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A B S T R A C T   

Rapid on-site electrochemical screening for prostate cancer (PCa) in the clinic holds the potential for early 
diagnosis of PCa patients. Currently, the accuracy of commonly used biomarkers is insufficient; however, several 
protein biomarker candidates show promise for diagnostic or prognostic patient screening. Among these can-
didates are Prostate specific antigen (PSA), Human glandular kallikrein 2 (hK2), Annexins 3 (Annex 3), Beta-2- 
microglobulin (β2M), Microseminoprotein-beta (MSMB), Serum amyloid A (SAA), and Engrailed-2 (EN2). This 
review provides an overview of the advancements in electrochemical biosensor development specifically tar-
geting the detection of these seven biomarkers. The selection of these biomarkers was based on their suitability 
for protein-level detection using electrochemical sensors, as well as their presence in biological fluids. Moreover, 
we emphasize that relying solely on a single biomarker may not be sufficient to obtain precise diagnostic in-
formation. It is now widely accepted that panels of biomarkers measured in a multiplexed fashion are of greater 
clinical utility than single biomarkers. Therefore, we suggest that future research prioritize the utilization of 
multiplex electrochemical methods for measuring panels of protein biomarkers, offering a simple and efficient 
approach for regular PCa monitoring.   

1. Introduction 

As the fifth most common cause of cancer-related death among men 
worldwide, prostate cancer (PCa) is a significant global health issue [1]. 
The risk of developing PCa increases with age and the median age of 
patients diagnosed with PCa is around 65 years [2]. Patients often do not 
experience symptoms related to PCa until the later stages of the disease, 
and therefore early detection of PCa can increase the chances of curative 
treatment and survival from the disease. 

Since 1991, prostate-specific antigen (PSA) has been widely accepted 
as the primary biomarker for both diagnosis and monitoring of PCa [3] 
and with the combination of Digital Rectal Examination (DRE), PSA 
measurements provided better prediction for PCa [3]. Currently, both 
measurements of PSA levels in blood and DRE are established routine 
examinations in men with suspicion of PCa [4]. However, over-diagnosis 
is still one of the biggest challenges in the management of PCa, as 

elevated levels of PSA can also be caused by other benign prostatic 
disorders [5]. This underscores the necessity for a biomarker that is 
more specific to cancer. 

The discovery of several cancer-specific biomarkers has led to a 
marked improvement throughout the whole spectrum of cancer man-
agement [6]. As illustrated in Fig. 1 cancer-specific biomarkers can be 
utilized in a variety of clinical contexts for the purposes of patient 
evaluation. These applications include determining the likelihood of 
disease development, establishing a diagnosis, predicting the course of 
the disease, and monitoring the effectiveness of therapeutic in-
terventions [7,8]. It is well known that proteins are significantly dys-
regulated in different kinds of diseases, including cancer [9,10]. Thus, 
the up-or-down-regulation of certain proteins could potentially be 
helpful in the diagnosis of many health disorders [9]. Furthermore, 
protein biomarkers have demonstrated a high clinical potential, espe-
cially for routine monitoring as their expression can reflect disease state 
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in real time[10]. 
Recently, there has been remarkable progress in protein quantifica-

tion, allowing for the discovery of protein biomarkers with clinical 
relevance [10]. 

One of the most promising approaches for the identification and 
quantification of proteins is proteomics [11]. Proteomic techniques 
include enzyme-linked immunosorbent assay (ELISA), two-dimensional 
gel electrophoresis (2D-page), and most importantly 
liquid-chromatography/mass spectrometry (LC-MS). LC-MS-based pro-
teomics is a powerful tool for protein profiling, but it is an expensive 
technique that requires skilled staff for operation, so, conventional 
proteomics techniques do not allow for quick and on-site screening of a 
panel of relevant proteins. 

Thus, even if most of the biomarkers for PCa have been identified 
using proteomics, there is still a need to develop methods for rapid, 
frequent, on-site monitoring of these proteins in order to better under-
stand their role in PCa and to be applicable in routine screening 
protocols. 

Electrochemical biosensors have been demonstrated to be a prom-
ising alternative approach offering advantages, such as fast response 
time, the possibility for early point-of-care detection with high sensi-
tivity, and easy operation [12,13]. However, they have certain limita-
tions compared to traditional detection methods, such as sensitivity to 
matrix effects in the sample, shelf life, and simultaneous detection of 
multiple biomarkers. The fundamental design of an electrochemical 
sensor typically involves three electrodes, namely a working electrode 
(WE), a counter electrode (CE), and a reference electrode (RE). The 
electrochemical reaction takes place at the working electrode (WE) with 
the nature of the reaction being either oxidation or reduction [14]. Since 
many proteins lack redox activity, the electrochemical sensors must be 
functionalized in order for the proteins to be detected. The key element 
in the electrochemical detection of proteins is the biocomponent, which 
serves as the recognition tool and determines the biosensor’s degree of 
selectivity [15]. Selectivity in biosensors refers to their capability to 
precisely measure a specific target analyte even in the presence of in-
terferences within the sample matrix. Selective protein detection em-
ploys sensing layers where the biocomponent constitutes antibodies, 
aptamers, receptors, enzymes or imprinted polymers that are linked to a 
variety of transduction systems (Fig. 2) [15]. These elements have the 
ability to selectively bind the target analytes. Once coupled to the 
electrode surface, the recognition element enables the sensitive and 
selective detection of the analytes of interest. Detection of the immu-
nochemical reaction can be accomplished through direct, indirect, or 
sandwich assay, like the conventional detection method ELISA. 

By conducting a literature survey using the Scopus database, it be-
comes evident that the detection of proteins using electrochemical 

sensors is a rapidly developing area of interdisciplinary research. The 
findings, illustrated in Fig. 3, demonstrate a continuous stream of pub-
lished papers indicating the ongoing and active nature of research in this 
field. The search specifically targeted the literature published within the 
last ten years. 

