

DESIGN	AND	IMPLEMENTATION	OF	
SERVERLESS	ARCHITECTURE	FOR	

I2B2	ON	AWS	CLOUD	AND	
SNOWFLAKE	DATA	WAREHOUSE	

A Thesis presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

Md Saber Hossain

Dr. Abu Saleh Mohammad Mosa, Thesis Supervisor

May 2023

© Copyright by Md Saber Hossain

All Rights Reserved

The undersigned appointed by the Dean of the Graduate School, have examined
the thesis entitled:

DESIGN AND IMPLEMENTATION OF SERVERLESS
ARCHITECTURE FOR I2B2 ON AWS CLOUD AND

SNOWFLAKE DATA WAREHOUSE

presented by Md Saber Hossain,

a candidate for the degree of Master of Science and hereby certify that, in their
opinion, it is worthy of acceptance.

Dr. Abu Saleh Mohammad Mosa

Dr. Lemuel Russell Waitman

Tamara McMahon

DEDICATION	

I dedicate this thesis to my parents, whose unwavering support and encouragement

have been the driving force behind my academic journey.

To the mentors who have guided me, the friends who have inspired me, cheered on

me in every aspect of my life, the family who has always been there for me.

Colleagues who collaborated with me, believed in me, and for helping me grow as

a scholar and a person.

Finally, I dedicate this thesis to myself, for the hard work, determination, and

perseverance that I have demonstrated in pursuing my academic goals.

ii

ACKNOWLEDGEMENTS	

I would like to express my gratitude to Dr. Abu Saleh Mohammad Mosa for giving

me the opportunity to work on this project and for his invaluable guidance and continuous

support throughout my research journey. His expertise and encouragement have been

instrumental in the completion of this thesis.

I would like to thank Vasanthi Mandhadi for her guidance and support throughout

this project. Her knowledge and expertise in this field have been crucial in shaping my

understanding of the objectives.

I am grateful to Md Kamruzzaman Rana and Yaswitha Jampani for their valuable

contributions to this project. Their assistance has been indispensable in the successful

completion of this thesis.

I would also like to thank all my colleagues at the NextGen Biomedical Informatics

Center for their support and encouragement throughout my research journey. Their insights

and feedback have been invaluable for this work.

Finally, I am grateful to my committee members, Dr. Lemuel Russell Waitman and

Tamara McMahon, for their guidance and support throughout my thesis. Their feedback

and constructive criticism have been instrumental in organizing my research work.

iii

TABLE	OF	CONTENTS	
Organization of the Thesis ... vii

Abstract .. viii

Chapter 1 : Introduction .. 1

 Data Analytics Platforms in Health Research .. 1

 The i2b2 Platform ... 2

 Docker Containerization ... 4

 Amazon Web Services ... 4

 Snowflake data Analytics Platform ... 5

 Overall Objectives ... 6

Chapter 2 : Components of the i2b2 platform .. 8

 Overview of an i2b2 Hive .. 9

 Installing the i2b2 Platform .. 12

 The i2b2 Platform in Docker Containers ... 15

2.3.1 Building ‘i2b2-webclient’ Docker Image ... 16

2.3.2 Building ‘i2b2-wildfly’ Docker Image .. 18

 Summary ... 21

Chapter 3 : Deploying i2b2 in the AWS Cloud ... 23

 Network Infrastructure for i2b2 in the AWS Cloud ... 25

 The i2b2 Webclient and Wildfly Server in the ECS Service ... 28

3.2.1 Uploading Docker Images in ECR .. 29

3.2.2 Creating the i2b2 Service in the ECS ... 32

 Summary ... 32

Chapter 4 : Preparing Data for i2b2 Database ... 34

 The i2b2 Datamart and Ontology ... 34

 PCORnet Common Data Model .. 37

4.2.1 PCORnet: A Network of Networks .. 38

4.2.2 Common Data Model (CDM) .. 39

4.2.3 University of Missouri’s (MU) CDM .. 44

 i2b2 ACT Ontology .. 46

 Mapping ACT Ontology with PCORnet CDM Data .. 48

iv

4.4.1 The i2b2 Data Installer Package .. 48

4.4.2 ETL Pipeline for Mapping PCORnet CDM Data with ACT Ontology 49

4.4.3 Multi-Fact View Approach .. 53

 Summary ... 54

Chapter 5 : Snowflake as i2b2 Backend Database ... 57

 Snowflake Data Warehouse .. 58

 Snowflake JDBC Driver Support for i2b2 Core Cells .. 60

5.2.1 Snowflake Data Source in Wildfly ... 61

5.2.2 Modifying Data Access Layer classes in the i2b2 services: 63

 Results ... 65

Chapter 6 : Discussion ... 69

 Snowflake Query Execution Performance Against Larger Dataset 70

 Limitations and Future Work .. 71

 Conclusion ... 72

Bibliography .. 73

Vita .. 75

v

LIST	OF	TABLES	
Table 1: Summary of the high-level components of the i2b2 platform .. 11

Table 2: Dependencies required for installing the i2b2 platform ... 13

Table 3: Configuration files required for installing the i2b2 platform .. 14

Table 4: List of environment variables to configure JDBC Wildfly Data Sources 21

Table 5: List of AWS resources used in the deployment process ... 24

Table 6: Overview of report generated by Security Scan ... 33

Table 7 Data Lake Statistics .. 45

Table 8 Overview of ACT Ontology Terms .. 47

Table 9: Overview of i2b2 database schemas ... 49

Table 10: Mapping PCORnet CDM data with i2b2 fact and dimension tables 51

Table 11: Summary of i2b2 fact and dimension tables ... 56

Table 12: Key Features of Snowflake Data Warehouse .. 59

Table 13: Arguments used in configuring the Wildfly Data source .. 63

Table 14: Overview of i2b2 queries executed in the comparison .. 66

vi

LIST	OF	FIGURES	
Figure 1: An i2b2 hive ... 3

Figure 2: High-level architecture of i2b2 platform ... 10

Figure 3: Overall Network Infrastructure for i2b2 service in the AWS Cloud 27

Figure 4: Running i2b2 containers as ECS service ... 29

Figure 5: Main tables in the i2b2 star schema10 ... 36

Figure 6: PCORnet Research Data Request Process12 ... 39

Figure 7: PCORNET COMMON DATA MODEL TABLES v6.0 13 ... 40

Figure 8: Example of Mapping i2b2 fact table with PCORnet CDM table 52

Figure 9: Example of Mapping lab results ... 52

Figure 10: Mapping i2b2 Fact and Dimension Views with PCORnet CDM Views 53

Figure 11: ACT ontology in i2b2 web client user interface ... 55

Figure 12: Step taken in the modification of i2b2-core-server source code 64

Figure 13: i2b2 query execution time comparison against different warehouses 68

vii

ORGANIZATION	OF	THE	THESIS	

Chapter 1 presents the introduction of this thesis which includes the background material,

problem statement, overall goal of this these. Chapter 2 provides overview of i2b2

components and simplifying its installation process using docker containers. Chapter 3

demonstrates the serverless deployment process of i2b2 in the AWS cloud. Chapter 4

describes the creation of i2b2 data model wrapper on top of PCORnet CDM into i2b2

database. Chapter 5 presents the snowflake JDBC driver integration and customization for

i2b2 core services. Chapter 6 discusses the results, accomplishments, limitations, and the

future work for this study.

viii

ABSTRACT	

Informatics for Integrating Biology and the Beside (i2b2) is an open-source medical

tool for cohort discovery that allows researchers to explore and query clinical data. The

i2b2 platform is designed to adopt any patient-centric data models and used at over 400

healthcare institutions worldwide for querying patient data. The platform consists of a web-

client, core servers and database. Despite having installation guidelines, the complex

architecture of the system with numerous dependencies and configuration parameters

makes it difficult to install a functional i2b2 platform. On the other hand, maintaining the

scalability, security, availability of the application is also challenging and requires lot of

resources. Our aim was to deploy the i2b2 for University of Missouri (UM) System in the

cloud as well as reduce the complexity and effort of the installation and maintenance

process. Our solution encapsulated the complete installation process of each component

using docker and deployed the container in the AWS Virtual Private Cloud (VPC) using

several AWS PaaS (Platform as a Service), IaaS (Infrastructure as a Service) services. We

deployed the application as a service in the AWS FARGATE, an on-demand, serverless,

auto scalable compute engine. We also enhanced the functionality of i2b2 services and

developed Snowflake JDBC driver support for i2b2 backend services. It enabled i2b2

services to query directly from Snowflake analytical database. In addition, we also created

i2b2-data-installer package to load PCORnet CDM and ACT ontology data into i2b2

database. The i2b2 platform in University of Missouri holds 1.26B facts of 2.2M patients

of UM Cerner Millennium data.

1

CHAPTER	1 :	INTRODUCTION	

 DATA	ANALYTICS	PLATFORMS	IN	HEALTH	RESEARCH	

The ability to collect and analyze large amounts of health data is important for

translational research. This data can be used to identify new patterns and trends, develop

new treatments and interventions, and improve the overall quality of care. However,

limited access to real-world data due to the patient’s privacy protection and security of

health information laws1. These laws were put in place to protect patient privacy and ensure

the security of health information, but they have also created barriers to data access for

researchers.

Moreover, the lack of infrastructure for trustworthy self-service query access in

health research exacerbates these challenges2. Researchers often require a significant

amount of technical expertise to navigate the complex systems and processes that are

necessary to access and analyze health data. This can lead to delays in data access and

increased costs associated with data management, which can hinder the progress of

translational research.

2

Informatics for Integrating Biology and the Bedside (i2b2) platform was developed

to help address these issues. i2b2 is an open-source tool and provides a user-friendly

interface that allows researchers to access and analyze data in a secure and efficient

manner, without the need for extensive technical expertise or assistance3.

 THE	I2B2	PLATFORM	

The Informatics for Integrating Biology and the Bedside (i2b2) is an initiative that

was sponsored by the NIH Roadmap National Centers for Biomedical Computing. This

initiative is focused on advancing biomedical computing and informatics research by

facilitating the integration of clinical and research data3. The i2b2 platform provides a

framework for researchers to extract and store data from electronic medical records and

other sources, enabling more efficient and effective analysis of data for research purposes.

Through its partnership with the NIH Roadmap National Centers for Biomedical

Computing, i2b2 is helping to drive innovation in biomedical research and improve patient

outcomes.3

The i2b2 platform is designed to provide clinical investigators with the necessary

software tools to manage and collect clinical research data in a cohesive manner in the

genomics age. The i2b2 hive is a set of software modules, known as "cells," that utilize a

common messaging protocol for interaction through web services and XML messages.

Each cell can be developed independently by researchers to meet specific analytical

objectives and can then be integrated into the hive to enhance the functionality available in

the i2b2 hive3. The i2b2 hive organized data in a way that ensures data ownership and

3

privacy are maintained, even when shared across multiple groups or entities. This

organizational structure helps to ensure that sensitive information is not disclosed to

unauthorized parties while still allowing for collaborative research efforts between

different groups. By preserving the privacy of the data, the i2b2 hive enables researchers

to access and analyze data without compromising the confidentiality of patients or the

integrity of the data.3 The i2b2 hive is a collection of modules that interact through Web

Services. Within this framework, the core modules are represented by the dark color cells

(Figure 1) are essential for the operation of the i2b2 hive. Conversely, the optional modules

are represented by light color cells and provide supplementary functionality to the hive

(Figure 1).

