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Abstract
Chronic kidney diseases imply an ongoing need to remove toxins, with hemodialysis
as the preferred treatment modality. We derive analytical expressions for phosphate
clearance during dialysis, the single pass (SP) model corresponding to a standard
clinical hemodialysis and the multi pass (MP) model, where dialysate is recycled and
therefore makes a smaller clinical setting possible such as a transportable dialysis
suitcase. For both cases we show that the convective contribution to the dialysate is
negligible for the phosphate kinetics and derive simpler expressions. The SP and MP
models are calibrated to clinical data of ten patients showing consistency between the
models and provide estimates of the kinetic parameters. Immediately after dialysis a
rebound effect is observed. We derive a simple formula describing this effect which is
valid both posterior to SP orMPdialysis. The analytical formulas provide explanations
to observations of previous clinical studies.

Mathematics Subject Classification 92-10 · 92C30 · 92B99 · 34A30

1 Introduction

Chronic kidney diseases and kidney failure cause an ongoing need of assistance for
removal of toxins. For end stage renal disease, hemodialysis (HD) is the most fre-
quent treatment modality, typically conducted thrice weekly for four hours per session
at a clinic. Here the blood of the patient is circulated in an extracorporeal system
where waste products and excess fluid are moved to the dialysate by the use of a
semipermeablemembrane. The dialysate consists of purifiedwater, to which are added
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predetermined amounts of glucose, and the electrolytes sodium, potassium, calcium,
magnesium, chloride and bicarbonate, but not phosphate.

In this standard setting, the dialysate is usedonlyonce, hence this treatmentmodality
is coined single pass (SP) dialysis. More than 1 million people were in HD treatment
in 2002—a number which has grown 7% per year (Lysaght 2002) and continues to
do so (Liyanage et al. 2015). The regulation of phosphate is of particular interest,
as phosphate is naturally absorbed from nutrition, and hyperphosphatemia implies
an increased risk of mortality (Block et al. 1998). Even for patients receiving HD,
hyperphosphatemia is prevalent (Young et al. 2004) and a major risk factor (Block
et al. 1998). Therefore, it is important to understand phosphate kinetics during and
between HD for patients with reduced kidney function in order to optimize treatment
scheduling and potentially implement modelling of phosphate kinetics as decision
support for health care professionals and patients (Heiden et al. 2013; Laursen et al.
2018). Here, we present analytical solutions to well established mathematical models
of HD (describing Fig. 1 by ordinary differential equations) and estimate the kinetic
parameters based on data sets of 10 HD patients.

Besides having a severe disease, the life of a HD patient implies the impractical
situation of going to a dialysis unit thrice weekly. This may be resolved by having
a dialysis unit at home for nocturnal use (Pierratos et al. 1998) though this requires
considerable training and logistics. A transportable dialysis unit has been developed
where the dialysate is being recycled in a closed system, coined multi pass (MP)
dialysis (Heaf et al. 2013). This setup is easier to use than typical home dialysis, is
small enough to be further transported, and reduces the amount of dialysate to less
than 20% of standard treatment.

Here, we propose a mathematical model of phosphate kinetics during and between
MP, solve it analytically and estimate the kinetic parameters. Clinical data of ten
patients who had both been in SP and MP has previously been described clinically
(Heaf et al. 2013) and is available for model calibration.We conduct parameter estima-
tion for the two treatment modalities separately as well as combined to assess the use
ofMP for improved individualized estimation of the phosphate kinetics. The literature
of phosphate kinetics during and between HD is not focusing on analytical solutions to
the proposed models, rather numerical simulations are in focus. We present analytical
solutions to some of these models for the first time including the rebound effect after
HD. Though some of the calculations are straight forward they are not commonly
known by nephrologists.

1.1 Mathematical models of phosphate kinetics during HD

Mathematical models may assist in understanding phosphate kinetics in dialysis
patients during or between treatment. Considering the large societal problem of mal-
functioning renal function, relatively few mathematical models have been proposed
since the first contribution by Sugisaki et al. (1982). Laursen et al. (2018) provide a
review of mathematical models for phosphate kinetics. The model complexity ranges
from one to four ordinary differential equations. As increasing model complexity
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Source
Cs

Plasma and
extracellular fluid

x(t)

Dialysate
Cd0

Diffusion
Ks · (Cs − x(t))

Kb · (x(t) − Cd0)

Convection
Q · x(t) Water out

Water in

Fig. 1 Conceptual single pass dialysis

comes with increasing number of parameters, the lowest order models typically pro-
vide most robust parameter estimates.

Only about 1% of the phosphate in the human body is directly accessible for HD
(Pohlmeier and Vienken 2001; Agar et al. 2011) since phosphate is mainly found
intracellularly. Therefore, a source term, sometimes denoted a ‘deep compartment’ is
present in existing models of phosphate kinetics (Agar et al. 2011; Debowska et al.
2015;Heaf and Jensen 1994; Laursen et al. August 2015; Spalding et al. 2002; Sugisaki
et al. 1983). This phosphate diffuses into the extracellular fluid at rate Ks . The vastness
of phosphate located here justifies that this source is kept constant during dialysis
time. The plasma and extracellular fluid are assumed to quickly equilibrate with the
blood which goes through the dialyzer where phosphate is filtrated to the dialysate
by diffusion by use of a filter with rate Kb and ultrafiltration (convection) with rate
Q (see Fig. 1). This underlines the mathematical model of SP first suggested by
Agar et al. (2011), validated on a large cohorts by Agar et al. (2015), Leypoldt et al.
(2013) and validated on three consecutive dialysis cycles by Debowska et al. (2015).
Hence, the Agar model comprise a well established approach for dialysis modeling
in agreement with clinical data. We provide an analytical solution to this model [i.e.
Eq. (4) below] for any parameter values. Prior to dialysis, intra- and extracellular
phosphate concentrations are assumed to be in equilibrium. The high flow of dialysate
(typically 30 liters per hour) implies the phosphate concentration at the dialysate side
of the filter is approximately zero. The Agar model is the simplest applied model of
HD, more complex models have been suggested, which take into account a flattening
or rebound of phosphate levels during HD. Though this effect may be captured (see
e.g. Spalding et al. 2002), more detailed models typically have identifiability problems
giving the current data. Poleszczuk et al. (2016) explain the early rebound by including
a time delay in the Agar model.

