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Abstract: Titanium (Ti) is widely recognized for its exceptional properties and compatibility with
medical applications. In our study, we successfully formed laser-induced periodic surface structures
(LIPSS) on Ti plates with a periodicity of 520–740 nm and a height range of 150–250 nm. To investigate
the morphology and chemical composition of these surfaces, we employed various techniques,
including field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic
force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Additionally, we
utilized a drop-shape analyzer to determine the wetting properties of the surfaces. To evaluate the
antibacterial activity, we followed the ISO 22196:2011 standard, utilizing reference bacterial cultures
of Gram-positive Staphylococcus aureus (ATCC 25923) and Gram-negative Escherichia coli (ATCC
25922). The results revealed enhanced antibacterial properties against Staphylococcus aureus by more
than 99% and Escherichia coli by more than 80% in comparison with non-irradiated Ti. Furthermore,
we conducted experiments using the Escherichia coli bacteriophage T4 (ATCC 11303-B4) and the
bacterial host Escherichia coli (ATCC 11303) to investigate the impact of Ti plates on the stability of
the bacteriophage. Overall, our findings highlight the potential of LIPSS on Ti plates for achieving
enhanced antibacterial activity against common bacterial strains while maintaining the stability of
bacteriophages.

Keywords: Titanium; fs laser; LIPSS; oxide; antibacterial; bacteriophages

1. Introduction

Lasers play a crucial role as versatile tools in the surface modification of various mate-
rials, mainly at the macroscale and microscale. However, laser processing at the nanometer
scale is developing very rapidly [1]. Some examples of nanoscale laser processing include
laser nanolithography [2], laser ablation for nanoparticle synthesis [3], and laser-induced
surface modifications [4–6]. Among these techniques, laser-induced surface modifications
offer precise control over surface relief and phase composition, thereby influencing a wide
range of properties such as wettability, antimicrobial characteristics, and tribology. One
technique used for surface patterning is the creation of laser-induced periodic surface
structures (LIPSS), also known as ripples. This method involves the use of a laser beam
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with linearly polarized radiation [7–9]. LIPSS can be classified based on their spatial fre-
quency into two types: low spatial frequency LIPSS (LSFL) and high spatial frequency
LIPSS (HSFL). In LSFL, the period Λ of the structures is approximately equal to the laser
wavelength (Λ~λ), and their orientation is perpendicular to the polarization of the laser
pulse [10]. In HSFL, the period Λ is much smaller than the laser wavelength (Λ << λ), and
the structures are generated with an orientation parallel to the polarization of the laser
light [11].

The exact mechanism behind LIPSS formation is still a topic of debate and can generally
be categorized into two types of theories based on the materials and laser parameters
used: electromagnetic theories and matter reorganization theories [4,12]. Electromagnetic
theories describe the deposition of optical energy into the solid, while matter reorganization
theories are based on the redistribution of matter in the surface layer. One of the most
widely accepted mechanisms for the formation of LSFL structures involves the interaction
of surface plasmon polaritons with rough metal surfaces [13]. The initial roughness of the
material plays a crucial role in producing scattering, which can generate surface plasmon
polaritons that interfere with the incident light. This interference modulates the absorbed
fluence and selectively removes material to create parallel periodic structures [7].

The LIPSS technique is applicable to a wide range of materials, including metals [14],
semiconductors [15], superconductors [16], polymers [17,18], dielectrics [19], and 2D nano-
materials [20]. Surfaces of metals created using LIPSS hold significant potential for medical
applications, including antimicrobial, self-cleaning, antifriction, and antifogging properties.
Femtosecond lasers can also be utilized to produce ultrasensitive surface-enhanced Raman
spectroscopy (SERS) platforms based on silicon for biomedical applications [21].