Publications providing an overview of electrochemical detection 
methods for specific protein biomarkers in prostate cancer (PCa) are 
relatively scarce. Existing literature has predominantly focused on either 
a specific type of biosensing or a single protein, such as PSA [16,17,18]. 
In this context, the present review aims to address these gaps by offering 
a comprehensive overview of the latest advancements in electro-
chemical biosensors for detecting multiple potential protein biomarkers 
in PCa. 

The novelty of this review lies in its unique coverage of various 
biosensing mechanisms and their applications in detecting a range of 
protein biomarkers for PCa. Unlike previous publications that have 
focused on singular aspects, our review provides a comprehensive ex-
amination of multiple biosensing techniques and their suitability for 
detecting diverse protein biomarkers associated with PCa. Moreover, 
this review goes beyond the technical aspects and delves into the clinical 
relevance and potential of these biomarkers. By highlighting the chal-
lenges and considerations in selecting suitable biomarker candidates 
and electrochemical assays for further development, this review serves 
as a valuable resource for researchers, clinicians, and industry pro-
fessionals interested in the advancement of electrochemical biosensors 
for PCa diagnosis and monitoring. 

2. Most known prostate cancer biomarkers 

A plethora of biomarker candidates have been identified through 
various research endeavors; however, the current study focuses on a 
specific subset of seven biomarkers that were selected based on the 
following criteria: Protein level detection capability, and the ability of 
the biomarker to be detected within biological fluids (Table 1). 

The most widely recognized biomarker for PCa is PSA, which is a 
serine protease produced in an androgen-dependent manner by epithe-
lial cells [19]. PSA is currently used in all main phases of PCa man-
agement; from screening and diagnosis to risk stratification and 
monitoring of the treatment response [20]. However, other prostate 
dysfunctions such as benign prostate hyperplasia (BPH), prostate injury, 
and prostatitis may also lead to elevated PSA serum levels[20,21]. 
Furthermore, there are no accepted threshold values for elevated PSA, 
although age-specific values have been proposed and used in clinical 
practice. Thus, PSA testing for PCa in clinical practice has significant 
problems, and therefore complementary or alternative biomarkers are 
needed to guide both clinicians and patients in the era of personalized 

Fig. 1. Application of cancer biomarkers in clinical practice. Created with Biorender.com.  
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medicine [21,16,22]. Given that PSA is widely recognized as the 
biomarker of choice for the detection and management of PCa, 
numerous electrochemical studies have been conducted on PSA [17]. 

Human glandular kallikrein 2 (hK2) belongs to the kallikreins family 
and is a serine protease that converts inactive pro-PSA to active PSA 
[23]. Like PSA, hK2 shares 80% sequence homology and is also 
expressed in the prostate gland [24]. There are two forms of hK2 present 
in the blood, one that is bound to several protease inhibitors and one 
that is free in circulation [24]. Earlier clinical studies have shown that 
the use of serum hK2 in combination with free and total PSA could 
improve the possibility to discriminate PCa patients from healthy in-
dividuals [16,17]. 

A significant number of studies have been conducted on hK2, how-
ever one of the challenges with hK2 is the possibility of immunological 
cross-reactivity with PSA [25,26]. 

Annexins are calcium and phospholipid binding proteins, which are 
involved in cell differentiation, migration, cellular adhesion, and 
possible tumorigenesis [27,28]. Xin et al. showed that a decrease in 
annexin 1 and 7 expression is related to PCa progression, and that 
annexin 7 may be a tumor suppressor [29]. However, these observations 
were not validated [29]. Annexin 3 (ANAX 3) is one of the recently 
discovered PCa biomarkers. ANXA3 was first discovered by a proteomic 
comparison between tumors and benign tissues and was further 
confirmed as a tissue marker for PCa [27]. The same pattern observed in 
tissue samples was also evident in urine analyses where a negative 
correlation with cancer was noted. ANXA3 presence in urinary exosomes 
makes it a potential non-invasive urinary PCa biomarker [28]. Specif-
ically, patients with benign prostate hyperplasia had significantly higher 
mean ANXA3 levels compared to those diagnosed with PCa [27]. 

Beta-2-microglobulin (β2M) is a low molecular weight protein that is 

Fig. 2. illustrating different sensor functionalization techniques. Created with Biorender.com.  

Fig. 3. An overview of published papers per year in the last decade searching “electrochemical sensor” and “Proteins.  
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found on the surface of all nucleated cells in the body and is a component 
of histocompatibility class 1 (MHC class 1) [30,31]. The MHC class I 
molecules play a crucial role in the immune system by presenting anti-
gens to cytotoxic T cells [32]. This process is critical for the body’s 
ability to recognize and fight cancer cells. However, cancer cells can 
evade the immune system by altering or losing expression of MHC class I 
and II molecules [32]. Elevated levels of β2M have been associated with 
various types of cancer such as multiple myeloma, lymphoma, and PCa 
[33]. Studies have also shown that MHC class I assembly is often 
defective in metastatic prostate cancer cell lines [32]. Jedinak et al. 
suggested that β2M may be clinically useful in discriminating BPH from 
PCa [31]. Shen et al. showed that reduced expression of β2M is an early 
event in prostate carcinogenesis [34]. Recently, our group has demon-
strated a significant difference in urinary β2M levels between 
biopsy-negative patients with increased levels of PSA and patients with 
biopsy-confirmed PCa (unpublished results) 

Microseminoprotein-beta (MSMB) is a protein produced alongside 
PSA from the prostate gland [35]. MSMB synthesis is decreased in PCa in 
relation to tumor grade [35]. The higher expression of MSMB in benign 
prostatic tissues compared to cancerous tissues indicates that MSMB has 
a tumor suppressor role [36]. Earlier studies have also demonstrated 
lower levels of serum and urinary MSMB in PCa compared to healthy 
controls [36]. 

Serum amyloid A (SAA) is a lipoprotein produced in the liver and is 
elevated in acute-phase response [37]. SAA has been shown to be a 
modulator of inflammation and plays a key role in cholesterol transport 
[37]. Recently, SAA has been identified as a potential cancer biomarker 
by proteomic analysis. SAA shows promise as a valuable clinical 
biomarker, serving not only as a prognostic indicator for patients with 
advanced pancreatic cancer but also as a guiding factor in selecting 
chemotherapy regimens [38]. Kaneti et al. demonstrated the importance 
of SAA in both disease activity and response to therapy in PCa [39]. 