2 Mathematical modelling

2.1 SP dialysis

The SP equation schematically shown in Fig. 1 is now derived. The source amount of
phosphate, is so large that the source concentration of phosphate, Cs , can be consid-
ered constant during dialysis. Phosphate is assumed well mixed in a volume Vb. The
concentration of phosphate in the plasma and extracelluar fluid is denoted x(t), and
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the volume of plasma and extracellular fluid is denoted Vb(t) providing the mass of
phosphate to be mb(t) = x(t)Vb(t). The mass transfer from the source compartment
to the blood and plasma compartment is driven by a concentration difference given
by Ks(Cs − x(t)), where Ks is the constant phosphate transfer rate. The blood going
through the dialyzer is assumed in equilibrium with extracellular fluid. The phosphate
is cleared to the dialysate by diffusion across a membrane, with rate Kb giving a
mass loss term by Kb(x(t)−Cd0), with Cd0 being the phosphate concentration in the
dialysate which is assumed to be small and constant due to the large flow of dialysate.
There is a convective contribution where loss of phosphate from plasma and extracel-
lular fluid is given by Qx(t) where the constant flow rate Q can be estimated by pre
and post body weight of the patient divided by the treatment period, providing

dVb
dt

= −Q. (1)

Hence, we have for the mass balance

dmb

dt
= Ks (Cs − x(t)) − Kb (x(t) − Cd0) − Qx(t). (2)

Agar et al. (2011) omit to include the last term. Taking the shrinking volume, Vb =
Vb0 − Qt , into account, a differential equation of x(t) is obtained as

dmb

dt
= dx(t)

dt
Vb(t) + x(t)

dVb(t)

dt
, (3)

resulting in the SP model equation

(Vb0 − Qt)
dx(t)

dt
= KsCs − (Ks + Kb) x(t) + KbCd0, (4)

where Vb0 is the initial volume of plasma and extracellular fluid, and x(0) = x0, and
the time since start of HD is denoted t . Typically, there is equilibrium prior to dialysis,
in which case x(0) = Cs .

The nonautonomous SP model given by Eq. (4) can be solved by separation of
variables (alternatively by a power series in in t)

∫ x

x0

1

KsCs − (Ks + Kb) X + KbCd0
dX =

∫ t

0

1

Vb0 − Qτ
dτ, (5)

which can be solved to give

x(t) = KsCs + KbCd0

Ks + Kb
+
(
x0 − KsCs + KbCd0

Ks + Kb

)(
1 − Q

Vb0
t

) Ks+Kb
Q

. (6)
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Fig. 2 Multiple pass (MP) HD where the dialysate is recirculated

For Vb0 � Qt , the SP model may be well approximated by the simpler autonomous
ordinary equation by letting Q = 0 in Eq. (4)

Vb0
dx(t)

dt
= KsCs − (Ks + Kb) x(t) + KbCd0, (7)

which has solution

x(t) =
(
x0 − KsCs + KbCd0

Ks + Kb

)
exp

(
−Ks + Kb

Vb0
t

)
+ KsCs + KbCd0

Ks + Kb
, (8)

depicting an exponential decay of phosphate approaching the steady state level
KsCs+KbCd0

Ks+Kb
during HD. This formula solves the differential equation considered by

e.g.,Debowska et al. (2015)which they investigated numerically. From thewell-known
limit

lim
n→0

(1 − nx)
1
n = exp (−x) (9)

Equation (6) reduces to Eq. (8) for Q → 0 as expected. In Fig. 3 phosphate kinetics
of the SP HD predicted by Eqs. (6) and (8) are shown.

2.2 MP dialysis

MP dialysis (Heaf et al. 2013) differs from SP dialysis by the dialysate being recycled
(see Fig. 2), thus we need to take the time varying phosphate concentration in the
dialysate into account, Cd(t) = y(t). Hence, Eq. (2) is modified so instead of Cd0
we have y(t). The mass of phosphate in the dialysate md(t) is given by y(t)Vd(t)
where Vd is the volume of the dialysate compartment that grows from each initial size
Vd0 be the constant rate Q i.e. Vd(t) = Vd0 + Qt . The mass balance in the dialysate
compartment is

dmd(t)

dt
= Kb (x(t) − y(t)) + Qx(t) (10)
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With explicit parametrization of the dialysate volume, the relationmd(t) = Vd(t)y(t)
gives

dmd(t)

dt
= Qy(t) + (Vd0 + Qt)

dy(t)

dt
, (11)

which enables an equation for dy(t)
dt can be obtained. The resulting MP equations are

(Vb0 − Qt)
dx(t)

dt
= KsCs − (Ks + Kb) x(t) + Kby(t) (12a)

