
POWER-EFFICIENT MACHINE LEARNING-BASED

HARDWARE ARCHITECTURES FOR BIOMEDICAL APPLICATIONS

A Dissertation

presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

OMIYA HASSAN

Dr. Syed Kamrul Islam, Dissertation Supervisor

MAY 2023

© Copyright by Omiya Hassan 2023

All Rights Reserved

The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled

POWER-EFFICIENT MACHINE LEARNING-BASED

HARDWARE ARCHITECTURES FOR BIOMEDICAL APPLICATIONS

presented by Omiya Hassan,

a candidate for the degree of Doctor of Philosophy,

and hereby certify that, in their opinion, it is worthy of acceptance.

Professor Syed Kamrul Islam

Professor Jianlin (Jack) Cheng

Professor Dominic K. C. Ho

Dr. Abu Saleh Mohammad Mosa

Dedicated to my sister, Orchi, for always guiding and supporting me;

to my parents, Neely and Rabi, for their unbounded love and care;

and to my grandmother, Nanu whose prayers were heard.

ACKNOWLEDGMENTS

This work would not have been possible without the constant support, and guidance from my

Supervisor, Prof. Syed Kamrul Islam. As a teacher and mentor, he has shown me, by his example,

what a good researcher, supervisor, and academician should be. I would also like to thank my

dissertation committee members, Prof. Jianlin Cheng, Prof. Dominic K. C. Ho, and Dr. Abu

Saleh Mohammad Mosa, who have encouraged and supported me in every step, both research and

career-wise.The tremendous help and endless support from my labmates and colleagues from the

Analog/Mixed-Signal, VLSI, Devices Laboratory: Mow, Samira, Shuvo, Nazmul, Twisha, and Maruf

have made this dissertation a reality. I am truly blessed to have an amazing supervisor and a

supportive group.

The two-year graduate fellowship provided by IEEE Instrumentation and Measurement Society

(IMS) and the tape-out fund provided by IEEE Solid-State Circuits Society (SSCS) have played a

significant role in successfully finishing my Ph.D. dissertation with qualitative work. The Electrical

Engineering and Computer Science Department (EECS) of the University of Missouri for allowing

me to teach as an instructor, helped me prepare myself for academia.

I am fortunate to have an amazing group of people I call family at the University of Missouri.

Especially Afia, Tanmoy, Mow, Tonmoy, Samira and Sajid have been the greatest support throughout

my Ph.D. journey, and I can always count on them. A special heartfelt gratitude to Somudro, Rafi,

Tamim, and Galib, who has supported and cheered me thousands of miles away during my crucial

times. Lastly, Lamiya, Rommo, and my undergraduate university friends were always there to

support me, especially during the pandemic.

Nobody has been more important to me in the pursuit of my Ph.D. than the members of my

family. I want to thank my sister Orchi, whom I was inspired to pursue my Ph.D., and Eresh,

who ensured I enjoyed my graduate life; my Uncle and Aunty: Smritee, and Shaheen, whom I am

privileged to call my USA-parents, have always been supporting and cheering me on. And last but

not least, the two most important people in my life, my parents, Neely and Rabi, for always believing

in me.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ii

LIST OF TABLES vii

LIST OF FIGURES xii

ABSTRACT xiii

1 Introduction 1

1.1 Motivation . 3

1.2 Contribution and Dissertation Outline . 5

2 Background 8

2.1 Neural Network Architecture for Biomedical Applications 9

2.2 Sleep Apnea Detection System . 10

2.2.1 Current Devices in the Market . 11

2.2.2 Emerging Solutions for Sleep Apnea Detection Systems 11

2.3 Conclusion . 13

3 Design Methodology of Machine-Learning Based Hardware 15

3.1 Introduction . 15

3.2 Software-Hardware Co-Simulation Process . 15

3.2.1 Discussion . 17

3.2.2 Experimental Benchmark . 17

4 Model Optimization and Compression Techniques 19

4.1 Introduction . 19

4.2 Pruning . 19

4.2.1 Pruning Experiments . 21

iii

4.3 n-bit Integer Quantization . 32

4.3.1 Methodology . 32

4.4 Conclusion . 33

5 DeepSAC: Shift Accumulate Based Deep Learning Model 34

5.1 Introduction . 34

5.2 DeepSAC for Biomedical Applications . 37

5.2.1 Experiments on Re-programmable Hardware 37

5.3 Significant Improvement . 43

5.3.1 Simulation Results . 44

5.3.2 Test Bench Results . 45

5.4 Conclusion . 47

6 SABiNN: Shift Accumulate Based Binarized Neural Network 49

6.1 Introduction . 49

6.2 Design Scheme . 49

6.3 SABiNN for Sleep Apnea Detection . 52

6.3.1 Software Simulation Results . 54

6.3.2 Experiments on Re-programmable Hardware 54

6.3.3 Experiments on CMOS Platform . 59

6.4 Discussion . 68

6.5 Conclusion . 70

7 Benchmark of Proposed Model Architecture 72

7.1 Introduction . 72

7.2 Model and Dataset Selection . 72

7.2.1 VGG19 . 73

7.2.2 ResNet50 . 73

7.2.3 MobileNetV2 . 76

7.2.4 Dataset Generation and Pre-processing . 77

7.2.5 Binarizing Dense Layers . 79

7.3 Training and Evaluation . 79

7.4 Conclusion . 86

iv

8 Conclusion 88

8.1 Future Work . 91

A Python Code: FNN, DeepSAC and SABiNN 94

B VHDL Code: DeepSAC for SA Detection 102

C Verilog Code: SABiNN for SA Detection 130

D VHDL Code: DeepSAC for Diabetes Prediction 149

E Python Code: Benchmark of SABiNN 199

BIBLIOGRAPHY 221

VITA 222

v

LIST OF TABLES

1.1 Research Review on Real-time Detection and Wearability 5

2.1 Market Available at Home Sleep Apnea Testing Devices (HSAT) 12

4.1 Comparative Study between proposed FNN and other ML models 27

4.2 Pima Native American Diabetes Dataset . 27

4.3 FNN Training and Model Features . 28

4.4 Pruned Test Results on Image Classification Dataset 31

4.5 Pruned Test Results on Biomedical Data set . 31

5.1 Power Consumption Study . 35

5.2 Measurements of ReLU and Sigmoid on 180 nm CMOS Process 39

5.3 Shifter Bit Based on Weight Range . 40

5.4 Performance Evaluation Between FNN and DeepSAC: Apnea Detection 43

5.5 Performance Evaluation Between FNN and DeepSAC: Diabetes Prediction 43

5.6 Power Consumption Report for DeepSAC model: Apnea Model 43

5.7 Power Consumption Report for DeepSAC model: Diabetes Model 44

6.1 Google TPU Signal Core Specification . 51

6.2 Google TPU Pricing as of 2022 . 51

6.3 Performance Evaluation Metrics Between FNN, DeepSAC, and SABiNN 54

6.4 Power Consumption Analysis: Vivado HLx Software Simulation 55

6.5 Power Consumption Analysis: Nexys Artix-7 FPGA Embedded Simulation 56

6.6 Resource Utilization on Nexys Artix-7 FPGA . 56

6.7 Power Consumption Rate Between MAC, SAC, and BAC 57

6.8 SABiNN-MLP Chip Characteristics . 62

6.9 SABiNN Chip Characteristics between 180nm and 130nm PDK 68

vi

6.10 State-of-the-art Method in SA Detection . 70

7.1 Full stack VGG Model . 74

7.2 18-layer,34-layer and 50-layer ResNet Models . 76

7.3 Training Features for Cifar10 and MedMNIST Datasets 80

7.4 Evaluation Metric: Cifar10 . 82

7.5 Evaluation Metric: MedMNIST-pneumonia . 82

7.6 Total Number of MAC Units . 85

7.7 Energy Rate of each Logic Block used in MAC and BAC 86

7.8 Estimated energy consumption Rate between original, DeepSAC, and SABiNN-based

classifiers . 86

vii

LIST OF FIGURES

1.1 Statistical analysis of AI models such as ResNet, and CNN outperforming Moore’s

Law through the years [6]. 2

1.2 Study of sleep apnea (SA) mortality rate by the University of Wisconsin-Madison. . 4

2.1 Block diagram of the proposed neural network (NN) embedded sleep apnea detection

system. An adhesive ECG patch and fingertip pulse oximeter are front-end sensors,

and NN is used as the decision-making block [16]. 10

3.1 Software-Hardware Co-Simulation Design Process: From Software Simulation to

Machine-Learning Model Inference on Hardware [15–17]. 16

4.1 Iterative pruning process and network structure before and after pruning. 20

4.2 Three-step pruning process used for model compression and optimization. 20

4.3 Sample model of a feedforward neural network (FNN) classifying MNIST data. . . . 21

4.4 (a) MNIST and (b) Fashion-MNIST data set samples which are labeled, shuffled, and

measured at 28x28 pixels for classification. 23

4.5 Raw ECG data and SpO2 data within 10 seconds of time-frame collected from sleep

apnea dataset. 24

4.6 Data pre-processing, generation and class balance scheme [31]. 25

4.7 Number of balanced samples versus data labels obtained by executing various class

imbalance techniques. 26

4.8 Reviser Operating Characteristics Curve (ROC Curve) between (a) original (65%), (b)

SMOTE (62.66%), (c) SMOTE+Tomek (73%), and (d) SMOTE+ENN (83%). . . . 26

4.9 Sample model of a feedforward neural network (FNN) with input layers, hidden layers

and output layers. 28

4.10 Re-sampling per iteration in K-fold cross-validation technique. 30

4.11 8-bit integer quantization technique for hardware inference. 32

viii

5.1 Synapse-neuron connection of NN model where wi are the weights, bi are the biases, xi

are the output values from the previous neuron or sensors, f is the activation function,

and yi is the output of the neuron for the next layer. 35

5.2 Comparative power consumption analysis between the 16-bit multiplier and 16-bit

shifter simulated and measured on general-purpose Nexys Artix-7 FPGA board. . . 36

5.3 DeepSAC compression and conversion process in a feedforward neural network. . . . 36

5.4 Power consumption study between three commonly used activation functions sigmoid,

hyperbolic tangent and rectified linear unit in NNs. 38

5.5 Layout image of activation functions on 180nm PDK (a) Rectified Linear Unit (ReLU)

with 8bit input/output and (b) Sigmoid function with 8-bit input and 1-bit output. 40