Engrailed-2 (EN2) is a member of HOX gene family and is expressed 
in malignant prostate tissue [40], and is a secreted protein and therefore 
there is no need for prostatic massage (i.e., manual stimulation of the 
prostate gland) [41]. Increased levels of EN2 can be found in urine 
samples of PCa patients compared to controls, thus, a potential urinary 
biomarker [42]. EN2 can be used not only as a diagnostic biomarker for 
PCa but also as an indicator for PCa volume [41]. The tumor volume is 
believed to be a key factor in determining the outcome of treatment for 

radical prostatectomy [43]. 
Many potential protein biomarkers for PCa have been evaluated but 

best to our knowledge none have been sufficiently validated as a sup-
plementary diagnostic tool to PSA testing in clinical practice. If any of 
the evaluated biomarkers will be used, the regulation of biomarker 
levels may provide additional clinically relevant information, such as 
the aggressiveness of PCa, the occurrence of metastases, the risk of 
relapse, and survival outcomes [10]. However, the use of panels of 
different markers as a part of a risk calculator will provide optimal 
predictive value and therefore reduce overdiagnosis and overtreatment 
[41]. 

3. Electrochemical biosensors: a game-changer in biomarker 
detection for point-of-care testing 

The goal of biomarker detection tools is to be reliable, cost-effective, 
and provide high sensitivity, simplicity, and specificity [44]. Using these 
tools, should aid physicians in choosing appropriate therapy for the 
patients and enable monitoring of disease progression [44]. Various 
biomarker detection and quantification techniques are available. 
Currently, most clinical protein detection is done by ELISA, but the 
expensive test kits and the heavy laboratory protocols limit the useful-
ness of ELISA for fast diagnostics [45]. LC-MS-based proteomics is 
gaining a lot of attention in biomarker discovery, but this technique is 
currently too expensive for routine diagnosis and requires centralized 
laboratories [45,46]. Another alternative is antibody-coated micro-
arrays, which are currently developed on 96- or 384-well plate format 
for clinical diagnostics. These protein microarrays are simple, highly 
selective, and can measure more than one target protein. However, these 
assays require expensive consumables and their applicability for fast 
routine diagnostics is therefore limited [45,46]. 

The landscape of healthcare also continuously changes, and remote 
patient monitoring is becoming more in focus. Remote patient moni-
toring provides advantages such as reducing the burden of over- 
scheduled and limited hospital resources and preventing the risk of 
disease transmission and hospital-acquired infections. Remote patient 
monitoring requires portable and on-site detection techniques. Recent 
technological advances in biosensors offer great opportunities for fast, 
cheap, and reliable detection of different biomarkers [47,48]. Addi-
tionally, the handheld setup allows on-the-spot screening in clinics or 
homes with no need for centralized laboratories [47,48]. Biosensors can 
be broken down into two main categories: those that use bioreceptors 
and those that use transducers [47]. Bioreceptor-based biosensors cover 
enzymatic biosensors, immunosensors, aptamer or nucleic acid-based 
biosensors, and microbial or whole-cell biosensors [47]. 
Transducer-based biosensors, on the other hand, are split into the 
following categories: optical, mass-based, thermal, gravimetric and 
electrochemical biosensors, each with its own subclasses [47]. Among 
all the types of biosensors, the most widely used and researched is the 
electrochemical biosensor [47,48]. This type of biosensor offers high 
sensitivity and selectivity in detection and is often used in conjunction 
with antigen-antibody reactions to enhance its sensitivity and selectivity 
even further [48]. 

4. Utilization of sandwich, direct, and indirect assays in 
electrochemical biosensor studies 

Immunosensors are devices in which a transducer measures signals 
generated upon antigen-antibody immunocomplex formation [49]. The 
detection of the immunochemical reaction can either be direct, indirect, 
or through a sandwich assay (Fig. 4) [49,50]. The direct assay format 
works by directly attaching a labeled antibody to the target analyte. In 
this format, the antibody directly interacts with the target analyte, 
which produces a detectable signal. On the other hand, the indirect 
assay format involves an extra step to enhance the detection signal. First, 
the target analyte binds to a primary antibody. Then, a labeled 

Table 1 
The clinical purpose of the potential protein biomarkers.  

Protein Clinical purpose Matrix Normal 
concentration 

Stage of 
development 

PSA1 Diagnostic/Disease 
Monitoring 

Serum 0.5 – 2 ng/mL In clinical use 

hK22 Diagnostic Serum 0.022 ng/mL Clinical 
development 

ANAX34 Diagnostic Urine 19.8 – 26.8 ng/ 
mL 

Exploratory 
clinical studies 

β2M5 Diagnostic and 
prognostic 

Urine 230 – 300 ng/ 
mL 

Exploratory 
clinical studies 

MSMB6 Diagnostic Serum/ 
Urine 

0.03 ng/mL Exploratory 
clinical studies 

SAA7 Prognostic and 
therapy response 
predictive 

Serum 300 ng/mL Exploratory 
clinical studies 

EN23 Diagnostic Urine 0.34 ng/mL Clinical 
development 

Abbreviations:. 
1 Prostate specific antigen. 
2 Human glandular kallikrein 2. 
3 Engrailed-2. 
4 Annexin 3. 
5 Beta-2-Microglobulin. 
6 Microseminoprotein-beta. 
7 Serum amyloid A. 
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secondary antibody is added, which specifically recognizes the primary 
antibody. This secondary antibody boosts the signal, making it more 
sensitive. In the sandwich assay format, two antibodies are used. These 
antibodies attach to different parts (epitopes) of the target analyte. One 
of the antibodies, called the capture antibody, is fixed onto a solid sur-
face. The other antibody, known as the detection antibody, is labeled 
with a marker that can be detected. The target analyte gets "sandwiched" 
between these two antibodies, forming a structure. This format provides 
high specificity and sensitivity because both antibodies recognize the 
target analyte. 