(Vd0 + Qt)
dy(t)

dt
= (Kb + Q)

(
x(t) − y(t)

)
, (12b)

with initial conditions x(0) = x0, y(0) = y0.
In the HD equipment, the dialysate and blood stream run in long thin channels sep-

arated by a filter. The inlet dialysate concentration for SP is 0 throughout the treatment
whereas it increases for MP. The outlet concentration equals the inlet concentration
plus the accumulated amount per volume filtered from the blood by diffusion across
the membrane. The contribution from the blood decreases during dialysis since the
concentration in the blood decreases (and for MP the inlet concentration increases).
We assume a linear decrease in the blood phosphate concentration and a correspond-
ing linear increase in the dialysate concentration along the channels. Thus, the spatial
average concentration for the dialysate in the channels at a given time becomes the
outlet concentration plus the inlet concentration divided by 2. This deviates for the
conventional approach where solely the inlet concentration is used. However, the con-
ventional approach is a good approximation to our more accurate approach for small
concentrations as seen in up to 8h of HD sessions. For completeness, we have tested
the different scenarios for Cd0 and found that the choice has insignificant impact on
the simulations and the estimates.

2.3 Analytical solution to theMPmodel

To solve the MP model in Eq. (12), we first make the ansatz that x(t) and y(t) can be
expressed as power series and derive a formula for the coefficients in the power series.
Then, we investigate the radius of convergence for the power series showing that the
power series is meaningful.

Ansatz

x(t) =
∞∑
k=0

αk t
k (13a)

y(t) =
∞∑
k=0

βk t
k . (13b)
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The initial conditions imply

α0 = x0 (14a)

β0 = y0. (14b)

The task is then to find expressions for the remaining unknown coefficients αi and βi

and to prove the resulting series converge. Within the radius of convergence, the series
can be differentiated term by term resulting in

dx(t)

dt
=

∞∑
k=1

kαk t
k−1 =

∞∑
k=0

(k + 1) αk+1t
k (15a)

dy(t)

dt
=

∞∑
k=1

kβk t
k−1 =

∞∑
k=0

(k + 1) βk+1t
k . (15b)

Inserting Eqs. (13) and (15) in Eq. (12) we get

Vb0

∞∑
k=0

(k + 1) αk+1t
k − Q

∞∑
k=1

kαk t
k = KsCs − (Ks + Kb)

∞∑
k=0

αk t
k + Kb

∞∑
k=0

βk t
k

(16a)

Vd0

∞∑
k=0

(k + 1) βk+1t
k + Q

∞∑
k=1

kβk t
k = (Kb + Q)

∞∑
k=0

(αk − βk) t
k . (16b)

Since the coefficients of the zero polynomial are all zero, we obtain recursion formalas
for the hitherto unknown coefficients in Eq. (13),

α1 = KsCs − (Ks + Kb) α0 + Kbβ0

Vb0
(17a)

αk+1 = Qkαk − (Ks + Kb) αk + Kbβk

Vb0 (k + 1)
, for k ≥ 1 (17b)

βk+1 = −Qkβk + (Kb + Q) (αk − βk)

Vd0 (k + 1)
, for k ≥ 0, (17c)

with α0 and β0 given by Eq. (14). The Eqs. (17b), (17c) can conveniently be put in
matrix form

γ k+1 = Bkγ k, for k ≥ 1 (18)

with

Bk = 1

k + 1

[ Qk−(Ks+Kb)
Vb0

Kb
Vb0

Kb+Q
Vd0

− Qk+Kb+Q
Vd0

]
, (19)
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and

γ k =
[

αk

βk .

]
(20)

Repeated use of Eq. (18) gives the expression for the k’th coefficients,

γ k = Bk−1Bk−2 . . . B1γ 1. (21)

Left is to identify the radius of convergence of the power series using Weierstrass’
M-test. Clearly Bk has a limit for k → ∞,

B = lim
k→∞ Bk =

[
Q
Vb0

0

0 − Q
Vd0

]
, (22)

with eigenvalues Q
Vb0

and − Q
Vd0

. For any ε > 0 it is hence possible to find N > 0 s.t
for all k ≥ N the eigenvalues of Bk are in the set S

S =
[

Q
Vb0

− ε,
Q
Vb0

+ ε
]

×
[
− Q

Vd0
− ε,− Q

Vd0
+ ε

]
. (23)

This provides a uniform bound on the absolute value of the eigenvalues of Bk for any
k ≥ N , λ̃ = max{ Q

Vb0
+ ε,

Q
Vd0

+ ε}. A power series converges if the tail converges
and the above limit provides information about this. By repeated use of

||Bkγ k || ≤ λ̃||γ k ||, for k ≥ N , (24)

we obtain

||γ N+l || ≤ λ̃l−1||γ N ||, for l ≥ 1. (25)

From definition (20)

|αk | ≤ ||γ k ||, (26)

the tail of the series for x(t) can be estimated

|
∞∑

k=N+1

αk t
k | ≤

∞∑
l=1

|αN+l ||t N+l | ≤ ||γ N ||λ̃−1|t N |
∞∑
l=1

|λ̃t |l . (27)

The series on the right-hand side is recognized as the geometric series which is con-
vergent if and only if |λ̃t | < 1. Hence by Weierstrass M-test

∑∞
k=0 αk tk converges

uniformly for t ∈ [0, 1
λ̃
). Similar considerations apply to the series for y(t).