5.6 Transient analysis of ReLU activation function with 50ns period and 5V supply voltage.

a1-8 are output channels, and b1-8 are input channels. 41

5.7 Transient analysis of Sigmoid activation function with 50ns period and 5V supply

voltage. b1-8 are input channels, and output is a 1-bit output channel. 41

5.8 Shifter base synapse-neuron connection of NN model where wi are the weights, bi are

the biases, xi are the output values from the previous neuron or sensors, si are the

shifted value f is the activation function and yi is the output of the neuron for the

next layer. 42

5.9 Accuracy vs. pruning percentage for (a) diabetics prediction model and (b) apnea

prediction model using magnitude based pruning. 44

5.10 Resource utilization analysis on re-programmable hardware before and after pruning

with integer quantization (a) apnea detection model (b) diabetes prediction model. . 45

5.11 Number of digital logic units on re-programmable hardware before and after pruning

and integer quantization embedding on FPGA board (a) apnea detection model (b)

diabetes prediction model. 46

5.12 Final embedded model size on re-programmable hardware before and after pruning on

FPGA board (a) apnea detection model (b) diabetes prediction model. 46

5.13 Simulation test result demonstrating the hardware prediction of SA detection (1: when

an apneic event occurs and 0: normal condition) using an unseen test data set. . . . 47

5.14 Simulation test result demonstrating the hardware prediction of diabetes prediction

(1: diabetes predicted and 0: normal condition) by using unseen test data set. 48

6.1 Google TPU block Diagram: System Architecture. 50

ix

6.2 Extraction and conversion process of weights transformed into binarized weights. . . 51

6.3 SABiNN module embedded proposed sleep apnea detection block diagram. 52

6.4 Approximation of a convolution using binary operations. The input data are converted

into binary and multiplied with weights of +1 and 1. W = weights, X1 and X2 are

binarized input values, sign() = sign activation function, K = filter [84]. 53

6.5 Comparative study between quantized input and binary input values. The input data

are multiplied with weights of +1 and 1. By using NAND-based 2s compliment, the

accuracy rate is achieved around 70% whereas using binary input and hyperparameters

then, the accuracy degrades to 40%. 53

6.6 Construction of a 3-layer 2-(8-6-4)-1 SABiNN model with two 30-second segmented

1-dimensional sensor inputs (x1: R-R interval and x2: SpO2) generated from ECG

patch and pulse oximeter. The hidden layer consists of ReLU activation function, and

the hard-sigmoid is the output layer activation function. 54

6.7 Binarized synapse-neuron connection converted from the traditional synapse-neuron

connection. 55

6.8 Hardware resource utilization percentage between Multiply-Accumulate (MAC), Shift-

Accumulate (SAC), and Binarized Accumulate (BAC). 57

6.9 Physical implementation of the SABiNN module integrated onto a general purpose

Nexys Artix-7 series FPGA with the computer acting as dummy sensors of the ECG

patch and SpO2 Sensor (pulse oximeter) and a 7-segment display showcasing the

output result. 58

6.10 Test-bench simulation test demonstrating the hardware prediction of SA detection (1:

when an apneic event occurs and 0: normal condition) using the unseen test dataset. 59

6.11 Illustration of a baseline MLP model (a) graphical view of a typical fully connected

3-layer 2-(4)-1 MLP (b) CMOS layout of 3-layer 2-(4)-1 binarized MLP with the

rectified linear unit as its hidden layer activation function and hard sigmoid (sign) as

its output activation function. The red label indicates the binarized MAC unit (Adder

and 2s compliment), the purple indicates the ReLU function, and the blue indicates

the hard sigmoid function. 60

6.12 Comparative study of the output values during transient analysis between (a) XNOR

gate and (n) NAND-based XNOR gate. In the XNOR gate, (-279 mV to 456 mV)

voltage spike is observed during bit flipping in transient analysis indicated at (b),

where the NAND-based XNOR gate resulted in a much cleaner signal. 61

x

6.13 Layout image of the SABiNN MLP chip inside a 5 mm2 pad frame where VDD = DC

voltage source (1.8 V), x1 and x2 are 8-bit inputs, the output is a 1-bit output. The

entire chip was designed on a 180 nm CMOS process. 61

6.14 SABiNN-MLP test circuit and simulation results. a(1-8) and b(1-8) are input pulse

voltage signals, and out is the output signal generated by the MLP circuit. 63

6.15 Construction of a 3-layer 2-(-6-8-4)-1 FNN model for 180nm PDK process with two

30-second segmented 1-dimensional sensor inputs (x1: R-R interval and x2: SpO2)

generated from ECG patch and pulse oximeter. The hidden layer consists of ReLU

activation function and the sigmoid as the output layer activation function. 64

6.16 Design of a 4-layer 2-(8-12-6-4)-1 SABiNN model for 130nm PDK process with two

30-second segmented 1-dimensional sensor inputs (x1: R-R interval and x2: SpO2)

generated from ECG patch and pulse oximeter. The hidden layer consists of the ReLU

activation function and sigmoid as the output layer activation function. 64

6.17 Schematic view of a full three hidden layer SABiNN model on 180nm. (a) is both the

input and layer one with an eight-node connection, (b) is layer 2 with six nodes, (c)

is layer 3 with four nodes, and (d) is the output layer with one node and a sigmoid

block at the end for classification. 65

6.18 Full layout image of a 3-hidden layer SABiNN model. 66

6.19 Full layout image of a 4-hidden layer 16-bit input SABiNN model with its schematic.

(a) schematic view of the digital 4-hidden layer SABiNN model designed on Vivado

HLx. (b) the digital layout of the synthesized SABiNN model and (c) 16-bit 4-hidden

layer SABiNN model integrated onto Google+Skywater’s caravel digital padframe. . 67

6.20 SABiNN on 180nm CMOS test circuit and simulation results. a(1-8) and b(1-8) are

input pulse voltage signals, and out is the output signal generated by the MLP circuit. 69

6.21 Test-bench simulation test demonstrating prediction of SA detection (1: when an

apneic event occurs and 0: normal condition) using the unseen test dataset. 70

7.1 Example of a VGG19 model with 19.6 billion FLOPs [102]. 73

7.2 A residual network with 34 parameter layers (3.6 Billion FLOPS). The dotted shortcuts

of the residual network are increased dimensions. The last layer is the feedforward

layer, and the model is fed in with image dataset [103]. 73

7.3 Residual learning. A skip connection block. 75

7.4 MobileNetV2 basic construction of two blocks [104]. 76

xi

7.5 Sample of a cifar-10 dataset with image labels [105]. 77

7.6 Sample of (a) healthy lung and (b) affected lung (pneumonia patient) [107]. 78

7.7 Algorithm for binarizing each layer through layer extraction using SABiNN method. 80

7.8 Simulation test result demonstrating the hardware prediction of diabetes prediction

(1: diabetes predicted and 0: normal condition) by using unseen test data set. 84

7.9 Energy estimation methodology [111] where Ecomp is the computation energy being

consumed and Edata is the energy per data passing and access. 85

8.1 Software-Hardware co-simulation method [16]. 89

8.2 Summary of the thesis. 90

8.3 2022 Artificial Intelligence Accelerators Surveys and Trends [118]. 92

xii

ABSTRACT

The future of critical health diagnosis will involve intelligent and smart devices that are low-cost,

wearable, and lightweight, requiring low-power, energy-efficient hardware platforms. Various machine

learning models, such as deep learning architectures, have been employed to design intelligent health-

care systems. However, deploying these sophisticated and intelligent devices in real-time embedded

systems with limited hardware resources and power budget is complex due to the requirement of

high computational power in achieving a high accuracy rate. As a result, this creates a significant

gap between the advancement of computing technology and the associated device technologies for

healthcare applications. Power-efficient machine learning-based digital hardware design techniques

have been introduced in this work for the realization of a compact design solution while maintaining

optimal prediction accuracy. Two hardware design approaches, DeepSAC and SABiNN have been

proposed and analyzed in this work. DeepSAC is a shift-accumulator-based technique, whereas

SABiNN is a 2’s complement-based binarized digital hardware technique. Neural network models,

such as feedforward, convolutional neural nets, residual networks, and other popular machine learning

and deep neural networks, are selected to benchmark the proposed model architecture. Various

deep compression learning techniques, such as pruning, n-bit (n = 8,16) integer quantization, and

binarization on hyper-parameters, are also employed. These models significantly reduced the power

consumption rate by 5x, size by 13x, and improved the model latency. For efficient use of these models,

especially in biomedical applications, a sleep apnea (SA) detection device for adults is developed to

detect SA events in real-time. The input to the system consists of two physiological sensor data, such

as ECG signal from the chest movement and SpO2 measurement from the pulse oximeter to predict

the occurrence of SA episodes. In the training phase, actual patient data is used, and the network

model is converted into the proposed hardware models to achieve medically backed accuracy. After

achieving acceptable results of 88% accuracy, all the parameters are extracted for inference on edge.

In the inference phase, reconfigurable hardware validated the extracted parameter for model precision

and power consumption rate before being translated onto the silicon. This research implements the

final model in CMOS platforms using 130 nm and 180 nm commercial CMOS processes.

xiii

Chapter 1

INTRODUCTION

The evolution of Artificial Intelligence (AI) has opened up a whole new approach to biomedical

sensing [1]. AI technology has been extensively incorporated as a powerful tool in image analysis,

speech recognition, translation, signal processing, and other tasks and is rapidly proliferating in our

everyday lives. These AI systems incorporate machine learning, artificial neural networks (ANN),

and deep-learning neural networks (DNN) for building sophisticated systems that closely resemble

the performance of human-like behavior. Neural networks, particularly modern DNNs, are becoming

quite popular for their ability to predict and make decisions by being trained using different types of

data sets. Due to their human-like detection and prediction capabilities, these models have become

suitable tools for biomedical research and applications. The learning technique of the DNN model

through analyzing complex features makes it possible to obtain highly accurate information from

biophysical signals such as electrocardiograms (ECGs), electroencephalograms (EEGs), glucose levels

etc. Generally, such neural network models can automatically extract essential features from heavily

dense data sets with a high degree of accuracy [2]. For patients with no visible symptoms at the

onset of the disease, real-time monitoring is necessary for the timely intervention of possible health

complexities. The system must have the capabilities of low power consumption rate, high accuracy,

and a large amount of data delivery [3]. Most existing works have focused on dealing with heavy-dense

data by extracting the results on the cloud and using different deep learning techniques. In contrast,

fewer research works have developed energy-efficient and real-time detection methodologies. These

approaches often consume a significant amount of energy due to the handling of large data sets and

an increasing amount of memory power [4]. In 2019, a study conducted by a group of researchers from

Stanford University found that training an off-the-shelf Natural Language Processing (NLP) model

can emit nearly 14,000 pounds of carbon emissions. This amount of CO2 emission is approaching

the amount of carbon emitted by a single passenger flying a round trip from New York to San

1

Francisco [5].