Figure 1: An i2b2 hive

With i2b2, researchers can create and execute their own queries on large datasets,

which can significantly reduce the time and costs associated with data analysis. However,

4

like many open-source scientific software packages, i2b2 can be challenging to install and

maintain including patching, upgrading, data modeling, and ontology mapping. These tasks

present a significant obstacle to i2b2's wider adoption by institutions4.

 DOCKER	CONTAINERIZATION	

The Docker containerization process refers to the creation and deployment of

software applications in isolated containers, which are separate from the host operating

system and other running applications. It is an open-source platform that offers a range of

tools for building, shipping, and running containerized applications. Containers are a

lightweight and portable way of packaging applications and their dependencies, enabling

developers to build software that can be easily deployed across different environments,

including development and production5. Docker containers are created based on images

that contain all the necessary components required to run an application, such as libraries,

frameworks, and configuration files. This approach enables developers to create self-

contained, isolated containers that can be easily ported across different platforms, including

laptops and cloud servers, providing greater flexibility and ease of management. It is

possible to simplify the distribution process by packaging server environments,

dependencies and softwares required for i2b2 servers in the corresponding docker

containers and reduce the effort and complexity to install a functional i2b2 platform4.

 AMAZON	WEB	SERVICES	

AWS is a cloud computing platform that provides PaaS (Platform as a Service) and

IaaS (Infrastructure as a Service) services to help organizations run their applications and

5

manage their infrastructure6. It offers a wide range of cloud services. One of these services

is ECS FARGATE a Platform as a Service, which allows users to run containers without

managing the underlying infrastructure. The ECS FARGATE can be used with an

Application Load Balancer (ALB) to distribute incoming traffic across multiple ECS tasks.

To ensure security and isolation between the two services, it is recommended that the

services be deployed within the same Virtual Private Cloud (VPC). VPC is an

Infrastructure as a Service (IaaS) solution that provides a secure and isolated environment

for running cloud-based services. The combination of ECS FARGATE, an ALB, a VPC

and other services, provides a flexible and scalable platform for managing containerized

applications on AWS in a secure way. There are three different servers are required to host

a functional i2b2: the webserver, application server, and database server (Figure 2).

Maintaining these servers on-premises can be a time-consuming and resource-intensive

task. On the other hand, deploying the i2b2 in a secure network can be a challenging task

as well. To overcome this, AWS cloud infrastructure is a viable option as it allows for

easier maintenance and scalability.

 SNOWFLAKE	DATA	ANALYTICS	PLATFORM	

Snowflake is a cloud-based data analytics platform that provides Software as a

Service (SaaS) solutions for a complete data warehousing and analytics solution for

institutions of all sizes. It is built on top of a high-performance, scalable, and secure data

architecture that allows users to store and analyze data from multiple sources in real-time7.

6

One of the key features of Snowflake is its ability to handle complex queries and data

processing tasks through its Online Analytical Processing (OLAP) database. OLAP

databases are designed to support complex analytical queries and are optimized for read-

intensive workloads8. Snowflake's OLAP database uses a columnar storage model that

allows for faster query processing and improved compression of data. Additionally,

Snowflake database is fully integrated with its data warehousing and analytics capabilities,

allowing efficient handling of large data volumes and complex queries. Snowflake cloud-

based data warehousing and analytics platform offers a serverless computing model7. This

means that customers do not need to provision or manage any infrastructure for their data

warehouse, as Snowflake takes care of all the underlying infrastructure. Snowflake data

warehouses can be scaled up or down automatically as needed, without worrying about

provisioning or managing any infrastructure to support heavy workloads. On the other

hand, queries running in i2b2 involve analyzing large volume of data are typically better

suited for an OLAP database, which is optimized for complex analytical queries8.

However, currently the i2b2 platform only supports OLTP database such as Oracle,

Microsoft SQL Server, and PostgreSQL, which are better suited for transactional

workloads.

 OVERALL	OBJECTIVES	

Our primary aim is to introduce i2b2 as a self-service query tool for researchers at

the University of Missouri. To achieve this, we intend to install i2b2 on top of the

University of Missouri health system data and deploy the components of i2b2 in the cloud

to minimize server management efforts. In this study, we seek to simplify the installation

7

process for i2b2 components by utilizing docker containerization process. Additionally, we

plan to demonstrate a secure and scalable approach to deploy i2b2 components in the AWS

cloud and the Snowflake data warehouse. We also aim to create i2b2 data-installer package

that utilizes the ACT V4 ontology to transform PCORnet Common Data Model (CDM)

data to i2b2 data. Finally, we aim to develop Snowflake JDBC driver support for i2b2 core

services so that i2b2 services can use Snowflake analytical database as its backend

database.

8

CHAPTER	2 :	COMPONENTS	OF	THE	I2B2	
PLATFORM	

The i2b2 platform is composed of multiple cells that communicates using XML

based web services. Each cell serves unique set of responsibility. The modular design

facilitates the addition of new cells, and therefore new functionalities, which enable the

extension of the i2b2 platform to a wide range of use, cases, and environments. Compared

to many general software packages, i2b2 is a complex platform that offers a versatile

implementation for handling diverse operations related to data storage, querying, and user

interactions3. Its functionality is achieved through the integration of various web services

working in together. The i2b2 is an outcome of collaborative efforts among researchers

and has evolved from an earlier hospital-specific implementation. In terms of scientific

software, i2b2 shares several traits with other open-source tools. It is developed by experts

with substantial domain knowledge, constructed with an agile approach, challenging to test

due to its broad scope of use cases, and complex to install.4

9

 OVERVIEW	OF	AN	I2B2	HIVE	

A basic i2b2 platform comprises three core components: a frontend web-client, a

backend consisting of Web services, and databases (Figure 2). The required i2b2 hive

includes five cells: (1) the Data Repository (CRC) for storing and querying patient data,

(2) Ontology Management (ONT) to represent concepts, (3) Project Management (PM) for

hive setup, (4) File Repository (FR) for managing i2b2 files, and (5) Workplace (WORK)

for managing user-specific XML objects. The i2b2 web services are hosted on the JBoss

Wildfly server (Table 1), which provides a framework based on enterprise Java and Apache

Axis2 and facilitates web service scalability. The JBoss Wildfly maintains connection

pools of SQL data-sources for each corresponding i2b2 cell. The Apache web server (Table

1) hosts webpages that include HTML, CSS, and JavaScript for the i2b2 web client, and it

functions as a proxy to direct asynchronous JavaScript (AJAX) class from the web-client

to web services running on the Wildfly server.

10

Figure 2: High-level architecture of i2b2 platform

The core database is relational type and can be hosted in a PostgreSQL server,

Microsoft SQL Server, or Oracle SQL server (Table 1). The database server accommodates

a cell-specific database schema for each hive cell, accessible solely through the

corresponding cell. Password-protected database accounts ensure that only authorized

users can access the cell-specific databases. Patient data and configuration information for

each of the core i2b2 cells are also stored in the SQL database.

11

Table 1: Summary of the high-level components of the i2b2 platform

High-level

Component

Implementation Responsibility

Web server Apache HTTP server Hosts HTML and JavaScript based i2b2 web-

client.

Application

Server

Web services running

inside JBoss Wildfly

server

Provides SOAP based API (Application

Programming Interface) and serve as backend

for i2b2 web-client. These services offer user

management and authentication functions and

convert user queries into SQL queries.

Database PostgreSQL, Oracle,

Microsoft SQL

Contains patient data, ontology definitions,

hive, and user data in corresponding schema.

In general, the users access the i2b2 by loading the web client on an internet

browser. The i2b2 web client communicates with the backend web services by exchanging

SOAP XML messages, which are routed through a proxy. The web services are designed

to be stateless and retrieve data from the backend SQL database. For instance, when a user

logs in, the web client sends the user's credentials to the project management cell, which

then authenticates the user's credentials by verifying them in the back-end PM service.

Similarly, when a user requests the count of patients with a specific diagnosis, the web

client communicates with the data repository cell, which generates and executes SQL

queries on the 'fact' tables (described in section 4.1) located in the backend SQL database,

and then returns the count to the front-end web client.

12

 INSTALLING	THE	I2B2	PLATFORM	

The i2b2 platform follows a modular architecture where the components, referred

to as cells, communicate with each other through XML-based web services. This design

enables the independent implementation and installation of cells. The cells are categorized

as core or optional, where core cells are necessary for a functional installation and optional

cells provide additional services like Natural Language Processing3. The implementation

of the platform is in Enterprise Java with the user interface developed in HTML-JavaScript.

The platform's source code is available as open source through GitHub, and extensive

documentation is available for compiling and installing i2b2 cells. Additionally, there is an

online demonstration version of the software available for showcasing its functionality.

Despite the availability of online documentation, tutorials, and an active user group, new

users require several weeks to create a functional i2b2 installation4. The substantial effort

required to set up a new i2b2 hive installation represents a significant challenge to wider

adoption of the platform, particularly for smaller projects with limited experience in

informatics.

The installation of the i2b2 platform is a challenging process that requires a

moderate level of expertise in Enterprise Java and Java build tools for the compiling and

deployment of the code. Another challenge is the need to adopt new installation steps to

accommodate new software features and dependencies (Table 2). Additionally, due to the

platform's design to be compatible with various operating systems and databases, the

numerous possible configurations (Table 3) result a significant obstacle for following the

exact steps to achieve a required specific configuration. These challenges, in combination,

limit the utilization of the i2b2 platform by numerous institutions. Regular upgrades of the

13

i2b2 platform installation, including its cells, database, and operating systems, are essential

for adding new functionality. However, the risk of disrupting an operational i2b2

installation often causes informatics teams to delay their upgrade efforts. A potential

solution to these challenges is containerization, which has proven effective for packaging

software. The use of Docker containers offers the potential to upgrade an installation by

replacing deployed container images with the latest implementation5,9.

Table 2: Dependencies required for installing the i2b2 platform

i2b2 Component Dependency Description

Web server Centos 7, httpd24,
PHP, proxy,
mod_ssl,
shibboleth.x86_64

Apache web server deployed in CentOS 7,
an open-source operating system. The
system also supports a proxy server and the
mod_ssl module for secure communication.
Additionally, the shibboleth.x86_64
package is available to provide support for
Single Sign-On authentication.

Application server JBoss Wildfly,
Apache-ant, Java
JDK, JDBC driver

- Alpine is a lightweight secure Linux
distribution
- Wildfly is an open-source Java application
server
- Apache Ant to build i2b2 cells
- JDK is required for compiling and running
i2b2 services
- JDBC driver is necessary for connecting to
databases

Database server PostgreSQL,
Oracle, and
Microsoft SQL

Compatible relational database engines

14

Table 3: Configuration files required for installing the i2b2 platform

i2b2
component

Configuration Description

Web Server httpd.conf The main configuration file for the Apache HTTP Server.
It is used to configure various settings related to the
operation of the web server, such as the ports it listens on,
the server’s name, and the document root directory.

ajp.conf It is used to configure the Apache JServ Protocol (AJP),
that enables communication between webserver and an
application server. It also defines URL prefix for proxying
i2b2 web services for the web-client

shibboleth2.xml Main configuration file used by the Shibboleth Service
Provider (SP). The file contains the basic configuration
parameters for the Shibboleth SP, such as the entityID, the
location of the metadata, the SSL certificate and key, the
session timeout, and the attribute mapping rules.