Table 2 provides an overview of electrochemical biosensors for the 
detection of the seven PCa protein biomarkers that have been validated 
with clinical samples or in complex biological fluids. Table 2 includes 
information about the electrode material, matrix, sample pretreatment, 
recovery percentage, linear range, the limit of detection (LOD), elec-
trode modification, and detection technique. LOD is the minimum signal 
or corresponding quantity that can be reliably observed with a satis-
factory level of confidence. The recovery percent is the percentage of a 
measured concentration compared to the concentration added (spiked) 
in a matrix spike sample. Measurements in most of the studies were 
based on blocking the electron transfer towards the electrode surface 
with the electrochemical detection techniques cyclic voltammetry (CV), 
square wave voltammetry (SWV), differential pulse voltammetry (DPV), 
and electrochemical impedance spectroscopy (EIS). CV is a commonly 
used electrochemical technique that provides insights into electron 
transfer kinetics and redox behavior. SWV offers enhanced signal-to- 
noise ratios and exhibits peak height directly proportional to the con-
centration of the target analyte. DPV is a technique used in electro-
chemical analysis. It involves applying a series of voltage pulses to a 
working electrode and measuring the resulting current. EIS is a tech-
nique used to study the electrical properties of electrochemical systems. 
It involves applying small amplitude alternating currents to a system and 
measuring the resulting impedance. 

The biosensing mechanism employed in the investigations docu-
mented in Table 2 is predicated on the utilization of either a sandwich 
assay, a direct assay, or an indirect assay. Following the presentation of 
the data in the table, the subsequent discussion of the investigations will 
be discussed in an orderly fashion with respect to the specific assay 
utilized. 

4.1. Sandwich immunosensors for protein detection 

For sandwich immunosensors, the primary antibodies are immobi-
lized on the electrode surface to capture the analyte in the samples [84]. 
The secondary antibody is used as a signal-generation antibody and is 

tagged with enzymes or redox active molecules [84]. The immuno-
complex is formed when there is an immunoreaction between the pri-
mary immobilized antibodies and the secondary signal antibodies [63, 
84]. Quantification of the analyte is achieved by the reduction of specific 
substrates by the label enzyme resulting in colorimetric readout as the 
detection signal [17,84]. These enzymes could be horse radish peroxi-
dase (HRP), alkaline phosphatase (ALP), glucoamylase, or glucose oxi-
dase [16]. A direct electron transfer between the enzymes and the 
electrode is not effective as their redox center are located deep in the 
protein shell [52]. In view of this problem, redox mediators are applied 
to facilitate the electron transfer and therefore it is preferable to 
immobilize an electron transfer mediator on the surface of the electrode. 
Shamspur et al. developed a carbon paste electrode where poly(thio-
nine) played the roles of both electron-transfer mediator and substrate 
[52]. After the formation of the immunocomplex, the HRP-conjugated 
antibody was bound to the analyte PSA and the reduction of its sub-
strate PTH was measured. Using CV and DPV a linear range of 3–15; 
15–100 ng/mL and a LOD of 0.093 ng/mL were obtained [52]. 

The choice of label is important as it directly determines the preci-
sion, sensitivity, and ease of preparation [61]. The use of nanoparticles 
(NPs) offers a larger surface-to-volume ratio and therefore a larger 
surface area. A larger surface area means better signal amplification due 
to a higher amount of loading enzymes and increased capture efficiency 
[17]. Chu et al. used Pd@Cu2O NPs and Au NPs to detection of PSA 
down to 2 fg/mL in the linear range of 10− 5 ng/mL-100 ng/mL [61]. 
Both mentioned studies covered the clinically relevant concentration 
range for PSA; however, Chu et al. presented an easier functionalization 
[61]. Easier functionalization implies that the desired functionalization 
can be achieved with fewer steps and reduced complexity. 

4.2. Direct immunosensors for protein detection 

Direct detection assays are the simplest type of assays [85]. The 
removal of cross-reactivity with the secondary antigen and a reduction 
in the number of required steps simplifies the assay, increases its speed, 
and reduces the occurrence of false positive signals resulting from 
non-specific binding [17,85]. The use of catalysts in direct detection to 
enhance the binding-induced signal changes is increasingly gaining 
attention. Li et al. developed an ultrasensitive AuNP functionalized 
CuO2@CeO2 immunosensor for the quantitative detection of PSA. The 
immunosensor exhibited an extremely low detection limit of 0.03 pg/mL 
in the linear range of 0.1 pg/mL – 100 ng/mL, covering the clinically 
relevant concentration range for PSA [72]. The low detection limit is 
attributed to the large specific surface area and good biocompatibility of 
Cu2O@CeO2-Au, which conjugates with a large number of antibodies 

Fig. 4. Direct, indirect, and sandwich assay. Different bioassays were used under the development of the electrochemical immunosensor which indicates the antigen- 
antibody binding[51]. 
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Table 2 
Summary on electrochemical detection of potential prostate cancer protein biomarkers.  

Protein Electrode Electrode modification Detection 
technique 

Assay 
type 

Sample pretreatment Matrix Linear Range LOD3 Recovery (%) in real 
samples 

Ref. 

