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ABSTRACT

This work examines several algorithms that together make up parts of an image

processing pipeline called Video Mosaicing and Summarization (VMZ). This pipeline

takes as input geospatial or biomedical videos and produces large stitched-together

frames (mosaics) of the video’s subject.

The content of these videos presents numerous challenges, such as poor lighting

and a rapidly changing scene. The algorithms of VMZ were chosen carefully to address

these challenges.

With the output of VMZ, numerous tasks can be done. Stabilized imagery allows

for easier object tracking, and the mosaics allow a quick understanding of the scene.

These use-cases with aerial imagery are even more valuable when considered from the

edge, where they can be applied as a drone is collecting the data. When executing

video analytics algorithms, one of the most important metrics for real-life use is

performance. All the accuracy in the world does not guarantee usefulness if the

algorithms cannot provide that accuracy in a timely and actionable manner.

Thus the goal of this work is to explore means and tools to implement video

analytics algorithms, particularly the ones that make up the VMZ pipeline, on GPU

devices–making them faster and more available for real-time use. This work presents

four algorithms that have been converted to make use of the GPU in the GStreamer

environment on NVIDIA GPUs. With GStreamer these algorithms are easily modular

and lend themselves well to experimentation and real-life use even in pipelines beyond

VMZ.

ix



Chapter 1

Introduction

1.1 Problem Statement

As edge devices become more powerful, there is an opportunity to take advantage of

that power. With the onboard GPUs available, current workflows can potentially be

moved from ground stations to the edge, to increase real-time capabilities with video

analytics algorithms. With aerial imagery there is a special need for this, thanks to

the large size of images and depth of algorithms needed to handle complex problems.

Aerial imagery can come with a variety of problems that need solving. To deal with

these problems we can deploy parallel devices that relieve the ground station to focus

on processing and taking action based on information received from the algorithms

run on these devices..

There is also a need for these real-time algorithms to be modular. This makes

it easier for edge-to-ground processing because the outputs are passed generically.

This also makes it easier for quick experimentation and real-time updates, because

modules can be swapped in and out or configured differently. GStreamer provides a

video-pipelining API for doing just this, and makes the GPU algorithms developed

1



much more useful.

The algorithms in this work were chosen for their ability to be parallelized, and

their usefulness in aerial image processing. Most of them can be found in the pipeline

for Video Summarization and Mosaicing, and many of the examples throughought

will make reference to this use case.

1.2 Challenges

When collecting aerial imagery, there are a variety of possible problems due to the

environment and medium. The lens can become dirty or a lack of careful preparation

can cause a loss of focus. Lighting effects can cause image artifacts and a lack of

light can reduce the amount of information the sensor can pick up, reducing image

quality. All of these conditions degrade the quality of the images themselves. Also,

the aerial platform will likely be shaking in the air. Without compensating for this,

this provides further challenge to assumptions that could otherwise be made about

stable video. We also have to account for the overall movement of the platform since

frames will likely be observing the same scene from multiple angles.

When the use case with aerial imagery involves object detection or tracking, there

is also movement relative to the ground that must be considered. The target can be

moving on its own, potentially growing larger or smaller relative to each frame. It can

also move into shadows or behind objects, causing difficulty with occlusion. When

using feature detection, some important features may not be visible at certain angles

of the camera or even movements of an object.

Aerial imagery presents a variety of challenges on its own, but so too does embed-

ded device GPU programming. The device has limited space and resources. Memory

leaks can significantly slow the system down. Many edge devices focus on low power

GPU and CPU architectures such as ARM, which come with occasional limitations
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as well. Also, there is an increased focus on using GPU programming due to a limited

capability of the CPU.

1.3 Literature Review

To the best of our knowledge, there is little existing work focused on using GStreamer

for aerial applications. However there is a large body of work focused on UAV based

on-board processing with low-power embedded systems. Vega et al. present a hierar-

chical method to split Video Summarization tasks on the device and on the ground to

minimize the impact of air-to-ground communication latency. They show that video

summarization solely on the device or on the ground underperforms their proposed

hierarchical split. They test on the VIRAT image dataset (VIRAT is explained more

in chapter 5.1) with a Jetson TK1, which achieves a maximum of 42 frames per sec-

ond, with an average closer to 10 [1]. This shows that porting modules of VMZ to

GStreamer will help improve performance, because they can easily be split across

devices if needed.

There is also a significant corpus of work dedicated to video summarization. An

early work by Brown and Lowe developed image panoramics using invariant SIFT

features and matching, as well as RANSAC for homography estimation. They also

use bundle adjustment as the sequence continues to reduce the accumulation of error,

and finally they apply blending algorithms for cleaner panoramics. This showed best

results on imagery of stationary scenes from a camera rotation point [2]. Goncalves

et al. developed an automatic algorithm for image-to-image registration [3]. Trinh

et al. developed a video summarization pipeline in 2012 that used feature detection

and matching to generate homographies [4]. Tao et al. developed a graph-based

greedy algorithm that took advantage of temporal continuity to group frames together

as smaller panoramics and then connect them with cross-group relationships. This
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was a fairly slow pipeline, taking 15 minutes for 48 images [5]. In 2015 Viguier

et al. developed a more robust basis for a pipeline that generates mini-mosaics as

an intermediate step to final video summarization between these mini-mosaics [6].

The reliance on fast, low-level image based algorithms ensured better performance

and runtime. This work was continued by Rumana Aktar, culminating in her 2022

dissertation on video summarization and mosaicing (VMZ) [7] that will be explored

more in the next section, 1.4.

Hadi et al. described a method using bundle adjustment that takes advantage

of available camera metadata to determine the homography transformation to the

ground [8]. Thus, traditional image matching means are avoided and the speed and

accuracy is high. Unfortunately, the availability of this metadata cannot be relied

upon. Also, the bundle adjustment requires significant preprocessing before appli-

cation. Still, Teters et al. built upon this method and demonstrated how quickly

embedded systems could accomplish image registration and warping [9], laying early

foundation for this work.

There is some literature on speeding up and improving the features detection and

matching used in this work. Lewis [10] proposed a method to speed NCC up using

the pre-computed integral histogram, which many standard implementations (includ-

ing the ones we use) take advantage of. Briechle and Hanebeck demonstrated NCC

for template matching that achieves less computation by approximating the numer-

ator [11]. In 2009, Yoo and Han introduced a significantly faster signal-processing

based method that takes advantage of logic operations to compute NCC without any

multiplies [12]. This method is more sensitive to noise, however. Gangodkar et al.,

parallelized the Fast NCC (which is based on pre-computed sum-tables to mitigate

the computational complexity of conventional NCC) on CUDA-based GPU[13]. NCC

is parallelized across FPGA’s by Wang and Wang, although the implementation is

hardware-specific [14]. They do show the benefit of parallelizing the computation,
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as our GPU implementation does. In work on a tracker by Jakob Santner et al.,

they showed good results by also using the OpenCV NCC for the static part of their

tracker, as it gives strong cues when the target reappears [15]. They do not analyze

or parallelize the NCC, however. Arunagiri and Jaloma demonstrated that for stereo

matching, a NCC based cost function is fastest and consumes less energy when im-

plemented using integers rather than floating point numbers on the GPU [16]. They

do not try other methods of parallelization or focus specifically on NCC, however.

Fouda and Ragab parallelized the NCC by using OpenMP [17] for shared-memory

systems, but did not explore the parallelization on GPUs, in contrast to our work.

The foundational ASIFT paper by Morel and Yu [18] is important for our work.

The simulated rotation and translation aids in matching aerial reference frames, as

discussed in chapter 3.3. Another work by Wang et al. explores an image registra-

tion algorithm that uses ASIFT to do an initial registration followed by adaptive

normalized cross-correlation to refine the ASIFT feature points. While this reduces

the RMSE of matching points, they find a significant (undisclosed) performance de-

crease due to the increased complexity of running NCC for each match, even for small

images. In [19] the authors propose a multi-stage matching methodology that uses

RANSAC to find geometric transformations with SIFT points. The idea is similar

to ASIFT, and the results show better RMSE performance. However, this method is

more complex, and the code is not available in open domain.