In summary, a sufficient criterion for the ansatz (13) with coefficients giving by (17)
to hold is 0 < t < min{ Vb0Q ,

Vd0
Q }. As t = Vb0

Q corresponds to a complete depletion
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Fig. 3 Analytical solutions to the SP and MP models of HD with two hours post dialysis rebound. a Four
hours SP dialysis, grey curve is numerical integration of Eq. (4), red curve is the formula (6) and blue
is the formula when neglecting ultrafiltration, Eq. (8). Black curve is the rebound after dialysis, given by
Eq. (44). b Eight hoursMP analysis. Curves starting at (0, 2.9) are phosphate concentration in serum, curves
starting at (0, 0) are phosphate in dialysate. Grey curves correspond to direct numerical integration of the
differential equations. Red curve is the analytical series solution including the first 27 terms. Blue curve is
the analytical solution with Q = 0, Eq. (42). Black curve is the rebound after treatment, Eq. (44). Parameter
values in both panels are Ks = 2.6L/h, Cs = 2.9mmol/L, Kb = 6.9L/h, Q = 0.23L/h, Vb0 = 10L,
x0 = Cs , y0 = 0 (color figure online)

of the plasma and extracellular fluid compartment this is a reasonable requirement. A
benefit of the explicit solution is hence to show a large interval of existence in time
and explicit parameter dependence on the solution. Furthermore, numerical integration
algorithms do not provide an absolute error for the numerical approximation, but this
is obtained from Taylor’s remainder formula for a given truncation of the analytical
series solution.Hence,with the truncated, explicit solution themaximal error to the real
solution is estimated, which cannot be obtained from direct numerical approximations.

The total dialysis time, T , is typically four hours for SP and eight hours forMP. This
can be used to give an upper bound on the error of truncation of the exact, analytical
solutions giving by a power series. An upper bound on the error when keeping only
N terms of the series is given by Lagrange’s Remainder Theorem.

errorx,N (t) ≤ |αN+1|t N+1 (28a)

errory,N (t) ≤ |βN+1|t N+1. (28b)

Hence, one can compute how many terms in the series that must be included to guar-
antee a prespecified accuracy. For example, a truncation error of at most 0.01mmol/L
is guaranteed by including 27 terms for the specified rate parameters, see Fig. 3.

2.4 Explicit solution of MPmodel withQ = 0

Assuming Q is negligible, Eq. (12) reduces to

Vb0
dx(t)

dt
= KsCs − (Ks + Kb) x(t) + Kby(t) (29a)
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Vd0
dy(t)

dt
= Kb (x(t) − y(t)) . (29b)

In matrix notation with x = (x, y)T , b =
(
KsCs
Vb0

, 0
)T

and

A =
⎡
⎣− Ks+Kb

Vb0
Kb
Vb0

Kb
Vd0

− Kb
Vd0

⎤
⎦ , (30a)

Equation (29) can be written

dx
dt

= Ax + b. (31)

Both eigenvalues of A are real and negative since A has negative trace and positive
determinant, and thus the matrix A is invertible with eigenvalues given by

λ1 = 1

2

⎛
⎝−Ks + Kb

Vb0
− Kb

Vd0
+
√(

−Ks + Kb

Vb0
+ Kb

Vd0

)2

+ 4
K 2
b

Vb0Vd0

⎞
⎠ (32a)

λ2 = 1

2

⎛
⎝−Ks + Kb

Vb0
− Kb

Vd0
−
√(

−Ks + Kb

Vb0
+ Kb

Vd0

)2

+ 4
K 2
b

Vb0Vd0

⎞
⎠ . (32b)

Introducing

ω = x + A−1b (33)

with

A−1b = −Cs

[
1
1

]
, (34)

Equation (31) can equivalently be written

dw

dt
= Aw. (35)

This may be solved by linear algebra, but for completeness we will use the recursion
formula which provides a series that can be explicitly evaluated in closed form in this
case.

Let

ω1(t) =
∞∑
k=0

α̂k t
k (36a)
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ω2(t) =
∞∑
k=0

β̂k t
k, (36b)

and γ̂ k = (α̂k, β̂k), then from the recurrence formulas we obtain

γ̂ k+1 = 1

k + 1
Aγ̂ k, for k ≥ 0, (37)

which can be iteratively applied to obtain

γ̂ k = 1

k! A
k γ̂ 0, for k ≥ 0. (38)

The feasibility of an analytical solution is due to A being a constant matrix i.e., not
dependent on k, which means that standard linear algebra techniques can be applied.
Let D be a diagonal 2x2 matrix with λ1 and λ2 at the diagonal entries and P be
a matrix with the corresponding eigenvectors as the columns. Then, A = PDP−1

which applied to Eq. (38) gives

tk γ̂ k = P

[
(λ1t)k

k! 0

0 (λ2t)k

k!

]
P−1γ̂ 0, for k ≥ 0. (39)

The summation for all k [Eq. (36)] can be explicitly obtained from the well-known
series of the exponential function

[
w1(t)
w2(t)

]
= P

[
exp(λ1t) 0

0 exp(λ2t)

]
P−1γ̂ 0. (40)

Transforming back to original coordinates by use of Eq. (33) we obtain

[
x(t)
y(t)

]
= P

[
exp(λ1t) 0

0 exp(λ2t)

]
P−1

[
x0 − Cs

y0 − Cs

]
+ Cs

[
1
1

]
. (41)

Thus, for Q = 0, the phosphate concentration in serum, as well as in the dialysate, is
well represented by the sum of two exponential functions plus a constant term.