Shib.conf Contains settings that configure the Shibboleth SP
module. This includes defining the identity provider (IdP)
entity ID, metadata location, and SSL/TLS settings etc.

attribute-map.xml A configuration file used by the Shibboleth Service
Provider (SP) to map attributes received from the Identity
Provider (IdP) to local attributes that can be used by the
application or service

httpd-shibd-
foreground

It starts shibboleth and Apache server

Application
Server

Data sources for
each of the i2b2
cells

To manage connections to databases for each i2b2 cells in
the Wildfly server. It contains JNDI (Java Naming and
Directory Interface) name, Connection URL, Driver name,
Authentication credentials, Connection pool settings

	

15

 THE	I2B2	PLATFORM	IN	DOCKER	CONTAINERS	

Containerization is a virtualization method that enables the deployment and

execution of applications in isolated environments called containers. A container is a

lightweight, portable, and self-contained package that encapsulates an application along

with its dependencies, configuration files, libraries, and runtime environment.

Containerization provides a level of abstraction that allows an application to be run

uniformly across different computing environments, such as different operating systems or

cloud providers, without any modification to the application code5. This technology has

become increasingly popular due to its ability to simplify software deployment, enhance

scalability, and improve resource utilization. The most popular containerization technology

is Docker, which uses container images to create and run containers. Docker uses a client-

server architecture, where the Docker client communicates with the Docker daemon, which

is responsible for building, running, and managing containers. Docker provides a wide

range of commands that allow developers to create and manage containers, images,

networks, and volumes.

We created two docker containers called ‘i2b2-webclient’, ‘i2b2-wildfly’ to

encapsulate the core functionalities of the i2b2 platform, as summarized in Table 2 and

Table 3. The source codes for building the container images along with the configuration

files are published in the GitHub repository of University of Missouri NexGen Biomedical

Informatics (https://github.com/Missouri-BMI/I2B2_SERVERLESS).

16

2.3.1 Building	‘i2b2-webclient’	Docker	Image	

The ‘i2b2-webclient’ Docker image is designed to provide an Apache web server

environment running on a Centos 7 base image. During the build phase, the image

downloads the necessary i2b2 front-end source code from the repository and deploys it in

the web server. It also includes configuration files that are required for the web server to

function properly, which are listed in the Web Server section of Table 2 and Table 3.

In addition to setting up the web server, the i2b2-webclient image also enables the

SAML (Security Assertion Markup Language) authentication in the i2b2 and configures

the Shibboleth Service Provider (SP) inside the container runtime. This enables the web

server to securely communicate with other Shibboleth-enabled systems and to provide

single sign-on capabilities to users. The necessary Shibboleth configuration files are also

included in the image during the build phase.

By providing a pre-configured i2b2-webclient image, developers and researchers

can easily deploy the i2b2 front-end in a containerized environment. This can simplify the

deployment process and provide a consistent environment for running the application,

which can improve reliability and reduce the risk of configuration errors.

17

The following steps are instructed in the ‘i2b2-webclient’ Dockerfile that builds a

Docker image based on CentOS 7:

i) Sets default values for two arguments, ‘CLIENT_TYPE’ and

‘SERVER_NAME’.

ii) Updates the environment variables for ‘CLIENT_TYPE’ and

‘SERVER_NAME’.

iii) Copies the Shibboleth RPM installation file to /etc/yum.repos.d/.

iv) Updates the packages and installs Apache, mod_ssl, PHP,

Shibboleth and wget using yum.

v) Downloads the webclient code from a forked repository and

extracts it to /var/www/html/${CLIENT_TYPE}.

vi) Replaces the default Apache and Shibboleth configuration files

with custom ones.

vii) Copies required scripts and configuration files for Apache and

Shibboleth.

viii) Sets up the environment by running /usr/local/bin/environment-

setup.

ix) Exposes port 80.

x) Runs the command /bin/bash -C httpd-shibd-foreground as the

default command to start the container.

18

2.3.1.1 Instructions for building and running the ‘i2b2-webclient’

The following command was executed in building the ‘i2b2-webclient’ Docker

image in the local environment.

docker build \
-t i2b2-webclient \
--build-arg CLIENT_TYPE=webclient \
--build-arg SERVER_NAME=localhost \
--no-cache.

The first command builds the i2b2-webclient docker image using the two

arguments listed below:

CLIENT_TYPE: [webclient/admin]

SERVER_NAME: DNS name of the hosted server

Then we ran the ‘i2b2-webclient’ in the local environment using following

command:

docker run -p 80:80 i2b2-webclient

During the run phase, port mapping is provided to map the port on the host machine

to the port on the container where Apache web server is listening. This allows you to access

the i2b2-webclient in a web browser.

2.3.2 Building	‘i2b2-wildfly’	Docker	Image	

The "i2b2-wildfly" Docker image provides the JBoss Wildfly server, which

includes the installation of the Apache Axis2 WAR file in the Wildfly folder. This

19

installation facilitates web services for the server. As part of the build process, the i2b2 cell

source code is compiled into a WAR archive and installed in the WildFly server.

Additionally, the Dockerfile configures the data sources for JDBC connections for each

cell based on the configuration listed in the Application Server section of Table 2 and

Table 3. The following steps are instructed in the ‘i2b2-wildfly’ Dockerfile that builds a

Docker container based on Alpine Docker image where the Alpine Docker image provides

a basic Linux distribution:

i) Set base image as ‘alpine:3.14’

ii) Download required packages ‘openjdk8’, ‘apache-ant’, ‘wget’, ‘unzip’ using

‘apk’ package installer

iii) Download i2b2-core-server source code from the github repository

iv) Unzip downloaded source code, compile and distribute WAR achieves using

‘apache-ant’

v) Deploy WAR achieves in JBoss Wildfly

vi) Expose port 8009

vii) Configure Wildfly data sources for JDBC connections in container runtime

using jboss-cli.

viii) Start JBoss Wildfly server

20

2.3.2.1 Instructions for building and running ‘i2b2-wildfly’

The following command was executed in building ‘i2b2-wildfly’ Docker image in

the local environment:

docker build \
-t i2b2-widlfly \
--no-cache.

 Then we executed the following command to run the ‘i2b2-wildfly’ Docker image

in the local environment:

docker run -p 8009:8009 –env-file .env i2b2-wildfly

 In Docker build phase, only the tag of the container image was provided. During,

the run phase, port mapping was provided to map the port on the host machine to the port

on the container where JBoss Wildfly server is listening.

An ‘.env’ file containing a list of environment variables listed in (Table 4) was also

provided to configure the JDBC Data sources in Wildfly. The environment variables are

the database credentials that were used to establish JDBC connections for each cell in the

Wildfly server.

21

Table 4: List of environment variables to configure JDBC Wildfly Data Sources

Environment Variable Type Data Source Name i2b2 cell

DB_CRC_URL JDBC URL QueryToolDS CRC
 DB_CRC_USER JDBC username

DB_CRC_USER_PASS JDBC password
DB_HIVE_URL JDBC URL CRCBootStrapDS,

OntologyBootStrapDS,
WorkplaceBootStrapDS

HIVE
 DB_HIVE_USER JDBC username

DB_HIVE_USER_PASS JDBC password
DB_ONT_URL JDBC URL OntologyDS ONT

 DB_ONT_USER JDBC username
DB_ONT_USER_PASS JDBC password
DB_PM_URL JDBC URL PMBootStrapDS PM
DB_PM_USER JDBC username
DB_PM_USER_PASS JDBC password
DB_WD_URL JDBC URL WorkplaceDS

WD DB_WD_USER JDBC username
DB_WD_USER_PASS JDBC password

 SUMMARY	

We were able to successfully deploy the ‘i2b2-webclient’ and ‘i2b2-wildfly’ docker

containers in the docker host running inside the local machine. The i2b2 web-client was

accessible via localhost URL. In order to test the full functionality of i2b2 web application

in local environment, we have used the i2b2-pg image, a PostgreSQL server populated with

i2b2 synthetic dataset of 200 patients provided by the i2b2 tranSMART foundation

(https://github.com/i2b2/i2b2-docker/blob/master/pg/docker-compose.yml). We replaced

the i2b2-web, i2b2-wildfly image with our created container images and deploy the i2b2

platform using command ‘docker-compose up –build’ in the docker CLI (Command-Line

22

Interface). Finally, we tested the system if a user could successfully login using i2b2 web

client running in a local machine and build a query to execute.

23

CHAPTER	3 :	DEPLOYING	I2B2	IN	THE	AWS	
CLOUD	

In this study, the ‘i2b2-webclient’ and ‘i2b2-wildfly’ have been containerized using

Docker and subsequently deployed on the Amazon Web Services (AWS) cloud computing

platform. The utilization of Docker containerization technology allows for the efficient

encapsulation of these i2b2 platform components, while AWS provides a scalable and

reliable infrastructure for hosting these containers. This deployment approach offers

several benefits, including enhanced flexibility and portability of the i2b2 platform, as well

as improved resource utilization and ease of management. It also automates the

deployment, scaling, and availability of i2b2 components, which reduces the operational

burden for IT teams.

Serverless computing is a novel approach to cloud computing in which cloud

providers assume responsibility for the underlying infrastructure, including servers and

operating systems, relieving developers of the burden of managing and maintaining such

infrastructure. The need for serverless computing has arisen due to the desire for more

efficient and cost-effective ways of deploying and scaling applications without the need to

manage server infrastructure. We have utilized the Amazon Elastic Container Service

(ECS) with FARGATE launch type, coupled with various AWS services (Table 5), to

deploy the i2b2 platform in the cloud.

24

Table 5: List of AWS resources used in the deployment process

AWS Resources Description

VPC (Virtual Private Cloud) Enables resources to be launched into a virtual network, providing
complete control over the network environment. This includes the ability
to select IP address ranges, create subnets, configure route tables, and
network gateways. The use of VPC enables the implementation of
multiple layers of security, such as security groups and network access
control lists, to manage and control access to running containers.

ECR (Elastic Container
Registry)

A fully managed container registry service that facilitates secure storage,
management, and deployment of Docker container images. ECR
integrates with other AWS services, such as Elastic Container Service
(ECS), to provide a reliable and streamlined approach to deploying
containerized applications in the cloud.

ECS (Elastic Container
Service)

A cloud computing service that simplifies the deployment, management,
and scaling of containerized applications in the cloud. It enables users to
launch and manage containers on a cluster of Amazon Elastic Compute
Cloud (EC2) instances or using the serverless compute engine AWS
FARGATE. ECS allows users to define task and service definitions for
their containers, specify resource requirements, and automate
deployment and scaling.

FARGATE A serverless compute engine that eliminates the need to manage
underlying infrastructure when running containers. It is a fully managed
service that offers flexible and granular resource allocation, with the
ability to define CPU and memory requirements for containers.
FARGATE integrates with other AWS services, such as Elastic Load
Balancing and Amazon Virtual Private Cloud, to provide a secure and
scalable platform for running containerized applications in the cloud.
The service simplifies the process of running containers, allowing users
to focus on application development and deployment.

Application Load Balancer It enables the distribution of incoming traffic across multiple targets,
such as Amazon Elastic Compute Cloud (EC2) instances or containers
running on AWS FARGATE. ALB supports Layer 7 routing and
provides advanced features, such as SSL/TLS termination, content-based
routing, and sticky sessions. ALB supports container-based workloads
and is compatible with popular container orchestration platforms, such
as AWS ECS

Web Application Firewall It protects web applications from common web attacks and exploits.
With a set of customizable rules, WAF filters and blocks unwanted
traffic based on various criteria, such as IP addresses, HTTP headers,
and query strings. The service integrates with other AWS services like
Elastic Load Balancing, to provide a scalable and distributed layer of
security. Advanced features like rate limiting, geo-blocking, and bot
management provide additional protection against emerging threats and
attacks. WAF improves the security posture of web applications running
on AWS by providing an effective and configurable layer of protection
against known and unknown web threats.