1.4 Video Mosaicing and Summarization

This work adapts the following algorithms to GPU: structure tensor feature detection,

normalized cross-correlation, affine-invariant SIFT, and georegistration. They are

robust methods appropriate for aerial imagery. Taken together, the algorithms make

up parts of the Video Mosaicing and Summarization (VMZ) pipeline as seen in Figure
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1.3. This graphic is taken from [7] where it is demonstrated how VMZ can take an

aerial video as input and produce a stitched-together composite representation of the

area. It uses the algorithms listed above as well as some additional logic to tie them

all together.

VMZ uses the concept of ”reference frames” to analyze the video sequence. At

the beginning, the first frame is marked as the first reference frame. This is used as

a base frame to build the first mini-mosaic. Subsequent frames are then compared

against this reference frame. Feature points on both the reference and the current

frame are matched to find the transformation required to warp the current frame to

the plane of the reference frame. Then, a blending algorithm is used to ensure the

mosaic results are uniform and without any of the original image boundaries. When

a tranformation warps an image outside the predefined bounds of a mini-mosaic, the

current frame is set as the next reference frame for further processing. This is now

part of the current mini-mosaic, and robust image matching is used to match reference

frames together to achieve transformations of the current frames with respect to the

original base frame. A different criteria will define when it is time to start generating

a new mini mosaic with a different base frame (reference frame 1).

Figure 1.2 depicts the reference frame system, and Figure 1.3 shows the entire

VMZ pipeline, highlighted our work with a purple box. It also shows that canvas

estimation is not intended to be fully functional as part of this work. We simply

write the mini-mosaics to a large black frame. Also, only warping is implemented,

not blending. Finally, it shows that this work still has further improvements to be

made for the Current-to-Reference calculations, as they still generate a certain amount

of error which results in erroneous mini-mosaics.

Previously, VMZ has been implemented in Matlab and Python. This work at-

tempts to recreate the components of VMZ with C++ to get closer to real-time

processing and enable GPU computing on embedded devices. To run on the target
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Figure 1.1: This figure shows the process of breaking a video into shots to be processed
into mini-mosaics. For each shot, there is a base frame and several reference frames
used for matching and warping.

device, our focus was the smaller subset of algorithms as shown in Figure 1.1 which

fit into the modules shown in Figure 1.3.

1.5 Contributions

• The first contribution of this work is to accomplish a method for writing GPU-

based modules of GStreamer that run on NVIDIA devices.

• A fast GPU-enabled implementation of the structure tensor algorithm that also

exposes homogeneous points of the image as features.

• Four modular programs that accomplish video processing algorithms (ST, NCC,

Georegistration, and ASIFT) while using NPP, OpenCV, and other libraries.

• Results with these algorithms showing how real-time GPU processing is possible

on embedded devices.
7



Figure 1.2: This shows each of the algorithms worked on for this thesis, and how
they can fit together to produce mosaics. This pipeline is called Video Mosaicing and
Summarization [7]

• Implements a GPU based integral histogram and weighted integral histogram

with state-of-the-art performance on embedded systems.

1.6 Organization

The rest of this thesis is organized as follows: Chapter 2 discusses GStreamer and

why it is the basis for the modules presented in this thesis. Chapter 3 delves into the

image feature and matching algorithms that were rebuilt for GPUs by this work, as

8



Figure 1.3: This shows the original diagram from the dissertation here [7] and where
this work recreates the functionality (circled in purple). Also circled in yellow are two
features with limited or basic functionality compared to the original work. Circled in
orange represents where there are errors, or improvement is needed.

well implementation details of each that allow them to be performant and modular.

Chapter 4 explains how the image feature detection and matching can be used to

accomplish image registration and warping, or transformations that map images to a

common plane. Chapter 5 enumerates experimental results of each module and of the

modules working together. It shows how the results of VMZ can be accomplished with

these basic building blocks. Chapter 6 details PyVMZ, a Python implementation of

VMZ that has been modified to work with the NCC module from this thesis, followed

by conclusions and future scope of our work in Chapter 7.
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Chapter 2

GStreamer and NVIDIA
DeepStream Frameworks

The implementations of the VMZ modules in this work are built in Deepstream,

which is a Gstreamer library built by NVIDIA. To better understand the modules,

this chapter explains Gstreamer and the Gstreamer library Deepstream.

2.1 GStreamer

GStreamer is a multi-media pipelining framework that allows the user to construct

modular programs that can be tied together to accomplish tasks by each acting on

data that is fed through modular elements in sequence. Typically this looks like

Figure 2.1. A source element provides the data, usually a data stream like a video.

A filter, or a number of filters, applies changes to the data. Then a sink element

performs some kind of output operation, like writing to an output GUI window or

writing to files.

The modularity has tremendous benefits for making experimentation and debug-

ging easier. For experimentation, elements can easily be moved around or param-
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Figure 2.1: A demonstration of the different kinds of GStreamer elements and how
they fit together. The source acts as input, the filters all act on the input, and the
sink acts as output.

eterized in different ways to get different effects. For debugging, the engineer can

separate out modules and verify the output with controlled input.

It supports a wide range of audio and video formats, and allows for the format to

change from input to output along a pipeline. But for the purposes of this work, we

are mostly concerned with video-in, video-out where the true output is saved to files

as part of one of the elements.

In GStreamer, programs that make up the above blocks of the diagram are called

elements, and they are the core of the framework. An application, or pipeline, consists

of many elements chained in sequence, sometimes even branching off and chained in

parallel. GStreamer is inherently multi-threaded, and elements in an application are

constantly negotiating over when to run.

An element has pads which represent an element’s input and output. There are

source (output) and sink (input) pads. An element is represented by what its pads are

capable of, and elements can only be linked up if the output pad capabilities match

with the input capabilities of the next one. Shortened to caps, GStreamer refers to

this process as caps negotiation.

To find an element’s caps, the command gst-inspect-1.0 can be used from the
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terminal. It will display documentation associated with an element, its input and

outputs caps, and also show the arguments of element.

With GStreamer, a programmer can accomplish a wide array of tasks with just

the base GStreamer elements. However, for more custom behavior, the programmer

can write their own elements as well. After writing an element, its details can be

queried on the command-line with gst-inspect-1.0.

In general, data flows through the application one element at a time, in one

direction. This is represented by buffers of data, and events.

In this work, the algorithms implemented are using a framework built on top

of GStreamer called DeepStream. DeepStream is built by NVIDIA, and is a great

example of the customizability and flexibility of GStreamer.

2.2 DeepStream

GStreamer is especially useful in this work’s use-case because of NVIDIA’s effort

putting together a set of elements collectively labeled DeepStream. These elements

are made specifically to run on certain NVIDIA GPUs and embedded devices in AI

pipelines. Some DeepStream elements have the capability to run AI models, but

that is not what I am seeking to use for my purposes. Here, I am interested in the

supporting DeepStream elements, that allow for reading and working with video on

embedded devices while efficiently transferring GPU buffers to other elements. With

this, I can make my own modular elements that work with GPU data.

This makes it possible to run optimizations on the VMZ pipeline that involve

the GPU in a much more efficient manner. I can also take advantage of another set

of NVIDIA APIs, the NVIDIA Performance Primitives (NPP) to ensure primitive

operations in these algorithms are being performed as efficiently as possible in these

elements, without ever needing to transfer image data off the GPU.
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Figure 2.2: The DeepStream elements generate GPU surface buffer and pass the
pointer along to be used by subsquent elements. The elements created for this work
are the the final box in the diagram, using that pointer to reference the GPU data
quickly and efficiently.

DeepStream elements work just like GStreamer elements because they are GStreamer

elements. The programmer can still use regular GStreamer elements to help with

saving output, setting up parallel streams, and anything else once processed by

DeepStream-specific elements.

2.2.1 DeepStream Foundational Code Layer

NVIDIA has set up the modules in such a way that they pass around pointers to an

optimized GPU surface that their modules are built to work with. Because we want

to work with them as regular GPU image buffers, we have to do some conversion like

so:

With this frame and its pitch, the image processing modules for real-time process-

ing can be written with standard means. These modules make use of custom GPU

kernels in combination with some NPP functions as well as OpenCV functions.
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Algorithm 1 How to load in the GPU buffer for CUDA

Input: inbuf, the standard GStreamer data buffer
gst buffer map (inbuf, &in map info, GST MAP READWRITE)
surface = reinterpret cast<NvBufSurface *>(in map info.data);
egl frame = cudaGraphicsResourceGetMappedEglFrame ( cudaGraphicsEGLReg-
isterImage ( surface ) ) // full details not shown
frame = static cast<Npp8u *>(egl frame.frame.pPitch[0].ptr);
Start processing with CUDA device pointer frame.