In particular, the antimicrobial properties have garnered significant attention, espe-
cially considering the COVID-19 pandemic, as they serve as a catalyst for heightened
awareness and future concerns regarding potential outbreaks. The controlled enhancement
of antibacterial properties of biomedical materials can be achieved by using laser-induced
micro-texturing of the surfaces [5]. LIPSS play an important role in the production of
antibacterial surfaces [22]. Various surface characteristics, such as wettability, roughness,
topography, surface charge, and stiffness, can influence the adhesion of bacteria [23]. How-
ever, the development of the antibacterial properties of a surface depends not only on
the parameters of the obtained microstructure but also on certain types of bacteria. For
example, Gram-positive and Gram-negative bacteria can be classified based on their cell
wall structure [24]. Gram-positive bacteria have a thick peptidoglycan layer in their cell
wall, while Gram-negative bacteria have a thinner peptidoglycan layer and an outer mem-
brane containing lipopolysaccharides. Overall, various antimicrobial mechanisms can be
identified, such as physical antiadhesion and chemical elimination [25].

Titanium is a well-known material for medical applications due to its superior proper-
ties and biocompatibility with living cells. However, their limitations lie in their inability to
stimulate new bone formation and their lack of antibacterial properties [26]. To address the
latter, researchers have been focusing on surface modifications of Ti, aiming to transform its
surface layer into an oxide or apply alternative films to obtain antibacterial coatings. These
modifications are pursued to enhance the functionality of Ti implants and mitigate the risk
of implant-related infections. It is also well known that after irradiation with a laser, it is
possible to form a layer of TiO2 with a controllable phase composition [27] on a titanium
surface. Such a layer could also lead to enhanced antimicrobial activity due to the presence
of radicals and superoxides, which could contribute to the damage of the outer cells of the
microorganisms. In addition, research can be found regarding multi-phase titanium oxide
LIPSS formation under fs laser irradiation on thin titanium films [28].

Regardless of the extensive use of titanium and its alloys for biomedical implants,
the surfaces of implants may serve as a critical determinant for biofilm formation and
subsequent implant-associated infections [29,30]. Furthermore, bacterial biofilms and the
overuse of antibiotics contribute to the development of antibiotic resistance [31]. Hence, it
is urgent to look for novel and alternative approaches to prevent, combat, and overcome the
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advancement of implant-associated infections [32]. One of the potential strategies might be
antibacterial bacteriophage-based coatings on the surface of implants [33]. Bacteriophages
(or phages) are prokaryote-specific viruses. Lytic phages are recognized as promising
nontraditional antibacterials due to their biological characteristics, including the antibiofilm
effect. To impregnate phages in coatings, it is crucial to maintain their stability when
exposed to biomedical implant surfaces.

The study aims to develop femtosecond laser technology for obtaining enhanced
antibacterial properties of titanium surfaces with laser-induced periodic surface structures
against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, as well
as preserving bacteriophage stability.

2. Materials and Methods
2.1. Materials and Laser Setup

Commercial titanium (Ti) samples, specifically grade 1 ASTM B265 with a purity of
99.6% or higher, were procured from Goodfellow Cambridge Ltd. [34]. The samples had
dimensions of 25 × 25 × 2 mm.

The samples were irradiated with a pulsed Yb:KGW femtosecond (fs) laser (model:
Pharos-6W, Light Conversion, Vilnius, Lithuania) with the following parameters: wave-
length 1030 nm, pulse duration 300 fs, max. pulse intensity 0.8 TW/cm2 (the optimal
laser intensity for the formation of LIPSS), max. laser fluence 0.25 J/cm2, repetition rate of
600 kHz, beam diameter 40 µm, beam profile “Gaussian.” Linear laser beam polarization
was used in all experiments. The laser power in the experiments was varied with an
attenuator consisting of a half-wave plate and a polarizer. The scanning of the laser light
was performed normally to the Ti surface at a speed of 1 mm/s. The irradiation of the
samples was carried out at room temperature under ambient pressure. To investigate the
impact on antibacterial properties, the study considered varying hatch spacings within the
micrometer range, specifically 4, 8, 12, and 16 µm. Additional laser beam defocus of 2 mm
was implemented to enlarge the spot size up to 80 µm. The experimental setup for this
process is illustrated in Figure 1.

