accuracy of the proposed models on neuromorphic
hardware, the models are benchmarked against the NEURON
simulation environment in a number of simulations.

Benchmarking involves comparison between the membrane
potential on each platform at each timestep and comparison
of the timing of spikes. Monitoring progression of membrane
potential enabled a comparison of the numerical solvers on the
different platforms and spike times give a broader comparison
as spikes are the fundamental communication method in
SNNs. Spike times are recorded as the timestep in which
membrane voltage crossed a threshold value, −20 mV, and are
compared between the different platforms. In order for direct
comparisons to be made, identical simulations are run with
SpiNNaker, Jib2 and with NEURON. Despite the mathematical
complexity involved in these calculations, SpiNNaker and the
Jib2 neuromorphic hardware are still able to model the HH and
two-compartment neuron accurately.

3.1. Ion-Channels and HH Neurons
In the somatic model, current injections ranging from 0
to 10 nA are tested for 2 s of simulation time on both
SpiNNaker and Jib2. This is long enough for steady state
behavior to develop in the neuron and accumulated errors
to become visible if present. The membrane voltage is then
compared with an identical reference model in the NEURON
simulation environment. The maximum error recorded over all
current injections over full simulation time for SpiNNaker is
34.6mV, and for Jib2 is 0.106 mV. Spike times are consistent
between Jib2 and NEURON, but the increase in error on the
SpiNNaker neuromorphic system leads to accumulated errors
which results in differences in spike timings between NEURON
and SpiNNaker. Despite this, over the range of simulations,
spike times on SpiNNaker only differ by one timestep (0.1
ms). In these neuron models the action potential is the most
challenging part of the model due to the rapidly changing
dynamics, and it is during action potentials that the largest
errors between the fixed-point SpiNNaker implementation and
the reference model are generated. One source of errors between
these systems is the differing number representation: NEURON
supports double precision floating point numbers, Jib2 supports
single precision floating point units and SpiNNaker supports
32-bit fixed-point representations. During testing, switching the
reference model to a CPU implementation and restricting the
precision to 32-bit floating point arithmetic resulted in negligible
errors between this implementation and Jib2. This shows that
the different number representations are a source of error, these
results are not included due to brevity. Another source of error
in both SpiNNaker and Jib2 relative to NEURON is due to
subtle differences in look-up tables being implemented: where
NEURON pre-calculates values of τn, τm, and τh and then
calculates values of exp(1t/τn) (and similar for m and h), this
exponential and division step is replaced with another LUT in
the SpiNNaker implementation to avoid the need for exp(1t/τn)
calculations at each timestep. This source of error is confirmed
by altering double precision reference models to mirror the
SpiNNaker implementation and observing the decreased error.
The accuracy of the somatic compartment is also tested with
varying resolutions of LUT to further justify the use of a LUT
with 1mV intervals between values of −100 and +100mV,
as in NEURON (Hines and Carnevale, 1997) simulations. The
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FIGURE 5 | Accuracy comparisons between the two-compartment model implemented on SpiNNaker, Jib2 and NEURON. The dendritic compartment fires a dCaAP

in response to a current injection of 3.5nA which is accurately modeled on the neuromorphic platforms (A). The dendritic compartment is modeled accurately over

time (B): absolute errors are small throughout the duration of the action potential and drop to 0 mV when the dendritic compartment enters its refractory period. In the

somatic compartment, absolute errors are larger because the calculation of Isoma is voltage dependent, therefore when errors are produced in this calculation, an error

in voltage is calculated which then, in turn, further increases the error in the Isoma calculations (C). Because of this, over time, SpiNNaker experiences accumulated

errors. With Jib2 errors return to 0mV between spikes, and with do not accumulate over time (D).

model is simulated with no LUT, and with LUTs with 2 and
1mV voltage intervals.With no LUT, the maximum error was
105.9mV. Inclusion of LUTs increases the accuracy of models
with the 2mV table resulting in a 59.2mV maximum error and
the 1mV interval table providing the most accurate solution
with a 34.6mV maximum error. SpiNNaker cores have 64 kB of
memory for data storage (DTCM). Finer resolution LUTs are not
tested because they occupy more of the SpiNNaker DTCM and
the accuracy of spike times using the 1mV interval is sufficient
therefore occupying more DTCM with larger lookup tables is
unnecessary. Despite the differing errors, both SpiNNaker and
Jib2 can accurately model the HH model in response to a wide
range of current injections and are able to maintain this accuracy
over time (Figure 5).