Figure 2.3: The architecture and progress of the Deepstream implementation of VMZ.

2.2.2 DeepStream Progress

Using Deepstream and the methods detailed above, we have built out the VMZ

pipeline as a number of modules that will be described in the following chapter.

Diagram 2.3 shows the status of all these modules. Some are not fully operational,

hence the entire pipeline does not generate the same results as VMZ yet.
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Chapter 3

Features for Image Matching

The base for VMZ, as well as many other pipelines and algorithms, is feature detection

and matching. These operations are foundational and incredibly important, and can

be very time consuming if not careful. Luckily they are typically highly parallelizable

and can be optimized on GPU. The following sections discuss ST, NCC, and ASIFT,

and their implementations for this work.

3.1 Structure Tensor

The structure tensor feature detector is a powerful feature detector that makes use

of the gradient values of an image. It provides information about corners and edges.

In this work we use the eigenvalues of the structure tensor response to achieve a

more precise descriptor of feature points. With this modification, it is excellent for

denoting the distinctiveness of an area. By extension, it can also be used to indicate

homogeneous areas (continuous areas with a low response).

Where Ix and Iy are the gradients in the horizontal and vertical directions of

structure tensor and are defined as
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J2D(x, y) = ∆I(∆I)T =

 I2x IxIy

IyIx I2y

 . (3.1)

Note that we also apply a Gaussian to smooth it:

J2D(x, y) = Gσ ∗∆I(∆I)T . (3.2)

For VMZ, we also use a custom variant of the ST that takes advantage of feature

blocks, which are specifically sized regions across the image within which we extract

features to ensure an even spread of features across the image. This helps matching

stability later on. It also allows us to identify regions of the image without strong fea-

ture blocks, and identify those as homogeneous regions, which are themselves points

that can be used for matching.

It is parallelizable because we are performing operations across the image in the

same way that are not dependent on other results. In this work, each atomic math-

ematical operation is done with NPP. The extraction of feature points and homoge-

neous points is parallelized on custom GPU kernels to efficiently sort through large

amounts of data in the image.

We use the eigenvalues of the ST to identify distinctive regions of the image. To

obtain λ1 and λ2 we do
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T = Ixx + Iyy

D = Ixx ∗ Iyy − I2xy

A = T/2

B =
√
T 2/4−D

λ1 = A+B

λ2 = A−B.

(3.3)

For this work, this was implemented with several NPP functions to perform each

of the operations listed in the Equation block 3.1. For example, to calculate the

determinant we did:

B1 = nppiMul 32f C1R(Ixx, Iyy)

B2 = nppiMul 32f C1R(Ixy, Ixy)

D = nppiSub 32f C1R(B1 −B2),

(3.4)

where B1 and B2 are intermediate buffers. To be efficient we used these buffers

repeatedly discarding values that aren’t needed.

With λ1 as the main signal used for our purposes, we then find the maxima of

the image, constrained by the feature blocks of size 40x40, limiting our responses

to one maxima per block. Responses below 0.5 are discarded from this, allowing

homogeneous blocks when there are 2x2 regions of feature blocks without any maxima.

The homogeneous point is recorded at the top left coordinate of the block.
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3.2 Normalized Cross-Correlation

Normalized cross-correlation (NCC) is a popular measure of similarity between two

images or image blocks. It is less sensitive to absolute intensity changes than other

methods, but is quite expensive to compute. Because of this, we typically try to limit

the area of an image being evaluated to find a good match. The NCC can be applied

as a sliding window across an area where the maximum of the response map is used

to represent the matching point.

(a) Ref. (b) Source (c) Cross-Correlation

(d) Template on source

Figure 3.1: Example of NCC computation in our mosaicing algorithm for a tem-
plate/reference block with source/current image: (a) template/reference block, (b)
source/current image, (c) cross-correlation between template block and source block,
and (d) template is matched and highlighted on source image.

The NCC between a template (or reference) image block T (B,x, t− k) from the

frame at time (t− k) and search (or current/source) image block I(B,x, t) from the

frame at time t, is defined as
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γ(B,∆xB, t) =∑
x∈B[T (B(x), t− k)− µT (B(x), t− k)][I(B(x + ∆xB), t)− µI(B(x + ∆xB), t)]√∑

x∈B[T (B(x), t− k)− µT (B(x), t− k)]2
∑

x∈B[I(B(x + ∆xB), t)− µI(B(x + ∆xB), t)]2

(3.5)

where µB(B, t−k) = 〈I(B,x, t−k)〉 and µB(B, t) = 〈I(B,x + ∆, t)〉 are the local

intensity means in the target and template image regions, respectively. An example

of NCC computation and template matching is presented in Figure 3.1.

We perform the NCC in a sliding window fashion on an area in order to determine

the best match for a given larger current block and smaller reference block. Because

of this sliding window computation, even when we narrow the current/source block

down to an area around detected features, we have a great number of multiplies and

adds. Element-wise multiplication [I(X + ∆X, t − k) − µt−k][I(X, t) − µt] results in

size(I) multiplies, and the sum is another size(I) adds. On the bottom, the square

roots are both size(I) multiplies, and the sums are another two. In totality, this is

6 ∗ size(I) operations per time we compute the NCC. A typical size of the reference

is 40x40, so 1600 pixels. To sweep over a current frame of size 142x142 pixels, we

would need to do 103 NCC operations with no out-of-frame padding. This results in

6 ∗ 1600 ∗ 103 = 988, 800 operations for one block. Our main pipeline is roughly 8000

frames with about 120 blocks per frame, amounting to a total of 1,067,904,000,000

operations (not to mention that 8000 frames have to be loaded, although these

are fairly small - 720x480 pixels). This can be optimized, with the use of integral

image, and the Fourier transform. These help in employing optimization techniques

which brings down the linear computation required for each of the sum operation to

almost constant time and allows for the algorithm to be much faster with far fewer

operations. The calculation of NCC is a serial portion of the program that Amdahl’s
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law says is the limit of the parallelization. Our goal with parallelism is to allow many

of these NCC operations to happen concurrently, or in the case of the current GPU

implementation, allow a single NCC calculation itself to use multiple threads.

Our GStreamer implementation of NCC receives ROI metadata on the GStreamer

metadata bus to indicate where it should perform the NCC. This is passed forward

from the structure tensor GStreamer element and indicates where feature points were

found with the region around them that should be searched for matches. After com-

puting the NCC with nppiCrossCorrValid Norm 8u32f C1R, it passes metadata for-

ward that represents the matching points, to be used by other elements like the

warping and georegistration element. Figure 3.2 shows some example debugging out-

put from our GStreamer element that shows the visualization of the NCC source,

template, and matching response map, as well as the chosen point for matching.

3.3 Affine Invariant SIFT

Scale-invariant feature transform (SIFT) is an important feature detection algorithm

in computer vision. In it, keypoints are obtained from a difference of Gaussians

method, and points are invariant to location, scale and rotation.

ASIFT is a robust application of SIFT along two additional camera axes and also

defines a matching framework using the extended set of features that result from the

algorithm. The algorithm accomplishes this by rotating and tilting the image with

a predetermined set of transformations to simulate movement along the camera’s

longitudinal and lateral axes. See figure 3.3 from [18] that illustrates this concept.

The predetermined ASIFT tilt (t) and rotation (φ) parameters are important to

optimal performance and efficiency in the algorithm. They determine what tilt and

rotation angle are applied to each image before SIFT matching is applied in each

iteration of the algorithm. Morel et al. determine this in [18] as ∆t =
√

2 and
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Figure 3.2: This shows NCC in action on some sample frames from the VMZ sequence.
The red square shows the entire region of the current frame that will be searched.
The Cyan square in the center shows the region that is cut out of the reference frame
to be compared to the current frame. The Blue square shows the valid area of NCC
response from applying NCC in a sliding window fashion (cyan square sliding across
the red square.) Finally, the yellow and pink squares represent the max and min of
the NCC response, respectively. The center pixel of the square region is where that
point is located.
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Figure 3.3: Figure credit to [18]. The general illustration, top, shows how two images
are compared against each other in a number of different configurations of rotation
and tilt. The bottom two figures show the sampling method for the parameters.
∆t =

√
2 and ∆φ = 72◦

t
, two experimentally obtained parameters determined in [18]

that decrease the sampling rate as the tilt and rotation become more extreme.