25

 NETWORK	INFRASTRUCTURE	FOR	I2B2	IN	THE	AWS	
CLOUD	

The network infrastructure for i2b2 in the AWS cloud (Figure 3) creating a VPC

with two public and two private subnets in different availability zones. The separation of

subnets in multiple availability zones helps to ensure high availability and fault tolerance.

To route network traffic, an internet gateway, and a Network Address Translator (NAT)

gateway were used. The routing table associated with the public subnets was configured to

route network traffic to the internet gateway, while the routing table associate with the

private subnets was set up to route traffic to the NAT gateway. This configuration enables

instances in the private subnets to access the internet through the public NAT gateway

while maintaining a secure network architecture.

A security group was created to enhance the security of the i2b2 application. The

security group of the i2b2 application allows inbound HTTP traffic on port 80 from all

IPV4 addresses and all outbound IPV4 traffic. An application load balancer was also

created with an SSL certificate and a target group. The application load balancer is

responsible for routing incoming traffic from the clients to the registered target in the two

availablility zones. The application load balancer listens on port HTTPS:443 and forward

network traffic to port 80 via i2b2 application security group. The application load balancer

also monitors the health of its registered target and scales the workload accordinly,

ensuring that the i2b2 application is always available and responsive. In addition to the

network infrastructure, a Web application Firewall (WAF) is also attached to the

application load balancer (ALB) to enhance the security of the i2b2 platform. The WAF

26

provides a set of customization rules to filter and block unwanted traffic based on various

criteria, such as IP addresses, HTTP headers and query strings. The ALB acts as a single

entry point for the i2b2 webclient. The WAF is integrated with the ALB to inspect

incoming traffic and filter out any malicious requests or attacks. The ALB forwards the

filtered traffic to the container instances, which provides an added layer of security for the

i2b2 application. This network configuration enables the i2b2 application to be protected

against common web exploits and attacks while providing secure and reliable access to the

authorized users.

To run the ‘i2b2-webclient’ and ‘i2b2-wildfly’ as an AWS FARGATE service, a

task definition for the i2b2 application was created with network mode set to awsvpc,

operating system family to Linux, and required compatibilities to FARGATE. The task

definition was then configured by providing the repository URL of the ‘i2b2-webclient’

and ‘i2b2-wildfly’ docker images stored in the Elastic Container Registry (ECR), port

mappings and required environment variables (Table 4) for the container images. In ECS,

port mapping allows mapping the container's internal port to a port on the host instance or

the load balancer. This mapping enables network traffic to reach the container and the

application running inside it through a specified port. Without port mapping, the container's

port would be unknown to the outside world, making it inaccessible and unusable. Finally,

an AWS FARGATE service for the i2b2 application was created using the task definition

and VPC configuraiton that had been established for the i2b2 service.

We decided to use Snowflake as i2b2 back-end database. Snowflake is a cloud-

based data warehousing platform that offers a range of features designed to support modern

data analytics workloads, such as autmatics scaling, support most common standarized

27

version of SQL, and JDBC driver compatibility. Currently, the i2b2 platform supportes

Oracle, PostgreSQL, and the Microsoft SQL Server as database. However, we modified

the source code of i2b2-core-servers to support Snowflake as i2b2 data source. The

development process will be described later in this study. The i2b2 ECS services running

inside containers communicate with snowflake database via JDBC connection.

Figure 3: Overall Network Infrastructure for i2b2 service in the AWS Cloud

28

 THE	I2B2	WEBCLIENT	AND	WILDFLY	SERVER	IN	THE	ECS	
SERVICE		

To deploy i2b2 in the AWS ECS FARGATE environment, we had to create two

Docker containers for the ‘i2b2-webclient’ and ‘i2b2-wildfly’. Initially, we tested these

containers on our local machine to ensure their functionality. However, our main objective

was to deploy these containers in the AWS ECS FARGATE environment. This

environment provides a serverless infrastructure, which means that the FARGATE

environment manages the infrastructure for us. We do not have to manage the underlying

servers, operating systems, or maintenance tasks associated with them. This approach

provides us with a highly scalable and cost-effective way of running i2b2 in the cloud. By

using AWS FARGATE, we can automatically scale our application as demand fluctuates

and pay only for the computing resources we use. This reduces the overhead cost of

managing our own infrastructure and allows us to focus on the development and

deployment of the i2b2 application. Running containers in ECS (Figure 4) involves several

steps. First, we created two private repositories in the AWS ECR and upload the docker

images in the ECR. Then, we created the task definition in the ECS using the uploaded

container images. Finally, we created the i2b2 service in AWS ECS.

29

Figure 4: Running i2b2 containers as ECS service

3.2.1 Uploading	Docker	Images	in	ECR	

Our research project involved uploading ‘i2b2-wildfly’ and ‘i2b2-webclient’

Docker images to the AWS Elastic Container Registry (ECR). The ECR is a fully managed

Docker container registry that makes it easy for developers to store, manage, and deploy

Docker images. To begin the process of uploading Docker images to ECR, we first had to

ensure that we had the appropriate credentials and permissions to access the ECR. This

involved setting up an IAM (Identity and Access Management) user with the necessary

permissions, generating an access key and secret access key, and configuring the AWS CLI

to use these credentials. To log in to the AWS CLI with an AWS SSO role-based profile

30

we used the "aws sso login --profile <profile_name>" command. This command guides us

through a process that involves opening a web browser to authenticate our access and then

retrieving temporary AWS credentials for use in subsequent CLI commands.

aws sso login –profile <profile_name>

Then, we logged into the AWS ECR repository using docker command line interface

command with the aws login credential.

aws ecr get-login-password –profile <profile_name> \
| docker login –username AWS –password-stdin \
<aws_account>.dkr.ecr.<region>.amazonaws.com

Next, we created two private repositories in the ECR for ‘i2b2-webclient’ and

‘i2b2-wildfly’ and retrieved the image URIs for the containers using the commands listed

below. We used those image URIs as the tag of docker images that we wanted to upload

with the ECR repository URI. This repository URI is unique to each ECR repository and

is used to identify the location of the repository. The following command was used to create

the ‘i2b2-webclient’ docker image repository in the AWS ECR.

31

aws ecr create-repository \
--repository-name i2b2-webclient \
--image-scanning-configuration scanOnpush=true \
--profile <profile_name>

The following command was used to create the ‘i2b2-wildfly’ docker image

repository in the AWS ECR.

aws ecr create-repository \
--repository-name i2b2-wildfly \
--image-scanning-configuration scanOnpush=true \
--profile <profile_name>

Then we built and tagged the ‘i2b2-webclient’ Docker image with the ECR image

URI using the command shown below:

docker build \
-t <image_tag> \
--build-arg CLIENT_TYPE=webclient \
--build-arg SERVER=<SERVER_NAME> \
--no-cache .

We also built and tagged the ‘i2b2-wildfly’ Docker image with the ECR image

repository URI using following command:

docker-build \
-t <image_tag> \
--no-cache .

Once we built and tagged the Docker images, we used the Docker CLI to

authenticate our Docker client with the ECR registry. This involved running a command

that generated a Docker login token, described earlier in this chapter. Finally, we pushed

32

the images using docker push command ‘docker push <image_tag>’ to upload the images

in the ECR.

3.2.2 Creating	the	i2b2	Service	in	the	ECS	

In this step, we created ECS task definition for i2b2 service. ECS task definition

define the containers that will be launched in the ECS FARGATE environment. We set the

application environment to FAGATE, which means the containers will run on AWS

FARGATE. We also specified the operation system as LINUX and configured the task

with 4vCPUs and 16GB of memory. This configuration ensures that the containers have

enough resources to run efficiently. We have attached the ‘i2b2-webclient’ and ‘i2b2-

wildfly’ containers to the task definition with their associated port mappings and

environment variables. The ‘i2b2-wildfly’ container is responsible for running the i2b2

application server, while the i2b2-webclient container serves as i2b2 web server. Finally,

we created a cluster in the ECS and launch i2b2 service using the task definition.

 SUMMARY	

We were able to successfully deploy the i2b2 docker container in the AWS ECS.

We observed the events log from the i2b2 ECS service in the AWS console to make sure

if it has reached a steady state. The i2b2 web client is accessible via DNS URL

(https://i2b2.nextgenbmi.umsystem.edu/webclient/) and we were able to login using

University of Missouri Shibboleth authentication (Single Sign-On). We wanted to provide

highly secured environment to the i2b2 container instances from the web attacks.

Deploying the i2b2 ECS service in the private subnet and access via application load

33

balancer and security groups ensures the security of the i2b2 application. A securing

analysis was conducted by the University of Missouri Security Analyst team and found no

Critical or high-risk issues in the report generated with the security analysis tool (Table 6).

The security team was able to address a total of 57 issues, including 4 of medium severity

and 45 of lower severity. Although the addressed issues adhered to best practices for server-

side applications, they were not considered harmful from a malicious attacker's

perspective.

Table 6: Overview of report generated by Security Scan

Issue Type Issues Count
Medium severity issues 4
Low severity issues 45
Informational severity issues 8
Total security issues included in the report 57
Total security issues discovered in the scan 57

34

CHAPTER	4 :	PREPARING	DATA	FOR	I2B2	
DATABASE		

 THE	I2B2	DATAMART	AND	ONTOLOGY	

The Data Repository Cell (referred to as CRC) was created with the aim of holding

clinical data from a variety of sources, including clinical trials, medical record systems,

and laboratory systems. This data is stored in three tables, namely patient, visit, and

observation tables. Apart from these, there are three lookup tables, such as concept,

provider, and code tables, and two mapping tables named ‘patient_mapping’ and

‘visit_mapping’. 10

The i2b2 data mart is a data storage system that is designed based on the star schema

structure (Figure 5), which was originally proposed by Ralph Kimball. This schema

consists of a central fact table that is surrounded by one or more Dimension tables. The

essential aspect of constructing a star schema is to identify what constitutes a fact.10

In the context of health data, a logical fact represents an observation made on a

patient. It is worth noting that an observation might not signify the beginning or date of the

condition or event that is being described. Instead, it is simply a record or notation of

something that has occurred. For example, if diabetes is recorded as a fact in the database

at a particular time, it does not necessarily mean that the patient developed diabetes at that

35

moment; it only indicates that a diagnosis was documented at that time, and there could be

multiple diagnoses of diabetes for the same patient over time.

The fact table holds basic information about the observation, including the patient

and provider numbers, a concept code for the observed concept, a start and end date, and

other parameters explained in this document. In i2b2, the fact table is known as

OBSERVATION_FACT, which encompasses all patient observations such as diagnoses,

procedures, medications, and laboratory test results. For large medical institutions with

millions of patients, the number of rows of observations in this table could reach billions.

Dimension tables contain further descriptive and analytical details about the

attributes in the fact table. A dimension table may include information about how specific

data is organized, such as a hierarchy that can be utilized to categorize or summarize data.

In the i2b2 data mart, there are five dimension tables: PATIENT_DIMENSION,

CONCEPT_DIMENSION, VISIT_DIMENSION, PROVIDER_DIMENSION, and

MODIFIER_DIMENSION, which provide supplementary information about the fields in

the fact table.

36

Figure 5: Main tables in the i2b2 star schema10

 The i2b2 data is typically stored in a relational database, such as Oracle or

SQL Server, using a star schema format. This schema comprises a fact table and several

dimension tables. The fact table contains quantitative or factual information, whereas the

dimension tables provide additional descriptors that further characterize the facts. These

facts are identified using concept codes, and the hierarchical arrangement of these codes,

along with their descriptive terms and other relevant information, is collectively referred

to as the i2b2 ontology or metadata.

i2b2 ontology data can be organized into a single table that includes all possible

data types or categories, or into multiple tables, with each table representing a specific data

type. Examples of data types include diagnoses, procedures, demographics, lab tests,

encounters, providers, health history, transfusion data, microbiology data, and genetics

data. All metadata tables must follow the same basic structure. This structure plays a crucial

role in visualizing concepts in the i2b2 workbench and querying the data.