Nanomaterials 2023, 13, x FOR PEER REVIEW 3 of 15 
 

 

Regardless of the extensive use of titanium and its alloys for biomedical implants, the 
surfaces of implants may serve as a critical determinant for biofilm formation and subse-
quent implant-associated infections [29,30]. Furthermore, bacterial biofilms and the over-
use of antibiotics contribute to the development of antibiotic resistance [31]. Hence, it is 
urgent to look for novel and alternative approaches to prevent, combat, and overcome the 
advancement of implant-associated infections [32]. One of the potential strategies might 
be antibacterial bacteriophage-based coatings on the surface of implants [33]. Bacterio-
phages (or phages) are prokaryote-specific viruses. Lytic phages are recognized as prom-
ising nontraditional antibacterials due to their biological characteristics, including the an-
tibiofilm effect. To impregnate phages in coatings, it is crucial to maintain their stability 
when exposed to biomedical implant surfaces. 

The study aims to develop femtosecond laser technology for obtaining enhanced an-
tibacterial properties of titanium surfaces with laser-induced periodic surface structures 
against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, as 
well as preserving bacteriophage stability. 

2. Materials and Methods 
2.1. Materials and Laser Setup 

Commercial titanium (Ti) samples, specifically grade 1 ASTM B265 with a purity of 
99.6% or higher, were procured from Goodfellow Cambridge Ltd. [34]. The samples had 
dimensions of 25 × 25 × 2 mm.  

The samples were irradiated with a pulsed Yb:KGW femtosecond (fs) laser (model: 
Pharos-6W, Light Conversion, Vilnius, Lithuania) with the following parameters: wave-
length 1030 nm, pulse duration 300 fs, max. pulse intensity 0.8 TW/cm2 (the optimal laser 
intensity for the formation of LIPSS), max. laser fluence 0.25 J/cm2, repetition rate of 600 
kHz, beam diameter 40 µm, beam profile “Gaussian.” Linear laser beam polarization was 
used in all experiments. The laser power in the experiments was varied with an attenuator 
consisting of a half-wave plate and a polarizer. The scanning of the laser light was per-
formed normally to the Ti surface at a speed of 1 mm/s. The irradiation of the samples was 
carried out at room temperature under ambient pressure. To investigate the impact on 
antibacterial properties, the study considered varying hatch spacings within the microm-
eter range, specifically 4, 8, 12, and 16 µm. Additional laser beam defocus of 2 mm was 
implemented to enlarge the spot size up to 80 µm. The experimental setup for this process 
is illustrated in Figure 1.  

 
Figure 1. Scheme of the experimental laser setup used for irradiation of titanium plate samples for
the formation of LIPSS: CMOS—optical camera; HR—high reflection mirror.

2.2. Characterization of Titanium Plates before and after Irradiation
2.2.1. Scanning Electron Microscopy (SEM) Analysis

A field emission scanning electron microscope (FESEM) FEI Nova NanoSEM650
(Eindhoven, The Netherlands) equipped with an energy dispersive X-ray (EDX) analysis
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detector EDAXTM (Pleasanton, CA, USA) was used to characterize surface structures
and perform chemical analysis. To prevent the buildup of charge on the surface of the
samples without the need for a conductive coating, a low vacuum mode 60 Pa and HelixTM

(Singapore) detector was used.

2.2.2. X-ray Photoelectron Spectroscopy (XPS) Analysis

The effect of surface modifications was analyzed using X-ray photoelectron spec-
troscopy (XPS, Escalab Xi+, Thermo Scientific, Waltham, MA, USA) with an Al K-alpha
X-ray source without further surface cleaning. XPS spectra were collected before and after
surface etching. Surface etching was performed using an Ar ion gun with mild sputtering
conditions for 10 s. The amount of surface contamination decreases with Ar ion sputtering,
as is expected. The advantageous carbon peak for C-C at 284.8 eV was used as a calibration
point. Peak fitting was performed using Avantage 5.9925 software.

2.2.3. Raman Spectroscopy

The Raman shift measurement was performed at room temperature using the Ren-
ishaw In-ViaV727 spectrometer in a backscattering configuration. The phonon excitation
was induced using a green laser (Ar+, λ = 514.5 nm) with a grating of 1200 mm−1. Each
spectrum was recorded from three accumulations, with an exposure time of 3 s for each
accumulation.

2.2.4. Atomic Force Microscopy (AFM)

Atomic force microscopy (AFM) was used to characterize LIPSS structures and exam-
ine the overall roughness of the titanium surfaces. The Vecco CP-II AFM equipment was
used for the examination of topography. The IP21 software was used for both data analysis
and calculations of the LIPSS periods.