3.2. Multi-Compartment Modeling
In the dendritic compartment, current injections ranging from 0
to 10 nA are tested for 2 s of simulation time. Membrane voltage

was recorded and absolute errors between SpiNNaker, Jib2 and
NEURON are calculated, as well as the timings of spikes in both
compartments. In the dendritic compartment, the maximum
error recorded over all current injections over full simulation
time for SpiNNaker is 0.00314mV, and for SpiNNaker 2 is
0.00137mV. An example current injection of 0.45 nA into
the dendritic compartment and resulting membrane potential
recording is shown in Figure 5A. The evolution of absolute
error over time in the dendritic compartment in response to
injected current into the dendrite follows a typical shape each
time a dCaAP is fired; the error remains below 0.5µV between
spikes when the dendritic compartment is in its refractory period
but rises as the membrane voltage rises, following a similar
progression as the voltage. After the spike, the look-up table is
no longer used and the value of A − B returns to 0, meaning
the value of IdCaAP is 0. There are therefore no issues with errors
accumulating over time because after each spike the error returns
to near zero as there is no active calcium current. The errors
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for the dendritic compartment simulations are smaller than the
somatic model due to a decreased complexity in the equations
(the soma contains more ion-channels). Again, errors result here
from the differing numerical datatypes used on the different
systems. This is demonstrated by restricting the reference model
to single precision floats which decreases the error between Jib2
and the reference model. Again, during testing, switching the
reference model to a CPU implementation and restricting the
precision to 32-bit floating point arithmetic resulted in decreased
errors between this implementation and Jib2, these results are not
included due to brevity. The errors are not large enough to cause
any differences in the timing of spikes between SpiNNake, Jib2
and the NEURONmodel. Spike times remained consistent across
all platforms.

3.3. Performance Profiling
We are interested in accelerating brain simulation with
neuromorphic hardware, therefore the time taken to update the
state of a neuron in each simulated 0.1ms timestep is a key
metric to evaluate for the different implementations. This is
measured through recording the number of clock cycles taken to
update the membrane potential in each model, and combining
with the clock frequency. Each core on the SpiNNaker chip
operates at 200MHz, meaning one clock cycle takes 5 ns. With
Jib2, voltage-frequency settings of 0.5 V–150MHz and 0.8V–
300MHz result in clock cycles taking 6.67 and 3.3 ns, respectively.
For each model, 100 neurons are profiled for 10,000 timesteps
with a representative current injection causing regular somatic
spiking with a frequency of 50Hz for HH and two compartment
model. The amount of time taken to update the membrane
potential in implemented models, with and without LUTs, is
described in Table 1. For comparison, the time taken to update
the membrane potential of a LIF neuron on SpiNNaker and Jib2
is also presented, the LIF neuron is kept sub-threshold during
profiling in order to provide full state updates at each timestep,
analogous to the HH and two compartment models.

In the HH model, the calculation of ion-channel parameters,
resulting current values from these parameters, and subsequent
membrane potential update for each 0.1ms timestep on
SpiNNaker takes 99.6µs without any lookup tables (LUTs).
Inclusion of the LUTs results in the update taking 8.34µs to
compute, meaning the look-up table speeds the implementation
up by over 11x. Similar calculations on Jib2 demonstrate the
benefits of the hardware accelerators by showing a speed up in
processing time. At 300MHz, the membrane potential update
takes 0.73µs and at 150MHz, the update takes 1.45µs. Again,
Jib2 illustrates that the LUTs improve the implementation speed,
both the HHmodel and the two-compartment model are over 3x
faster with the LUTs (Table 1). The HHmodel on Jib2 with LUTs
is within an order of magnitude of the LIF neuron running on
Jib2 which takes 0.09µs.

Addition of the calcium current in the dendritic compartment
for the two-compartment model increases the amount of
time taken to update the membrane potential. On SpiNNaker,
updating the somatic membrane potential takes 12.91µs with
LUTs, without LUTs this takes 153.67µs, over 11x longer. On Jib2
these membrane potential updates are quicker, taking 1.09 and

2.18µs with the core operating at 300 and 150MHz, respectively.
Again, this model is 3x faster with the inclusion of the LUTs, with
the non-LUT implementations taking 5.19 and 6.45µs (Table 1).