Equation (41) can be written explicitly by

x(t) = Vd0λ1 + Kb

KbVd0 (λ1 − λ2)

(
Kb (x0 − Cs) − (Vd0λ2 + Kb) (y0 − Cs)

)
exp (λ1t)

+ Vd0λ2 + Kb

Vd0 (λ1 − λ2)

(
− Kb (x0 − Cs) + (Vd0λ1 + Kb) (y0 − Cs)

)
exp (λ2t) + Cs

(42a)

y(t) = 1

Vd0 (λ1 − λ2)

(
Kb (x0 − Cs) − (Vd0λ2 + Kb) (y0 − Cs)

)
exp (λ1t)
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+ 1

Vd0 (λ1 − λ2)

(
− Kb (x0 − Cs) + (Vd0λ1 + Kb) (y0 − Cs)

)
exp (λ2t) + Cs .

(42b)

3 The rebound effect post treatment

The total dialysis time, T , is typically four hours or eight hours. After the dialysis treat-
ment, the phosphate kinetics is governed by diffusion between the source compartment
and the serum fluid leading to the differential equation

For t ≥ T : Vb0
dx(t)

dt
= KsCs − Ksx(t), with x(T ) = xT , (43)

which is easily solved

x(t) = (xT − Cs) exp

(
− Ks

Vb0
(t − T )

)
+ Cs, for t > T . (44)

Prior to dialysis, the phosphate concentration in the source and in the serum is expected
to balance, and during dialysis the serum phosphate is reduced, hence xT − Cs < 0
so the formula Eq. (44) depicts growth. All analytical solutions of the SP and MP
model, with and without ultrafiltration is shown in Fig. 3, including the rebound curve
after dialysis Eq. (44). From this, ultrafiltration is negligible and henceforth, we will
assume Q = 0.

4 Parameter estimation

From Heaf et al. (2013) we have data of 10 HD patients receiving SP treatment at
one session and MP treatment at another session, which we will use to estimate the
parameters of the SP and MP model. Based on the previous analysis we set Q = 0,
and repeat the SP [Eq. (7)] and MP [Eq. (29)],

Vb0
dz(t)

dt
= CsKs − (Ks + Kb)z(t) + KbCd0 (45)

Vb0
dx(t)

dt
= CsKs − (Ks + Kb)x(t) + Kby(t) (46)

Vd0
dy(t)

dt
= Kb(x(t) − y(t)). (47)

We give the concentration of phosphate in the blood the new label, z(t), for the SP
model, with initial condition, z0 = z(0), to be able to estimate the parameters of the
model by solely SP data, solely MP data, or both in combination which is denoted
coupled pass (CP).

The phosphate concentration in the blood and dialysate have been measured at
baseline and every hour during HD. In addition, the volume of dialysate, Vd0, was
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Table 1 Individual estimates of the constant concentration of phosphate in the dialysate for SP, Cd0, the
dialysate volume for MP, Vd0, and the initial estimate for Vb0 based on somewhat inaccurate clinical
measure of extracellular volume

Patient
1 2 3 4 5 6 7 8 9 10

Cd0 (mmol/L) 0.16 0.12 0.11 0.16 0.18 0.21 0.14 0.09 0.14 0.09

Vd0 (L) 22.61 23.00 26.57 31.93 28.51 20.15 23.42 14.24 28.59 23.25

Vb0 (L) 16.95 17.78 17.25 21.20 18.32 15.00 15.42 13.50 20.21 18.16

measured. The individual estimates of Vd0 for MP, and the constant dialysate concen-
tration, Cd0, for SP are listed in Table 1 for each patient since these can be estimated
independently of and previous to the remaining parameters. The parameters of the SP,
MP and CP model are structurally identifiable conditioned to the parameters in this
table.

We consider the initial conditions z0 and x0 to be parameters of the model since
they are prone to measurement noise, just as the measurements at time t > 0. Initially,
we performed estimation with y0 as a parameter of the model, i.e., we allowed y0 to
deviate from zero. The deviation from zero has the interpretation that we consider y0
as a spatial average of concentration in the dialysate from inlet to outlet of the filter.
However, allowing y0 to deviate from zero, did not have significant impact on the
estimates nor the fits of the model to data. Thus, we ended up by fixating y0 = 0 to
reduce the complexity of the model.

The concentration of phosphate in the blood will be close to steady state, Cs , some
time after ended treatment. Hence, we reduce the number of parameters by assuming
that the patient is at steady state when dialysis is initiated, i.e. Cs = z0 and Cs = x0
for SP and MP, respectively. For CP, we have two measurements of the concentration
in the blood at time t = 0. Here we make the model assumption that Cs is equal to
the largest measurement at time t = 0, i.e.,

Cs =
{
z0 if z0 ≥ x0
x0 otherwise

.

The system of differential Eqs. (45–47) is non-linear in the parameters after division
with the volumes Vb0 and Vd0 whenever these are estimated. Keeping these fixed in the
first step render the differential equations linear and auniquely determinedpre-estimate
for the remaining parameters are obtained. Thus, these pre-estimated parameters are
used as initial guesses along with the clinically less accurate measurement for the
volumes in a subsequent non-linear parameter estimation procedure. In the following
we elaborate on this approach. To estimate the parameters, we use the non-linear
least squares estimate (Dattner and Gugushvili 2018; Qiu et al. 2015). The objective
function for the parameter estimation of the unknown parameter vector η is,

RMSE(η) =
√√√√ 1

dn

d∑
j=1

n∑
i=1

(
Yi j − X̂ j (ti , η)

)2
, (48)
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Table 2 Lower and upper bounds for the non-linear parameter estimation