2.3. Wettability

A drop-shape analyzer was used to determine wetting properties. The contact angle
measurements were performed using the KRÜSS Drop Shape Analyzer DSA25E. Five
parallel measurements were conducted at room temperature in the air. Contact angle
measurements were carried out using a water droplet substance. The volume of the liquid
drop was fixed at 10 microliters for deionized water. The contact angle of the surface of the
sample was analyzed as received just after irradiation.

2.4. Antibacterial Properties

The antibacterial activity of samples was determined by the ISO 22196:2011 standard
using reference bacterial cultures of Gram-positive Staphylococcus aureus (ATCC 25923) and
Gram-negative Escherichia coli (ATCC 25922) commercially obtained from The American
Type Culture Collection (ATCC).

2.5. Preparation of Bacteriophage Solution and Its Exposure to Titanium Plates

The Escherichia coli bacteriophage T4 (ATCC 11303-B4) and its bacterial host, Escherichia
coli (ATCC 11303), were used to evaluate the effect of Tref and T16 titanium plates on the
stability of the bacteriophage over a 36 h period.

2.5.1. Preparation of the Bacteriophage Solution

The reference phage stock was recovered from a frozen vial in the presence of the
recommended and respective bacterial broth cultures, following the general procedures
provided by the ATCC. The recovered phage stock was propagated twice to attain a
higher viral titer. Briefly, the propagation procedure included a set of the following steps:
(a) flood of the webbed plates with trypticase soy broth (TSB) after the initial plaque
assay; (b) chloroform (CHCl3) treatment to remove the soft agar overlay and collected
supernatant; (c) refrigeration; (d) centrifugation; and (e) 0.20 µm filtration to obtain phage
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lysate. The viral titer was estimated using a plaque assay. The procedure involved serial
10-fold dilutions of phage stock and plating with a respective bacterial host by applying a
soft-agar overlay. Individual plaques, namely viable phage particles, observed on overnight
incubated plates were counted, and the viral titer was expressed in plaque-forming units
per milliliter (PFU/mL).

2.5.2. Preparation of Mixtures of Bacteriophage Solutions and Titanium Plates

The phage lysate was diluted with TSB to acquire an increased volume of phage stock.
Within 5 mL of freshly acquired phage suspension, Tref and T16 titanium plates were
immersed. A control with 5 mL of phage-only suspension was provided. Plastic centrifuge
tubes with prepared experiment samples were incubated at 37 ◦C with shaking at 150 rpm
for various time periods—0 h, 6 h, 12 h, 24 h, and 36 h, respectively.

2.5.3. Determination of Bacteriophage Stability

The stability performance of the phage in the presence of Tref and T16 titanium plates
was evaluated by executing the plaque assay at the aforementioned multiple incubation
points in time—0 h, 6 h, 12 h, 24 h, and 36 h, respectively.

2.5.4. Statistical Analysis

Duplicate experiments were executed to enhance accuracy. The Mann–Whitney U test
ensured that prepared mixtures (phage-only suspension in TSB, phage suspension with
Tref, and phage suspension with T16) were compared. The results were expressed in the
form of mean ± standard deviation. Statistical analysis was performed using GraphPad
Prism software, version 9. The tests resulted in p-values greater than 0.05, considering the
differences in the results obtained as not statistically significant.