PSA1 NG-AuNPs Antibodies and 
Aptamer – Ferrocene 

DPV2 Sandwich Added 0.10 M NaClO4
17 PBS4 0.5–100 ng/mL 0.17 ng/ 

mL 
96.8–101.4% [51]  

Poly (Thionine)-CPE Antibodies-HRP DPV Sandwich Added 0.1 M thionine PBS 3–15; 15–100 ng/mL 0.093 ng/ 
mL 

103% [52]  

AuNPs-CHI Ab1 / Ab2- HRP SWV5 Sandwich Added 2.5 mM H2O2
18 

and 1 mM MB 
PBS 1–18 ng/mL 0.001 ng/ 

mL 
96.3–98% [53]  

AuMNPs Thiolated Antibodies CV6 Sandwich Added 0.5 M NaCl19 Serum 0.085–30 ng/mL 0.085 ng/ 
mL 

> 95% [54]  

rGO-AuNPs Ab1 / Ab2- HRP-SBP DPV Sandwich Added 0.1 M KCl PBS 0.1–100 ng/mL 0.09 ng/ 
mL 

90 – 101% [55]  

GCE-GS-MB-CS film Antibodies CV Sandwich – PBS 0.05 – 5 ng/mL 13 pg/mL 99.7–101.6% [56]  
PtNPs-BSA-CuNCs Ab1 / Ab2 SWV Sandwich Added 1.9 M asorbic 

acid 
Acetate buffer 0.5 pg/mL – 100 ng/ 

mL 
145.69 fg/ 
mL 

95% [57]  

Nano-TiO2–CPE Biotinylated Ab1 / Ab2- 
HRP 

DPV Sandwich Added 4.0 μM H2O2 Acetate buffer 0.1–5 ng/ml. 5–100 
ng/ml 

0.02 ng/ 
mL 

101% and 100.6% [58]  

HP5@AuNPs@g-C3N4 Ab1 / Ab2 DPV Sandwich – PBS 0.0005–10.0 ng/mL 0.12 pg/ 
mL 

97.62%–99.35% [59]  

Poly(Acetylaniline-rGO-Pt Biotinylated Ab1 / Ab2- 
HRP 

SWV Sandwich Added 4.0mM H2O2 PBS 10 pg–25 ng/mL 6.7 pg/mL 93. 96% [60]  

Pd-Cu2O NPs Ab1 / Ab2 CV Sandwich – PBS 10− 5 ng/mL − 100 
ng/mL 

2 fg/mL 99.2%–101.2% [61]  

Au@Th/G; PtCu@rGO/g- 
C3N4/GCE 

Ab1 / Ab2 CV Sandwich Added 5 mM H2O2 PBS 50 fg/mL to 40 ng/ 
mL 

16.6 fg/ 
mL 

99.7% - 101% [62]  

BSA/Au/PANI/MB/GCE Ab1 / Ab2 SWV Sandwich – PBS 10 fg/mL–100 ng/ 
mL 

1.25 fg/ 
mL 

98.5% - 106.5% [63]  

GS-SnO2-Au@Pt; Cu2+@Ag- 
Au 

Ab1 / Ab2 SWV Sandwich – PBS 0.01–100 ng/mL 3.84 pg/ 
mL 

99.6% - 103% [64]  

MSF-Au Aptamer DPV Direct Added 5 mM of K3/K4
20 0.1 M KCl7 1–300 ng/mL 280 pg/ 

mL 
107.2 ± 4.55% [65]  

COOH-AgPtPd/NH2-rGO Antibody DPV Direct Added 5 mM of K3/K4 PBS 0.000004− 300 ng/ 
mL 

4 fg/mL 98.9% - 99.4% [66]  

CRGO-AuNPs Monoclonal antibody DPV Direct Added 5 mM of K3[Fe 
(CN)6] 

PBS 0.006–30 ng/mL 0.003 ng/ 
mL 

97% - 110% [67]  

Au/Cys/Fc-PAMAMs/anti-PSA Monoclonal antibody DPV Direct – PBS 0.01–100 ng/mL 0.001 ng/ 
mL 

97.89% - 102.6% [68]  

Br-Py/AuNp-Hep Antibodies SWV Direct – PBS 0.1–50 ng/mL 0.08 ng/ 
mL 

96.3% - 100% [69]  

Poly(aniline)-AuNPs/GCE Aptamer DPV Direct Added 5 mM of K3/K4 PBS 0.1 pg–100 ng ml− 1 0.085 pg 
ml− 1 

99.43% - 106.1% [70]  

HNTs@PPy-Pd/GCE Antibody SWV Direct Added 5 mM H2O2 PBS 0.0001–25 ng/mL 0.03 pg/ 
mL 

100.8% − 103.2% [71]  

Cu2O@CeO-Au Antibody CV/EIS8 Direct Added 5 mM H2O2 PBS 0.1 pg/mL− 100 ng/ 
mL 

0.03 pg/ 
mL 

98.3%− 10% [72]  

Pd@rGO Antibody SWV Direct Added 5 mM of K3/K4 PBS 0.01 ng/mL–12.5 
ng/mL 

10 pg/mL 99.8% − 112% [73]  

CNTs-Chit and CNTs(COOH)- 
Chit) 

Aptamer DPV Direct – PBS 0.85–12.5 ng/mL 0.75 ng/ 
mL 

99.2% [74]  

Hairpin assembly., Ag/Pt-PMB Aptamer SWV Indirect Added 0.1 M NaCl PBS 10 fg/mL–100 ng/ 
mL 

2.3 fg/mL 98.8%–103% [75]  

AuNPs-Ag/SPCE Peptide-probe/Avidin DPASV9 Indirect – sodium acetate- 
acetic buffer 

0.1–100 ng/mL 27 pg/mL 91% - 151% [76]  

NRs/Au film/PDMS Ab1 -MBS/ Ab2 - HRP CV Indirect Added 1 mM of K3/K4 0.1 M KCl 0.1 – 10 ng/mL 0.1 ng/mL 95% [77] 
ANXA312 CdS-QDs/Au Polyclonal antibody SWV Direct – PBS 0.075–50 ng/mL 0.075 ng/ 

mL 
98% [78] 

(continued on next page) 
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Table 2 (continued ) 

Protein Electrode Electrode modification Detection 
technique 

Assay 
type 

Sample pretreatment Matrix Linear Range LOD3 Recovery (%) in real 
samples 

Ref. 