Ks (L/h) Kb (L/h) Vb0 (L) z0 (mmol/L) x0 (mmol/L)

Lower bound 0 0 0 0 0

Upper bound 30 30 60 5 5

Table 3 SP parameter values corresponding to Fig. 4 with 95% confidence interval for each parameter
estimate specified

Patient Cs (mmol/L) Ks (L/h) Kb (L/h) RMSE

1 1.98 ± 0.01 8.51 ± 0.22 15.47 ± 0.28 0.01

2 1.26 ± 0.01 13.75 ± 1.23 17.4 ± 1.28 0.02

3 1.18 ± 0.01 21.16 ± 1.54 15.01 ± 0.98 0.01

4 1.97 ± 0.00 10.88 ± 0.24 12.37 ± 0.19 0.01

5 1.75 ± 0.08 14.10 ± 5.26 16.47 ± 5.03 0.05

6 2.75 ± 0.01 4.74 ± 0.09 10.75 ± 0.11 0.01

7 1.62 ± 0.14 6.18 ± 8.75 2.77 ± 2.55 0.08

8 1.19 ± 0.02 8.73 ± 1.15 11.50 ± 1.18 0.02

9 1.22 ± 0.01 0.00 ± 2.07 1.61 ± 0.35 0.01

10 1.05 ± 0.05 30.00 ± 19.92 10.55 ± 6.98 0.04

where d = 1, 2, 3 depending on whether we consider SP, MP or CP, respectively, Yi j
are data points and X̂(t) denote the numerical model solution, e.g., obtained by Runge
Kutta 45. We consider the initial conditions to be parameters of the system since they
are likewise prone to be affected by measurement noise.

The solution X̂(t) is non-linear in the parameters η, therefore we need an iterative
procedure to compute the non-linear least square estimate.WeuseMatLab’sfmincon
for the non-linear optimization process. Moreover, we add upper and lower bounds
to our non-linear optimization procedure to ensure that the computed parameters are
within a physiological meaningful range. The enforced upper and lower bounds are
listed in Table 2. Estimates for the uncertainties on the estimated parameters are
obtained using the Hessian matrix H of the cost function evaluated at the optimum.
More precise, as uncertainties we take the 95% confidence interval for the estimates θ ,
calculated from the square root of the diagonal elements of the covariancematrix (Aster
et al. 2019). The obtained parameter values and uncertainties appear in Tables 3, 4
and 5 for all estimated parameters and all patients.

The non-linear optimization process needs a qualified initial guess for the param-
eters since this optimization step is local. To obtain such initial guess, we discretize
the differential equations by the trapezoidal rule (Aster et al. 2019). Fixing Vb0 and
Cs and the initial conditions temporarily, (see Table 1 for the values), thus F is linear
with respect to the parameters and we simply solve a linear system of equations to
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obtain an initial guess for the subsequent non-linear parameter estimation procedure.

Vb0(zi+1 − zi ) = Vb0

∫ ti+1

ti
z′(τ )dτ

= 
t

(
CsKs − (Ks + Kb)

zi+1 + zi
2

+ Kbzd

)
,

Vb0(xi+1 − xi ) = Vb0

∫ ti+1

ti
x ′(τ )dτ

= 
t

(
CsKs +

(
(Ks + Kb)

(
yi+1 + yi

2
− Kb

xi+1 + xi
2

)))
,

Vd0(yi+1 − yi ) = Vd0

∫ ti+1

ti
y′(τ )dτ

= 
t Kb

(
xi+1 + xi

2
− yi+1 + yi

2

)
.

Rearranging the terms, yields the linear system of equations,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cs − 1
2 (z1 + z0) zd − 1

2 (z1 + z0)

Cs − 1
2 (z2 + z1) zd − 1

2 (z2 + z1)
...

...

Cs − 1
2 (x1 + x0)

1
2 (y1 + y0 − (x1 + x0))

Cs − 1
2 (x2 + x1)

1
2 (y2 + y1 − (x2 + x1))

...
...

0 1
2 (x1 + x0 − (y1 + y0))

0 1
2 (x2 + x1 − (y2 + y1))

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
Ks

Kb

]
= 1


t

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vb0(z1 − z0)
Vb0(z2 − z1)

...

Vb0(x1 − x0)
Vb0(x2 − x1)

...

Vd0(y1 − y0)
Vd0(y2 − y1)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (49)

We compute the global, linear least square estimate for the three systems, SP, MP
and the coupled system. We use the solution from the linear system in (49) as initial
condition for Ks and Kb, the initial conditions are initialized equal to the first measure-
ment point, and Vb0 given by Table 1 as initial guess. Thereafter, we perturbed initial
guesses, where we draw samples from the uniform distribution on the interval speci-
fied in Table 2 as initial guesses. The procedure showed that the optimization process
is robust as the computed estimates in all simulations returned the same estimates.
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Table 4 MP parameter values corresponding to Fig. 5 with 95% confidence interval for each parameter
estimate specified