3. Results and Discussion

Bacterial adhesion to a material surface is fundamentally essential for surface contam-
ination to occur. Adhesion depends both on bacterial factors and surface properties. By
altering the surface properties, the adhesion of bacteria to the surface can be effectively
prevented. The adhesion of bacteria is significantly influenced by surface morphology.
Nano- and micro-structures significantly increase the contact adhesion area, resulting
in more effective bactericidal properties compared to flat surfaces [35]. Morphological
differences observed in FESEM images (Figure 2a–d) show that after irradiation with a
femtosecond laser, the LIPSS were formed on the surface of titanium plates. The laser
parameters are shown in Table 1. The periodicity (Λ) of these structures was determined
using the two-dimensional (2D) Fast Fourier Transform (FFT) method, assisted by the
open-source software Gwyddion, Version 2.63 (Figure 2e–h). To analyze the periodicity of
LIPSS, the 2D-FFT profiles were examined (Figure 2i–l). This was achieved by measuring
the distance between the two most intensive mirror-like related peaks, which were fitted
using the Lorentz function. The formula used to calculate Λ is Λ = 2/(f1 − f2), where f1 and
f2 represent the spatial frequencies observed in the 2D-FFT profile. Periodicity of LIPSS,
which was in the range of about 520–740 nm, depending on hatch spacing used (ΛT4—538
± 30 nm; ΛT8—520 ± 51 nm; ΛT12—660 ± 17 nm; ΛT16—740 ± 24 nm). Such structures
can be classified as low spatial frequency LIPSS (LSFL). The LSFL period depends on many
parameters like laser fluence, accumulated irradiation dose, hatch distance, and pulse
overlap. The range of 520–740 nm is typical for LIPSS formed at 1030 nm wavelength [36].
Such structures can also be obtained by combining LIPSS with the direct laser interference
patterning (DLIP) method [37] in order to obtain multilevel hierarchical surface structures.
Additionally, nanocrystals with random orientation and morphology can be observed on
the surface of the structures.
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Table 1. Laser process parameters.

No
Laser

Fluence,
mJ/cm2

Spot Size,
µm

Laser Rep.
Rate, kHz

Scanning
Speed, mm/s Hatch, µm

T4 63 80 600 1 4
T8 63 80 600 1 8

T12 63 80 600 1 12
T16 63 80 600 1 16

T12A 254 40 600 2 12
T12WL 106 40 600 2 12

Based on the 2D-FFT images presented in Figure 2, it is evident that the LIPSS exhibited
a consistent orientation, indicating that the LIPSS were perpendicular to the polarization
direction. These findings align with previous observations reported in the literature, where
it is commonly noted that the LSFL are oriented perpendicular to the direction of laser
polarization. In contrast, the HSFL align parallel to the direction of laser polarization [7].

EDS mapping (Figure 3) shows that after irradiation with a fs laser, the oxygen con-
centration on the surface of titanium increases in comparison with nonirradiated samples,
where traces of native oxide [38] can be observed (Figure 3a). It can also be observed that
oxygen is mainly distributed on the top surface of LIPSS.
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The AFM study of the samples allows us to determine more accurately the quantitative
measures of LIPSS shape and surface roughness before studying antibacterial properties.
AFM scans are presented in Figure 4 for laser-irradiated samples with LIPSS. It can be noted
that by irradiating the sample with a Yb:KGW fs laser, the LIPSS—periodically arranged
hills and valleys with the periodicity around Λ = 520–740 nm—are formed on the surface.
The average value of the peak-to-valley height difference is 150–250 nm. A slight surface
polishing has been achieved due to the reduced roughness root mean square Rrms value
from 130 nm to 50–70 nm for the non-irradiated and irradiated samples, depending on
hatch spacing. It is presumed that the presence of numerous sharp structures obtained
by fs laser on the rough surface is likely to be destructive to bacteria [39]. Furthermore,
the conical shape of LIPSS results in a smaller adhesion area for bacteria to attach to in
comparison with flat surfaces.

We employed reference data on their frequencies in single crystals to identify titanium
oxide-related modes on Raman spectra after laser processing [40]. Nevertheless, analyzing
the Raman spectra of amorphous or polycrystalline layers can be challenging due to peak
shifting and broadening compared to those observed in single crystals. These alterations in
peak characteristics are primarily attributed to the presence of grain boundaries, extended
defects, and stresses. The Raman spectra (Figure 5) of samples T4, T8, T12, and T16 with
different hatch spacing show amorphous semiconductor phase formation with a broad peak
around 250 cm−1 [41]. Alternately, it could be attributed to the formation of nanocrystallites
on the surface of LIPSS. Additionally, in two cases, the influence of the utilization of variant
laser parameters in the case of a hatch spacing of 12 µm was investigated. For this purpose,
we used a higher laser fluence of 106 mJ/cm2 for T12WL samples (where WL stands for
without LIPSS) and 254 mg./cm2 for T12A samples (where A stands for ablation). While
T12WL remains in a transitional state between the amorphous and crystalline phases, the
sample surface of T12A corresponds to the formation of the TiO2 rutile phase [40].
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Figure 5. Raman spectra of titanium plate surfaces irradiated with a femtosecond laser with different
laser parameters.