4. RESULTS

4.1. HH Model Increases Expressiveness of
Single Compartment Neurons
After models were validated (Section 3), the additional behaviors
they bring to neuromorphic hardware were explored which
have not been demonstrated previously on these platforms.
The sodium and potassium ion-channels incorporated into
a HH neuron model give the neuron a number of firing
capabilities that are unable to be produced with simple LIF
neurons. Izhikevich (2004) identified 20 of the most important
neurocomputational spiking features of biological neurons which
can be captured with spiking neuron models. The Hodgkin-
Huxley model was identified to be able to reproduce all 20
of the firing dynamics, while the LIF neuron model can
only reproduce 3: the ability to spike tonically, to increase
firing frequency in response to increased input strength and
the ability to integrate inputs and fire in response to them
(Izhikevich, 2004). The single compartment neuron model here
features Hodgkin-Huxley sodium and potassium ion-channels
which therefore give this model the ability to produce all 20
neurocomputational features.

Firing features of the somatic model are demonstrated in
Figure 6, through injection of current directly into the neuron
and recording the resulting somatic membrane voltage. It is
not possible for a single neuron model to exhibit all properties
simultaneously because some features, for example the ability to
fire a train of spikes in response to a constant input, and the
ability to fire periodic bursts of spikes in response to constant
input, are mutually exclusive. For that reason, 10 biologically
important firing features are presented that can be exhibited
simultaneously without altering parameters from those described
in Section 2.2. In response to a constant somatic current
injection, the soma can fire a constant train of spikes known as
tonic spiking (Figure 6A). If the current injection is just strong
enough to cause a spike, the neuron demonstrates phasic spiking
(Figure 6B) where a single spike is fired followed by inactivity.
Phasic spikes are often followed by sub-threshold oscillations
(Figure 6C) caused by ion-channel currents. Inputs to neurons
are generally not constant, and neurons can display a number
of firing properties in response to different input currents.
Neurons can demonstrate accommodation to inputs: presenting
the neuron with a slowly increasing current does not produce a
spike but presenting the same neuron with a sharply increasing
current will produce a spike (Figure 6D) due to the ion-channels
within the neuron having more time to adapt to the current,
meaning the neuron accommodates. Hodgkin-Huxley neurons
are Class II excitable neurons meaning they are either inactive
or they fire spikes with a high frequency, this is displayed by
presenting the neuron with a steady increase in injected current
(Figure 6E). Adaptation of ion-channel currents also leads to a
phenomenon in which the neuron fires a spike after an inhibitory
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FIGURE 6 | Spiking properties of the somatic compartment. Shown are simulations of the two-compartment model with current injected into the somatic or dendritic

compartment to reproduce different firing dynamics capturing a number of biologically representative neural capabilities. The firing dynamics in the box are achieved

through injected current into the dendritic compartment rather than the somatic compartment itself. (A) Tonic spike. (B) Phasic spike. (C) Oscillations. (D)

Accommodation. (E) Class II. (F) Rebound spike. (G) Integrator. (H) Variable threshold. (I) Adaptation. (J) XOR.

current injection (Figure 6F) known as a post-inhibitory spike.
Neuron models in SNNs generally integrate spiking inputs over
time, if inputs are closer together then the neuron is more
likely to fire spikes as the firing threshold is passed (Figure 6G).
While most SNN neuron models have fixed voltage threshold for
firing spikes, biological neurons actually have a variable threshold
which is determined by the activity of the neuron (Figure 6H).
Briefly exciting the neuron in Figure 6H is not enough to make
the neuron fire, however if it is preceded by a brief inhibitory
input, this same excitation will cause the neuron to fire. Spike rate
adaptation is a phenomenon in which neurons fire tonic spikes
with decreasing frequency, this feature is mutually exclusive with
the tonic spiking ability discussed above and single-compartment
neuron models are unable to display both properties. Here,
inclusion of the dendritic compartment allows the soma to
display spike-rate adaptation in response to a constant current
injected into the dendritic compartment (Figure 6I). Injecting
the dendritic compartment with a steady increase in injected
current leads to remarkably different somatic firing dynamics in
which firing starts when input is above threshold but ceases firing
when the input continues to rise (Figure 6J), this phenomenon is
explained in Section 4.2.