∆φ = 72◦

t
. These decrease the sampling rate geometrically as the tilt increases and

the simulation is becoming less like the original images.

SIFT covers 4 of 6 affine parameters by normalizing rotations and translations,

and simulating all zoom outs of the image [18]. ASIFT simulates the remaining two

parameters by simulating the camera optical axis directional change and applying

SIFT along those axes. [18] shows that this is mathematically affine invariant. Finally,

ASIFT avoids being prohibitively expensive by sampling along the affine space.

This sampling is done along a geometric series, sampling more frequently at higher
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latitude and longitude changes. This is because a stronger distortion will result in

more drastic image changes and more potential errors.

ASIFT samples 13.5 times the area and feature space as SIFT. While this results

in a computational increase, we limit the use of it only to match reference frames,

which occurs every 40 frames or so. Thus the performance impact is kept minimal.

The additional invariance that ASIFT provides is very powerful for matching two

images far apart in a video, because it is particularly robust to geometric changes.

This is why it is used in VMZ for matching reference frames.

To accomplish this on the Xavier, we have transported and converted existing

SIFT and ASIFT code to see similar results in near-real time. The SIFT features

and the image warps for ASIFT are all accomplished on the GPU, while some of the

driver code and image matching are still accomplished on the CPU.

3.4 Integral Image & Integral Histogram for Fast

NCC and Fast Feature Extraction

Many computer vision and image processing algorithms require finding the sum of a

rectangular area of the image. Evaluating the sum of an area takes O(N2) when im-

plemented naively. However, with the integral image this can be reduced to constant

time O(1).

The integral image is a preprocessing step where we precompute sum values for

each pixel in a buffer that is the same size as the original image. In this buffer, each

(x, y) position represents the sum of the pixels from (0, 0) to (x, y) in a rectangular

region. With these sums, simple arithmetic can achieve any desired sum.

The generation of the integral image, for an image of width M and height N, takes

O(MxN) but can be improved further with parallel processing.

The integral histogram is an extension of the integral image idea. Instead of
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storing the sum, a histogram is maintained for each pixel of the image to represent

the rectangular region from (0, 0) in to (x, y).

Image feature extraction uses the integral image to normalize images with the sum

when needed, like in the normalized cross-correlation as mentioned in Chapter 3.2.

The integral histogram makes collecting histogram-based features easier. These are

robust to translation and particularly invariant to orientation. Spatially weighting

the features also addresses a shortcoming of histogram-based features, which is that

they do not naturally account for spatial information.

We have developed a method for generating the integral image while utilizing

the GPU as well as for generating multi-scale spatially weighted integral histograms

in GPU. The weighted histogram problem has not been adressed with integral his-

tograms, to the best of our knowledge. The GPU implementation of both of the

non-weighted and weighted case are very important, because of the high computa-

tional cost of integral histograms in general.

To the best of our knowledge, our two integral histogram GPU algorithms are

extremely performant. They are faster than other parallel methods [20] [21].

To generate non-weighted integral histograms, we use parallel prefix-sums [20].

This is an established GPU programming pattern that can be understood as a way

to efficiently perform sums in parallel and bring results together afterwards. In our

previous work, we explored two versions of the scan-transpose-scan implementation

of generation parallel-prefix sums, and we found that our single-scan method was per-

forming slightly better by utilizing the GPU. The single-scan-transpose-scan method

is shown in 3.4.

To generate the weighted integral histogram, we decompose the Manhattan spatial

filter and fragment the region of interest into four parts.

Figure 3.4 shows how we decompose the Manhattan filter into four parts to com-

pute weighted integral histograms. Then Figure 3.5 shows how we can then compute
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Algorithm 2 The implementation of GIH-Single-STS from [20]

Input: Image I of size hw, number of bins b
Output: Integral histogram tensor IH of size b h w

1: Initialize IH
IH← 0
IH(I(w,h),w,h)← 1

2: for all b× h blocks in parallel do
3: //horizontal cumulative sums
4: Prescan(IH)
5: end for
6: //transpose the histogram tensor
IHT ← 3D Transpose(IH)

7: for all b× w blocks in parallel do
//vertical cumulative sums
Prescan(IHT )

8: end for

Figure 3.4: A representation of breaking an image’s Manhattan filter into a 4x4 grid.
The weights increase linearly as the pixels get closer to the center.
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Figure 3.5: The decomposed Manhattan filter applied to an roi from an image. The
weights are applied in parallel and then combined to form the full histogram for the
image.
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the integral histogram of any region of interest by also splitting it into four parts.

The rectilinear nature of the Manhattan spatial filter allows us to apply translation

from the center point to appropriately compensate the weighting of any computation

in generating the integral histogram of any ROI.
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Chapter 4

Image Registration and Warping

Aerial georegistration is important when working with aerial imagery. Aerial georeg-

istration normalizes all frames in a video to a common plane, such that the features

and geometry of the images align. Figure 4.1 demonstrates this concept, as well as

the risk of parallax. This allows for applications that involve understanding of a

large area, such as disaster response. In these cases, it could be very useful to have

real-time transformations, which this work accomplishes.

The homography needed to perform the georegistration can be obtained in a

number of ways. Most often, feature point matching is used. In this case we obtain

these from ASIFT feature matching or OpenCV feature matching done via RANSAC.

The matches are used to find the best homography to accomplish a transformation

that minimizes the distance between the matches after transformation.

Usually the first image in the sequence is chosen as a reference frame for the

warping, and subsequent frames are transformed to that plane.

Given that the image transform is applying the same function to each pixel, it is

easy to see how multiple pixel transforms can happen at the same time. Registration

is thus a parallelizable problem, and this is likely what the NPP warping function

nppiWarpPerspective 8u AC4R uses. Unfortunately, NVIDIA does not publish the
28



Figure 4.1: A scene and its ground plane π. It is observed by n aerial cameras. πHi

represents the homography transformation between the image plane of Ci and the
plane π. For an on-the-plane 3-D point such as X1, its homographic transformations
from the camera image planes onto π will all merge together and coincide to X1

(the green point). However, for an off-the-plane point such as X2, its homographic
transformations will be spread out (see the red points). These red points are spurious
and induced by the parallax. [8]

source code for these, so we treat the GPU programming side of this warping function

as a black box.

Our GStreamer element for georegistration receives points from some downstream

element that is doing image matching. It reads these points from the GStreamer

metadata buffer and then uses them for the OpenCV function findMatches. The

result of this is the homography that we use on the NPP function to warp the image,

nppiWarpPerspective 8u AC4R. We then write it to a larger file. If the resulting

warped image bounds moves too much or goes outside the bounds of the larger image

frame, we declare this frame a reference frame and send a metadata signal back to the

beginning of the pipeline to respond to changes. This is done by firing a click event

at an expected (x, y) coordinate in the frame, which is the only way to pass signals to

downstream elements in GStreamer. In our case the structure tensor element takes

this as a signal to generate new reference frame ST points.
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Chapter 5

Experimental Results

In this chapter, the results for each algorithm’s translation to GStreamer and GPU

programming will be shown. For more detailed code diagrams or a more in-depth

discussion of the remaining bugs in the DeepStream VMZ pipeline, see Appendix A

and B.

5.1 Data

The primary dataset for results was aerial imagery from flight 2, tape 1-6 of the Video

And Image Retrieval And Analysis Tool (Henceforth VIRAT) dataset [22]. It is an

aerial imagery dataset well suited to the expected use cases of the VMZ pipeline,

and it is the primary dataset for the main VMZ work [7], as well as many aerial

registration and summarization works [4]. It is approximately 5 minutes long at 30

frames per second, 9290 frames and the resolution is 720x480. It captures many of

the problems encountered with aerial imagery: Changing scene, changing structure,

camera movement, occasional lens effects.

Examples of frames from VIRAT dataset and mosaics are presented in Figure 5.1
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Figure 5.1: A few random frames from VIRAT sequence, 09152008flight2tape1 6.
The sequence contains 9290 frames and each frame is of dimension 720x480.

and Figure 5.2, respectively.

5.2 Hardware

All results for the GStreamer modules were run on an NVIDIA Jetson Xavier AGX.