Running highly computational AI models requires exhaustive hardware resources and memory

devices. Research conducted by the MLPerf group [6] states that, as Moore’s Law [7] is stagnant due

to the limited number of transistor densities on a single CPU, AI is outperforming Moore’s Law by

11x times as shown in Fig 1.1. Thus, there are fewer hardware memory resources to train AI models

than in cloud computing. This creates a significant gap between the advancement of high-powered

AI-model and existing computational hardware resources.

Figure 1.1: Statistical analysis of AI models such as ResNet, and CNN outperforming Moore’s Law
through the years [6].

On the contrary, processing the data on the cloud does not guarantee any desired results in

real-time. As a result, it needs to provide a faster-efficient solution for critical diagnosis. Therefore,

researchers focus on utilizing and improving these AI models into a more compact design structure

while maintaining its highly accurate learning rate. Various deep learning (DL)-tailored processing

units such as graphics processing units (GPUs), tensor processing units (TPUs), application-specific

integrated circuits (ASIC), and field-programmable gate arrays (FPGA) [8–12] are being used

and designed to reduce computational resources and minimize data storage. Efficient hardware

architectures and software-hardware co-simulation processes are employed to reduce the complexities

of DL models while simultaneously meeting the system requirements [13]. Software-hardware

co-simulation process means training the models in software and then inferring those models on

hardware platform. Many of these co-simulation approaches have been developed to reduce the

computing complexity of DLs, such as in multi-core platforms [3], bit-width reduction [10], and

low-power accelerator design. Conversely, algorithm developers focus on developing various techniques

contributing to energy efficiency and model compressing, such as network compression, quantization,

2

and pruning [11].

This work leverages the compression technique and introduces power-efficient neural network

(NN) model-based digital hardware design schemes called DeepSAC: Shift Accumulate Deep Neural

Network and SABiNN: Shift Accumulate Binarized Neural Network. The proposed techniques

enable energy-efficient AI accelerator design for various edge computing applications for real-time

classification, detection, and prediction. These two proposed hardware architectures are used in

the development of biomedical devices capable of monitoring real-time health conditions. Design

of a dual sensor-based sleep apnea detection system is proposed by following a software-hardware

co-simulation process and a four-step design scheme [14–17]. This design scheme aims at improving

the processing limitations between the NN models and the edge devices as described below:

1. Instead of exclusively training the models on-chip or in a computer, users can create a co-

simulation platform by training the model on the cloud or in the computer and then infer

the application-specific trained model on edge devices. This makes it possible for real-time

monitoring.

2. n-bit (n = 8,16) integer quantization, pruning, and binarization approaches are applied for

model compression and memory utilization.

3. Low power techniques such as the shift accumulate (SAC) method and binarized compression

technique are adopted and improved to meet the energy efficiency and low memory requirements.

1.1 Motivation

In recent years, healthcare is becoming increasingly important in our daily lives as mortality rates are

increasing due to various complicated diseases due to the lack of timely interventions. Thus, proper

diagnosis and monitoring of health are getting more indispensable. Apnea is one of the leading causes

of death not only in the USA but also in numerous developing countries in the world. According

to the American Association of Sleep Medicine (AASM), an apnea event occurs by the absence of

breathing that persists for at least 10-15 seconds, accompanied by 3% or more oxygen de-saturation

levels from the pre-event baseline. On the other hand, hypopnea occurs by decreasing the nasal

airflow signal by 50% or greater and lasts for at least 10 seconds, associated with a 3–4% drop in

blood oxygen saturation level. The apnea-hypopnea index (AHI) represents the severity of sleep

apnea, which is the total number of apnea and hypopnea events per sleep hour [18]. According to

the survey conducted by AASM, sleep apnea is in the top 10% of high-risk factor diseases leading to

3

sudden death. An 18-year follow-up study by the University of Wisconsin-Madison in collaboration

with the National Institute of Health (NIH) states that people with sleep apneic disorder have 3x

times the higher chance of dying due to sudden stroke, high pressure, and heart attack than an

average patient illustrated in Fig 1.2 [19].

Figure 1.2: Study of sleep apnea (SA) mortality rate by the University of Wisconsin-Madison.

However, although the apneic disorder is prone to leave patients at high risk of sudden deaths,

the USA alone has nearly 80% undiagnosed adults aged over 30 years. According to the survey, [20],

in every 100 people, nearly nine suffer from sleep disorders. The reason for such a low diagnosis rate

is that the present diagnosis methods are expensive, inadequate, and limited in number. The apnea

diagnosis requires the patients to undergo extensive overnight sleep studies, such as polysomnography

(PSG) or pneumocardiogram, for over 12 to 24 hours, which is expensive and time-consuming. Apneic

events are diagnosed by analyzing the PSG recording data based on the nasal-oral airflow amplitude

and the blood oxygen saturation (SpO2) level. During this procedure, the body and the face of the

subjects get attached to numerous sensors, causing them a great deal of inconvenience. The manual

scoring of apneic events from PSG data is time-consuming and demands specially trained sleep

experts. Thus, designing and developing a wearable detection device that alleviates these problems by

utilizing AI/Machine-Learning (ML) algorithms is becoming necessary. AI/Machine-Learning (ML)

algorithms can automatically detect apneic events from the data collected by the sensors providing

automation capabilities. Several machine learning algorithms and neural network schemes are being

developed in diagnosing and screening apneic events. They can accurately predict and process data

with high sensitivity rates as reported in literature [21–25]. Besides, research in medical imaging and

data diagnosis with AI/ML models has resulted in a breakthrough in medical science. In addition,

low-power and high-speed data acquisition instruments with wireless and wearable features have

gained attention in healthcare applications. Designing miniaturized AI-based integrated circuits

4

for critical and sensitive medical data processing can become a promising method for developing

efficient medical hardware systems. Table 1.1 showcases the research trends and years of developing

SA detection devices. However, most of these systems utilized AI/ML models, but none offered both

wearable and real-time detection capabilities.

Table 1.1: Research Review on Real-time Detection and Wearability

Work Diagnosis
Method

Classifier Sensor Accuracy
(%)

Real-
Time
Detec-
tion

Wearable

Selvaraj
et.
al. [26]

SA Predic-
tion

SVM ECG, Respi-
ratory

82-85 X X

Kopaczka
et.
al. [27]

SA Detection Variance
and Spectral
Analysis,
Wavelet
transform

Thermal In-
frared Ther-
mography

N/A Yes X

Wang et.
al. [28]

SA Predic-
tion

TW-MLP ECG and
SpO2

87 X X

Yong et.
al. [29]

SA Screening UWM Radar PSG 97-98 X Yes

Sina et.
al. [30]

SA Diagnosis 3D-CNN Sleep Posi-
tion

73 X X

This dissertation incorporates AI-enabled power-efficient architectures in CMOS integrated circuits

(IC) to realize smart diagnostic decisions enabling both real-time detection and wearable capabilities.

Such a unique feature is unavailable in other devices currently used for sleep apnea detection. Overall,

the successful implementation of the system using transfer learning-based software-hardware co-

simulation design schemes has far-reaching consequences in healthcare applications, leading to the

development of innovative wearable sensors.

1.2 Contribution and Dissertation Outline

The dissertation proposes two design architectures for a power-efficient decision-making block in an

automatic sleep apnea detection system. Two neural network designs on edge called DeepSAC and

SABiNN were designed using the software-hardware co-simulation process and deep compression

techniques. These designs replace the MAC operation’s multipliers with digital logic components

such as shifters and 2’s complements. The contribution of this dissertation are:

1. Development of a software-hardware co-simulation technique that utilizes both cloud and edge

5

devices for accurate transfer learning of neural net models on hardware architectures.

2. A hardware model compression technique called DeepSAC uses shifters as weights, replaces

multipliers, and removes on-chip memory for weight storage.

3. A binarized hardware network SABiNN removes the MAC component and introduces 2’s

complement whenever a negative weight value is associated with the neuron.

4. Redesigning the XNOR-based binarized neural network model into NAND-based XNOR gated

digital neural network model for higher precision rate.

5. Design of DeepSAC on reconfigurable hardware and SABiNN on reconfigurable hardware and

CMOS platform.

6. Benchmark of SABiNN hardware design architecture on popularly used deep learning models

such as VGG19, ResNet50, and MobileNetV2 using cifar10 image dataset and MedMNIST

biomedical image dataset.

Based on the contributions, the dissertation outline is organized as follows:

Chapter 2 provides the background for neural network architectures used for biomedical appli-

cations and their importance by doing an intensive literature review. The proposed sleep apnea (SA)

detection system is introduced after thorough market and research analysis.

Chapter 3 describes the design methodology of the newly proposed software-hardware co-

simulation process. This process is used in designing the decision-making block of the SA detection

system, where each design step is explained briefly. This content is primarily based on the two works

by Hassan et al. [14, 15].

Chapter 4 provides existing and modified model optimization and compression techniques such

as pruning, binarization, and integer quantization for hardware that are used in optimizing the

proposed models for biomedical signal processing and applications. Experiments are performed with

open-source data sets that extensively use neural network models for classification, detection, and

prediction.

Chapter 5 introduces the shifter-based DeepSAC method, which is experimented on biomedical

applications such as sleep apnea detection and diabetes prediction. The experimental analysis

illustrates the low power consumption rate by embedding the model onto the re-programmable

hardware. The content of this chapter is based primarily on the work by Hassan et al. [16] and from

Hossain et al. [17].

6

Chapter 6 introduces the NAND-based XNOR gated 2’s complement-based SABiNN method,

and the module is embedded onto both re-programmable hardware and the CMOS platform using

130 nm and 180 nm PDK processes. The algorithm, test-bench simulations, physical design space

exploration, and measurement results are included in this chapter. The content and results of this

chapter are based on the two works by Hassan et al. [31, 32]

Chapter 7 showcases the benchmarked results of SABiNN on popular neural networks such as

VGG19, ResNet50, and mobilenetV2. The models are trained and tested using image datasets such

as cifar10 and biomedical image datasets such as MedMNIST.