Other neurocomputational properties presented by Izhikevich
can be captured by altering the parameters described in
Section 2.2. These include the ability to burst (rather than
tonically) fire and to fire in response to inhibitory (rather than
excitatory) inputs. Properties such as these can be captured

by altering parameters involved in the differential equations
describing ion-channel currents (Kirigeeganage et al., 2019).
Sodium channel currents change more rapidly than potassium
currents in the beginning of the progression of an action
potential, they are described by an activation variable (m) and
an inactivation variable (n) (Section 2.1). Therefore, to adjust the
neuron to be responsive to inhibitory inputs, modifications to
the differential equation describing m can be made to alter the
responsiveness of the neuron.

Izhikevich compared 11 spiking neuron models by the
ability of the models to produce some of these features
and the computational cost of each model (Izhikevich,
2004). The Hodgkin-Huxley model was the only one
able to produce all firing properties while also being
biophysically meaningful. This biological accuracy leads to
higher computational cost of the model which makes it
more expensive to implement than other neuron models.
However, computational costs can be diminished using
a variety of techniques (see Section 2.4). In addition, the
biophysical plausibility of the Hodgkin-Huxley model
allows incorporation of dendritic morphology and different
ion-channels through cable equation modeling, this is not
possible with less biologically plausible models. The dendritic
modeling in the second compartment gives the neuron
additional computational properties to further increase the
firing capabilities beyond those identified by Izhikevich,
described in Section 4.2.
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TABLE 2 | XOR truth table demonstrating the binary output of an XOR operation

in response to two binary inputs.

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

If the inputs are both 1 (true) or both 0 (false) then the output is 0 (false), if either input is

1 and the other 0 then the output is 1.

4.2. Dendritic Compartment Enables Single
Neuron to Function as a Multi-Layer
Network
Inclusion of the dendritic compartment further increases the
computational properties of the neuron beyond the 20 identified
by Izhikevich. The dynamics described by Izhikevich are
relatively well-known capabilities for Hodgkin-Huxley neurons
and can be reproduced by other neuron models including
the model proposed by Izhikevich himself (Izhikevich, 2004).
However, the biological plausibility of the Hodgkin-Huxley
model enables it to be built upon through the incorporation
of more compartments representing dendritic branches which
further increase the capabilities of the neuron.

Here, the dendritic compartment gives the neuron the ability
to compute a logical operation known as exclusive-or (XOR).
Logical operations are performed on binary inputs and produce
a binary output. An XOR operation is a logical operation in
which an exclusive-or is implemented: the binary output is
1 (or true) when there is only one input to the operation,
if both of the inputs are 0 (or false) or both of the inputs
are 1 then the output of the XOR operation is 0 (Table 2).
While simple logic operations such as AND and OR are easily
implemented in single units within neural networks, the XOR
function is a common problem in neural network research and
is widely used as an example of a linearly inseparable problem;
it has become a benchmark in machine learning for testing
neural network capabilities in solving complex problems. SNN
implementation of the XOR operation has thus far required
multiple layers of spiking neurons as the nature of spiking neural
network architectures is that each layer can only separate data
points with a single line (Vogels and Abbott, 2005; Reljan-
Delaney and Wall, 2018; Cyr et al., 2020). XOR functions were
deemed impossible in single-layer networks—Marvin Minsky
and Seymour Papert provided proof that single-layer ANNs
could not perform XOR in their 1969 book Perceptrons (Minsky
and Papert, 2017) due to the non-linear separability. An XOR
gate was demonstrated within a large SNN by (Vogels and
Abbott, 2005) who stated that “a functional XOR gate requires
∼220 neurons”. Here, the XOR problem is solved with a single
neuron model.

