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A linear regression model to predict the critical
temperature of a superconductor

Amir Alipour Yengejeh
dept. Statistics and Data Science
University of Central Florida
Orlando, United States
amir.alipouryengejeh @ucf.edu

Abstract—Since the superconductivity has been introduced,
almost all studies in this area have been striving to predict the
critical temperature (7.) through the features extracted from the
superconductor’s chemical formula. In this study, thus, we are
interested in exploring the linear association between 7. and the
related features.

Index Terms—Superconductor, Linear Regression, Critical
Temperature

I. INTRODUCTION

Superconductor’s materials enjoy the superconductivity

state where there is not any electronic resistance and can store
or preserve an electronic current for an unlimited time. These
materials have a wide range of applications. For instance, it
is used in MRI systems by the health care specialists to see
the details of the internal status of the patients. However, the
superconductivity in the superconductors can be achieved in
the cold temperature. In other word, they need to be cooled
at the below of their critical temperature (7.) to let the
superconductivity happen. Thus, the problem of predicting 7
has been investigating for a long time. In this regard, it has
been interested in building the statistical models to anticipate
the critical temperature through the features derived from the
chemical formula of superconducting materials. To address
this problem, therefore, a comprehensive database has been
introduced to let create verity of the statistical algorithms. The
pre-processed dataset contains 21,263 superconductors and 82
features [1]. In this study, we eager to fit a linear regression
analysis to predict 7, via these dataset, that is, estimate a
statistical linear relation between 7, and 81 superconductors.
Some of the related works predicting critical temperature of a
superconductor are [2] and [3].
Therefore, the main contribution of this paper is building
a multiple linear regression model to predict the critical
temperature. The framework of this study begin with glancing
on the dataset and then follows by presenting the analysis
the obtained results. Finally, it will end with discussion and
conclusion of the results.

II. DATA SET

In this section, we like to glance on the dataset. As men-
tioned, our dataset is divided to the critical temperature as a
target variable and the rest features as predictors. Here, our
main plan is fitting a multiple linear regression to predict 7.

However, this algorithm requires the dataset to meet some
critical assumptions. The main assumption defined on the
target variable in which the distribution is from the normal.
However, the distribution of the predictors has less effect on
the regression models. On the other hand, the number of
predictors fed in the linear algorithm is the main concern. This
is because that as the number of predictors goes up, the prob-
ability of co-linearity among some predictors might increase .
Hence, these concerns have to be explored individually in our
dataset before diving into building the model.

A. Critical Temperature Distribution

As mentioned, the normality assumption for the response
variable is essential for the linear regression analysis. To check
this assumption in our case, figure 1 displays the density
(histogram) plot of the critical temperature vs the normal
distribution generated by mean and standard deviation of the
variable.
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Fig. 1. The histogram plot of the observed critical temperature

According to the figure 1, the distribution of the original
critical temperature is approximately right-skewed. Thus, it
needs to be transformed before applying any linear regression



model to let be from the normal or at least to close to
this distribution. In this regard, we applied the BoX-Cox
transformation 7. The results of the transformaion graphed
in the figure 2.
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Fig. 2. The histogram plot of the transformed critical temperature

The density of transformed could improve 7, distribution
and make it close to normal.

B. The Proprieties of Predictors

This section explores the properties of 81 features extracted
from the superconductors. Regarding to the linear regression
models, the distributions of the predictors or independent
variables are not main concern, but the any association among
the predictors can adversely affect on the performance of the
models. This type of correlation in the predictors’ matrix can
lead to adverse phenomena like collinearity or multicollinear-
ity.

There are some informal and formal methods such as cor-
relation matrix and variance inflation factor (VIF) to identify
these phenomena among explanatory variables.

The figure 3 visualize the correlation matrix of 81 super-
conductors.

According to the above figure3, the superconductors in our
study are highly correlated and can make redundant variables.
To address this issue, some remedies has been suggest. The
popular ones are Principal Components Analysis (PCA) or
Partial Least Square (PLS). In this study, however, our scope
is fitting a full linear regression and analysis the results of this
model.

III. RESULTS

This section presents and analysis of fitting a multiple
regression model on 81 superconductors to predict 7.

Before applying the model, however, the dataset was split
into training and testing sets in which 70% of the data assigned
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Fig. 3. The correlation matrix of the superconductors

to train set. The plan is performing the linear model on the
training set and evaluate the performance of the model via
validation dataset based on some measurements like Mean
Square Error (MSE), Mean Absolute Error (MAE) and R-
square.

So, we we can begin with applying the below model on
the training set to predict the Box-Cox transformed critical
temperature,

T.;(N\) = Bo + B
14884 and T, (\) =

Xit+ .+ 81Xz +6 (1)

where i =1, ..., (T2 —1) /A =0.24

The results of fitting the model in (1) on 14884 su-
perconductors of the training set show that 11 features
such as mean_atomic_radius, mean_ThermalConductivity,
mean_Valence, and to name but a few are not statistically
significant in 5 % level. In addition, the R square and R square
adjusted are reported 0.934. It means that the 93.4 % of the
variation in the critical temperature of superconductors can be
explained by the model. Due to the p-value of the model is
zero, we have enough evidences to reject Hy : 1 = [ =

.= Bs1 = 0. So, the model (1) is statistically significant.