From FESEM images (Figure 6), it can be seen that sample T12WL can be characterized
by nonregular surface structures, while in the case of T12A, ablation of TiO2 nanoparticles
(rutile phase) takes place. The morphology of nanoparticles exhibits a diverse size distribu-
tion, with the nanoparticles typically being less than 70 nm in diameter, while Figure 6b
inset provides visual evidence that these nanoparticles tend to have a round shape. The
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antimicrobial properties of such structures were not tested due to the absence of LIPSS in
the case of T12WL, as well as the formation of nanoparticles via the ablation process in the
case of T12A, which has weak adhesion to the titanium plate surface. The size distribution
observed in the morphology of nanoparticles makes it an intriguing case for developing
a method for metallic or semiconductor nanoparticle production with various sizes from
metals using laser [3].

Nanomaterials 2023, 13, x FOR PEER REVIEW 9 of 15 
 

 

200 400 600 800 1000 1200 1400

In
te

ns
ity

 (a
rb

. u
.)

Raman shift (cm−1)

 T16
 T12
 T8
 T4
 T12WL
 T12A

 
Figure 5. Raman spectra of titanium plate surfaces irradiated with a femtosecond laser with different 
laser parameters. 

From FESEM images (Figure 6), it can be seen that sample T12WL can be character-
ized by nonregular surface structures, while in the case of T12A, ablation of TiO2 nano-
particles (rutile phase) takes place. The morphology of nanoparticles exhibits a diverse 
size distribution, with the nanoparticles typically being less than 70 nm in diameter, while 
Figure 6b inset provides visual evidence that these nanoparticles tend to have a round 
shape. The antimicrobial properties of such structures were not tested due to the absence 
of LIPSS in the case of T12WL, as well as the formation of nanoparticles via the ablation 
process in the case of T12A, which has weak adhesion to the titanium plate surface. The 
size distribution observed in the morphology of nanoparticles makes it an intriguing case 
for developing a method for metallic or semiconductor nanoparticle production with var-
ious sizes from metals using laser [3]. 

 
Figure 6. FESEM images of fs laser-irradiated titanium plate surfaces T12WL (a) and T12A (b). The 
inset in the top right corner of the image (b) shows an enlarged view of the morphology of nano-
particles with a horizontal width (HFW) of 300 nm. 

For chemical bond detection and surface atomic concentration analysis, XPS high-
resolution core level spectra were scanned for Ti and O in non-irradiated and irradiated 
areas (Figure 7). The O1s peak at 531 eV can be attributed to OH group formation or 

Figure 6. FESEM images of fs laser-irradiated titanium plate surfaces T12WL (a) and T12A (b).
The inset in the top right corner of the image (b) shows an enlarged view of the morphology of
nanoparticles with a horizontal width (HFW) of 300 nm.

For chemical bond detection and surface atomic concentration analysis, XPS high-
resolution core level spectra were scanned for Ti and O in non-irradiated and irradiated
areas (Figure 7). The O1s peak at 531 eV can be attributed to OH group formation or defec-
tive oxides [42]. After surface etching using an Ar ion gun with mild etching conditions,
lesser titanium oxides and titanium metal can be detected. Peak splitting between Ti (IV)
2p3/2 and 2p1/2 peaks cannot be attributed to rutile or anatase phase due to low signal
strength. The peak-value standard deviation is 0.05 eV. The deviation for elemental atomic
concentration is associated with 0.5%.

Surface modification with the fs laser favors the formation of Ti (IV) oxides, according
to the peak fitting results (Figure 8).

Previous studies have demonstrated that the antibacterial effect of materials is influ-
enced by the surface contact angle [23,43]. It is more challenging for microorganisms, such
as bacteria, to adhere to the surface of a hydrophobic material [43]. Wettability proper-
ties (shown in Table 2) changed from hydrophilic (non-irradiated) to more hydrophobic
surfaces after irradiation with a fs laser. The changes in wetting properties are associated
with both the surface relief of each sample before and after irradiation and the considerable
contribution of changes in chemical composition, which favor Ti4+ oxide formation after
laser irradiation. It can be noted that these changes to more hydrophobic surfaces have
resulted in increased antibacterial activity.