The shape of the dendritic activation function allows the
XOR problem to be solved here with a single neuron model.
The activation function results in the amplitude of dCaAPs
decreasing when the input to the dendritic compartment
increases above a certain strength; the dCaAP amplitude is

maximal when the input to the dendrite crosses the threshold
for activation, then decreases as the input increases further
(Figure 7A). As the dCaAP amplitude decreases, the amount
of current flowing from the dendritic compartment to the
somatic compartment decreases which in turn decreases the
somatic action potential amplitude (Figure 4B). As somatic
action potentials are an all-or-nothing spike response, when
the current flowing from the dendritic compartment to the
somatic compartment decreases below a certain value, the
soma stops firing action potentials (Figure 4B). Therefore, the
somatic compartment will start firing when the input to the
dendrite is increased to its firing threshold and then will
decrease and eventually stop firing as input is increased further.
Similar behavior is observed when input to the dendritic
compartment is synaptic rather than injected current. Increasing
the number of synapses also causes the dCaAP amplitude to
increase then to decrease above a certain number of synapses,
leading to somatic action potential firing and subsequent
cease (Figure 7).

While the action potentials arising from calcium currents
in the dendritic compartment are responsible for XOR-type
computation, the somatic compartment, through integration
of sodium and potassium currents, computes standard logical
operations for spiking neurons such as AND and OR.
The combination of these differing logical operations allow
the neuron to act as a multi-layer network, increasing
the computational capabilities of a single neuron model in
comparison with a leaky integrate-and-fire model.

5. DISCUSSION

This work has provided the first fixed-point implementation of
ion-channel, Hodgkin-Huxley, and multi-compartment models
on SpiNNaker neuromorphic hardware and the first profiling
for both speed and accuracy of such models on SpiNNaker2
prototype neuromorphic hardware, demonstrating the improved
performance of the next-generation system through the use of
hardware accelerators and floating point arithmetic. The first
demonstration of a two-compartment neuron model running on
neuromorphic hardware that can solve the XOR problem using a
single neuron is also presented through this work.

Neuromorphic systems are designed to provide low-energy
platforms for simulation of Spiking Neural Networks (SNNs) but
in doing so biologically plausible neuron models have largely
been ignored in favor of simple and efficient neuron models
such as the Leaky Integrate-and-Fire (LIF) model. In contrast,
focus in the computational neuroscience community has been
on building models with a high degree of biological accuracy
which are in turn accompanied by large computational costs,
making the models difficult to scale into SNNs. This work
bridges this gap by presenting two biologically inspired neuron
models (Figure 1), implemented efficiently and accurately on
SpiNNaker and Jib2 neuromorphic platforms (Figure 5): a
single compartment Hodgkin-Huxley (HH) neuron (Figure 2)
and a multi-compartment neuron incorporating dendritic
computation (Figure 4).
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FIGURE 7 | Somatic compartment exhibits XOR response to dendritic input in a single neuron model. (A) Dendritic and somatic firing dynamics in response to

increased synaptic input into the dendritic compartment. Increased number of synapses leads to an initial increase and then decrease in dCaAP amplitude which

subsequently cause the somatic compartment to start firing action potentials then stop. (B) The dynamics of the somatic compartment in response to the dendritic

inputs provide a solution to the XOR problem in a single neuron model. Somatic compartment exhibits XOR response to dendritic input in a single neuron model.

Increased number of synapses leads to an initial increase and then decrease in dCaAP amplitude which subsequently cause a similar increase and cease of somatic

action potential firing.

Both SpiNNaker and Jib2 are able to accurately model both
neurons over time with identical spike times recorded on Jib2
and a reference model in NEURON (Hines and Carnevale, 1997)
and spike times within 0.1ms on SpiNNaker. Manipulation of
equations, pre-calculation of constants and the use of lookup
tables (using 12 and 13.6 kB of memory for HH and two-
compartment models, respectively) enabled a significant speed
up of simulation time of the models (approx 11× for both
the single and two-compartment models—Table 1). This speed-
up is further increased by 3× with implementation on the
next-generation Jib2 neuromorphic chip, demonstrating the
effectiveness of hardware accelerators for expressions such as
exponential operations (Table 1) when simulating biologically
representative neurons.

Comparison with neuromorphic implementations of
the conventional LIF neuron model revealed that both the
HH and the multi-compartment neurons were slower to
simulate on neuromorphic hardware, due to the increased
complexity of the models (Table 1). However, the computational
capabilities gained justify the increased expense of running
the model, and the model on Jib2 is within an order of
magnitude of the LIF neuron in terms of computation time.
The underlying ion channel models directly correspond
to biophysiological data, bringing increased biological
relevance to models simulated on neuromorphic hardware.
Furthermore, the presented HH model exhibits a wide
range of firing characteristics which cannot be captured
with LIF neurons (Figure 6), and the inclusion of a dendritic
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compartment enables the a single neuron model to function
as a multi-layer network. The multi-compartment model
provides the first implementation of a single neuron model
capable of solving the XOR problem on neuromorphic
hardware (Figure 7).