This device is very small with very low power consumption at 40W. For compari-

son, standard desktop power consumption typically ranges from 250W-1000W. Its

uses a GPU running NVIDIA Volta architecture. It contains 512 NVIDIA CUDA

Cores across 64 tensor cores. It is a powerful embedded device for edge computing

and suits the needs of various aerial image process algorithms, especially when GPU

programming can be used like with the algorithms chosen.

5.3 Structure Tensor Experimental Results

Figure 5.3 shows the structure tensor response obtained from applying the operator

as described in Chapter 3.1.

Figure 5.4 shows an example of where from that response we pull the feature

maxima. The points are well spread out because of our feature block method. In areas

where there were no feature points within a certain region, we show the homogeneous

point in green.
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Figure 5.2: Example mosaics from VIRAT sequence, 09152008flight2tape1 6. Number
of frames in each mosaic is 82 (top) and 248 (bottom).
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Figure 5.3: The structure tensor response, visualized in grayscale. The images are
shifted such that there is no black border on the top or the left.
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Figure 5.4: Boxes drawn around ST points for different frames of the sequence. Green
squares represent homogeneous points
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On the Jetson Xavier with VIRAT images sized 720x480, this module runs on

average in 34.63 milliseconds. This corresponds to 28.9 frames-per-second operation.

This is much faster than other operations in the pipeline like NCC and ASIFT.

Structure tensor is a straightforward mathematical operation and can be done very

fast with the GPU operations being used.

5.4 NCC Experimental Results

While NCC was reimplemented in GStreamer as part of this work, as mentioned

in Chapter 3.2, this work used nppiCrossCorrValid Norm 8u32f C1R. This function

was evaluated separately with experiments run with the help of Ahmad et al. [23]

For timing analysis of our methods with respect to the original MATLAB imple-

mentation, we selected three main factors. As stated previously, our dataset consists

of 8131 image files, which contains a total of 933,538 blocks. The factors we have

chosen for our timing analysis are, Total−Time, the time required to calculate

NCC matching for all of the 8131 images, Time−Per−Block, the average time

required to calculate NCC matching over a single block, and Time−Per− Frame,

the average time required to calculate NCC matching over a source image, searching

for the template image in it. It can also be described as the average time required to

calculate all of the blocks in a single image file.

For running our CPU based multi-threaded implementations, we have used a

Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz server with 14 cores with

Hyper-Threading, so 28 threads, and 252 GB of RAM.

To experiment on the GPU, we tested with two different GPUs with varying

amounts of streaming multiprocessors (SMs) and CUDA Cores. First was a GeForce

GTX-1080 GPU. This has 20 SMs containing a total of 2560 CUDA Cores. Second

was a Tesla V100, with 5120 CUDA Cores across 80 SMs. Because of increased
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interest in performing computation on the edge, we also tested on a NVIDIA Jetson

Xavier AGX.

We also tried our muti-threaded code on the Xavier. It contains 8 CPU cores in

a Carmel ARM v9.2 CPU which has a memory bandwidth of 137 GB/s.

For our two separate multi-threaded CPU implementation, in the Table 5.1, we

have only shown the results for the implementation that used the C++ standard

threading library. As we will also show, the timing differences between the two

implementations, C++ standard threads and OpenMP, tends to be minimal as

the number of threads increases. We have also tested on threads numbering from 1

to 27, but for the timing comparison, we have selected to show only the results of

four instances, and included the timing results when running on a single thread, and

when running on 7, 14 and 27 threads concurrently. From the selected set of timing

for different number of threads, the actual timing trend for all of these threads can

be easily seen. The top row of Figure 5.5 describes the timing comparison for all of

the thread configurations.

It is evident from Table 5.1 that different threading libraries, like C++ standard

threads and OpenMP, for multi-threaded implementation, performs very similar

and has little effect on the total time for running NCC computations as the num-

ber of threads increases. From here on, we will only focus on the multi-threaded

implementation with the C++ standard threads library.

Table 5.1 shows that switching to OpenCV, from MATLAB, gives some speedup

straightaway, with no parallelism added. Further, it shows that we have a speedup as

we increase the number of threads, but the speed increase is not linear as the thread

count increases. Finally, it shows that there is a speedup when using the GPU, but

that speedup is more conservative than expected. This is because the NPP API does

not take advantage of the full breadth of parallelism available, since it only parallelizes

the given single NCC operation. The V100 shows a much better improvement, likely
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Timing comparison between the different methods
NCC Computation Total-Time Time-Per-Block Time-Per-Frame Speed-Up1

Method (s) (ms) (ms)

MATLAB 12374.7 14.1 1522.0 1.0
C++ CPU - Threads = 1 3168.9 3.4 423.8 3.8
OpenMP - Threads = 1 2791.3 3.0 343.3 4.4

C++ CPU - Threads = 7 822.3 0.9 99.7 15.0
OpenMP - Threads = 7 810.7 0.9 99.7 15.3

C++ CPU - Threads = 14 497.1 0.5 60.4 24.9
OpenMP - Threads = 14 489.5 0.5 60.2 25.4

C++ CPU - Threads = 27 313.7 0.3 39.2 39.5
OpenMP - Threads = 27 319.2 0.3 39.3 38.8

Xavier CPU - Threads = 8 446.4 0.5 54.9 27.7
Xavier GPU 1167.0 1.3 143.5 10.6

GTX-1080 GPU 854.4 0.9 103.6 14.5
V-100 GPU 152.5 0.2 18.7 81.1

Table 5.1: This compares the performance at a high level, then at increasingly gran-
ular levels. Time-Per-Block for multi-threaded CPU implementation is the observed
time calculated from the total time and number of blocks. *Speed-up is shown with
respect to total time, but all columns show about the same results. The blue color
uses OpenCV, the green color shows results for NPP to do GPU computation. Per-
formance statistics reflect a real application workload with variable block sizes (ma-
jority of search blocks are 142x142), template block sizes (majority of search blocks
are 40x40), an average of 120 blocks per frame, and 8132 frames.

due to better hardware specification.

We computed the difference of the NCC results from the original MATLAB imple-

mentation with our multi-threaded CPU, and the GPU implementations using NPP.

The correlation matrix result for the GPU implementation using NPP is very differ-

ent from what we get from MATLAB and the multi-threaded CPU implementation

using OpenCV, while the MATLAB result and the result from our multi-threaded

implementation using OpenCV is quite similar. Below, we measured the peak points

in the NCC correlation matrix from MATLAB and OpenCV, which is essentially the

best point where the reference block matches in the search window. An exact match is

defined where (X-Peak, Y-Peak) is exactly same in MATLAB and OpenCV, and they

1Speed-up with respect to MATLAB implementation
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Figure 5.5: The timing comparison between all of our methods. The first column of
plots are for the factor Total-Time (for all frames), second column of plots are for
Time-Per-Block, and the third ones are for Time-Per-Frame. All of the plots in the
first row are in Log scale for the Y (time) axis for including the MATLAB timing
while keeping all of the other method timings distinguishable. The second row of
plots excludes the MATLAB results, and are in linear scale. In each of the plot, GPU
results are shown under a single X-axis value, as well as the MATLAB result for the
first row of plots, and the rest of the X-axis values, from 1 to 27, denote the number
of threads used for the CPU implementation.
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have an Euclidean distance of zero. In our tests, we have seen that around 94.9%

of blocks per frame has an exact match or zero Euclidean distance. Including closely

matching block-pairs with less than or equal to 4 pixels euclidean distance increases

the percentage agreement between the MATLAB and multi-threaded OpenCV NCC

peak results. In our experiment, we got 99.37% of blocks with a close match or

less than or equal to 4 pixel radius Euclidean distance. Thus, only 0.63% of blocks

have error greater than 4 pixels. In our experiment, we pick blocks (structure tensor

(ST) feature points) which are far from image edges. The distance between ST points

should satisfy the following condition, where edge distanceST refers to the minimum

distance of a ST point from image edge, and SWd and tempd stands for size of search

block and template block, respectively:

edge distanceST ≥
SWd

2
+ tempd. (5.1)

For a comparison of the OpenCV and MATLAB results to the significantly non-

matching results from NPP, it is best seen in Figure 5.7. Here it is clear that for

these example images the correlation responses are quite different. NPP does not

find values that are nearly as high except for where the peak is, which could actually

be considered a more ideal and less noisy NCC map. Still, because our implementation

for mosaicing is based on the accuracy of MATLAB, we evaluate where the differences

in the three algorithms come from.