The dissertation is summarized in Chapter 8, and the future of power-efficient machine learning-

based hardware architecture for biomedical and other applications are discussed.

7

Chapter 2

BACKGROUND

This chapter introduces the usage and research incorporating neural network models in biomedical

applications such as detecting sleep apneic events through an extensive literature study. Based on

the studies, a novel detection system tackles the current limitations of existing devices by utilizing

neural networks such as feedforward neural networks (FNN).

Due to the advent of complex feature extraction capabilities, automated classification, and decision-

making functionalities of neural networks, they have been extensively used in the medical domain

and have revolutionized some medical applications. FNN is a widely used model in feature extraction,

classification, and prediction-based applications [28,33–38]. The FNN model automatically learns

data by accumulating the learned parameter from the previous layer to the next in a feed-forward

manner. The vectorized implementation of the forward propagation for a single layer of FNN is

presented in [39] as 2.1 and 2.2.

Z([l]) = W ([l])A([l]) + b([l]) (2.1)

A([l]) = g([l])Z([l]) (2.2)

Where Z is calculated by adding the bias, b, of each layer, l, to the sum of the product between

the trained weights, w, and the output data from the previous layer, x, the resultant value of Z is

then normalized through an activation function and later passed onto another layer.

In this research, trained FNN structures are embedded in digital hardware to detect sleep apnea

in real-time. Open-source clinical data collected from Philips University Medical Center [40] and

St. Vincent Hospital [41] are used to train and validate the model for adult screening. A typical

FNN consists of millions of connections, making it computationally expensive and memory intensive.

8

Therefore, deploying FNN on edge is challenging, especially when limited hardware resources are

available, which constrain extensive and computationally intensive models from being embedded into

the hardware. As a result, these networks must be compact and optimized for embedded deployment.

Significant computational power and memory size reduction can be achieved by transforming a

typical FNN model into the proposed models called DeepSAC and SABiNN, making these suitable

for inference on the digital hardware system.

2.1 Neural Network Architecture for Biomedical Applications

Using neural networks in biomedical applications such as predicting respiratory diseases leading to

apneic events in real-time can provide faster and more accurate results [42–44]. Murphy et al. [45]

executed and compared two control algorithms: a linear adaptive filter and a nonlinear neural

network. A comparative study concluded that a nonlinear neural network filter is preferable in

detecting breathing patterns since linear filters have been proven inadequate for accurately observing

irregular breathing patterns. In addition, incorporating the neural networks presents no additional

computational burden in the control loop when executing heuristic predictive algorithms. Liu et al.

implemented a ”long-short-term-memory” prediction algorithm (LSTM), a recurrent neural network.

This LSTM model can predict neonatal amplitude-integrated electroencephalogram (aEEG) signals

so that physicians can forecast the possible abnormality of the brain functions of neonates in advance

and can provide early intervention [46]. This method has been tested with 276 neonatal EEG data,

and the predicted EEG data was remarkably similar to the actual EEG signals. Banner et al. used

an artificial neural network (ANN) model to determine the work of breathing per minute or power

of breathing (POB) non-invasively without the need for an esophageal catheter in patients with

respiratory abnormalities [47]. The method was tested in 45 incubated adults (age 51± 11 years,

28 males and 17 females) receiving pressure support ventilation (PSV). The training data was from

an esophageal catheter and airway pressure/flow sensors that measured the power of breathing.

The trained ANN provided an automated calculation of non-invasive POB. Bataille et al. reported

an improvement in the accuracy of diagnostic classifiers between lung ultrasonography (LUS) and

thoracic ultrasonography (TUS) using machine learning models [48]. ML models, such as neural

networks, show significant promise in medical applications and have tremendous potential for paving

the way for the development of emerging medical diagnostic systems.

9

2.2 Sleep Apnea Detection System

Most machine-learning-based apnea detection devices are connectivity dependent (due to the separate

data acquisition and processing unit) and lack privacy and security. Besides, using a high compu-

tational system requires proper management and resources and, as a result, becomes an expensive

diagnostic system. Due to the high cost of such diagnosis, nearly 80% of the adult US population

remains undiagnosed. Based on the limited accessibility and resource of the current sleep apnea

diagnostic devices, a detection device that is accessible, affordable, wearable, and power-efficient with

automatic detection and screening capabilities is long overdue.

This dissertation proposes an apnea detection system for adults that takes in two types of input

signal: single channel bio-potential ECG data from the chest strap and blood oxygen saturation

(SpO2) signal from a finger-tip pulse oximeter. The chest movement data comes from an adhesive

single-lead ECG patch currently used in wearable and mobile application-based medical devices.

These are replacing the Holter monitoring devices requiring multiple ECG leads. The oxygen

saturation data (SpO2) is derived from a commercially available pulse oximeter device attached to

the patient’s finger. Fig. 2.1 illustrates the block diagram of the system where the neural network

inference block takes in the chest movement and the (SpO2) data. Both signals are subsequently

processed into digital form and then fed as the input to the decision-making block. The complete

biomedical system will be portable and compact due to its minimal usage of sensors. This proposed

design can significantly reduce the complexity of bulk, expensive devices, and discomfort due to

multiple sensors attached to the patient’s body.

Figure 2.1: Block diagram of the proposed neural network (NN) embedded sleep apnea detection
system. An adhesive ECG patch and fingertip pulse oximeter are front-end sensors, and NN is used
as the decision-making block [16].

The decision-making block is designed based on the FNN model, which processes data feed-

10

forwardly. The proposed pre-trained FNN inference module takes input data from these front-

end sensors and predicts apneic occurrences. The binary output (1: sleep apnea, 0: absence of

apnea/normal condition) will initiate an alarm that will facilitate the patients to resume breathing

by waking them up or alerting caregivers in the healthcare facilities to respond upon detection of

an apneic event. Two primary sleep apnea detection system functions involve collecting data from

biosensors and predicting apneic occurrences with high accuracy (over 70%).

2.2.1 Current Devices in the Market

The gold standard PSG method is commonly used for screening and diagnosing sleep apnea. But

recently, various screening devices such as Home Sleep Apnea Test (HSAT) devices have proliferated

the market which can potentially be used for pre-screening of apnea before ensuring expensive

treatment through PSG method [49,50]. Table 2.1 lists currently available HSAT devices, program

providers, and their screening methods.

According to Table 2.1, most devices are incapable of accurate auto-scoring with AI/ML, and

no precise accuracy rates were documented or claimed. In contrast, the proposed device provides

high accuracy (over 70%) auto-scoring with minimal sensor features. Registered Polysomnographic

Technologist (RPSGT) scoring in this system will be optional unless further diagnostic is necessary.

2.2.2 Emerging Solutions for Sleep Apnea Detection Systems

Various methods available for the detection of apnea presented in recent literature include a pyroelectric

sensor, chest belt with a piezoelectric sensor, single-lead Electrocardiogram (ECG), blood oxygen

saturation (SpO2), microphone for tracheal sound monitoring, and snoring signals [49–52]. These

devices are the first-line diagnostic methods for establishing the point-of-care diagnosis of sleep-

disordered breathing. Mahbub et al. works [49] present the electronic circuitry for sleep apnea

detection focusing on the respiratory monitoring of neonatal infants. The device integrated a

pyroelectric transducer that converts the heat generated due to breathing into an equivalent electrical

charge. If no breathing signal arrives within 10 seconds, the device considers this as an apneic event

and, via wireless communication, transmits an impulse to a central coordinator, which alerts the

caregivers. Significant efforts to develop non-invasive, low-power respiration monitoring devices with

wireless telemetry capability for adults and neonatal infants are underway [49,52]. An apnea detection

and monitoring system to restart the breathing function of patients presents [53] a MEMS-based

3-axis accelerometer and a wristband. The acceleration sensor placed on the chest continuously

11

Table 2.1: Market Available at Home Sleep Apnea Testing Devices (HSAT)

Company Device Method Provider
DreamClear REMware DreamClear Autoscoring via En-

sodata or manual
RPSGT

All (public, physicians,
trucking companies, health
plan, etc.)

ApneaMed Philip Alice NightOne,
ResMed ApneaLink Air,
Itamar WatchPATONE

Manual Scoring and
edited by RPSGT

All (public, physicians,
trucking companies, health
plan, etc.)

BetterNight Philips Alice OneNight,
ResMed ApneaLink
Air, Itamar WatchPAT
300/WatchPAT ONE

Autoscoring as-
sisted by AI,
manual review and
edited by RPSGT

Physicians, sleep special-
ists, health plans and
ACOS, clinics, dentists,
transportation organiza-
tions, enterprise/employ-
ers

Bioserenity AccuSom RPSGT Scoring All (public, physicians,
trucking companies, health
plan, etc.)

Blackstone Medical
Service

ResMed ApneaLink Air,
Philips Alince NightOne

RPSGT Scoring All (public, physicians,
trucking companies, health
plan etc.)

Sleepview Direct CleveMed Sleepview Autoscoring (not
assisted by AI,
Manual scoring by
RPSGT

Sleep specialists, sleep cen-
ters, ENT, employers

Itamar WatchPAT200/300,
WatchPATONE

Autoscoring with
Manual score (AI
not included)

All (Any medical specialty,
practice, hospital system.
Or payor)

Sleep Care Online Ectosense NightOwl Autoscoring and
sleep expert scoring

All (Any medical specialty,
practice, hospital system.
Or payor)

Sleeptest ResMed ApneaLink Air Autoscoring fol-
lowed by manual
scoring

Dentist, physicians

MedBridge Health-
care

ResMed ApneaLink Air,
Philips Alice NightOne,
Itamar WatchPAT/Watch-
PAT ONE, Ectosence
NightOwl

Autoscoring (AI not
mentioned and re-
viewed by RPSGT

Sleep physicians, general
practitioners, hospital sys-
tems, DOT patients and
employers, occupational
health clients

12

monitors the movements of the diaphragm to detect apneic events during sleep. If an apneic event

occurs, a closed-loop control system sends a signal to the wristband to trigger a vibration motor to

disturb the patient until breathing is resumed. One underlying problem with these devices is their

subject dependence.

Different subjects have different breathing patterns; therefore, calibration is needed to ensure

accurate detection of the apneic event or proper monitoring of the breathing function of each patient.