This work has explored simulation and profiling of individual
neurons, and their realization on neuromorphic systems. The
ultimate goal of implementing these models is harnessing
their ability to capture biologically representative features in
large-scale SNNs, and opening up new applications in bio-
inspired AI. To understand how the presented models would
scale when included in large networks, it is useful to contrast
performance with LIF neurons and biologically representative
neural circuits previously evaluated on SpiNNaker. In previous
work modeling cortical microcircuits comprising LIF neurons,

it was shown that neuron and synapse processing could
be parallelized effectively on multicore architectures such as

SpiNNaker (Rhodes et al., 2020). Through this parallelization

real-time simulation of cortical circuits containing 80k neurons
and 300M synapses was demonstrated, with an energy per

synaptic event of ≈ 0.6 µJ. The models presented here would
impact the neuron processing, resulting in a ≈ 40× reduction
in neuron density relative to LIF neurons to accommodate the
increased model complexity. This indicates that approximately
40× more SpiNNaker chips would be required to simulate
the same size of model, leading to the same factor increase
in total energy consumption. Projecting these numbers on to
SpiNNaker2 requires consideration of the updated performance
achieved with the new hardware. The HH and two-compartment
neurons occupy 48 and 55 kB, respectively (of the 128 kB fast-
access SRAM for combined instruction and data storage on
Jib2) with the instructions to update the neuron and the storage
of constants, variables and LUTs. Increasing the number of
neurons does not significantly increase the storage requirements,
as the instructions for updating the neurons are the same
and all neurons share common LUTs. While the number of
neurons per core determines the amount of state variables to
be stored, these datastructures are relatively small compared
to those described above (assuming split neuron and synapse
processing/storage as described above, Peres and Rhodes, 2022).
Therefore the determining factor in the number of neurons
which can be simulated on each core is the processing time.
As it takes 0.73 µs to update a HH neuron and 1.09 µs
for the two-compartment neuron using a 0.1 ms simulation
timestep, assuming the goal of real-time simulation, an upper
limit of 136 HH neurons or 91 two-compartment neurons
could be updated by a single core while maintaining real-time
execution. In reality this number is likely to be reduced to
enable cores to perform auxilliary operations such as monitoring
and data recording, reducing overall neuron density. However,
this is likely to remain above the 64 neurons per core
utilized in previous cortical simulations on SpiNNaker (Rhodes
et al., 2020), enabling real-time cortical simulations containing
biologically representative ion-channel-based neuronmodels (on
SpiNNaker2). Furthermore, embedding these models within the
SpiNNaker routing and communications fabric should facilitate

further expansion of model sizes while maintaining real-time
execution. This indicates that the cost of changing from LIF
to multicompartment models on SpiNNaker2 will incur a 10×
increase in energy, with the overall system significantly more
energy efficient—LIF neurons have been profiled at 20 pJ per
synaptic event (Höppner et al., 2021).

The model provides a framework for capturing and
testing more biologically plausible neural dynamics in an
efficient way. For example, different ion-channels can easily
be substituted or added to the model, and more complex
morphologies can be captured through inclusion of more
dendritic compartments. Recent work has demonstrated the
potential of multi-compartment neuron models to learn
via a synaptic learning rule (Bicknell and Häusser, 2021),
opening the door to the possibility of training the neuron
models presented in this work within large-scale SNNs on
neuromorphic hardware, in particular those featuring hardware
accelerators to maximize efficiency. Significant computational
capabilities are gained with each individual neuron model
and neuromorphic architectures can provide energy-efficient
platforms for simulations. While this work has focused
on demonstrating feasibility through development of software
models suitable for execution on SpiNNaker, the developed
models also provide the first step toward algorithm-hardware
co-design. Hardware requirements such as arithmetic operations
and memory use have been identified, providing insights into
how future neuromorphic systems could be tailored to further
optimize execution.
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