37

The ONT cell, which is a core component of i2b2 Hive, manages vocabulary

definitions and provides semantic meaning to data by containing concepts and information

about relationships between them. Vocabularies in the ONT cell are arranged in a hierarchy

that represents the relationship between terms, with the top levels being the "parents" or

"roots" and the lower levels being their "children". Categories are defined as a set of data

that share a common rule or rules for querying against the Clinical Research Chart (CRC)

and are usually displayed visually as a table of terms. The ONT cell can incorporate

vocabularies from different sources, which are identified by unique prefixes, and each

distinct vocabulary and their associated codes are jointly called a scheme.

 PCORNET	COMMON	DATA	MODEL		

During the Obama administration in 2010, the Patient Protection and Affordable

Care Act (ACA) was enacted to enhance healthcare outcomes and reduce costs. The focus

of this act was on improving insurance coverage for lower-income groups. To provide

patient-centered care, the non-profit organization Patient-Centered Outcomes Research

Institute (PCORI) was established through ACA, which aimed to achieve health care

outcomes at personal population levels.11 The United States Congress funded PCORI

through the Patient-Centered Outcomes Research Trust Fund (PCORTF). Since health,

disease patterns, and outcomes depend on multiple factors, it is necessary to consider all

possible situations before estimating treatment and treatment outcomes. Comparative

effectiveness research (CER) addresses these issues by comparing current healthcare

mediations and analyzing how to provide healthcare for different individuals. To enhance

38

healthcare professionals' decision-making, PCORI opted for this method to achieve better

healthcare outcomes.

In today's world of participatory medicine, involving patients in their healthcare is

crucial to improve healthcare systems. In 2013, PCORI established the National Patient-

Centered Clinical Research Network (PCORnet) to have an integrated view. PCORnet was

built on the vision provided by many other networks12. To gain knowledge of community

views and interests, PCORI involved 8 Patient-Powered Research Networks (PPRNs) and

Clinical Research Networks (CRNs), which perform extensive studies on existing

Electronic Health Record (EHR) and other data sources. Moreover, to maintain the

integrity among networks, it is always essential to have policies and plans. This network

of networks, PCORnet, involved two of the networks that excelled in health plans.

4.2.1 PCORnet:	A	Network	of	Networks	

PCORnet provides a well-established ecosystem for research platforms, which is

flexible in expanding connections and sharing highly valued research data to benefit public

health. This national-level network of networks facilitates a platform where Clinical

Research Networks (CRNs) can better answer researchers' questions. The process of

questioning and answering is depicted in Figure 6: PCORnet Research Data Request

Process. By using this system, PCORnet can positively influence public health issues and

improve people's lives. Patient-Powered Research Networks (PPRNs) within the network

offer better study designs and ideas from patients' perspectives. These studies primarily

focus on the patients' questions about their health conditions and healthcare needs.

Collaboratively, PCORnet provides better support for researchers and healthcare

39

professionals by involving patients in achieving better patient-centered care. In summary,

PCORnet's network of networks offers a powerful platform for collaborative research, data

sharing, and patient involvement in healthcare.

Figure 6: PCORnet Research Data Request Process12

4.2.2 Common	Data	Model	(CDM)	

The objective of PCORnet was to enhance patient-centered research in the Clinical

Research Networks (CRNs) and other contributors by introducing a standard data model.

EHRs utilized by institutions within or outside the organization have different data models,

resulting in the challenge of integrating data from multiple sources. To tackle this issue, a

universally compatible and system integrated data model was required, and PCORnet's

Common Data Model (CDM)13 offered a widely used solution that contains the most

valuable clinical information. The PCORnet CDM v6.0 consists of 23 tables that represent

various aspects of a patient's clinical and demographic information. These tables are

40

connected using primary and foreign keys to maintain the integrity of the data, and HL7

data standards are applied to deal with missing values. The CDM also incorporates actual

dates and a "Patient Identifier" to represent the unique population of each patient, allowing

for easy navigation and aggregation of data for analysis. The entities involved in the model

are clearly illustrated in the Figure 7.

Figure 7: PCORNET COMMON DATA MODEL TABLES v6.0 13

4.2.2.1 Demographic and Provider

The "Demographic" table in the PCORnet CDM adopted the US census format to

ensure compatibility and consistency in recording patient information. This table primarily

captured non-sensitive patient information. However, for sensitive information such as a

patient's full name and Social Security Number (SSN), separate tables like "Private

Demographic" were utilized. Access and release of information from these tables require

41

a valid Institutional Review Board (IRB) approval and a Health Insurance Portability and

Accountability Act (HIPAA) waiver to ensure patient privacy and confidentiality.

In the "Provider" table, information regarding physicians was recorded, including

their name, specialty, and NPI national provider identifier. This table serves to ensure the

accuracy and completeness of physician information for patient-centered research

purposes.

4.2.2.2 Encounter and Enrollment

The PCORnet CDM includes an encounter table that captures data on patient visits

to different physicians on a given day under a unique encounter identifier. However, a

patient is assigned a different identifier for each visit on a different day, potentially

resulting in multiple encounter identifiers for a single patient. The table also captures

information on the type of encounter, admission, discharge, facility, payer, and relevant

dates. It is important to exercise caution while linking this table to others since a patient

may have multiple rows based on the number of diagnoses or procedures given on the same

day.

The enrollment table contains information on the patient's insurance and payer

details. This table maintains a single record for each patient, except for when there is a

break in coverage. Even if the coverage is disrupted for a single day, a new record is

assigned for that individual.

4.2.2.3 Diagnosis and Procedure

In the diagnosis table, patient diagnosis information was organized and represented

using a separate column to distinguish the type of diagnosis code used, such as ICD-9,

42

ICD-10, ICD-11, or SNOMED CT. The data in this table also included the source of the

diagnosis, which was differentiated into admitting, interim, final, or discharge. This

differentiation was important since the data mostly came from definitive or discharge

diagnoses. The table also included columns for primary diagnosis and diagnosis origin to

differentiate the different kinds of diagnoses.

In the procedures table, various procedure codes such as ICD-9 CM, ICD-10 PCS,

ICD-11 PCS, LOINC, CPT/HCPCS, NDC, and revenue, and 'other' for internally used

ontologies were used. Dates related to procedures were also captured, and entities like

patient identifier, encounter identifier, provider identifier, principal procedures, and

procedure source were included. By having this information recorded separately, the data

can be analyzed more accurately, making it a valuable resource for research.

4.2.2.4 Vitals, Lab Results, and Condition

The PCORnet model includes data related to patient-reported conditions, vitals, and

lab results. Vitals, such as height, weight, temperature, and blood pressure, were recorded

in the Vitals table. The source of the data, including patient self-reporting and personal

devices, was captured alongside tobacco usage information. Multiple rows were created

for multiple readings taken in a single day. In the Lab Results table, LOINC codes

represented the results, while local codes were used for other labs with a name. The

specimen type and details, resulting units, modifiers, and procedure type used were also

recorded, along with all relevant dates. Additionally, the Conditions table contained non-

coded data, including medical history, to provide researchers with insight into patients'

existing health conditions and the primary reason for their encounter. The diagnosis codes

43

used in the diagnosis table were also utilized in this table, with a separate column indicating

the condition's status as active, inactive, or resolved.

4.2.2.5 Death and Death Cause

The PCORnet data model offers valuable insights on mortality through two distinct

tables. The first table contains information on the sources of the data, including SSN, state

or national death indices, tumor data, and local definitions. The second table, the death

cause table, includes details on the cause of death, such as ICD-9 and ICD-10 codes and

the type of cause. By leveraging these tables, researchers can gain a better understanding

of mortality trends and factors impacting mortality in the studied population.

4.2.2.6 Medications

The PCORnet data model has various tables to capture information about

prescribed drugs, including the Med_admin, Prescribing, and Dispensing tables. All three

tables contain data on dosage units, routes, and sources. However, there are some

differences between them. The dispensing table, for instance, captures data from hospital

pharmacies or mail orders, while the prescribing table is derived from providers' orders and

contains inpatient and outpatient order information. The prescribing table is more detailed,

providing information on the quantity, refills, and other relevant aspects. The drugs are

coded based on Rx_norm. Additionally, the Med_admin table captures data on patients'

medications in inpatient, outpatient, or in-home healthcare settings.

44

4.2.3 University	of	Missouri’s	(MU)	CDM	

One of the affiliated networks under many PCORnet CDRNs is the Greater Plains

Collaborative (GPC). This network comprises 13 healthcare institutions, including the

University of Missouri (MU)12. By utilizing the existing PCORnet Common Data Model

(CDM) and MU's Electronic Health Record (EHR) data, a common data model was

implemented. MU's CDM consists of 15 tables and includes supplementary private tables.

Unlike the PCORnet CDM, MU's CDM does not use NDC and Revenue codes for

procedure coding. The data for this CDM was extracted from a variety of sources, including

the IDX billing, Cerner Millennium, Outpatient Pharmacy, EFCC cancer registry in

NAACCR format, Social Security Death Master File, and Trial databases from the

university's REDcap.

The CDM created by MU can be requested and used by researchers to gain insights

and develop strategies for better healthcare outcomes. The data can be utilized for various

research purposes, including population health research, clinical trial research, and

translational research. Researchers can also use the data to develop machine learning

algorithms and predictive models to improve patient outcomes. The implementation of the

common data model provides a standardized approach to data analysis across the network,

allowing researchers to access a vast pool of data while ensuring consistency and accuracy

in the analysis process.

45

Table 7 Data Lake Statistics

Table Name Records Patients

Demographic

2,153,187 2,153,187

Encounter

25,473,447 1,223,013

Diagnosis

68,075,935 1,136,359

Procedures

46,191,968 1,023,647

Death

356,468 304,185

Address_history 1,732,642 1,581,578
Obs_clin

466,719,942 966,335
Lab_result_cm

166,754,971 590,513
Prescribing

87,385,007 912,696
Provider

30,270 -
Med_admin

39,470,457 523,859

Table 7 provides a detailed breakdown of the data counts for MU's CDM. The CDM

comprises 2,153,187 distinct patient records, with 1,136,359 records having a diagnosis

and 1,023,647 records having received treatment procedures. A total of 304,185 records

indicated that the patients had passed away, and 1,732,642 records had address histories

available. The CDM captured data from 30,270 providers who administered medications

to 523,859 patients. Encounters were reported for only 1,223,013 patients, but the total

number of encounters captured was 25,473,447, indicating that many patients had multiple

visits. The total number of diagnoses and procedures recorded was 68,075,935 and

46,191,968, respectively, indicating that many patients suffered from multiple diseases and

had undergone various treatments.

46

	

 I2B2	ACT	ONTOLOGY	

The ACT Network ontology is a vital component of the ACT Network, a national

research infrastructure that connects researchers with a wealth of clinical and translational

research data.14 The ontology provides a standardized vocabulary for defining clinical

concepts and enables researchers to query the data in a consistent and meaningful way. The

ACT ontology includes over 30,000 concepts and over 1.4 million relationships between

them, covering a wide range of domains, including diagnoses, procedures, medications,

and patient characteristics.