We have thoroughly checked the correlation matrix for all of our implementations

and libraries used by NCC methods. And while OpenCV is open-source, and their

implementation details can be seen directly from their code base, both MATLAB

and NPP’s NCC implementation details cannot be checked due to their closed-source

nature. We have summarized that the difference in NCC correlation matrix and the

peaks might be caused for multiple reasons.

1. For OpenCV’s Cross-Correlation operation, using its matchTemplate func-
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Figure 5.6: Error histogram for comparing (X-Peak, Y-Peak)-location of matched
point in MATLAB and our Multi-Threaded NCC implementation using OpenCV. X-
axis represents pixel error between same block peak in MATLAB and OpenCV where
y-axis stands for number of blocks with that error. From this graph, we can see that
around 94.9% of blocks have an exact match, i.e., zero error between them. As the
error increases, number of blocks drops significantly. For example, only 3.5%, 0.7%,
0.1% and 0.2% of blocks have pixel error of 1, 2, 3 and 4 respectively. Only 0.63% of
blocks have error greater than 4 pixels.
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tion, had 6 different methods for calculating the correlation matrix. We have se-

lected the method ′CV TM CCOEFF NORMED′, which is one of the normalized

methods available, and the equation for this method is given in the documentation.

Internally, this method uses an integral-image and Fourier-transformation for opti-

mization. But for MATLAB’s and NPP’s NCC operation, using normxcorr2 and

nppiCrossCorrValid NormLevel 32f C1R, respectively, don’t give any implementa-

tion details, and work as a black box, so we could not be sure of the exact method,

implementation and optimization techniques being used in its case.

2. The peak finding algorithm used for MATLAB after calculating the correlation

matrix was selecting the peak in a column-wise order, where in OpenCV/C++ it was

finding the peak in the correlation matrix in a row-wise order. NPP chooses the tied

max at the top left of the image. This only creates a mismatch if there are multiple

peaks in the correlation matrix with the same maximum value.

3. Checking the correlation matrix from both OpenCV/C++ and MATLAB’s

NCC computation, it was evident that the size of the correlation matrix for MAT-

LAB is larger in both dimension than the correlation matrix for OpenCV. We found

out that this change initially occurs in the Search-Window, where the normxcorr2

function of MATLAB automatically applies a padding so that it can also calculate

the correlation in the border regions of the search-window. And this padding in

the search-window causes the computed correlation matrix to be larger in size as

well. The matchTemplate function of OpenCV doesn’t apply any kind of padding

while performing the NCC calculation. The dimensions for correlation-matrix can be

computed from the search-window and template sizes, where CMd is the Correlation-

Matrix size, SWd is the Search-Window size, and Tempd is the template block size

(assuming square blocks),

CMd = (SWd − Tempd) + 1. (5.2)
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This Correlation-Matrix size computation is same for both MATLAB and OpenCV.

But the Search-Window (SW) size for MATLAB differs from OpenCV as the addi-

tional padding in applied on it. For MATLAB, the Search-Window size increases

by following this equation, where SWPd is the Search-Window size with the added

padding,

SWPd = SWd + (2 ∗ (Tempd − 1)). (5.3)

It can be seen from Figure 5.7 that the correlation-matrix for MATLAB is larger

than the other two methods and contains border effects, which is the reason for the

zero-padding added to the Search-Window. There are different variations of the NPP

function we used that use“Full” mode, which allow us control over when 0 padding

is used–thus it is not an issue for NPP.

4. As for the difference between OpenCV/MATLAB and the NPP API used, we

have found a few major contributing factors. First, precision and some normalization

seem to be responsible for reducing the size and number of peaks, this is evident from

the correlation matrices and corresponding 3D response maps shown in Figure 5.7.

Because the implementation is hidden from us, we cannot be sure, but it seems to

be a regional normalization. We found this to be proven by NCC performed with

templates taken from the image itself. The peaks were never exactly one, likely

because they were averaged with the scores around them.

5. The more significant difference is a lack of instability handling in NPP. Because

the NCC algorithm divides by the variance, there can be issues when a homogeneous

region is taken as the source or template, this is illustrated in Figure 5.8 and Figure

5.9. Divide by zero or divide by very small amounts causes overflow or other related

problems in the output. This can be handled by discarding bad values or by regular-

izing, adding a constant to the numerator and denominator. OpenCV and MATLAB
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(a) Test source image and template

(b) MATLAB (c) OpenCV-C++ (d) NPP (GPU)

Figure 5.7: This figure illustrates the correlation-matrix and peak comparison between
all of our methods. The first row contains the source image and the template, which
is to be searched within the source image. The next rows show the correlation matrix
and template matched to the source image for each method. The MATLAB result in
Row 2 includes the padding which is the default behavior.
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(a) Template marked in Source (b) Template

(c) OpenCV Correlation Matrix
(SW Padded)

(d) NPP Correlation Matrix
(SW Padded)

(e) Difference (SW padded)

(f) OpenCV Correlation Matrix (g) NPP Correlation Matrix (h) Difference (no SW padded)

Figure 5.8: For demonstrating the differences in the results for NPP from both MAT-
LAB and Multi-Threaded CPU implementation using OpenCV, we have generated
a random image as a source image of dimension (300x240), within which we will
search our template-patch, and selected a patch from it as the template of dimension
(22x23). For computing the difference map, we have taken the correlation matrix
from both OpenCV and NPP, and for the first image we can see that most of the
differences are in the zero padded region, which is homogeneous, and in the rest of the
image where variance is high, the difference is very small. This is also apparent from
the second difference map, as there is no homogeneous region due to no padding, all
of the differences are in the 10−3 region.
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(a) Template marked in Source (b) Template

(c) OpenCV Correlation Matrix
(SW Padded)

(d) NPP Correlation Matrix
(SW Padded)

(e) Difference (SW padded)

(f) OpenCV Correlation Matrix (g) NPP Correlation Matrix (h) Difference (no SW padded)

Figure 5.9: We have also generated a random image with a flat patch (homogeneous)
inside it as a source image of dimension (300x240), within which we will search our
template-patch, and selected a patch from it as the template of dimension (22x23).
Similar to the previous figure 5.8, for the difference map, we have taken the corre-
lation matrix from both OpenCV and NPP, and for the first image we can see the
differences are in the zero padded region as well as in the patch with flat region, which
is homogeneous, and in the rest of the image where variance is high, the difference is
very small. This is also apparent from the second difference map, as the only homo-
geneous region there is the flat patch and the difference is high in that region, and
for all other region, the differences are in the 10−3 region.
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implementations handle these cases, while NPP does not. This makes it unreliable,

as in natural imagery we will use many homogeneous regions and the issue cannot be

ignored. Luckily, the OpenCV GPU matchTemplate algorithm handles these cases,

so we still have a GPU option.

From the speedup results, we can conclude that parallelization results in a sig-

nificant speed improvement for NCC. Parallelizing across all the template matching

needed for a pair of frames, as in the CPU multi-threaded implementation, brought

us up to a 40x improvement, although this requires a large number of threads. The

performance increase does not scale linearly with threads, as it would seem some

overhead prevents this.

Parallelizing the NCC operation itself, as in the GPU implementation, also saw

great improvements. Per NCC operation, we saw a 10-80x improvement depending on

the hardware. It is much harder to draw any conclusions about what this improvement

scales with, as we did not have enough GPUs of similar hardware to test with.

We also saw good performance on the Jetson Xavier AGX, where there is potential

to pre-calculate NCC scores for mosaicing on the edge. Although note that generally

higher performance might be desired when compared to multi-threaded methods. It is

desirable to develop a GPU implementation that parallelizes across NCC operations,

rather than within operations as in NPP. This might be more efficient on the Xavier.

Furthermore, the data in Figure 5.6 shows that our NCC implementations are not

pixel perfect identical, and there are many possible reasons for that which are still

being investigated, as evident from the above discussion.
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5.5 ASIFT Experimental results

5.5.1 ASIFT code issues

ASIFT still needs to be further debugged as there is a crash when using the library

SiftGPU on the Xavier. This could be due to a number of potential issues. To do the

transformation, the GPU image data is being rotated first with nppiRotate 8u AC4R.