Patient Cs (mmol/L) Ks (L/h) Kb (L/h) Vb0 (L) RMSE

1 2.19 ± 0.15 2.61 ± 0.65 6.89 ± 1.19 10.05 ± 2.83 0.06

2 1.32 ± 0.04 5.01 ± 0.61 8.39 ± 0.62 12.31 ± 1.71 0.03

3 1.36 ± 0.12 8.74 ± 3.74 7.62 ± 1.44 12.09 ± 7.15 0.06

4 1.48 ± 0.13 6.72 ± 2.78 8.59 ± 1.62 22.32 ± 10.08 0.06

5 1.62 ± 0.03 4.65 ± 0.33 10.17 ± 0.42 18.40 ± 1.35 0.02

6 1.60 ± 0.15 4.22 ± 1.55 7.28 ± 1.67 10.57 ± 4.42 0.06

7 1.75 ± 0.15 4.10 ± 2.48 7.04 ± 1.22 31.07 ± 16.65 0.06

8 1.28 ± 0.19 2.41 ± 1.63 3.89 ± 1.39 10.17 ± 7.14 0.08

9 1.07 ± 0.10 28.88 ± 40.06 5.83 ± 0.98 59.99 ± 71.28 0.06

10 1.22 ± 0.04 9.57 ± 1.95 7.15 ± 0.47 21.88 ± 4.71 0.03

Table 5 CP parameter values corresponding to Fig. 6 with 95% confidence interval for each parameter
estimate specified

Patient Cs (mmol/L) Ks (L/h) Kb (L/h) Vb0 (L) RMSE

1 2.20 ± 0.16 2.72 ± 0.15 6.85 ± 0.63 9.09 ± 1.00 0.06

2 1.32 ± 0.06 5.30 ± 0.05 8.26 ± 0.75 10.98 ± 0.63 0.03

3 1.38 ± 0.14 8.00 ± 0.11 8.05 ± 2.66 10.70 ± 1.32 0.06

4 1.92 ± 0.18 3.58 ± 0.17 7.88 ± 1.09 22.68 ± 1.90 0.07

5 1.69 ± 0.16 4.84 ± 0.16 8.68 ± 1.63 16.76 ± 1.60 0.06

6 2.70 ± 0.26 1.43 ± 0.23 6.22 ± 0.42 11.78 ± 2.05 0.08

7 1.64 ± 0.18 4.43 ± 0.18 6.62 ± 7.14 49.46 ± 1.57 0.08

8 1.32 ± 0.21 2.28 ± 0.19 4.26 ± 1.30 8.06 ± 1.37 0.08

9 1.23 ± 0.10 10.42 ± 0.09 5.90 ± 5.22 55.18 ± 0.88 0.05

10 1.21 ± 0.07 10.65 ± 0.06 7.06 ± 2.88 20.01 ± 0.67 0.04

5 Results and discussion

5.1 Analytical results and discussion

The globally increasing number of patients with kidney failure implies a growing
demand for dialysis to control toxin levels. Phosphate is naturally occurring in the diet
and intake of phosphate binders is not sufficient to reduce phosphate for patients with
lacking renal function leaving hemodialysis as amainmethod for phosphate reduction.
Phosphate kinetics of SP and MP dialysis is investigated from a mathematical mod-
elling perspective and analytical solutions are derived including rebound succeeding
treatment.Main results obtained here are the explicit solution of the phosphate concen-
tration during hemodialysis in typical clinical settings with or without ultrafiltration
included [Eqs. (6) and (8)] showing exponential saturation. A transportable dialysis
unit where the dialysate is reused is a useful alternative to traditional dialysis meth-
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ods, coined MP dialysis. Main results provided here is the derivation of the governing
differential equations for MP dialysis, Eq. (12), and the analytical solutions given by
Eqs. (14) and (17). Neglecting the small contribution from ultrafiltration simpler for-
mula are provided (42), (32) showing a rebound in the phosphate concentration in the
plasma and extracellular fluid prior to the end of dialysis treatment.

For typical parameter values, the convective term is shown to be negligible in both
MP and SP dialysis. This implies that the resulting phosphate concentrations follow
mono - or biexponential behaviourwhich is explicitly expressed in terms of the original
parameters. For SP and MP, a rebound effect is expected post treatment, again given
by exponential saturation, Eq. (44).

These analytical solutions are important contributions to understanding phosphate
kinetics during and between dialysis sessions. These equations can be used by clin-
icians to compare to clinical data and infer the patient specific parameters such as
Ks . Phosphate concentration is found to exponentially decline in the SP model which
implies that numerous short HD sessions is predicted to be more efficient than less fre-
quent longHD interventions which is in line with clinical experience (Agar et al. 2011;
Kooistra 2003). For MP the benefit of short term HD is amplified by the increased
phosphate levels in the dialysate. However, each MP session involves additional time
for setting up equipment and cleaning afterwards, which must be considered for plan-
ning optimal sessions.

The parameter Ks is an important patient specific parameter. A higher value of Ks

implies amore efficient reduction of phosphate in the patient during dialysis. However,
this also ensures a faster rebound after dialysis [Eq. (44)]. The post dialysis rebound
equation may provide the simplest way to estimate Ks which has not been clinically
recognised before: The value Cs can be estimated from a baseline measurement, Vb0
from bioimpedance, which leaves Ks as the only unknown parameter in Eq. (44).