One of the primary benefits of the ACT Network ontology is its ability to facilitate

semantic interoperability between different EHR systems. By providing a standardized

vocabulary, researchers can combine and compare data from multiple sources, irrespective

of their EHR systems or coding systems within the same EHR system. This interoperability

significantly enhances the pool of data available to researchers, empowering them to

conduct more comprehensive research studies.

The ACT Network ontology is continuously evolving and expanding to keep up

with the latest advancements in medical research and clinical terminologies. With regular

updates reflecting feedback from users and changes in medical terminology, the ontology

stays up to date with the latest developments in the healthcare community. The ACT

Network has developed an i2b2 ACT ontology package that allows researchers to query on

patient data using ACT ontology within the i2b2 platform. We have mapped the UM’s

PCORnet CDM data with the i2b2 data model using ACT ontology. In Table 8 Overview

of ACT Ontology Terms, we present a comprehensive view of the ACT ontology terms

47

available in the i2b2, along with their corresponding coding systems such as ICD10CM,

LOINC, and RXNorm and count of distinct concepts associated with each table.

Table 8 Overview of ACT Ontology Terms

Ontology Tables Coding Systems Concepts Count
ACT Diagnoses ICD-10-CM ICD10CM 96,366
ACT Diagnoses ICD-9-CM ICD9CM 17,753
ACT Diagnoses ICD10-ICD9 ICD9CM, ICD10CM 128,152
ACT Procedures ICD-10-PCS ICD10PCS 244,334
ACT Procedures ICD-9-Proc ICD9PROC 4,676
ACT Procedures HCPCS HCPCS 9,186
ACT Procedures CPT-4 CPT4 16,564
ACT Laboratory Tests LOINC 547
ACT Laboratory Tests
(Provisional)

LOINC
142,860

ACT Medications Alphabetical NDC, RXNORM 1,059,167
ACT Medications VA Classes NDC, RXNORM 1,244,825
ACT COVID-19 LOINC, CPT4, HCPCS,

SNOMED, NDC, ICD10PCS,
RXNORM, ICD9CM

66,451

ACT Vital Signs LOINC 85
ACT Social Determinants of
Health

LOINC 22

48

 MAPPING	ACT	ONTOLOGY	WITH	PCORNET	CDM	DATA	

The i2b2 uses a hierarchical organization for its ontology, comprising multiple

levels. The topmost levels represent main categories e.g., Clinical Observations,

Demographics, Diagnosis, and Procedures, which are further divided into more specific

concepts. For instance, the ‘Diagnosis’ ontology encompasses concepts like Infectious

Diseases, Cardiovascular Diseases, and Neoplasms etc.

A unique identifier, called a concept code, is assigned to every concept in the i2b2

ontology. These codes represent the concept in the i2b2 database and are utilized in data

retrieval queries. Additionally, each concept has associated metadata that describes its

characteristics, including its permissible values, data type, and relationships with other

concepts in the ontology.

The i2b2 ontology provides an adaptable and robust framework for representing

and querying clinical data in a standardized and interoperable manner. It is built to

accommodate the addition of new concepts as necessary to support different types of

clinical data. This is done using ontology mapping, a process that links new concepts to

existing ones based on their semantic similarity.

4.4.1 The	i2b2	Data	Installer	Package	

The i2b2 Data Repository is a part of the i2b2 software suite and the source code is

stored in a GitHub repository (https://github.com/i2b2/i2b2-data). The i2b2 Data

Repository contains a collection of SQL scripts those create all the required tables and

schemas (Table 9) for i2b2 database. The installer also provides instructions for executing

the SQL scripts using JDBC driver.

49

Table 9: Overview of i2b2 database schemas

i2b2 Schema Description of Tables
I2B2DATA It consists of various tables that organize and store clinical data

in a standardized format. It comprises a collection of dimension
tables, fact tables as well as additional tables required for CRC
cell.

I2B2PM It stores all the tables required for functioning Project
Management (PM) cell.
It contains information about cells, projects, users, and users’
access to the project. It also stores user login history in different
tables.

I2B2METADATA It stores i2b2 ontology tables and other tables required for
accessing the ontology.

I2B2HIVE It is a part of Project Management (PM) Cell. The i2b2 hive
schema consists of tables that represent server configuration
parameters and contain information about other cells.

I2B2WORKDATA It manages users’ workplaces, information about queries saved
in the workplaces in different tables.

4.4.2 ETL	Pipeline	for	Mapping	PCORnet	CDM	Data	with	ACT	Ontology	

The i2b2 data installer package supports 3 different SQL engines (Oracle,

Microsoft SQL Server, PostgreSQL) as i2b2 back-end database. However, we modified

the i2b2 core services to enable Snowflake as i2b2 database as described in Chapter 5. In

this process, we modified the i2b2 data installer and added additional supports to use

Snowflake as i2b2 database. We have forked the i2b2 data installer repository

(https://github.com/Missouri-BMI/i2b2-data) and added new SQL scripts under snowflake

folder structure that create all the required i2b2 tables and schemas in the snowflake

database. We have used the ‘ACT’ version of the installer to create required tables and

schema for ACT ontology along with the other tables and schemas required for each cell.

We have added new SQL scripts that are compatible with Snowflake while retaining the

50

same table definitions. The modification added another SQL engine (Snowflake)

compatibility to i2b2 data installer package. After creating all the required schemas and

tables in the Snowflake database using the forked i2b2 data installer, we created ETL

(extract, transform, load) pipeline in the GitHub repository (https://github.com/Missouri-

BMI/I2B2_ON_P_CDM) to extract data from PCORnet CDM database, transform the

tables to i2b2 fact tables and dimension tables and finally load the transformed data into

i2b2 database in fact and dimension table format. We have docker containerized the ETL

process and populated the i2b2 fact tables and dimension tables by running the docker

container. The docker container also modify the ‘C_DIMCODE’ columns of each ACT

ontology tables and replace the snowflake unsupported SQL commands with supported

SQL commands. We developed python scripts that read ‘C_DIMCODE’ column of each

ontology table and identify the unsupported code using regular expression then finally

replace the unsupported SQL commands with supported SQL commands. Table 10 shows

the list of i2b2 ACT ontology hierarchies and the fact tables linked to them, whose are

generated from the associated deidentified PCORNET CDM tables.

51

Table 10: Mapping PCORnet CDM data with i2b2 fact and dimension tables

ACT Ontology Hierarchy PCORnet Table i2b2 Table
ACT Laboratory Tests
(Provisional)

DEID_LAB_RESULT_CM lab_fact

ACT Diagnoses ICD-10-CM DEID_DIAGNOSIS diagnosis_fact
ACT Procedures HCPCS DEID_PROCEDURES procedure_fact
ACT Procedures ICD-10-PCS DEID_PROCEDURES procedure_fact
ACT Social Determinants of
Health

DEID_VITAL
DEID_ENCOUNTER

vital_fact
visit_dimension

ACT Medications VA Classes DEID_PRESCRIBING prescribing_fact
ACT Procedures CPT-4 DEID_PROCEDURES procedure_fact
ACT Visit Details DEID_DEMOGRAPHIC demographic_fact
ACT Demographics DEID_DEMOGRAPHIC demographic_fact
ACT Procedures ICD-9-Proc DEID_PROCEDURES procedure_fact
ACT COVID-19

DEID_DIAGNOSIS
DEID_PROCEDURES
DEID_LAB_RESULT_CM
DEID_PRESCRIBING

diagnosis_fact
procedure_fact
lab_fact
prescribing_fact

ACT Laboratory Tests DEID_LAB_RESULT_CM lab_fact
ACT Diagnoses ICD10-ICD9 DEID_DIAGNOSIS diagnosis_fact
ACT Diagnoses ICD-9-CM DEID_DIAGNOSIS diagnosis_fact
ACT Vital Signs DEID_VITAL vital_fact
ACT Medications Alphabetical DEID_PRESCRIBING prescribing_fact

As part of our research project, we performed the ETL process to integrate data

from PCORnet CDM, a standardized data model used in clinical research. To achieve this,

we extracted relevant PCORnet CDM tables (Table 10) using SQL queries and then created

intermediate tables from the extracted data (Figure 8). These intermediate tables contain

columns required for i2b2 fact and dimension tables that we intended to construct. Then

we created views which has exact table definition of i2b2 fact and dimension tables from

the intermediate tables. We have created '.sql' scripts to perform the ETL process for each

table in PCORnet CDM (Table 10). These scripts contained SQL commands that were used

to extract the relevant data from each table, transform it into the required format, and load

52

the data into corresponding intermediate tables. The Figure 8 shows the ETL process of

Diagnosis table where, we have used DX_TYPE (’10’, ‘9’) and DX (‘K40.30’) column

values to generate the ‘concept_cd’ column (‘ICD10CM:K40.30’) in i2b2 fact table.

Figure 8: Example of Mapping i2b2 fact table with PCORnet CDM table

 We have also mapped the result columns in the PCORnet CDM lab results table

with the i2b2 fact table columns (Figure 9).

Figure 9: Example of Mapping lab results

Finally, we have populated the i2b2 multi-fact and dimension tables with data from

the views, using SQL insert statements. By performing the ETL process, we were able to

53

integrate data from PCORnet CDM into our i2b2 database, facilitating further analysis and

interpretation of the data.

4.4.3 Multi-Fact	View	Approach	

The mapping process was designed to integrate the legacy i2b2 data model, which

represents patient data through both fact and dimension tables. The legacy i2b2 data model

is composed of a central fact table called ‘observation_fact’ that is accompanied by

numerous dimension tables. However, the multi-fact table feature in i2b2 enables queries

to be performed across more than one fact table. In PCORnet Common Data Model, there

are multiple fact tables distinguished by domains like Labs, Diagnosis, Procedures,

Medications, Vitals (Figure 10).

Figure 10: Mapping i2b2 Fact and Dimension Views with PCORnet CDM Views

54

Since i2b2 fact tables and dimension tables doesn’t changes without the ETL data

refresh, we built i2b2 transformation scripts that create views for i2b2 fact and dimension

tables on PCORnet CDM tables so that fact and dimension views in i2b2 automatically

changes when the source tables in PCORnet CDM changes. Multiple fact and dimension

views are created for one or more domains in the PCORnet CDM data. The transformation

scripts also update the i2b2 meta data tables using the standard terminology in the fact

views and ACT V4 ontology that is available i2b2 version 1.7.13. These i2b2

transformation scripts can be used by all the PCORnet sites to stand up an i2b2 instance on

their existing PCORnet CDM data.

 SUMMARY	

We were able to successfully perform the data installation operation to populate the

i2b2 database. The operation performs 3 different tasks: 1) generates the fact and

dimension tables, 2) execute patient count generator scripts for each i2b2 ontology

hierarchy and 3) identifies the gaps in mapping PCORnet CDM with ACT ontology and

generates report in tabular format and store in the i2b2 database under ‘Report’ schema.

The Figure 11 represents the i2b2 web client is displaying the i2b2 ACT ontology

hierarchies (Table 10) where numbers, highlighted in the red colors are the patient counts

generated by the patient count generator scripts.

55

Figure 11: ACT ontology in i2b2 web client user interface

We have created a i2b2 project named ‘NextGen Data Lake De-Identified’ in the

i2b2 hive and populated the I2B2DATA, I2B2METADATA schema (Table 9) tables with

the University of Missouri PCORnet CDM tables, converted into i2b2 fact and dimension

tables. Table 11 represents the count of total rows of data and distinct patient counts for

each i2b2 fact and dimension table stored in the i2b2 database. It holds 1.26 billions of

observation facts of 2.1 millions patients, extracted from MU’s PCORnet CDM.