β2M13 QDs-SPE/AuNPs@CNOs-CS Antibodies ECL10 Direct – 20 mM Tris- 
buffer 

1 fg/mL – 100 ng/ 
mL 

1 fg/mL 92–108% [79]  

CM5-sensor chips Antibodies SPR11 Direct Diluted in HBS-EP+21 to 
various folds 

Serum 13–36 ng/mL 13 ng/mL 95% [80]  

SPE/Gr Antibody SWV Direct – Urine 0 – 600 µg/L 204 µg/L – unpublished 
MSMB14 Poly(CAF)-CPE Dopamine SWV Direct Added 5 mM of K3/K4 PBS 0.5–100 ng/mL 0.12 ng/ 

mL 
91.5 - 104.8% [81] 

SAA15 QDs- fluorescence-linked 
immunosorbent assay 

Ab1 / Ab2
16 Photoluminescence Sandwich – PBS 10–1000 ng/mL 2.39 ng/ 

mL 
92.13% [82]  

GCE- PPy-α-COOH)-MWCNTs Antibody CV / DPV Direct Added 10 mM of K3/K4 0.1 M KCl 0.001 – 900 ng/mL 0.03 pg/ 
mL 

98.4–106.7% [83] 

Abbreviations:. 
1 Prostate specific antigen. 
2 Differential pulse voltammetry. 
3 Limit of detection. 
4 Phostphate buffer saline. 
5 Square wave voltammetry. 
6 Cyclic voltammetry. 
7 Pottasium chloride. 
8 Electrochemical impedance spectroscopy. 
9 Differential Pulse Anodic Stripping Voltammetry. 
10 Electrochemiluminescence. 
11 Surface plasmon resonance. 
12 Annexin 3. 
13 Beta-2-microglobulin. 
14 Microseminoprotein-beta. 
15 Serum amyloid A. 
16 Primary and secondary antibodies. 
17 Sodium perchlorate. 
18 Hydrogen peroxide:. 
19 Sodium chloride. 
20 Ferric Ferrocyanide. 
21 10 mM HEPES pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.05% (v/v) P2. 
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and hereby improves the probability of antibody-antigen recognition 
[72]. Furthermore, Cu2O@CeO2-Au demonstrated high conductivity 
and electron property to transfer electrons, which increases the reduc-
tion of H2O2 [72]. Another method possessing outstanding sensitivity 
for PSA is an aptasensor based on coral-like poly-aniline/AuNPs devel-
oped by Li et al. [70]. The electrochemical sensor demonstrated a lower 
limit of detection of 0.085 pg/mL in the linear concentration range of 
0.1 pg/mL – 100 ng/mL, covering the clinically relevant concentration 
range [70]. The wide linear range and high sensitivity were attributed to 
the increased contact area of the electrode with the electrolyte due to the 
polyaniline structure. Furthermore, the substrate material was directly 
electrodeposited on the electrode leading to strong adhesion between 
the substrate material and the electrode [70]. 

Direct detection assays eliminate the second binding event and 
therefore reduce the amount of analyte and washing steps compared to 
sandwich assays. However, the non-specific absorption of materials onto 
the sensing electrode often results in a signal that is difficult to distin-
guish from the signal generated by the target binding [17]. 

4.3. Indirect immunosensors for protein detection 

Indirect immunoassays can be more sensitive compared to direct 
immunoassays due to the amplification step. However, there is a risk of 
cross-reactivity with the antigen, and the indirect immunoassays are 
more time-consuming to produce due to the extra steps. With indirect 
immunoassays more than one labeled antibody can be bound per anti-
gen and different primary detection antibodies can be used with a single 
labeled secondary antibody. 

With indirect detection, it is possible to introduce functional com-
ponents for signal enhancement and signal amplifications. In recent 
years, the DNA-triggered assembly has gained interest due to its specific 
base pairing. Zhao et al. developed an electrochemical aptasensor-based 
target-induced catalytic hairpin assembly and bimetallic catalyst for the 
detection of the protein of interest [75]. For improving the amount of 
the redox group, the Au/Pt-polymethylene blue was synthesized as an 
electrochemical indicator, as it possesses good electrocatalytic ability 
for H2O2 [75]. Zhao et al. demonstrated the lower limit of detection of 
2.3 fg/mL in the linear concentration range of 10 fg/mL to 100 ng/mL. 
for PSA [75]. Due to this new amplification strategy, the sensitivity was 
increased relative to other reported aptasensors. 

To further amplify signals at the electrode, they can be coupled to 

nanoparticles such as AuNPs, which provide higher conductivity and 
allows immobilization of proteins on biosensors through interactions 
with the amine on the proteins. Rizwan et al. developed gold AuNPs- 
doped@carbon nano-onions chitosan nanocomposite modified cad-
mium selenide quantum dots screen-printed electrode (QDs-SPE/ 
AuNPs@CNOs-CS) used as ECL immunosensor for β2M detection. The 
electrode provided a larger effective surface area for binding of many 
anti- β2M antibodies [79]. This immunosensor exhibited a limit of 
detection of 1 fg/mL in the linear concentration range of 1 fg/mL – 100 
ng/mL [79]. However, Rizwan et al. did not cover the clinically relevant 
concentration of β2M. The normal urinary levels of β2M are reported to 
be 230 - 300 µg/L and it increases with the presence of PCa [86]. 

Although the complexity of indirect detection assay results in 
increased washing steps and increased amounts of reagents, the incor-
poration of multiple biorecognition’s elements has led to biosensors 
with increased sensitivity and selectivity. 

4.4. Electrochemical method for detection of proteins in PBS 

The measurement of protein biomarkers from biological samples is a 
powerful tool for the diagnosis and management of various diseases, 
including cancer [87]. However, electrochemical detection of bio-
markers in complex biological samples comes with a risk of interference 
caused by other compounds in the sample than the intended target [88]. 
Therefore, biosensors need to be evaluated in a buffer against potential 
interferences to validate their selectivity before measurements in bio-
logical fluids [88]. In the following, we provide an overview of elec-
trochemical techniques for the detection of the mentioned proteins in 
PBS (Table 3). 