A comparative study in [54] identifies practical machine learning (ML) algorithms and appropriate

physiological signals for sleep apnea detection based on a trade-off between computational resources

and performance. Based on a comparison of deep learning (RNN and CNN) with conventional machine

learning algorithms (Random Forests, Decision Tree, and Multi-Layer Perceptron), researchers have

identified deep learning as the best performing algorithm, and oxygen saturation level (SpO2) as

the most important physiological parameter for SA detection [54]. Similarly, in [23], it is stated

that a deep learning model outperforms classical machine learning methods for Central Sleep Apnea

(CSA) detection for data obtained through pressure-sensitive mat (PSM). In most existing deep

learning-based solutions, the data acquired from complex PSG experiments are often computationally

intensive. Kristiansen et al.’s work [55] presents (SpO2) based apnea monitoring devices with

separate sensing and processing units with a wireless interface. This device requires pre-processing,

complex hand-crafted feature extraction and a classical threshold-based classification model typically

performed in a microcomputer.

Despite significant improvement in recent years, these devices still suffer from computational

needs, power budget, additional circuitry requirements for wireless transmission, and a separate

processing unit. Therefore, a real-time machine learning-based portable hardware model is necessary

for point-of-care diagnosis of sleep apneic (SA) events.

2.3 Conclusion

Based on the limitations and strengths of the currently existing devices and recent research work

in sleep apnea detection, a neural network-based intelligent electronic device for adults that can

automatically detect apneic events with a high precision rate is proposed. During training, the NN

model fed on a large amount of data from subjects of different ages, gender, body pattern, and

different physiological conditions. This smart apnea detection device offers significant advantages

over traditional instruments, such as on-chip decision-making capability, diagnosis based on multiple

parameters, and less or no calibration due to training from a large volume of data. Studies

13

demonstrated that, among all the physiological signals, oxygen saturation level SpO2 [56] and

ECG [57] are the most relevant signals for sleep apnea detection among adults. The proposed system

for adults presented in this paper takes (SpO2) and ECG signals as the input and provides the

presence or absence of apnea as a binary output.

14

Chapter 3

DESIGN METHODOLOGY OF MACHINE-LEARNING

BASED HARDWARE

3.1 Introduction

Obtaining a high accuracy rate of Machine Learning (ML) based deep models often requires extensive

data sets, which enables the model to run complex data structures with multiple features. As a

result, the training phase of the models becomes computationally intensive and requires significant

computational resources for executing numerous iterative weight updates. In many sensor-based

applications, the system requires these models to infer into the hardware for real-time processing,

such as image recognition and complex biomedical-related signal processing applications. Thus,

extracting meaningful diagnostic results and reports in real-time is necessary instead of employing

them in the cloud, which can reduce communication costs and enable on-spot emergency aid.

A four-step software-hardware co-simulation design process is introduced in this research as

illustrated in Fig. 3.1 [14–16], which enables the designers to utilize both the software-based computer

simulation and edge computing benefits in designing application-specific ML models embedded onto

hardware. This process significantly reduces the overhead error in designing smart biomedical devices

as each step undergoes multiple levels of verification and validation before moving on to the next

step to ensure accurate design architecture.

3.2 Software-Hardware Co-Simulation Process

As shown in Fig. 3.1, the hardware-software co-simulation process is divided into four categories,

each containing multiple sub-categories.

15

Figure 3.1: Software-Hardware Co-Simulation Design Process: From Software Simulation to Machine-
Learning Model Inference on Hardware [15–17].

• First category is the training and validation of the chosen ML model, which is performed on

software using high-processing machine learning libraries such as TensorFlow, Numpy, Keras,

sci-kit-learn, etc. This step enables the designers to feed large data sets onto the model for

achieving low error, high precision trained parameters, i.e., weights and biases.

• Second category of the proposed co-simulation process involves optimizing and reducing the

sparsity of the trained ML model using various energy-efficient, compact design techniques

such as integer quantization, pruning, binarization, data normalization, etc. These techniques

are beneficial for the hardware inference of the model.

• Third category involves extracting all the necessary parameters and creating a design

architecture of the trained ML model. This trained ML model will be the blueprint for

designing the digital hardware system. In this step, the two proposed low-power design

techniques - DeepSAC: Shift Accumulate Deep Neural Network and SABiNN: Shift Accumulate

Binarized Neural Network will be used to enable a more compact and high-precision design

architecture for the hardware model. Based on the accuracy rate, the selected deep learning

model will be translated and implemented into hardware description language (Verilog/VHDL),

which will be programmed into FPGAs. Then it will be tested for the consistency of the results

16

between the software’s accuracy and the hardware. Next, the hardware testing will focus on

speed, power, and processing

• Fourth category converts the digital design elements programmed onto FPGA into ASIC

design and will be sent for fabrication. After the desired ML inference chip is fabricated, further

testing and measurement will be done for simulation and experimental result consistency.

The benefit of using this co-simulation design process is evaluating and verifying the ML model in

each step before proceeding to the next. This way, the error rate of the final model will be significantly

reduced, resulting in a more confident, high-precision ML hardware architecture. Inference of the ML

model onto CMOS integrated circuits will also aid in commercializing smart wearable and portable

biomedical devices.

3.2.1 Discussion

Using the software-hardware co-simulation design scheme and implementing machine learning-based

deep models which process medical data and signals represents a novel approach to designing smart

biomedical instrumentation. This scheme will open doors for developing smart wearable sensors and

lightweight medical instruments by having a high-speed diagnosis rate with a low power consumption

rate. When targeting real-time applications for medical devices requiring data processing such

as blood glucose level, respiratory signals, EEG, ECG, and other types, it is essential to address

power consumption, sustainability, portability, and the overall system size. The traditional mode of

implementing deep learning models, such as neural networks (NN) on commercial hardware such as

GPUs and FPGAs, might successfully make the application work. However, the lack of portability

and size will make it inadequate for wearable device applications. Thus, the device’s size, power, and

portability play significant roles in wearable biomedical system design. Integrating ML functions and

algorithms into a single CMOS integrated circuit and targeting a power consumption rate of 50 µW

will be a potential new approach to developing future wearable medical devices and technologies.

3.2.2 Experimental Benchmark

The DeepSAC and SABiNN hardware models are implemented onto the decision-making block of the

proposed SA detection system by following the proposed software-hardware co-simulation method.

In designing an SA detection device for adults, the ML training employs two commonly used medical

data sets collected from Phillips-University, Marburg, Germany, and St. Vincent University Hospital

17

Sleep Disorder Clinic, Dublin, Ireland [19,41]. Nexys Artix-7 general purpose FPGA is used in the

first step of hardware inference, and for CMOS integrated circuit design, 130 nm and 180 nm design

processes are used.

18

Chapter 4

MODEL OPTIMIZATION AND COMPRESSION

TECHNIQUES

4.1 Introduction

A typical FNN model consists of millions of connections, making it computationally expensive and

memory intensive. Therefore, deploying an FNN model in an embedded system is challenging,

especially with limited hardware resources. However, few compression and acceleration techniques

can be applied to make the NN model suitable for an embedded system. Two such techniques are

pruning and quantization. This chapter discusses the sparse pruning technique introduced by Han

et al. [1] and a newly improved hardware-based n-bit (n = 8,16) integer quantization technique to

compress further and optimize the proposed FNN model. Two data sets are used in experimentation

to validate and test the techniques.

4.2 Pruning

Pruning is a popular compression technique that removes redundant and inefficient parameters from

the network without significantly reducing accuracy. One of the initial pruning techniques introduced

in model compression was biased weight decay [58]. In contrast with human brain neuron connectivity

concerning neural network training, LeCun et al. [59], and Hassibi et al. [60] state that the accuracy

can be improved if the connections are removed based on the Hessian of the loss function, which

is an indirect method of pruning. However, these two methods introduce an added computational

complexity in the form of a second-order derivative. Even though other research works conducted

in [61–63] prove that the pruning method removes the redundancy of weight values and keeps valuable

neural network connections for decreasing computational and storage requirements for performing

19

inference. The major challenge is the preservation of the original prediction accuracy after pruning.

The pruning technique used and validated in this study is introduced by Han et. al., which is

a magnitude-based technique that recursively discards the weights below a specified threshold [1].

Unlike other magnitude-based approaches, it recovers the model’s accuracy through an iterative

retraining process.

Figure 4.1: Iterative pruning process and network structure before and after pruning.

Fig. 4.2 illustrates the three steps involved in this technique. In the first step, conventional

network training learns the connectivity, where the importance of each connection is learned instead

of learning the final values of the weights. Then, the network connections with weights less than a

specified threshold get discarded. The remaining sparse network retains the final learned weights in

the final step. L2 (Ridge Regression) regularization was incorporated into the retraining process since

it gives better accuracy after pruning. The regularization and gradient descent ensures the automatic

removal of any neuron with zero input or output connections during the retraining process [64].

Figure 4.2: Three-step pruning process used for model compression and optimization.

The neurons with zero input or output connections are removed from the pruned connections. In

the retraining step, the resultant value of the dead neurons is zero. These dead neurons occur due to

gradient descent and L2 regularization. A neuron with zero input or output connections will not

20

affect the final loss calculation.

4.2.1 Pruning Experiments

Two types of FNN models are trained on three datasets where Han et. al.’s pruning technique [64].

For Image classification, MNIST [65], and Fashion MNIST [66] data sets are used. For biomedical

screening and classification, Pima Native American data set is used for diabetes prediction [67], and

sleep data collected from Phillips-University [40] and St. Vincent University Hospital [41] are used

for sleep apnea detection among adults.

The hardware experiments of pruned models are tested on re-programmable hardware such as on

Nexys Artix-7 FPGA boards. The network parameters and accuracy before and after pruning are

described in the Model Evaluation section.

Pruning for Image Classification

In this section, pruning techniques got performed on the FNN shown in Fig 4.3. The first layer is

called the input layer, the last layer is called the output layer, and based on the optimization and

model design technique, the middle layers are called hidden layers. Each node in Fig 4.3 of the

network is called a neuron unit. This type of neural network model works with 2D image classification,

where the algorithm takes input images, then assigns importance through learnable weights and

biases to various features in the image. MNIST and Fashion-MNIST data sets are used for training

the FNN dense model and enabling it to classify image data.

Figure 4.3: Sample model of a feedforward neural network (FNN) classifying MNIST data.

21

MNIST and Fashion MNIST Dataset

The first step in experimenting and learning how to train a model is by training it with a clean,

extensive data set to understand how it works and can be further optimized. Created by Yaun

LeCunn and the team, [65] MNIST is a handwritten digits data set in black and white color containing

a training set of 60,000 examples and a test set of 10,000 examples. It is a commonly used data set

for pattern recognition and image classification [65]. The fashion-MNIST dataset classifies clothing

varieties for computer vision and deep learning. The data set comprises of 60,000 square images

with 28x28 greyscale images. The data set includes ten types of clothing, and the mapping of all the

clothing is labeled as integers from 0-9 [66]. Fig 4.4 showcases a sample of the MNIST numeric data

set and some fashion-MNIST data sets with their labels.