56

Table 11: Summary of i2b2 fact and dimension tables

Table Name Row Count Patient Count
Demographic_fact 6,763,746 2,153,187
Diagnosis_fact 65,135,834 1,136,359
Lab_fact 154,233,375 586,435
Obsclin_fact 368,194,029 956,079
Patient_dimension 2,153,187 2,153,187
Prescribing_fact 57,884,178 899,365
Procedure_fact 46,141,683 1,023,647
Provider_dimension 30,270 30,270
Visit_dimension 25,473,447 1,223,013
Visit_fact 75,506,671 1,223,013
Vital_fact 460,716,400 966,334

57

CHAPTER	5 :	SNOWFLAKE	AS	I2B2	BACKEND	
DATABASE	

The i2b2 Core Server (https://github.com/i2b2/i2b2-core-server) is written in Java

and utilizes several open-source libraries and frameworks, including Hibernate, Spring

Framework, and Apache Axis2 etc. It also supports multiple databases, including

PostgresSQL, Oracle, and Microsoft SQL Server using JDBC drivers. As the MU’s Data

Lake as described in the section 4.2.3, is hosted in the Snowflake Data warehouse, we goal

was to integrate the i2b2 databases with the same warehouse. This would help in

minimizing the extra costs associated with storage, as well as the effort required for

maintaining and administering another database server. We intended to use a cloud

database provider for the i2b2 database and chose Snowflake data warehouse because of

its extensive cloud features and support for JDBC driver. It also shown promising

performance in running i2b2 queries in Snowflake on larger population datasets.

Snowflake implements JDBC type 4 driver interface that supports core JDBC functionality.

The driver can be used with most client tools/applications that support JDBC for

connecting to a database server. We have forked the i2b2 core server repository

(https://github.com/Missouri-BMI/i2b2-core-server/tree/feature/snowflake). and modified

the source code to implement JDBC as an additional data source for i2b2 web services

running inside Wildfly.

58

 SNOWFLAKE	DATA	WAREHOUSE	

Snowflake is a cloud-based data warehousing platform that allows storing,

processing, and analyzing large amounts of data (Table 12). It provides fast query

processing by using multiple virtual warehouses, automatic query optimization, cluster

tuning, micro-partitioning, automatic clustering, and re-clustering of tables, and quickly

scales up and down (both vertically and horizontally) without disruption. Snowflake also

eliminates the time and effort of managing data warehouse infrastructure. Snowflake offers

advanced features such as SQL support for complex queries and joins, compatibility with

JSON, semi-structured and structured data, and supports various data ingestion options

including batch, streaming, and real-time data ingestion. Additionally, it provides end-to-

end encryption, granular access controls, data masking, and supports various compliance

certifications like HIPAA, making it a highly secure and versatile option as an application

backend database.

 Snowflake also provides support for JDBC (Java Database Connectivity), which

allows Java applications to connect to Snowflake as a data source. The JDBC driver

provided by Snowflake offers a high degree of compatibility with standard Java database

APIs, making it easy to integrate with existing Java applications.

59

Table 12: Key Features of Snowflake Data Warehouse

Feature Description

Security, Governance, and

Data protection

Snowflake provides a multi-layered security model, encryption, access

controls, RBAC, MFA, auditing, and logging capabilities to ensure the

confidentiality, integrity, and availability of data. It complies with

security and data protection regulations and standards such as SOC 2,

HIPAA, GDPR, and PCI. Snowflake also offers advanced data

governance features, such as data retention policies, data lineage

tracking, and data masking, to help organizations comply with regulatory

requirements and internal policies.

Standard and Extended SQL

Support

Snowflake provides full SQL support, including standard SQL as well as

extensions to support more complex queries and data types. It also

supports advanced SQL features such as stored procedures, user-defined

functions, and recursive queries. It offers a wide range of data types,

including structured, semi-structured, and unstructured data.

Scalability Snowflake data warehouse is designed to be highly scalable and elastic.

It separates compute and storage, which allows organizations to scale

each independently, and uses instant elasticity to quickly add or remove

compute resources as needed. This makes Snowflake a flexible and cost-

effective data warehousing platform that can handle various workloads.

Near-Zero Administration Snowflake is a cloud-based data warehousing platform that aims to

simplify data management and maintenance by minimizing the need for

physical hardware, software installation, and configuration. Snowflake

automates most administrative tasks, such as performance tuning,

software upgrades, and data protection. With Snowflake's tools for

monitoring query performance and optimizing queries, organizations can

improve the efficiency of their analytics workloads

Optimized Storage Snowflake uses its internal optimized, compressed, columnar storage to

store and retrieve data in a highly efficient manner. In columnar storage,

data is organized and stored by column rather than by row, which allows

for more efficient processing of analytical queries. In addition, columnar

storage is highly compressible, which means that it takes up less space on

disk and in memory than traditional row-based storage. This results in

reduced storage costs and faster data retrieval times.

60

 SNOWFLAKE	JDBC	DRIVER	SUPPORT	FOR	I2B2	CORE	
CELLS	

We have made significant changes to the i2b2 core server GitHub forked repository

(https://github.com/Missouri-BMI/i2b2-core-server/tree/feature/snowflake) by

implementing JDBC integration for Snowflake, a popular cloud-based data warehousing

and analytics platform. With this integration, the i2b2 core services can now easily access

and manipulate data stored in Snowflake, using the Java Database Connectivity (JDBC)

driver. We also implemented i2b2-data loader in Snowflake for PCORnet common data

model using the ACT ontology, which is described in the chapter 4.4.

The i2b2 core services are a collection of Java-based applications that are designed

to provide researchers and analysts with a powerful and flexible platform for managing and

analyzing data. At the heart of the i2b2 core services is the Data Access Object (DAO)

layer, which is responsible for encapsulating the logic required to access and manipulate

data from the database. The i2b2 core services use the Java Native SQL (JDBC) library,

which provides a standard API for connecting to and executing SQL statements against

databases. In addition to JDBC, the i2b2 core services also utilize the JDBC Spring

Framework in their DAO layer. The Spring Framework provides a set of tools and utilities

for building robust and efficient data access layers, which greatly simplify the development

and maintenance of the i2b2 core services. Together, these frameworks enable the i2b2

core services to communicate with databases and perform a wide range of database

operations, including reading and writing data.

The Data Access Layer (DAO) of the i2b2 services provide support for three

different SQL engines: Oracle, Microsoft SQL Server, and PostgreSQL. This allows users

61

to choose the database system that best suits their needs and preferences. However, it is

important to note that not all JDBC drivers, including the Snowflake JDBC driver, support

all types of query statements. For example, certain data types, built-in function may not be

supported by all drivers, and the creation of sequences and temporary tables can be

different for different JDBC driver types. Data Access Layer classes in the i2b2 services

handles exceptions that may occur with the queries not supported by the JDBC driver in

conditional logic blocks written in the class implementation. The conditional logic blocks

include changes in data types for query parameters and the ResultSet objects for different

JDBC data sources. As part of our effort to expand the capabilities of i2b2 service, we have

introduced new conditional logic blocks in every DAO class implementation where

necessary to ensure that the JDBC Snowflake driver is supported. This ensures that the

system remains robust and functional, even with the integration of a new data source.

5.2.1 Snowflake	Data	Source	in	Wildfly	

Snowflake provides a JDBC type 4 driver that supports JDBC functionality. The

JDBC driver must be installed in a 64-bit environment and requires Java 1.8 (or higher).

Our docker containerization process describe in the section 2.3 ensures the environment

compatible for the Snowflake JDBC driver. The docker implementation of ‘i2b2-wildfly’

execute a shell script to install the JDBC driver module and configure jdbc connection-

pool for each service in the container runtime using jboss-cli (jboss command-line

interface). We have used snowflake jdbc driver version 3.13.9 and added the driver as a

module in the Wildfly using following jboss-cli command:

62

module add --name=net.snowflake --
resources=/opt/jboss/wildfly/customization/snowflake-jdbc-3.13.9.jar

Then we have added snowflake driver as a data source for the Wildfly server by following

command:

/subsystem=datasources/jdbc-driver=snowflake:add(driver-
name="snowflake",driver-module-name="net.snowflake",driver-class-
name=net.snowflake.client.jdbc.SnowflakeDriver)

Finally, we have added connection-pool for each i2b2 services using their jndi-name (Java

Naming and Directory Interface). The below command was executed to incorporate a

snowflake connection-pool into the i2b2 Data Repository (CRC) service:

data-source add
--jndi-name=java:/CRCBootStrapDS
--name=CRCBootStrapDS
--connection-url=${DS_HIVE_DB}
--driver-name=snowflake
--user-name=${DS_HIVE_USER}
--password=${DS_HIVE_PASS}
--max-pool-size=200

We pass the following arguments as the function parameter listed in the Table 13. The

configuration of environment variables of the data source was covered in chapter 2.3.1.

63

Table 13: Arguments used in configuring the Wildfly Data source

Function Argument Description
jndi-name The name of a resource in the Java Naming and Directory

Interface (JNDI) naming service. The i2b2 jndi resource are:
CRCBootStrapDS, QueryToolDS, OntologyBootStrapDS,
OntologyDS, PMBootStrapDS, WorkplaceBootStrapDS,
WorkplaceDemoDS

name The name of a resource or subsystem. It is used with the jboss-
cli commands to perform operations on a specific resource or
subsystem

connection-url Connection URL for the database
driver-name Unique identifier of the database
user-name Username credential for the database account
password Password credential for the database account
max-pool-size Maximum database connection can contain the data source

5.2.2 Modifying	Data	Access	Layer	classes	in	the	i2b2	services:	

The i2b2 core services abstracts the creation of JDBC driver connection in its

‘DataSourceLookupDAOFactory’. The DAO objects retrieve the JDBC driver identifier

and construct queries and query result objects in its own class definition. We have added

‘SNOWFLAKE’ as a new data sources in the ‘DataSourceLookupDAOFactory’ so that,

other DAO objects can identify Snowflake as another data source for the system. Then, we

went through all the i2b2 services and modified the source code of i2b2-core-server in our

forked repository. Figure 12 represents the steps were taken while modify the i2b2-core-

server source code. i) The first step was to review all the i2b2 services and identify their

corresponding SQL codes in the Data Access Object (DAO) class implementation. ii) The

next step involved running these SQL codes in Snowflake, a cloud-based data warehousing

platform, to test their compatibility and ensure that they execute without any errors. iii) If

64

any errors were encountered during the testing phase, a conditional logic block

implementation was added in the DAO class specifically for Snowflake. The errors

identified were due to differences in the implementation of creating sequence, temporary

tables, unsupported data types, and different date functions used in Snowflake compared

to the original implementation. The conditional logic block implementation addressed

these differences in the Snowflake implementation, enabling the SQL codes to run without

errors in the Snowflake environment. iv) Finally, the updated DAO class implementation

was thoroughly tested to ensure that all i2b2 services were working correctly with the

Snowflake database. The snowflake driver support implementation of i2b2-core-server is

available in the public forked repository (https://github.com/Missouri-BMI/i2b2-core-

server/tree/feature/snowflake), and it can be deployed in the cloud or locally as described

in the chapter 2.3.2.