It is then going through a simulated tilt with a simple vertical shrink affine warp

performed with nppiWarpAffine 8u AC4R. The library SiftGPU [24] is then being

used to calculate Sift points on the GPU image. It is somewhere in here that an

“illegal memory access” error is encountered. Because it is being treated as an API,

or a black box, the inputs should be examined carefully. See Appendix figure A.4

and section B.3 for more detail on the code architecture and possible solutions. The

image step has been validated to still be the step of the GPU buffer, while the width

and height are the new size of the ROI given the two transforms applied. These

should be correct, but we also experimented with other inputs with no result. It is

also possible that obscure properties of the GPU buffer obtained from DeepStream

are causing memory errors when they would otherwise be unexpected–in which case

a domain expert will be needed to find where the problem lies. Finally, the SiftGPU

library we use is actually a custom edit that allows the GPU buffer to be passed in

rather than generated by the library when given a filename. Thus it is difficult to be

certain if the GPU buffer we pass in violates certain assumptions of the library. More

exploration of the library’s code is required.

5.5.2 Partial ASIFT Results

With only rotations in ASIFT working, we tested with images far apart in the VIRAT

sequence and were still able to obtain quality matches. In Figure 5.10 it is shown how
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Figure 5.10: Frame 1 and Frame 17 of the VIRAT sequence, matched with ASIFT.
It is clear how ASIFT accounts for the camera’s movement.

the algorithm handles aerial imagery far apart in a sequence, like reference frames in

VMZ.

5.6 Integral Image Experimental results

As mentioned in chapter 3.4, we have developed two methods to compute the Inte-

gral histogram. While the prescan-transpose-scan method generates the non-weighted

integral histogram and the tiling-diagonal-scan solution generates the weighted his-

togram, they are still comparable methods. The spatial decomposition of the weighted

histogram method still works in the GPU to generate a standard histogram.
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These methods can both be used with images of different sizes and by choosing

different bin sizes, so we use these as the main two criteria to compare these methods.

Figure 5.11 shows the result of these experiments. In general, the computation

time is very fast, proving to be a very useful application on the Jetson Xavier.

It is clear that the second proposed method, the tiling solution that also generates

a weighted integral histogram, performs better in all cases. It also scales better as

image size and bin size increases. This is because the scan solution is less parallelizable

as image size increases, due to having to parallelize longer rows and columns. The

filtering method employed in the spatial computation is more paralleizable with image

size because the region computations work well with GPU paradigms.

5.7 Georegistration Experimental Results

5.7.1 Georegistration Issues

The georegistration module is responsible for much of the driver code because driver

logic determines when warping is done. It is in this driver logic, and likely some-

where in one of the implementations before the georegistration module, that a bug

appears to be present. As shown in 5.12, the final warps quickly drift and have faulty

transformations far earlier than they should. This could be because of errors in the

structure tensor points, or in the NCC matches. That being said, nothing appears

to be wrong with the base functionality of this module itself. When fed groundtruth

homographies it gives the same output at standard VMZ, as shown in figure 5.13.

5.7.2 Georegistration Results

We used the Georegistration module in conjunction with the other, incomplete mod-

ules, to generate an attempt at registrations. Figure 5.12 shows those results. Com-
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Figure 5.11: Comparing the performance of the two integral histogram methods. In
the first case where bin size is varied, the images are 512x512. In the second, bin size
is kept constant at 16. The tiling diagonal scan solution (using the weighted integral
histogram) consistently performs better, and scales better as image size and bin size
increase. All tests were run on the NVIDIA Jetson Xavier
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pare this to figure 5.13 which were generated with the groundtruth homographies

from the original VMZ code. These figures show there are errors in the other VMZ

modules, but that the georegistration module works well when fed the correct input.

For a more detailed discussion on the possible causes of this problem, see the code

diagrams and discussion in Appendix A and B.

These georegistration results were generated with the module taking an average

of 27.64 milliseconds to run on the Xavier with the VIRAT 720x480 images. This is

about 36.2 frames-per-second. It is quite fast because the main operation is the GPU-

enabled nppiWarpPerspective 8u AC4R and there is not much extra complexity.
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Figure 5.12: The warped results of the VMZ pipeline made up of the GStreamer
elements presented here. The final element does georegistration, resulting in these
images drawn to a large canvas. The top left image is frame 9, followed by 10-14 left-
to-right and top-to-bottom. The first 11 frames of the sequence are warped reasonably
well, maintaning a good representation of the true plane of the scene. At frame 12,
the warps start to show errors and only get worse as the sequence goes on.
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Figure 5.13: Here are the results of the GStreamer element when fed the groundtruth
homography values for each frame. Because the warps look identical the true VMZ
results, we at least know that the warping itself is not broken in this module. Rather,
the results in figure 5.12 must either be a result of a previous module having a bug,
or the VMZ logic in this module having an error.
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Chapter 6

PyVMZ

6.1 PyVMZ

We have developed a Python codebase that runs VMZ with multi-threaded CPU

modules, called PyVMZ. To increase the performance of this with powerful GPUs,

we developed a version that uses the NPP GPU function we explored further in

Chapters 3.2 and 5.4. To illustrate the modules of PyVMZ and their implementation

details, see Figure 6.1. While mostly in Python, some of the depedencies are written

in C++ for performance and access to certain APIs.

PyVMZ reproduces output of the original Matlab example. See Figure 6.2 for an

example of this on the first shot of the VIRAT dataset, which consists of frames 1

through 247.

Table 6.1 shows the results of running this on a server cluster and on the Jetson

Xavier. With capable GPUs, it approximately doubled the speed of VMZ. With

the Jetson Xavier, the speed was slower but not significantly so. The nature of the

code integration made certain code optimization impossible–the image data had to

be copied onto the GPU for each NCC operation. This takes a large percent of the
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Figure 6.1: This diagram shows the code components of PyVMZ, starting from
main.py, where the driver logic calls every other function referenced. In the case
of NCC the two options can be seen, the multithreaded version (mtCPU) and the
GPU version. In the bottom right are the GPU modules that have not yet been
integrated into this pipeline.

time, so if a tighter integration were possible, with fewer GPU copies, VMZ would be

even faster.

Each implementation is described as the following:

• Matlab VMZ (Optimized): The final version of VMZ in Matlab with mex-

file integration for the C++ NCC & ASIFT code. Thus, it uses the same NCC

implementation at PyVMZ (Multithreaded), below. Run with 20 threads for

NCC & ASIFT.

• PyVMZ (Multithreaded): Original PyVMZ, previously the fastest imple-

mentation of VMZ on the VIRAT benchmark dataset. Written in PyVMZ with

C++, multithreaded ASIFT and NCC. Run with 20 threads for NCC & ASIFT.

• PyVMZ NCC GPU: The contribution of this thesis, a version of PyVMZ

using the GPU-enabled NCC from the Gstreamer implementation. This was

run on the V100 GPU for best performance. Run with 20 threads for ASIFT.
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Figure 6.2: The top image shows the original minimosaic generated from the first
shot of the VIRAT data sequence. The bottom image shows PyVMZ output.
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VMZ & PyVMZ Timing Results
Version Overall Time FPS Speed-Up

(h:mm:ss)

Matlab VMZ (Optimized) 1:19:06 1.96 1.0
PyVMZ (Multithreaded) 0:51:36 3.01 1.53

PyVMZ NCC GPU 00:36.3 4.20 2.14
PyVMZ (Multithreaded) Xavier 1:40:57 1.53 0.78

PyVMZ NCC GPU Xavier 1:45:19 1.47 0.75

Table 6.1: Preexisting VMZ Matlab and PyVMZ code compared to new timings with
a GPU module for NCC, as well as timings on the Xavier. The GPU module improves
performance when run on a strong GPU, and maintained similar performance when
run on the Xavier. This timing was done on the VIRAT dataset.

• PyVMZ (Multithreaded) Xavier: The same as PyVMZ (Multithreaded),

run on the Jetson Xavier as an embedded device comparison point. Run with

20 threads for NCC & ASIFT.

• PyVMZ NCC GPU Xavier: The same as PyVMZ NCC GPU, run on the

Jetson Xavier as an embedded device comparison point. Run with 20 threads

for ASIFT.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The contributions of this work are as follows:

We have made significant progress towards porting the VMZ algorithm to em-

bedded NVIDIA devices. Individually, we can perform the major steps of the VMZ

algorithm. Performance of these modules proves to be near-real-time. We have iden-

tified the modules with errors and possible causes for next steps to be taken with

the DeepStream modules. We have implemented parts of the underlying VMZ driver

logic, identified why that is difficult in a streaming environment, and which parts

need improvement.