Nexele et al. evaluated the selectivity towards PSA of their sensor in 
the presence of other analytes, which are likely to be present in real 
samples with PSA, such as bovine serum albumin, L-cysteine, and 
glucose [88]. The obtained data by Nxele et al. demonstrated weak 
interference and therefore the sensor could be applied for PSA detection 
without any pre-separation procedure [88]. Also, Maity et al. performed 
a selectivity study towards β2M with BSA and cortisol present in the PBS 
sample, and no interference was observed [94]. The most sensitive 
electrochemical biosensor presented in Table 2 detected EN2 protein in 
the linear range of 10 fm – 1 nM with the LOD at 5.52 fM [91]. Lee et al. 
also demonstrated that the detection of EN2 protein was possible in 
artificial urine without any interference in the presence of several other 

Table 3 
Summary on electrochemical detection of potential prostate cancer protein biomarkers in PBS.5,6.  

Protein Electrode Linear Range LOD2 Detection Technique Ref. 

PSA1 GCE-GQDs-CoPc(ππ)-Aptamer 0.034–0.057 ng/mL 0.018 ng/mL DPV3 [88]  
GCE- rGO-MWCNT/AuNPs/Aptamer 0.005–100 ng/mL 1.0 pg/mL DPV [89]  
CASPE-MFD 0.0001–10 ng/mL 0.84 pg/mL SWV4 [90] 

EN27 poly(A)10-hpDNA3 probe-AU 10 fm – 1 nM 5.62 fM EIS [91]  
COOH-SPCGE 35–185 nM 38.5 nM CV [92] 

ANXA38 Poly(CAF)-CE 0.10 – 200 ng/mL 0.095 ng/mL SWV [93] 
β2M9 DTSP-capped AuNPs. 0–1000 ng/mL 100 fg/mL – [94]  

QCM immunosensor array 0.01 – 5 mg/L 3 ug/L – [95] 
SAA10 MWCNTs-MnO2NSs-Co3O4NPs-SPE 0.01 pM – 1 µM 0.01 pM DPV/CV [96]  

Fe3O4@Au-MNPs 0.01–500 ng/mL 0.1 ng/mL Raman Spectra [97]  
AuNPs@rGO 0.01 – 200 ng/mL 5 pg/mL DPV [98] 

Abbreviation:. 
1 Prostate specific antigen. 
2 Limit of detection. 
3 Differential pulse voltammetry. 
4 Square wave voltammetry. 
5 Cyclic voltammetry. 
6 Electrochemical impedance spectroscopy. 
7 Engrailed-2. 
8 Annexin 3. 
9 Beta-2-microglobulin. 
10 Serum amyloid A. 
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proteins such as human serum albumin, BSA, thrombin, lysozyme, and 
TATA-binding protein [91]. Generally, tests in real urine samples must 
be performed for validation of the intended selectivity of a newly 
developed sensor. 

5. Multiplexed protein detection strategies for accurate 
diagnosis and monitoring of prostate cancer 

Protein biomarkers for PCa may aid early detection and the ability to 
monitor therapy outcomes [99]. Determination of several relevant 
proteins in a panel can reduce false positives and false negatives for a 
given cancer and enhance diagnostic reliability. The use of proteomic 
techniques presents a significant opportunity for identifying a priori-
tized list of proteins. This can improve diagnostic accuracy and serve as 
the basis for developing an electrochemical multiplex detection method 
specifically targeting a selected group of proteins. 

In parallel with progress in the identification of cancer protein bio-
markers, new electrochemical strategies using nanoparticles and nano-
structured surfaces for the detection of biomarkers have been developed 
[100]. Multiplexed protein detection immunoassay integration into 
low-cost microfluidic format may soon enable accurate detection of 
panels of protein cancer biomarkers in biological fluids. This develop-
ment holds great potential to enable fast clinical decision-making [100]. 
However, the technologies are yet in the early development stage [101]. 
Furthermore, limited funding and limited access to clinical samples 
contribute to insufficient clinical validation of the electrochemical 

biosensors [101]. 
In a multiplex electrochemical biosensor, different regions on the 

sensor surface are functionalized with specific antibodies to capture 
different analytes simultaneously. Each region is designed to detect a 
specific target, allowing for parallel analysis of multiple analytes within 
a single sample. Fig. 5 illustrates a multiplex electrochemical biosensor 
with different antibodies immobilized on the sensor surface, each 
binding to specific antigens. This configuration allows for the simulta-
neous detection of multiple antigens in a single sample. 

Electrochemical techniques are attractive due to their ability to 
multiplex with simple measurements at the bed-site. Liu et al. reported a 
simple electrochemical multiplexed immunosensor on a flexible Poly-
dimethylsiloxane (PDMS) slice deposited with 8 × 8 nano-gold particles 
film electrodes for simultaneous detection of PSA, PSMA, and IL-6 [102]. 
Liu et al. demonstrated lower limit of detection values at 0.1 ng/mL, 5 
pg/mL, and 0.8 ng/mL, for PSA, IL-6, and PSMA, respectively [102]. 
Chikkaveeraiah et al. designed an immunoassay (sandwich immuno-
assay) to determine PSA, PSMA, platelet factor-4 (PF-4), and IL-6 in a 
single serum sample [100]. Chikkaveeraiah et al. demonstrated accurate 
electrochemical detection of all four protein PCa biomarkers in patient 
serum samples. By utilizing multiplexed immunosensing, these ap-
proaches offer several advantages. First, they enable the simultaneous 
detection of multiple biomarkers in a single sample, providing a 
comprehensive analysis of potential PCa biomarkers. This allows for a 
more accurate and efficient diagnostic process. Second, the electro-
chemical nature of these techniques offers advantages such as high 

Fig. 5. Multiplex electrochemical biosensor for simultaneous detection of multiple antigens. Antibodies on the sensor surface bind to specific antigens, allowing 
parallel analysis of multiple analytes in a single sample. 

Table 4 
Summary on multiplex electrochemical detection of potential prostate cancer protein biomarkers included in this study.  