Pruning for Biomedical Signal Processing

There are publicly available data sets that aid in benchmarking these methods to evaluate the

accuracy and validate the concept of power-efficient techniques of a given Deep Neural Network

(DNN) used in biomedical applications. Public data sets are essential for comparing the accuracy of

different approaches for establishing any proposed concept in research communities, especially in

biomedical applications. For predicting and detecting several diseases and complexities wide variety

of open-sourced data sets are collected from various existing biosensors. In developing and designing

the apnea detection system for adults, ECG, and SpO2, signals from two sleep apnea databases are

collected from PhysioNET Bank [41]. For developing a diabetes prediction device, eight attributes of

diabetes measurement from the Pima Native Americans data set repository are used [67].

Sleep Apnea Data set

Two datasets are collected from Physionet Bank [41] as follows:

1. Apnea-ECG database records 8 overnight ECG recordings and fingertip SpO2 patient data.

For every minute of the data stream, an annotation indicates whether any apneic event has

occurred at the start of the particular minute. Due to a mismatch of annotations, the entire

dataset was cleaned and pre-processed before the training.

2. St.Vincent’s University Hospital contains 25 full overnight PSG records with 3-channel

Holter ECG and fingertip SpO2 data from patients who have sleep disorders over six months.

This dataset contains subjects over 18 years of age, and the total set contains 21 males and 4

22

Figure 4.4: (a) MNIST and (b) Fashion-MNIST data set samples which are labeled, shuffled, and
measured at 28x28 pixels for classification.

23

females (age: 50 ± 10 years, range 28-68 years; BMI: 31.6 ± 4.0 kg/m², range 25.1-42.5 kg/m²;

AHI: 24.1 ± 20.3, range 1.7-90.9). Sleep technologists scored and annotated the sleep stages

according to standard Rechtschaffen and Kales rules.

Fig 4.5 showcases a section of the raw ECG and SpO2 signals that are later pre-processed and

normalized for designing the FNN model. In the data processing scheme, both signals are divided into

segments of 30 seconds intervals. R-R interval was extracted from the raw ECG signal by applying

the R-peaks detector provided in the database. Finally, the R-R interval signal and the SpO2 data

were processed according to the previously reported techniques [28,68].

Figure 4.5: Raw ECG data and SpO2 data within 10 seconds of time-frame collected from sleep
apnea dataset.

After each minute, sleep experts annotate the Apnea-ECG (Phillips University Hospital) dataset.

The ECG and the SpO2 data of Apnea-ECG had a sampling rate of 100 Hz. This work divides the

data stream into 30-second segments instead of 1 minute to achieve a higher precision rate. On the

other hand, the St. Vincent University Hospital database recorded the ECG and the SpO2 data at

a sampling rate of 128 and 8 Hz, respectively. Both datasets were further processed, and existing

artifacts were removed for higher accuracy. Any SpO2 value less than 50% and any sudden change

of saturation level greater than 4% within a 1-second interval are marked as artifacts since such

values are physiologically impossible [55]. Once the artifacts were rejected, the signal was re-sampled

at 1 Hz using a simple moving average filter. In the case of ECG signals, the dataset provided

machine-generated QRS annotation. From the QRS, an R-R interval series is created by taking the

time interval between two successive R-peaks. This is done using an R-peak feature extraction tool

provided by PhysioNET. A sliding window technique is implemented to remove the ectopic sample

points from the R-R interval series. The window length is 5 seconds, and any R-R interval larger

than 20% of the average value within the window is marked as an ectopic beat and is removed. The

24

generalized data pre-processing scheme can be illustrated in Fig. 4.6.

Figure 4.6: Data pre-processing, generation and class balance scheme [31].

In the original dataset, a significant amount of class imbalance was present. Due to the miss-

classification and unbalanced dataset, the trained FNN model showcased a high recall rate (around

100%) and low accuracy. As a result, the FNN model is over-trained and is biased in identifying

only the True Positives (TP). Researchers utilize various class imbalance techniques that avoid

such training biases. These techniques include either generating minor class labels or removing the

major class labels of the datasets. In this research, a combination of three techniques, SMOTE

(Synthetic Minority Oversampling Technique), Tomek, and ENN (Edited Nearest Neighbor), were

implemented and observed. SMOTE technique generates synthetic data from the minority class,

while the Tomek technique removes major class data by locating all cross-class nearest neighbors.

The ENN technique finds each observation’s k-nearest (k = 3) neighbors and detects the difference

between the major and minor classes. If different, then the observation and its k-nearest neighbor

are removed. Generally, a combination of SMOTE-Tomek and SMOTE-ENN generates a balanced

dataset. Fig. 4.7 illustrates the original imbalanced and balanced datasets generated using the three

techniques. A reviser operating characteristic curve (ROC) of the proposed FNN was executed to

understand its performance over each technique.

Fig. 4.8 (a)- (d) graphically showcases the ROC curves where the SMOTE+ENN dataset

performed the best with a true positive rate of 83%. With a balanced dataset, the proposed FNN

model showed optimal accuracy (80%) for medical screening and diagnosis. Further evaluation was

performed based on the evaluation metrics such as precision, sensitivity, and F1-score, as shown in

Table 4.1.

Table 4.1 concludes that the proposed model has a higher accuracy rate with a balanced percentage

rate of precision, sensitivity, and F1 score.

25

Figure 4.7: Number of balanced samples versus data labels obtained by executing various class
imbalance techniques.

Figure 4.8: Reviser Operating Characteristics Curve (ROC Curve) between (a) original (65%), (b)
SMOTE (62.66%), (c) SMOTE+Tomek (73%), and (d) SMOTE+ENN (83%).

26

Table 4.1: Comparative Study between proposed FNN and other ML models

Parameter FNN TW-MLP [28] LS-SVM [69] HMM-SVM [68]
Accuracy 87% 87% 83% 80%
Precision 88% 88% 84% 85%
Recall 85% 85% 84% 85%

F1-Score 86% 85% 79% 72%

Pima Native Americans Data set

Pima Native American is a data set that consists of eight input attributes related to diabetes, and

each outcome is binary classified (1: positive case-risk of diabetes and 0: safe case-no risk diabetes).

These eight attributes are pregnancies, plasma glucose concentration for 2 hours, diastolic blood

pressure (mmHg), skin thickness, 2-hour serum insulin (µ U/ml), body mass index (kg/m2), diabetes

pedigree function and age. Among 768 female samples in the dataset, 268 are healthy, and 500 are

unhealthy. A synthetic monitor oversampling technique (SMOTE) overcame the class imbalance of

the data set for a more efficient NN training in achieving a high accuracy rate. The data set was

normalized between 0-1 using min-max scaling [17]. Table 4.2 shows an example and structure of the

Pima Native American dataset.

Table 4.2: Pima Native American Diabetes Dataset

Pregnancy Glucose BP Skin thick-
ness

Insulin BMI Diabetes
Pedigree

Age

6 148 72 35 0 33.6 0.627 50
1 85 66 29 0 26.6 0.351 31
8 183 64 0 0 23.3 0.672 32
1 89 66 23 94 28.1 0.167 21
0 137 40 35 168 43.1 2.288 33
5 116 74 0 0 25.6 0.201 30
3 78 50 32 88 31.0 0.248 26
10 115 0 0 0 35.3 0.134 29
2 197 70 45 543 30.5 0.158 58

Pruning Neural Networks

For both image classification and biomedical signal processing FNN model was chosen. Fig 4.6 shows

the basic structure of FNN, and Table 4.3 shows the characteristics and dimensions of each network

for each type of data set. Adaptive Moment Estimation also know as ADAM optimizer was used

to optimize the FNN model. This optimizer is a combination of two gradient descent algorithms.

27

One being the momentum algorithm and the other is the Root Mean Square Propagation (RMSP).

The momentum algorithm accelerates the gradient descent technique by calculating the exponential

calculation of the weighted average [70]. Using such an average makes the algorithm converge toward

the minima faster. Equations 4.1 and 4.2 showcase the momentum calculation:

Figure 4.9: Sample model of a feedforward neural network (FNN) with input layers, hidden layers
and output layers.

Table 4.3: FNN Training and Model Features

Data set Model Architec-
ture

Loss function Activation
(output
layer)

Activation
(input
layer)

MNIST 784-(64-64)-10 categorical cross
entropy

softmax Rectified
Linear Unit

Fashion-
MNIST

784-(1000-1000-
500-200)-10

categorical cross
entropy

softmax Rectified
Linear Unit

Sleep
Apnea
(combined)

2-(8-12-6-4)-1 mean squared
error

sigmoid Rectified
Linear Unit

Pima Dia-
betes

8-(12-8-4)-1 mean squared
error

sigmoid Rectified
Linear Unit

wt+1 = wt − αmt (4.1)

28

mt = βmt-1 + (1− β)[
δL

δwt
(4.2)

Where wt is weighted at time t, wt+1 is weighted at time t+1, mt is aggregate of gradients at

time t,mt-1 is the aggregate of gradients at the time (t-1), β is moving average parameter (constant

= 0.9),δL= derivative of the loss function and δwt = derivative of weights at time t.

The RMSprop or RMSP is an improved form of AdaGrad [71], an adaptive learning algorithm. It

considers the exponential moving average instead of the sum of squared gradients such as AdaGrad.

The equations 4.3 and 4.4 show the algorithm for RMSP calculation [71].

wt+1 = wt −
αt

((vt + ϵ)1/2
∗ [δL

δwt
(4.3)

vt = βvt-1 − (1− β) ∗ [δL
δwt

]2 (4.4)

Where wt is weighted at time t, wt+1 is weighted at time t+1, vt is the sum of the square of past

gradients, β is the moving average parameter (constant = 0.9),δL= derivative of the loss function

and δwt = derivative of weights at time t, ϵ is a small positive constant (10-8).

By combining the formulas, the mathematical expression of ADAM is developed, which is used in

training the model [70] shown in equation (4.5).

mt = βmt-1 + (1− β1)[
δL

δwt
]vt = β2vt-1|(1− β2[

δL

δwt
]2) (4.5)

Where β1 (= 0.9) and β2 (=0.999) are decay rates of an average of gradients in the above two

methods and the learning rate α is 0.001 as default.