The best antibacterial results were obtained for titanium plate samples irradiated with
hatch spacings of 12 µm against S. aureus and 16 µm against E. coli. (Figure 9). Overall,
morphological and surface chemical composition changes of the titanium surface induced
by fs laser radiation led to enhanced antibacterial properties against S. aureus by more than
99% (Figure 10) and E. coli by more than 80% in comparison with the non-irradiated titanium
plate sample surface. The difference in results could be explained by the differences in
morphology [44] and cell wall structure [24] of certain bacteria. Spherical S. aureus cells
have a diameter of approximately 0.5 µm and a thick peptidoglycan layer in their cell wall,
while rod-shaped E. coli cells have a diameter of approximately 0.5 µm and a length of
approximately 2 µm. Regarding the cell wall structure, E. coli have a thinner peptidoglycan
layer and an outer membrane containing lipopolysaccharides. The superior results against
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S. aureus colonization might be explained by the lesser contact with the irradiated surface
due to the spherical shape of the bacteria.
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Figure 7. XPS spectra of titanium plates before and after irradiation with a fs laser. On the right side,
the image shows the non-etched surface, while on the left side, the image shows the surface after
etching using an Ar ion gun.
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Figure 8. Relative atomic concentrations from XPS analysis of non-irradiated and irradiated samples
with different hatch spacing.
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Table 2. Wetting properties depending on hatch spacing.

Sample Tref 4 µm 8 µm 12 µm 16 µm

Contact angle 79.5 136.5 112.0 98.7 104.5
(◦) ±2.3 ±2.4 ±1.5 ±3.0 ±2.9

Nanomaterials 2023, 13, x FOR PEER REVIEW 11 of 15 
 

 

Figure 8. Relative atomic concentrations from XPS analysis of non-irradiated and irradiated samples 
with different hatch spacing. 

Previous studies have demonstrated that the antibacterial effect of materials is influ-
enced by the surface contact angle [23,43]. It is more challenging for microorganisms, such 
as bacteria, to adhere to the surface of a hydrophobic material [43]. Wettability properties 
(shown in Table 2) changed from hydrophilic (non-irradiated) to more hydrophobic sur-
faces after irradiation with a fs laser. The changes in wetting properties are associated with 
both the surface relief of each sample before and after irradiation and the considerable 
contribution of changes in chemical composition, which favor Ti4+ oxide formation after 
laser irradiation. It can be noted that these changes to more hydrophobic surfaces have 
resulted in increased antibacterial activity. 

Table 2. Wetting properties depending on hatch spacing. 

Sample Tref 4 µm 8 µm 12 µm 16 µm 
Contact angle 79.5 136.5 112.0 98.7 104.5 

(°) ±2.3 ±2.4 ±1.5 ±3.0 ±2.9 

The best antibacterial results were obtained for titanium plate samples irradiated 
with hatch spacings of 12 µm against S. aureus and 16 µm against E. coli. (Figure 9). Over-
all, morphological and surface chemical composition changes of the titanium surface in-
duced by fs laser radiation led to enhanced antibacterial properties against S. aureus by 
more than 99% (Figure 10) and E. coli by more than 80% in comparison with the non-
irradiated titanium plate sample surface. The difference in results could be explained by 
the differences in morphology [44] and cell wall structure [24] of certain bacteria. Spherical 
S. aureus cells have a diameter of approximately 0.5 µm and a thick peptidoglycan layer 
in their cell wall, while rod-shaped E. coli cells have a diameter of approximately 0.5 µm 
and a length of approximately 2 µm. Regarding the cell wall structure, E. coli have a thin-
ner peptidoglycan layer and an outer membrane containing lipopolysaccharides. The su-
perior results against S. aureus colonization might be explained by the lesser contact with 
the irradiated surface due to the spherical shape of the bacteria.  