It was shown that GStreamer is a powerful tool for image processing applications

on embedded devices, although the programming model requires a significant change

in how one thinks about driver and main logic of a program, especially when trying

to maintain modularity.

We also developed an efficient GPU-based weighted Integral histogram method

that can be used for matching problems.
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We made significant contributions to PyVMZ, a VMZ implementation in Python.

Our implementation using a GPU implementation of NCC achieves the fastest exe-

cution time seen by VMZ on the full VIRAT dataset.

7.2 Future Work

Here are future tasks to broaden and continue the impact of this work.

Our DeepStream implementation of VMZ needs changes to be complete, and

there is plenty of room for improvement. The ASIFT algorithm needs simulated

tilts on GPU to be fully completed. This involves solving the code out-of-memory

access issue present in either our DeepStream implementation or the library we used

for the SIFT feature detector. The driver logic that implements the Current-to-

Reference calculations needs further evaluation to find where in the multiple stages of

the pipeline there are problems preventing the code from generating results similar to

VMZ. If we could abstract the driver logic out of the modules somehow, it would likely

be much easier to debug. Further stages of VMZ, such as the pre-processing steps

and the blending steps, could also be implemented on the Xavier for the GStreamer

pipeline. It would also be ideal to decouple the DeepStream GPU-buffer access logic

from the modules. If we did this, the pipeline could work with other Gstreamer GPU

pipelines, not just pipelines with Deepstream managing the input and output.

With more modularity, we could also try other kinds of matching, like deep learn-

ing matching. This could provide more generalizability, and run very well on the

hardware of the Jetson Xavier which has been optimized for machine learning.

Testing on an actual drone would prove very valuable, and we could even try to

determine the optimal split between modules run on-device and on the ground station

to quickly produce desired results.

More modules of PyVMZ could be integrated with GPU code. If we could find a
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way to share GPU buffers and do less reallocation of frames, the NCC module and

others could be significantly faster. Improving PyVMZ has the benefit of being able

to run the code in more places and being easier for programmers to edit.

Of course, one of the major goals of VMZ is the generation of a meta-mosaic, and

that is still future work. This will likely involve matching between the mini-mosaics,

which could involve a deep learning-enabled method, or a robust hand-crafted feature

approach similar to ASIFT used here.
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Appendix A

Deepstream VMZ Code Diagrams

A.1 Overall Architecture and Logic

Diagram A.1 demonstrates the 4 VMZ Deepstream modules, how they work together,

and the major logical components and decision trees for each.

A.2 Individual Deepstream Module Code Diagrams

Figures A.2, A.3, A.4, and A.5 show how each Individual module (the dark blue

blocks of figure A.1) operates at a more detailed level. It also shows where some of

the bugs still exist.
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Figure A.1: This graph shows how the modules work together to perform VMZ, with
their logical and conditional components. This shows where the current-to-reference
logic is being done, which is still estimating the erroneous homography values.

Figure A.2: This diagram represents the logical components of the structure tensor
DeepStream element. It is a standard impplementation, using multiple sigma values
for the Gaussian to ensure a good response.
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Figure A.3: This diagram shows the logical components of the NCC DeepStream
element.

Figure A.4: This diagram shows how the ASIFT code module operates. Recall that
ASIFT is incomplete because of an error when performing tilts. Here you can see the
operations that lead up to that, and where calling the SiftGPU returns this error.
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Figure A.5: This diagram shows the logic of the Georegistration DeepStream element.
This shows where the homography is generated from matches retreived from other
elements in the pipeline. The accuracy of this homography is dependent on the input
into this element, but here is where to look for the homography errors discussed in
5.7.
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Appendix B

Deepstream VMZ Code Problems

B.1 Code Profiling

Gstreamer and NVIDIA code profiling interaction is not well documented. NVIDIA’s

code profiling tool ‘nvprof’ does not work with the Gstreamer elements as far as we

could tell. As such, we were unable to determine exactly what was taking the bulk of

the time for elements that could have their timing improved, like the structure tensor

element. One reason for the modules slower speed could be the surrounding Gstreamer

setup and teardown logic, especially because of the steps involved in extracting the

GPU buffer from Deepstream every time. Someone trying to speed up these modules

might first looking at isolating the modules from Deepstream so that the setup and

teardown only happens once at the beginning and end of the pipeline, rather than

during every module.
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B.2 Homography Estimation Errors

For the broken Current-to-Reference homography estimation, future debugging should

focus on the inputs to the georegistration module. This would be the structure tensor

module and the normalized cross correlation module. NCC has been tested exten-

sively and validated against the VMZ version of NCC, so is unlikely to be giving faulty

matches. It is likely then a fault in the structure tensor logic. While the output of

the ST module appears correct, an in-depth analysis could be made, in a way that

compares the ST detections and homogonenous regions of VMZ to Deepstream VMZ.

The difficulty here is that the NPP functions will likely give slight variations when

compared to VMZ CPU methods, so results will need to be within a margin of error

(similar to the evaluation done on NCC).

Also worth noting for future corrections to the pipeline is the exact frame where

errors begin to show. Figure 5.12 indicates that it is frame 12 where homographies

begin to deviate in a significantly erroneous way. When examining the homography

values for frame 10-12, one will notice a significant change for H[2][1]: -57.9377, -

40.9728, 45.6832. There is a flip in the sign. It is worth evaluating ST and NCC on

frame 12 to confirm there is nothing significantly different about frames 12 and beyond

that is causing an edge case. The interesting thing is that this is not accumulating

error, it is deterministic and is always happening this way when comparing frames 12

and beyond with frame 1 as the reference frame.

Another possible fix to the ST module involves using another ST library, men-

tioned in the next section.

B.3 ASIFT Tilt

The ASIFT memory access problem, at first glance, seems like it should be easy to

determine how to fix. However, all standard debugging for this kind of problem has
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not solved the issue. As shown in A.4, the error is happening in the SiftGPU library

after the Affine function is applied to generate a tilt. The NPP rotate function is

working fine here, it is only the tilt causing the issue. The output has been written

to a file (although this and the image boundary being used could be verified again),

and the affine shift is being applied correctly. When combined with the rotate API, it

is also appearing correctly. The input to SiftGPU includes the image stride (number

of bytes in a row of the image), and those have been validated as well. From the

outside, it is unclear what is responsible for the error in the SiftGPU library. Future

debugging will need to follow the path of the GPU data in the SiftGPU library. It is

worth nothing we have made minor changes to SiftGPU to allow direct GPU pointer

input, where it previously required CPU data or a filename.

It is also worth noting that ASIFT was the most difficult module to convert and

has a large surface for possible errors. ASIFT was converted by taking existing code

from the authors of ASIFT that was designed with and uses multi-threaded CPU

operations, including for SIFT. The redesign for the GPU implementation in this

thesis tries to recreate the overarching logic that loops over rotations and tilts, using

the GPU operations mentioned from NPP in 5.5. The SIFT CPU implementation

has been replaced with SiftGPU, a third-party library that may not give the exact

same output as the ASIFT SIFT(CPU) library. This output is then used with the

matching code from ASIFT, which remains on CPU because it was quite complex to

account for all of the rotations and tilts.

B.4 Other Code Options

Another tactic to solving the code problems would be to use different libraries for

the modules. Another option for structure tensor is the structure tensor GPU im-

plementation used by VB3D, a fast and verified implementation. The main hurdle
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to implementation here is a build system problem. Gstreamer and the Deepstream

components use Makefiles and the basic make system to build each shared library.

VB3D ST is built with CMake, so an attempt will need to be made to convert the

Deepstream modules to use CMake.

To fix the ASIFT problem, we might be able to replace the NPP tilt API with

our own GPU kernel, so we have more control over what is happening to the GPU

buffer. There is also an option to switch the ASIFT code to a CPU implementation,

like the implementation used by existing VMZ. This will not be trivial to implement

with the Deepstream module because of dependencies on parallelizing via OpenMP.

Also, it will result in a significant slowdown because frames will need to be copied

to the CPU every time ASIFT is performed. Still, this should result in a working

Reference-to-reference component.
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