Figure 12: Step taken in the modification of i2b2-core-server source code

Validate the changes by running queries in the i2b2 web client

Inspect the query response and fix the query if needed

Run the collected SQL statements in the Snowflake and analyze the query result

Collect SQL statements from the DAO class implementation

65

 RESULTS	

In this chapter, our goal was to leverage Snowflake as the backend database for

i2b2, as it offered superior analytical query performance and test its query execution

performance as i2b2 back-end database. We were able to successfully run queries in the

i2b2 web client which uses snowflake as i2b2 back-end database. We have executed

various types of queries (Table 14) in the i2b2 web client for different types of warehouses,

query complexity and closely observed the results described in the Figure 13. We utilized

the various query features available within the i2b2 query tool to construct 9 distinct types

of queries (Table 14). These features include the basic query functions such as adding terms

in the separate groups, adding date constraints and value constraint to filter out the

observations. We can also include groups in the exclusion criteria by using exclude

functionality. In addition to these features, we also included i2b2’s query timing features

to construct more complex queries. The i2b2 query timing features allowed us to treat

groups of terms within the same financial encounter or treat independently from other

groups. We also used the result types mentioned in the (Table 14) to generated result for

the i2b2 queries. The i2b2 query tool provides several result types including distinct patient

count, patient and encounter set for future analysis, show graphical representation of

patient count distribution in various groups e.g. age, gender, race etc.

66

Table 14: Overview of i2b2 queries executed in the comparison

Query
Features

Very
Simple Simple Medium

Complex Complex Highly
Complex

Very
Complex Temporal

Query
Features
(Basic)

Number of
groups 1 2 3 3 3 4 2

Number of
terms 1 2 3 3 8 12 2

Number of
date

constraints
0 0 0 1 4 4 0

Number of
Exclusions 0 0 0 0 1 1 0

Number of
value

constraints
0 0 0 1 2 5 0

Query
Features

(Temporal)

Number of
groups are

independent
of financial
encounters

1 2 3 1 1 1 0

Number of
groups are
in the same

financial
encounters

0 0 0 2 2 3 2

Result
Features

Patient
Count Ö Ö Ö Ö Ö Ö Ö

Patient set Ö Ö Ö Ö Ö Ö Ö
Encounter

set Ö Ö Ö Ö Ö Ö Ö

Gender
patient

breakdown
Ö Ö Ö Ö Ö Ö Ö

Vital status
patient

breakdown
Ö Ö Ö Ö Ö Ö Ö

Race patient
breakdown Ö Ö Ö Ö Ö Ö Ö

Age patient
breakdown Ö Ö Ö Ö Ö Ö Ö

Top 20
diagnosis

breakdown
Ö Ö Ö Ö Ö Ö Ö

Top 20
medications
breakdown

Ö Ö Ö Ö Ö Ö Ö

67

The reason behind executing a range of queries under different warehouses was to

evaluate the performance of Snowflake in handling varying levels of workload and

determine which warehouse configuration best suited the needs of the i2b2 application.

When running i2b2 queries in Snowflake, the size of the warehouse being used can impact

the performance of the queries. Specifically, if the query being executed involves a higher

degree of complexity, such as including multiple fact and dimension tables, a larger

warehouse shows better results. In contrast, when running less complex queries, switching

from a larger warehouse to a smaller warehouse may not have a significant impact on

performance. It is important to note that the size of the warehouse is not the only factor that

affects query performance. Other factors, such as the number of nodes, the amount of data

being processed, and the complexity of the query itself, can also play a role in determining

the optimal warehouse size for a given query.

68

	

Figure 13: i2b2 query execution time comparison against different warehouses

69

CHAPTER	6 :	DISCUSSION	

The aim of our research project was to accomplish several objectives. Firstly, we

sought to simplify the process of installing i2b2. To achieve this, we containerized the i2b2

web client and web services in their corresponding docker containers. We created an i2b2

docker containerization package that can automatically download, compile, and configure

the i2b2 platform, enabling the easy deployment of a functioning i2b2 instance in the cloud

or local environment.

Next, we focused on deploying the i2b2 components in the AWS cloud, with the

goal of implementing a serverless architecture solution that would allow us to host i2b2 in

a secure environment with minimal effort required for maintenance. We also aimed to use

Snowflake as the i2b2 database in the cloud to reduce administrative tasks involved in

maintaining the server, as the MU data lake is also in Snowflake. To achieve this, we

modified the source codes of i2b2 core-server and data installer repository and added

Snowflake as a new data source for the system. Our solution enhances the functionality of

the i2b2-core-servers and can be used in existing server configurations.

Finally, we populated the fact and dimension tables of i2b2 Snowflake database

using the ETL operation we developed for mapping PCORnet data with the ACT ontology.

Our ETL scripts package offers automatic installation of i2b2 data from PCORnet CDM

source systems with minimal effort, by providing configuration parameters for source and

target databases.

70

Our installation packages serve as a useful reference for quickly and easily

installing i2b2, and they can be used by infrastructure teams to efficiently instantiate new

instances of the i2b2 platform at different sites. One of the primary challenges of installing

i2b2 is the manual collation of dependencies. Our installer packages include all the required

dependencies, such as server configuration parameters, dependency packages, and

database credentials for different cells.

The second challenge of installing i2b2 is configuring the platform components to

connect properly. We simplified this configuration process, enabling developers to easily

modify the configuration parameters to suit their environment. We also focused on

ensuring that i2b2 runs in a secure environment in the cloud. To achieve this, we followed

recommended practices for deploying i2b2 applications in the cloud. We deployed

containers in the private subnets inside the VPC, disabled public IP association, established

an application load balancer with WAF, and enforced secure HTTPS connections. We also

enabled SSO login mechanism for i2b2 web client, allowing users to log in to i2b2 using

their institution's login credentials.

 SNOWFLAKE	QUERY	EXECUTION	PERFORMANCE	
AGAINST	LARGER	DATASET	

 We have developed Snowflake JDBC driver support for i2b2 web services

to utilize the computing power warehouses of snowflake data warehouse and its query

execution performance against analytical type queries. The Snowflake i2b2 database

initially loaded with MU’s PCORnet CDM data. It holds 1.26B facts of 2M patients in the

different fact and dimension tables. However, we wanted test the system with larger

population database and evaluate its performance. We have created a project in the same

71

i2b2 platform and loaded i2b2 fact and dimension tables from 13 Greater Plains

Collaborative (GPC) sites, stored in PCORnet CDM and tested the system by executing

same query listed below in the different i2b2 projects having MU and GPC data.

Male AND >=65 years old AND Has disease of the digestive system (K00-K95)

We ran the query on both i2b2 project and found it took 44.0 sec to retrieve the

patient count from MU data having 65 millions facts of 1.1 millions patients diagnosis

records. Where it took 50.0 sec to retrieve the patient count from GPC data having 1.37

billions facts of 23 millions patient diagnosis records.

 LIMITATIONS	AND	FUTURE	WORK	

The docker containerization process of i2b2 simplifies the installation and upgrade

of i2b2 platform in a greater flexible way. Our demonstration showcased i2b2 deployment

in AWS ECS FARGATE, but it is worth noting that other cloud service providers like

Azure and Google Cloud Provider also provide similar capabilities. Although we chose

AWS based on the requirement specific needs, also for its popularity and user-friendliness,

while other cloud providers could be suitable as well. We enhanced the functionality of

i2b2 services by developing Snowflake JDBC driver support i2b2 core services, which

enables the i2b2 services to query directly from Oracle, Microsoft SQL Server,

PostgreSQL, and Snowflake. However, our data installation package and ETL pipeline

currently only support Snowflake as i2b2's backend database. In future work, we plan to

72

expand our data installation package to support other databases and cloud providers,

making i2b2 more adaptable and accessible to a wider range of research settings.

 CONCLUSION	

In this thesis, we addressed the need for a self-service query tool for researchers

and aimed to make the i2b2 platform accessible to the MU researchers. The i2b2 platform

is a powerful tool for clinical researcher, but it can be difficult to install and uses. Our

approach simplified the installation process by providing pre-built docker containers that

can be easily deployed on a local machine or in the cloud. We also demonstrated a secure

and scalable way to deploy i2b2 in the AWS ECS FARGATE serverless compute engine.

Overall, our contributions have significantly reduced the effort to installing and

maintaining the i2b2 platform. By simplifying the installation process, we also made it

easier for i2b2 developers to load data into i2b2 database. We provided a data installation

package that uses ACT ontology to convert PCORnet CDM data into i2b2 fact and

dimension tables. We also developed Snowflake JDBC driver support for i2b2 services.

By providing snowflake driver support, we have made it possible for i2b2 services to query

directly from Snowflake analytical database.

73

BIBLIOGRAPHY	
1. Shen JJ, Samson LF, Washington EL, Johnson P, Edwards C, Malone A. Barriers of HIPAA

Regulation to Implementation of Health Services Research. J Med Syst. 2006;30(1):65-69.
doi:10.1007/s10916-006-7406-z

2. Cimino JJ, Ayres EJ, Beri A, Freedman R, Oberholtzer E, Rath S. Developing a self-service
query interface for re-using de-identified electronic health record data. Stud Health
Technol Inform. 2013;192:632-636.

3. Murphy SN, Mendis M, Hackett K, et al. Architecture of the Open-Source Clinical Research
Chart from Informatics for Integrating Biology and the Bedside.
http://www.bisti.nih.gov/ncbc/

4. Wagholikar KB, Mendis M, Dessai P, et al. Automating Installation of the Integrating
Biology and the Bedside (i2b2) Platform. Biomed Inform Insights.
2018;10:117822261877774. doi:10.1177/1178222618777749

5. Hung LH, Kristiyanto D, Lee SB, Yeung KY. GUIdock: Using Docker Containers with a
Common Graphics User Interface to Address the Reproducibility of Research. PLoS One.
2016;11(4):e0152686. doi:10.1371/journal.pone.0152686

6. Amazon. Amazon Web Services. Accessed April 23, 2023. https://aws.amazon.com

7. Dageville B, Cruanes T, Zukowski M, et al. The Snowflake Elastic Data Warehouse. In:
Proceedings of the 2016 International Conference on Management of Data. ACM;
2016:215-226. doi:10.1145/2882903.2903741

8. Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. ACM
SIGMOD Record. 1997;26(1):65-74. doi:10.1145/248603.248616

9. Hosny A, Vera-Licona P, Laubenbacher R, Favre T. AlgoRun: a Docker-based packaging
system for platform-agnostic implemented algorithms. Bioinformatics. 2016;32(15):2396-
2398. doi:10.1093/bioinformatics/btw120

10. i2b2. i2b2 Server-Side Architecture. Accessed April 23, 2023.
https://community.i2b2.org/wiki/display/ServersideArchitectureHome/OVERVIEW

11. PCORI. Accessed April 23, 2023. https://www.pcori.org

12. The National Patient-Centered Clinical Research Network. PCORnet Network. Accessed
April 23, 2023. https:/pcornet.org/network

13. PCORnet Common Data Model. Accessed April 23, 2023. https://pcornet.org/data/

74

14. ACT Network. Accessed April 23, 2023. https://dbmi-pitt.github.io/ACT-
Network/ontology.html

75

VITA	

Md. Saber Hossain is a graduate research assistant in the Center for Biomedical

Informatics at the University of Missouri, supervised by Dr. Abu Saleh Mohammad Mosa.

He completed his Bachelor of Science in Computer Science and Engineering from

Chittagong University of Engineering and Technology and pursuing his master’s in Health

Informatics. He has worked as a mobile application developer over five years in various

startup and corporate companies. During this time, he led software engineers to develop

and maintain more than 10 iOS applications. He is passionate about problem-solving with

data structures and algorithms. He has a strong knowledge of web and mobile application

development and experienced in using cloud services. As part of his graduate research

assistantship work, his contribution simplified the installation and maintenance of the i2b2

platform. He demonstrated a way to deploy the i2b2 platform on AWS and Snowflake

cloud data analytics platform in a secure and scalable way. His serverless deployment of

i2b2 components reduced the effort required to install and maintain servers. He is interested

in building his career as a software engineer.