The figure 4 shows the observed T, versus its predicted
values with the full model in (1).

Note that the red line fitted with the zero intercept and slop
one.

According to the figure 4, many of points are under line.
It indicates that the multiple linear regression is suffering
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The Scatter plot of the observed vs Predicted critical temperatures

from under and over prediction and fails to provide a proper
prediction of the critical temperature. This is because that
prediction of many superconductors with higher 7, are in the
below line while the predicted for lower T, are above the line.
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Fig. 5. The Scatter plot of the training residuals vs validation residuals of
the critical temperature (K)

Figure 5 shows the scatter points of the residuals of pre-
dicted and observed T, for both training and validation set. It
indicates that both errors are overall overlapped approximately.

The table 1 also shows the Mean Square Error, Mean
absolute Error, and R-square, for both training and validation
sets.

TABLE I
THE EVALUATION’S CRITERIA
Measure Train Validation
MSE 296.355 303.491
MAE 11.94 12.033
R Square 0.749 0.738

According to the above table, the measurements are approx-
imately close to each other. For instance, MSE for validation
is slightly higher that of training set.

Our observations from both table 1 and figure6 indicates
that the model is not overfitted.

IV. DIAGNOSTIC TESTS

The multiple linear regression is conducted based on some
main assumptions such as linearity, homoscedasticity, inde-
pendence, and normality. The models can be also adversely
affected by the presence of data points called outliers.

If the fitted model violates one of these defined assumptions,
it is usually tried to remedy or address this problem. If this
try fails, the model cannot be considered as a good model.
In this section, we try to check the above assumption in our
fitted linear regression model.

1) Normality: it is suggested that the residuals is from
the normal distribution with zero mean. To check this
assumption we can use the graphical methods like Q-O
plot and formal tests like Kolmogorov—Smirnov.

Figure 7 and 8 display the histogram (density) and Q-Q
plots of the residuals respectively.
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Fig. 6. The density plot of the estimated training residuals
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Fig. 7. The Q-Q plot of the estimated training residuals

The observation from two plots in figure 6 and 7
confirm that the residuals are pretty normal. Figure 7
also indicates that the mean of residuals are zero.



2) Homoscedasticity: This assumption suggests that the
variance of residuals should be constant. To check this
assumption, we can plot the predicted critical tempera-
ture values versus the residuals. If any defined patterns
(linear, quadratic, or funnel shaped) on the plot is
observed, we can conclude the presence of heteroscedas-

ticity.
The figure 8 shows the residuals against the predicted
T, values.
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Fig. 8. The residuals of the estimated training residuals vs the predicted
critical temperature (K)

Even though many points on the figure 8 are under line,
we cannot see any special pattern. So, we conclude that
the variance of residuals are almost constant.

However, there is some formal tests like
Brown_Forsythe and Goldfeld Quandt to examine
this assumption in which H, assumes that the errors
are not heteroscedastic.

The Goldfeld Quandt conducted and the obtained
p-value=0.977 is greater than 0.05. Therefore, we can
conclude that the variance of error in our study is
Homoscedastic.

3) Independancy of residuals: It is assumed that residuals
should be independent. To check this assumption, we
can calculate Dorbin-watson statistic. The range for this
test statistic is between 0 and 4. The general rule of
this test is that if the statistic value is close O, there
is a strong positive correlation between the residual
values. In contrast, the close value to 4 indicates a strong
negative correlation between the residuals.

Here, the Dorbin-watson statistic is 1.98. It means the
residuals are almost independent.

4) outliers:
The observations with the large residual are defined as
outliers.
Some statistics were defined to detect the outliers. One
popular is call Cook’s Distance. It measures how much
excluding one observation from the dataset can change

the predicted value of the response feature.
The figure 9 shows the results of calculated cook’s
distance for each observation.
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Fig. 9. The cook’s distance

The common rule is that if the obtained cook’s distance
greater than 4/n, it can be considered as an outlier. In
our case, the threshold is around 4/14884 = 0.0002.
Thus, the figure 10 indicates that there are some potential
outliers.

CONCLUSION

The foundation of superconductors is based on the com-
bination of many chemical elements such that the function
(superconductivity) of which relies on the specific range of
temperature known as critical temperature. Thus, the value of
critical temperature is related on these chemical elements. In
other words, the critical temperature is a function of features
extracted from superconductors. Therefore, it is worthwhile
that the value of critical temperature must be predicted by a
model based on these attributes before producing supercon-
ductors .To do so, we examined the multiple linear regression
in this study. Even though the model is not overfitted, it was
failed to provide a proper prediction. This is because that it
was failed to meet some predefined assumptions. For instance,
the distribution of the critical temperature is not following the
normal distribution, even though it was transformed. It also
shows that it is suffering from over and under prediction. In
Addition, using this model results in some potential outliers.
Some predictors are also highly correlated and is suffering
from the collinearity. In conclusion, the multiple linear re-
gression is not be able to address this problem individually.
Thus, to the future study, we can examine the combination of
PCA and multiple linear regression or needs to use some other
complex models like Xgboot or Lasso.
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