2052

1404

765
639

396

2508

735

12 6 18
Non-irradiated 4 8 12 16

0

500

1000

1500

2000

2500

C
FU

/m
m

2

Hatch spacing, µm

 E.coli
 S.aureus

 
Figure 9. Antibacterial activity of titanium plates against both Gram-positive Staphylococcus aureus 
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Figure 10. Colonization of S. aureus and E. coli on the Ti plate surface before (Tref) and after fs laser
treatment using different hatch spacing. The diameter of the Petri dishes is 85 mm. The green squares
represent the best results obtained in the cases of S. aureus and E. coli, respectively.

Experiments have revealed that the antimicrobial activity of treated surfaces is derived
from a synergistic interplay of various surface properties, including wettability, chemical
composition, roughness, distance between LIPSS, and size of surface features.

The viral titer of the obtained, recovered, and twice-propagated Escherichia coli
bacteriophage T4 stock (ATCC 11303-B4) was 2.5 × 108 PFU/mL. Increasing the volume of
acquired phage stock resulted in a correspondingly lower phage concentration—that is, the
output phage titer for further experiments was 2.5 × 107 PFU/mL.



Nanomaterials 2023, 13, 2032 12 of 15

The phage stability was maintained at all time points (0 h, 6 h, 12 h, 24 h, and 36 h)
assessed by plaque assay; no log loss in the phage titer was observed (see Figures 11 and 12).
Furthermore, all experiment samples, namely, phage-only suspensions in TSB, Tref, and
T16 after incubation for 36 h, exhibited slightly increased viral titers: 3.5 × 107 PFU/mL,
3.6 × 107 PFU/mL, and 3.8 × 107 PFU/mL, respectively. In addition, the viral titer rose
more rapidly in all experiment samples after 12 h of incubation.
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Figure 11. Preserved stability of Escherichia coli bacteriophage T4 (ATCC 11303-B4) exposed to a T16
titanium plate over a 36 h period. TSB—phage-only suspension in TSB; Tref—phage suspension with
Tref titanium plate; T16—phage suspension with T16 titanium plate. The statistical tests resulted
in p-values greater than 0.05, considering the differences in the results obtained as not statistically
significant.
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Figure 12. Visual plaque assay results of Escherichia coli bacteriophage T4 (ATCC 11303-B4) over a 36 h
period. (A) Plaques of a 104 dilution of an original phage stock at 0 h. (B) Plaques of a 104 dilution
of a phage stock when exposed to a T16 titanium plate for 6 h, (C) 12 h, (D) 24 h, and (E) 36 h. The
diameter of the Petri dishes is 85 mm.

4. Conclusions

LIPSS were formed on the titanium plate sample surface with a periodicity in the
range of about 520–740 nm and a height in the range of 150–250 nm. Changes in the surface
chemical composition took place, including the formation of Ti (IV) oxides after irradiation
with a fs laser. The changes in the wetting properties of more hydrophobic surfaces have
led to increased antibacterial activity. The experimental results revealed that morphological
and surface chemical composition changes of the titanium surface induced by fs laser
radiation led to enhanced antibacterial properties against S. aureus by more than 99% and
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E. coli by more than 80% in comparison with the non-irradiated titanium plate sample
surface.

Regarding the interaction between unmodified and modified Ti plates and bacterio-
phages, the key finding in our study was that Ti plates do not possess virucidal activity
against bacteriophages before and after irradiation. There are potential limitations to using
phages as prototypes to evaluate the antiviral activity of Ti plates, as they are prokaryotic
viruses. However, no loss of phage titer was observed in the presence of Ti plates, and
phage stability was preserved throughout the experiments.

Considering the antibiofilm effect of phages on biofilm viability, which plays a crucial
role in the pathogenesis of implant-associated infections, the results of our study indicate a
potential application of Ti implant devices concurrent with phage-based films, preventing
possible loss of the infectivity titer of phages. Moreover, the findings on maintaining the
stability of phages may be a starting point for future research to investigate whether Ti
plates even potentiate the lytic activity of phages. In that event, phage-based antimicrobial
coatings and Ti plates in biomedical implants would ensure a potent anti-infective approach
in therapeutic and preventive interventions for implant-associated infections. Rigorous
future investigations are vital to address the antibacterial interplay between phages and Ti
and assess whether they interact in an additive, synergistic, or antagonistic manner.
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