Protein Multiplex biomarkers Media Detection method Concentration range Detection limit Ref 

PSA1 PSMA, IL-6 10 mM H2O2 CV2 0.1 – 10 ng/mL 0.1 ng/mL [102]  
IL-6, PF-4, PSMA Calf-serum AMP3 1 – 40 ng/mL 1 ng/mL [100]  
PSMA Calf-serum AMP 1.25 - 1000 fg/mL 9.7 pg/mL [103]  
VEGF, ERG, IGF-1, IGFBP-3, CD-14, PEDF, GOLM-1 Calf-serum Amp 0.14 – 34.2 ng/mL 140 pg/mL [104]  
PSMA, PF-4, IL-6 150x diluted calf serum DPV4 2 pg/mL – 200 ng/mL – [105]  
VEGF 0.1 M KCl DPV 1 – 100 ng/mL 1 ng/mL [106]  
PSA glycans 0.1 M KCl + 5 mM FF EIS5 4 aM. – 40 nM 4 aM [107]  
PSA glycans 1:5 diluted human serum EIS 0.64 – 62.5 ng/mL 0.64 ng/mL [108] 

β2M6 IgG, BSA, CRP 1 M HNO3 SV7 – – [109] 

Abbreviations:. 
1 Prostate specific antigen. 
2 Cyclic voltammetry. 
3 Amperometric. 
4 Differential pulse voltammetry. 
5 Electrochemical impedance spectroscopy. 
6 Beta-2-Microglobulin. 
7 Stripping Voltammetry. 
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sensitivity, selectivity, and rapid response. The reported LOD values for 
PSA in combination with other biomarkers demonstrate the potential of 
these methods for sensitive PCa detection [100]. Data reported so far 
suggest that the multiplexed immunosensing strategy holds great 
promise for applications in clinical assays and PCa diagnosis (Table 4). 

6. Future considerations 

6.1. The panel of different biomarkers 

In the past decade, promising protein biomarkers for PCa diagnosis 
and prognosis have been identified. The true clinical value of any of 
these will require that they can provide additional information to what 
is already provided by PSA [110]. It is unlikely that future clinical de-
cisions will be based on a single biomarker and recent trends point to the 
development of panels of different markers [111]. PCa is a complex form 
of cancer characterized by variations in genetic mutations and alter-
ations that drive the development and spread of the disease [112]. As a 
result, relying on a single biomarker may not be adequate to obtain 
precise diagnostic information [112]. It is now widely accepted that 
panels of biomarkers measured in a multiplexed fashion, are of greater 
clinical use than single biomarkers [110]. 

6.2. Signal amplification strategies 

Progress in signal amplification strategies may also lead to increased 
sensitive electrochemical immunosensors. Detecting analytes by an 
electrochemical immunosensor relies heavily on the antibody-antigen 
reaction, as it directly impacts the sensitivity of the sensor [113]. In 
the development of biosensors, signal amplification can be improved by 
regulating the orientation of antibody conjugation and incorporating 
various nanomaterials [113]. E.g., the accessibility of antigen-active 
sites can be reduced due to steric hindrance when using random 
immobilization [113]. Moreover, the physical adsorption of antibodies 
onto gold nanoparticles can be influenced by pH variations, which can 
alter the surface charge distribution of the antibodies [113]. Signal 
amplification in biosensors is largely dependent on the use of nano-
materials, which could be controlled to small sizes and leverage quan-
tum effects to boost signals when in direct contact with biorecognition 
elements [113]. In particular, the correct orientation of antibody 
conjugation on the surface of nanomaterials plays a critical role in 
influencing the sensitivity of biosensors [113]. Metal nanoparticles are 
commonly used in electrochemical biosensors for signal amplification, 
as they possess a small size and large surface area that enables efficient 
conductivity and direct electron transfer between the sensor and the 
analyte of interest [113]. Metal nanoparticles used for signal amplifi-
cation are typically in the nanometer range (1–100 nm) [114]. This size 
range offers a high surface-to-volume ratio, enhancing their interaction 
with target molecules and increasing the sensitivity of the biosensor 
[113]. The shape of metal nanoparticles can influence their optical and 
catalytic properties, which are crucial for signal amplification. Common 
shapes include spherical, rod-like, and branched structures, each with 
unique characteristics for enhancing signal amplification [114]. Metal 
nanoparticles have gained significant attention for signal amplification 
in various biosensing applications. Several specific criteria are consid-
ered when utilizing metal nanoparticles for this purpose such as chem-
ical composition, toxicity, biocompatibility and surface chemistry 
[114]. This makes metal nanoparticles an elegant choice for enhancing 
the sensitivity and accuracy of electrochemical biosensors [113]. 

6.3. The journey toward clinical application 

The usage of electrochemical biosensors in the clinical management 
of PCa is complex due to some key challenges. Shortcomings of bio-
sensors include limited shelf life, temperature sensitivity, and easy 
denaturation of antibodies, which makes them less preferred for on-site 

testing of clinical samples [115]. Moreover, electrochemical biosensor 
detection strategies rely on chemical reactions, which are highly 
affected by the matrix in which the target analyte exists [101]. Hence, 
one of the main challenges is matrix effects and patient-to-patient var-
iations [101]. Biosensor signals can be severely impacted by matrix ef-
fects, non-specific binding, and interferences, making it difficult to 
obtain reliable qualitative or quantitative analysis [116]. While coatings 
and blocking strategies can help to mitigate these effects, they are not 
always effective. As a result, sample preparation is crucial to ensure 
accurate detection [116]. Dilution is often used to minimize in-
terferences, but this approach is only effective when the analyte is 
present at high concentrations [116]. Other simple sample preparation 
methods, such as centrifugation, filtration, precipitation, and deprotei-
nization, could be employed to overcome these challenges [116]. 

7. Conclusion 

Protein biomarkers show promise and potential to soon become 
standard tools for screening patients for diagnosis and/or prognosis of 
PCa. The possibility to find a single biomarker that will allow precise 
clinical decision-making is rather small, but if we follow current trends 
toward creating panels of multiple biomarkers we may be able to di-
agnose PCa both earlier and more accurately. Remote patient moni-
toring is gaining attention in healthcare, and electrochemical biosensors 
offer a promising solution for the portable and reliable detection of 
biomarkers. The development of a universal electrochemical technique 
for the determination of multiple biomarkers is thus an important goal. 
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