Two functions are used for loss calculation based on the class type and labels. For Image

classification, categorical cross-entropy is used [72] as the data sets consisted of multi-class features.

This function quantifies the difference between two probable distributions by calculating the loss of

an example. It can mathematically be derived as shown in equation (4.6):

Loss = −
output⊤size∑

i=1

yi · .log ŷi (4.6)

Where ŷi is the i-th scalar value in the model output, yi is the corresponding target value and

the output size is the number of scalar values in the model output.

For biomedical signal processing, since the dataset is 1-dimensional, the binary class (between 0

29

and 1) can be categorized in a linear-regression fashion. Mean squared error (MSE) [73] is used to

calculate the loss for weight update purposes. MSE is a regression analysis that identifies how close

a sample point is near the regression line by taking the distances from the point to the regression

line and then squaring them. Using squaring removes the negative points. The MSE formula is given

in equation (4.7):

MSE =
1

n

∑
(yactual − yforecast)

2 (4.7)

Where n = number of items, yactual or observed y value and yforecast is y-value from regression.

k-fold cross validation

The biomedical data set contained a limited number of data points; thus k-fold (where k = 10)

cross-validation technique shuffled and folded the data set into ten folds. This technique avoids the

model being over or under-fitted. It is a re-sampling technique that splits the training data into two

parts: 1. training the model with training data and 2. testing the model with testing data set for

validation. As data splitting happens randomly, one can also predict if the data set is balanced by

iterative training. ”k” is the number of re-sampled sets; ten sets are used in our training. On the

validation side, the first set is treated as the test set, and the model is trained on the remaining k-1

sets. The error rate is calculated after the model is fitted on the test data. Fig 4.10 gives a graphical

illustration of how the sampling works.

Figure 4.10: Re-sampling per iteration in K-fold cross-validation technique.

The mean of errors of all the iterations is calculated by the cross-validation (CV) test error

estimate shown in equation 4.8.

30

CV (k) =
1

k

k∑
i=1

MSEi (4.8)

In this calculation, the outputs of k-fitted models are averaged and somewhat less correlated since

the overlap between the training sets is smaller.

Model Evaluation

Table 4.4 showcases the accuracy study and the model size of FNN by using MNIST and Fashion-

MNIST data and Table 4.4 demonstrates the study of FNN by using Sleep Apnea ECG and SpO2,

and Pima Native American Diabetes data. These studies compare baseline and pruned models,

illustrating the effectiveness and benefit of such techniques while maintaining a high accuracy rate.

Table 4.4: Pruned Test Results on Image Classification Dataset

MNIST-Data set
Parameter Accuracy (%) Model Size (Byte) Model Speed
Baseline 98 78230 18.4
Pruned 97.4 25765 10.3

Fashion MNIST-Data set
Parameter Accuracy (%) Model Size (Byte) Model Speed
Baseline 88.3 78300 18.5
Pruned 85.6 26035 9.3

Table 4.5: Pruned Test Results on Biomedical Data set

Parameter Accuracy (%) Model Size (Byte) Model Speed
Sleep Apnea - Data set

Baseline 79.35 53776 9.06
Pruned 79.36 23896 8.82

Diabetes - Data set
Baseline 91.15 51728 9.54
Pruned 90 23396 6.91

According to Table 4.4, the model becomes 3x times smaller, and in Table 4.5, the model becomes

nearly 2x times smaller after pruning, which is a significant reduction when embedding onto edge

computing. All the models maintained their accuracy rate.

31

4.3 n-bit Integer Quantization

In hardware inference, integer quantization has become popular in optimizing Deep Neural Network

(DNN) models that are computationally intensive and require large memory sizes. This technique

uses n-bit integer values where n = 8,16 instead of floating-point numbers and integer math instead

of floating-point math. As a result, it reduces the memory and computing requirements of the digital

hardware. As stated in [74], using an n-bit integer point arithmetic operation instead of a 32-bit

floating point reduces the energy by 18x times per operation by inference of trained parameters, i.e.,

weights and biases in the design of the neurons.

4.3.1 Methodology

In this research, for embedding FNN onto general-purpose hardware such as Field-Programmable

Gate Arrays (FPGAs), each parametric real value was multiplied by 210 while discarding the fractional

parts during quantization, and the first three digits of that value were taken into consideration when

designing each neuron unit. Appropriate scaling of weight and bias values of neural network models is

possible due to their limited range. This is due to the weights being closer to zero and feature maps

not exceeding upper bounds [75]. The dimension of weights and biases of the quantization technique

in this research consists of 8-bit and 16-bit, where the most significant bit (MSB) represents its sign

value [16].

Figure 4.11: 8-bit integer quantization technique for hardware inference.

Fig 4.11 shows the calculation and transformation of floating point bit into integer bit quantization

without sacrificing data information.

32

4.4 Conclusion

This chapter presents two feasible compression and optimization methods that can be used during

hardware inference. By implementing the pruning method of Han et al. [1], the number of connections

on FNNs is significantly reduced. An n-bit (n=8,16) integer quantization technique is also implemented

to design the system using n-bit values for easy inference. The effectiveness of these two methods is

executed by experimenting with two crucial classes of data sets and applications. One is MNIST

data set and the other is the Fashion-MNIST data set that can be used in image classification, sleep

apnea, and diabetes data sets in multiple biomedical screening and diagnosing applications. The

technique compressed the models by 2x to 3x while maintaining the accuracy with a confidence

interval (CI) of +/- 0.1%.

33

Chapter 5

DEEPSAC: SHIFT ACCUMULATE BASED DEEP

LEARNING MODEL

5.1 Introduction

Deployment of the FNN model on edge is the key to designing real-time automated devices and systems

capable of prediction, analysis, and classification. A significant cost reduction in communication

with the cloud is seen in network bandwidth, latency, and power consumption in deploying FNN

models on edge. On the contrary, edge devices have limited memory, power, and computing resources,

constraining extensive and computationally intensive models from embedding into hardware. As

a result, these networks must be compact and optimized for embedded deployment. As discussed

earlier, two compact design techniques in this research are proposed that enable users to quickly

deploy neural network (NN) models onto any digital hardware system. This chapter focuses on the

Shift Accumulate Based Deep Learning Model Inference on Hardware (DeepSAC) and successfully

builds a hardware-friendly FNN model to detect apneic events.

Neural Networks

Neural networks (NN) are composed of multiple consecutive layers and can be of different types,

such as convolutional, pooling, and fully connected (FC) layers. There are dense, shallow, and deep

neural networks based on their connection and layer numbers. Based on their learning style, they can

be called convolutional neural networks (CNN), feedforward neural networks (FNN), shared weight

networks, and others. Despite the variation and the learning diversity of NNs, the most fundamental

component are their neuron and synapse unit [2].

Based on Fig. 5.1, the synapse unit takes the output value from the last neuron of the layer

34

Figure 5.1: Synapse-neuron connection of NN model where wi are the weights, bi are the biases, xi
are the output values from the previous neuron or sensors, f is the activation function, and yi is the
output of the neuron for the next layer.

multiplied by the trained weights. It sends it to the activation function in the current neuron unit,

which classifies the resultant value based on the selected activation function and sends it to the

neuron of the next layer. For digital hardware, the multiply-accumulate (MAC) operation is the

synapse-neuron unit of NNs. The major drawback of using the MAC operation is the multiplier

component being a high power-consuming digital logic element. Therefore, the inference of dense

NNs will require many MAC units with multiple usages of multipliers resulting in a high power

consumption rate. The proposed shift accumulate (SAC) method completely removes the multipliers

with shifters based on the trained weight parameters [16,17]. Table 5.1 below illustrates the power

consumption rate of the major hardware components that make up a hardware accelerator designed

explicitly for machine-learning training and testing. The study of power consumption rate is acquired

when the digital components are embedded into the CMOS platform.

Table 5.1: Power Consumption Study

Digital Logic Block Power Ref
16 bit Multiplier 10mW [76]
16 bit Adder 0.78mW [77]
16 bit Shifter 0.5nW [78]

The algorithm for shift-accumulate-based (SAC) neuron-synapse design on digital hardware is

given in equation 5.1.

SAC =

k∑
i=1

2n ∗ input+ b (5.1)

35

nϵR (5.2)

SAC = the shift-accumulate operation, input = output from the previous layer into the current

layer’s input, b = node bias, and k = weight number on each layer.

Fig 5.2 shows a comparative study between multiplier and shifter units when they were designed

on general-purpose FPGAs. According to Fig 5.2, a 16-bit multiplier consumes nearly 13x times

more power than a 16-bit shifter.

Figure 5.2: Comparative power consumption analysis between the 16-bit multiplier and 16-bit shifter
simulated and measured on general-purpose Nexys Artix-7 FPGA board.

To develop the DeepSAC module, first, a targeted NN model is trained, in this case, a feedforward

model, and all its weights are extracted. At first, compression techniques such as n-bit quantization

and pruning are implemented to reduce the sparsity of the FNN model. After compression, the next

task is to convert the hyperparameters into multiples of 2s to replace multipliers with shifters. After

a successful conversion, the weights are plugged into the original NN model, and a forward pass is

executed to check if the accuracy is maintained. Fig. 5.3 showcases the full algorithmic flow of the

DeepSAC model architecture.

Figure 5.3: DeepSAC compression and conversion process in a feedforward neural network.

36

5.2 DeepSAC for Biomedical Applications

The DeepSAC method is implemented in the decision-making block of the sleep apnea detection

system shown in Fig. 2.1 in Chapter 2 section Sleep Apnea Detection System. It is a power-

efficient deep learning model-based digital hardware design scheme that enables the development of

biomedical devices capable of monitoring real-time health conditions [16]. This design scheme aims

at improving the processing limitations between the DL models and the edge devices as described

below:

1. During the pre-training and optimization of the model, the user can utilize the machine-

learning software platforms through the cloud instead of training it exclusively on the hardware

accelerators. This significantly reduces the excessive hardware resource utilization and on-chip

memory usage.

2. For model compression and on-chip memory utilization, before inference, the model goes

through pruning and integer quantization for compression and avoiding floating point values.

3. Low-power hardware design techniques such as shifters are used instead of the matrix-

multiplication (MAC) operation in the neural networks synapse-neuron connection.

4. All the activation functions are designed using the piece-wise linear algorithm and leveraging

Look Up Tables (LUTs)

5.2.1 Experiments on Re-programmable Hardware

Two major components make up a neural network are:

1. Neuron-Synapse Unit: This unit takes input data from the previous layer, multiplies it with

the trained weights, and sends it to the next unit.