The SP model is used by Debowska et al. (2015) and one of their key findings is
the correlation between Ks and the relative change in phosphate before and after a HD
session. This correlation can be understood in terms of the analytical solution formula
[Eq. (8)] as follows: Assuming steady state before the HD session, x(0) = Cs , and
neglecting the small contribution from the dialysate i.e. letting Cd0 = 0 we obtain

x(T )

x(0)
= Kb

Ks + Kb
exp

(
−Ks + Kb

Vb0
T

)
+ Ks

Ks + Kb
. (50)

At the end of treatment the exponential term may be approximated by the Taylor
expansion to second order

x(T )

x(0)
≈
(
1 − Kb

Vb0
T + 1

2

(
KbT

Vb0

)2
)

+ 1

2
Kb

(
T

Vb0

)2

Ks, (51)

showing a positive, linear correlation between x(T )
x(0) and Ks . Agar et al. (2011) define

the rebound after a treatment of duration T by

rebound(t) = x(t + T ) − x(T )

x(T )
· 100% (52)
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Fig. 4 SP dialysis. Data points are represented by dots, the full and dashed lines are the SP model, Eq. (45),
and post dialysis rebound. The parameter values are listed in Table 3

They compare short (T = 2h) and conventional (T = 4h) rebound, and find that they
have very similar rebound curves.We can provide an explicit formula for this rebound

rebound(t) = Cs − xT
xT

(
1 − exp

(
−Kst

Vb0

))
· 100%. (53)

From the rebound data inAgar et al. (2011), it is clear that for T = 2h, the phosphate
level has reached a plateau i.e. xT is constant, which is to be expected for sufficiently
long time by Eq. (8). This means that xT may be considered constant for any T ≥ 2
guaranteeing equal rebound curves for short and conventional HD, and the model
predicts the same rebound for long HD i.e. 8h. For xT being at the plateau level and
neglecting the small contribution from Cd0, Eq. (53) implies

rebound(t) = Kb

Ks

(
1 − exp

(
−Kst

Vb0

))
· 100%. (54)

which is valid for T ≥ 2. This formula explains the rebound observed by Agar
et al. (2011) and gives a direct parametric expression that may be used for parameter
estimation provided rebound data is available. In particular, if Vb0 can be estimated
from bioimpedance, then the rebound curve (54) calibrated to clinical data is sufficient
to determine Kb and Ks . Therefore, data of the rebound may provide a simple way to
estimate Ks . Published studies often lack rebound data, or include only a single data
point (Agar et al. 2015; Daugirdas 2018; Debowska et al. 2015) but we suggest to use
rebound data in the future.
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Fig. 5 MPdialysis. Data points are represented by dots, the full and dashed lines areMPmodel (Eqs. 46–47),
and post dialysis rebound. Parameter values are given in Table 4

Fig. 6 CP dialysis. Data points are represented by dots, the full and dashed lines are the SP andMPmodels,
Eqs. (45–47), with identical parameter values and stipulated curves are post dialysis rebound. Parameter
values are given by Table 5
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5.2 Computational results and discussion

The same cohort of ten patients have been exposed to SP and MP treatment allowing
for use of both data sets to estimate the physiological parameters (the CP model). The
successful calibration of CP to clinical data implies consistency between the SP and
MPmodels. The findings validate the underlying model assumptions and the resulting
analytical solutions, Eqs. (8) and (42).

The model trajectories for SP, MP and CP calibrated to clinical data are shown
in Figs. 4, 5 and 6 with corresponding parameter values in Tables 3, 4 and 5, pro-
viding good agreement between models and data. Each estimated parameter values
is attributed a 95% confidence interval calculated from the square root of the diag-
onal elements of the covariance matrix for the linearized problem. We estimate Cs

based on the assumption that the patient is in steady state at time t = 0. However, the
initial measurements can be encumbered with noise and may not be at steady state
(see the large difference between z0 and x0 for patient 6). To relax the assumption,
one could measure the relapse to achieve more information about Cs . Thus, Cs is
considered a parameter not only relying on the initial measurement. Furthermore, the
uncertain steady state assumption at time 0 is avoided. Another possibility is to use a
Bayesian approach where prior information about e.g. Cs is included to improve the
identifiability of the parameters (Bangsgaard et al. 2023; Vanlier et al. 2013).

The models being structurally identifiable (with Vb0 fixed at the value obtained
by the clinical measurement in case of SP) may not be practically identifiable. From
Table 3 we generally see small uncertainties on the estimated parameter values for SP
except for patient 7 and to minor degree for patient 10. Patient 7 may be considered
an outlier, since the first four data point lies approximately on a straight line. Thus,
the exponential fit does not capture this well, which is also reflected by the value of
the RMSE in Table 3.

ForMP, the uncertainties are generally slightly larger without being alarming. How-
ever, the uncertainty for patient 7 is slightly better than for SP while the uncertainties
for patient 9 has worsened, which is likely due to the additional data points. For MP,
the data for patient 9 approximately lie on a horizontal line indicating problems with
this specific MP dialysis treatment for unknown reasons.

The troublesome uncertainties in the case of SP and MP are resolved for CP where
all uncertainties are acceptable. These observations are supported by the relatively
small RMSE for all patients.

The general trend of slightly elevated uncertainties for MP compared to SP may be
explained by the increase in the number of estimated parameters and the inclusion of
additional data. The larger uncertainties for patient 9 are likely due to the upper bound
for the blood volume Vb0 being reached.

The uncertainties and corresponding estimates for patient 7 during SP and patient
9 for MP are on the limit of being problematic while none are for CP. Thus, the
parameters are generally practically identifiable from the available data at least when
excluding the two limiting cases.

Ideally, we should obtain the same value for the estimated parameter Ks in both
SP and MP as it represents the same patient specific transfer rate. However, this is

123



Analytical solution of phosphate kinetics for hemodialysis Page 21 of 22    11 

not the case primarily because the parameter Vb0 for SP is non-identifiable. This is a
motivation for introducing CP, where both SP and MP are considered simultaneously
having the same physiological parameters. Here we obtain a more accurate estimate
for the parameters e.g., Ks .

Optimal control of dialysis treatment would be an interesting next step to address
for applied mathematicians interested in assisting nephrologist to help improve the
situation for the millions of people with chronic kidney failure.
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