2. Classification Block: Before sending the data from one neuron to another, there is a

classification block called the activation function, which classifies the output value of the neuron

and, produces a result based on the condition of the function and sends it to the next neuron.

In both biomedical system designs, a 1-dimensional neuron unit is designed using shifters. In

the model, Rectified Linear Unit (ReLU) in the hidden layer and Sigmoid as the output layer

are used as activation functions. The following section describes the mathematical calculation

of the activation functions and DeepSAC’s shifter-based neuron design.

37

Activation Function Design

The activation function plays a crucial role in data classification. In neural networks (NNs), the

product of the weights and the input data gets classified through these functions. Therefore, the

proper choice of such functions for different layers in the network is essential, especially for gaining

a high accuracy rate [16]. The activation function enables NNs to learn complex data patterns in

training the model and their usage is high as each neuron unit uses this block for classification.

Therefore, it is essential to design the NNs in a way that consumes low power while also utilizing

limited resources from hardware. Fig. 5.4 showcases a comparative power consumption study report

between three widely used activation functions. These studies were performed in Vivado HLx software

using Artix-7 FPGA.

Figure 5.4: Power consumption study between three commonly used activation functions sigmoid,
hyperbolic tangent and rectified linear unit in NNs.

Two activation functions called ReLU and Sigmoid are used in the trained models. ReLU is a

piece-wise linear function that sends the input data as the output if it results in a positive value and

zeroes if the value is negative, as shown in the equation below for the ReLU function. The function

designed used a simple if-else logic unit on the hardware. The sigmoid function is used in the output

layer for both models, which successfully categorizes the input values from the previous layer between

0 and 1. According to Fig 5.4, although the hyperbolic tan function consumes less power than the

sigmoid when training the proposed NN model, the accuracy rate when using this function dropped

from 80% to nearly 60%. As for using the sigmoid function, the model accuracy was maintained at

80%. In digital hardware, the n-bit (n = 8, 16) sigmoid function is designed using a piece-wise linear

function as shown in the equation below:

38

ReLU =

0, if x ≤ 0

x, if x ≥ 0

(5.3)

Sigmoid =

128, if x ≥ 512

2-5|x|+ 107, if 256 ≤ |x| < 512

2-3|x|+ 80, if 128 ≤ |x| < 256

2-2|x|+ 64, if |x| ≥ 0

(5.4)

The ReLU and sigmoid activation functions are designed on 180 nm CMOS process as 8-bit

digital logic units based on equations 5.3 and 5.4 and 16-bit on 130 nm CMOS process. The ReLU

activation function uses stack multiplexers, and the sigmoid activation function uses OR gates and

stacked multiplexers. The layout of the ReLU and sigmoid functions are shown in Fig 5.5. The

transient analysis of ReLU is shown in Fig 5.6 where a1-8 are output channels, and b1-8 are input

channels. According to the Fig. 5.6, whenever the most significant bit MSB is negative, the output

shows ”00000000,” and whenever positive 8-bit values are passed, the output forwards the exact

value. The transient analysis of the sigmoid activation function is shown in Fig. 5.7, where a1-8 are

input channels, and output is the 1-bit output channel. According to Fig. 5.7, whenever the value is

below ”00000000” or negative, then sigmoid results in ”0,” and on positive values, it classifies as ”1”.

Table 5.2 presents the CMOS characteristics of ReLU and sigmoid.

Table 5.2: Measurements of ReLU and Sigmoid on 180 nm CMOS Process

Parameter ReLU Sigmoid
Area 0.004 µm2 0.008 µm2

Supply Voltage 5V 5V
Period 10ns 10ns
Power 0.0995µW 1.47µW
Energy 9.95fJ 1.477pJ

Synapse-Neuron Design

According to Fig. 5.8, which is a digital synapse-neuron connection of a DeepSAC model, the input

value is shifted based on the n-bit shifter where n is the assigned bit number and gets shifted back to

an 8, 16-bit integer for data consistency and then added to either the bias or directly passes onto the

assigned activation function. Each weight extracted from the model gets conditioned into the power

39

Figure 5.5: Layout image of activation functions on 180nm PDK (a) Rectified Linear Unit (ReLU)
with 8bit input/output and (b) Sigmoid function with 8-bit input and 1-bit output.

of 2. As a result, the shifter acts as the multiplier. It gets its bits based on the weights designated

to their corresponding synapse, which is a significant improvement as reported in [79]. The weight

values within a specific range get replaced with their corresponding shifter in the SAC operation.

For example, if a weight has a value of 34 in an 8-bit integer, then instead of multiplying the input

data by the value 34, the input data gets shifted to 5 bits, as shown in Table 5.2.

Table 5.3: Shifter Bit Based on Weight Range

Weight
Value
Range

Shifter Bit Weight
Value
Range

Shifter Bit Weight
Value
Range

Shifter Bit

0 0 6-9 3 59-80 6
1-2 1 10-28 4 81-180 7
3-5 2 29-58 5 181-280 8

Validation of the Proposed FNNs

Two 3-hidden layer FNNs are designed and trained for classifying the two selected data sets. One

dataset is for classifying and predicting diabetes among pregnant women, and another is screening

40

Figure 5.6: Transient analysis of ReLU activation function with 50ns period and 5V supply voltage.
a1-8 are output channels, and b1-8 are input channels.

Figure 5.7: Transient analysis of Sigmoid activation function with 50ns period and 5V supply voltage.
b1-8 are input channels, and output is a 1-bit output channel.

41

Figure 5.8: Shifter base synapse-neuron connection of NN model where wi are the weights, bi are the
biases, xi are the output values from the previous neuron or sensors, si are the shifted value f is the
activation function and yi is the output of the neuron for the next layer.

sleep apneic events among adults. Tables 5.4 and 5.5 summarizes the validation results of the two

models before and after they were converted into the DeepSAC model. The validation was carried out

based on their performance evaluation metrics and the accuracy of the tested data. The performance

evaluation metrics are calculated using the four widely accepted quality metric schemes shown in the

equations (5.5) - (5.8) below:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.5)

Precision =
TP

TP + FN
(5.6)

Recall =
TP

TN + FP
(5.7)

F1− Score = 2 ∗ Precision ∗Recall

Precision+Recall
(5.8)

Where, true positive (TP) is the number of correctly classified labels, which results in the binary

value “1”; true negative (TN) is the correctly classified label which results in the binary value “0”;

false negative (FN) is the incorrect classification label resulting in “0” and false positive (FP) is the

incorrect classification label resulting in “1”. The FNN models were trained and validated using the

selected data sets from [80].

42

Table 5.4: Performance Evaluation Between FNN and DeepSAC: Apnea Detection

Parameters FNN DeepSAC
Accuracy % 79 77
Precision % 77 77
Recall % 77 77

F1-Score % 87 87

Table 5.5: Performance Evaluation Between FNN and DeepSAC: Diabetes Prediction

Parameters FNN DeepSAC
Accuracy % 91 90
Precision % 84 85
Recall % 88 88

F1-Score % 86 86

5.3 Significant Improvement

After successful training and evaluation of the FNN models, each component of the NN model is

translated into digital logic and embedded into digital hardware. Widely available general-purpose

Nexys Artix-7 FPGA is selected for embedding the trained FNN model. This general-purpose FPGA

from the Nexys family tests how the SAC-based FNN model can utilize limited hardware resources

due to its basic logic block design architecture. The hardware performance analysis validates the

proposed technique, such as hardware resource utilization, power consumption rate, and output

signal generation. After pruning the FNN models to 40% and 30%, respectively, as shown in Fig 5.9

(a) and (b), and applying the integer quantization technique in converting real numbers into integer

bits, the power consumption rate is significantly reduced in both the models as shown in Table 5.6

and Table 5.7.

Table 5.6: Power Consumption Report for DeepSAC model: Apnea Model

Without Pruning With Pruning
Parameter Vivado HLx Soft-

ware (W)
Artix-7 Nexys
Hardware (W)

Vivado HLx
Software (W)

Artix-7 Nexys
Hardware (W)

Signal 14 18.156 3.288 2.364
Logic 18.5 22.79 3.830 2.781
I/O Ports 0.82 10.2 0.709 8.733
Total
Power

34.37 51.932 7.976 14.186

Dynamic: 33.3 Dynamic: 51.135 Dynamic:7.827 Dynamic: 13.879
Static: 0.446 Static: 0.797 Static: 0.150 Static: 0.308

43

Figure 5.9: Accuracy vs. pruning percentage for (a) diabetics prediction model and (b) apnea
prediction model using magnitude based pruning.

Table 5.7: Power Consumption Report for DeepSAC model: Diabetes Model

Without Prun-
ing

With Pruning

Parameter Vivado HLx
Software (W)

Artix-7 Nexys
Hardware (W)

Vivado HLx
Software (W)

Artix-7 Nexys
Hardware (W)

Signal 47 61.127 19.974 15.530
Logic 159 69.941 17.985 17.553
I/O Ports 1.12 9.579 1.047 10.844
Total
Power

109.171 141.443 39.797 44.724

Dynamic: 108.380 Dynamic: 140.647 Dynamic:39 Dynamic: 43.927
Static: 0.791 Static: 0.797 Static: 0.797 Static: 0.797

The logic block and the I/O ports are the most power-consuming elements due to the dense

design structure of the FNN model, which consists of multiple neuron units and connections.Such

dense amount of digital components result in high input-output data streaming blocks. The model

pruning reduces the network connections resulting in a low number of I/O ports. The conversion

from the float type to the integer type projects a low power consumption rate due to low memory

allocation and computing operation.

5.3.1 Simulation Results

For FNNs, the main bottleneck for analyzing data is the memory access. Each MAC operation

requires three memory reads (weight, activation function, and bias) and one memory writes. For

the calculated value (partial sum), [81] in the worst-case scenarios where the FNN structures are

deep and consist of more than two hidden layers and using many MAC blocks must utilize off-chip

DRAMs resulting in a high power consumption rate. In [82], a trained AlexNet embedded in digital

44

hardware utilizes 724 MAC units accessing over 3000 MB DRAM memory. However, using the

proposed DeepSAC operation where each shifter behaves as a weight requires zero memory access as

no weight values get stored in the hardware. In such a scheme, an input data stream is shifted based

on its weighted value and is passed through the output into an activation function. Each activation

function also does not have to access memory allocation due to the usage of shifters instead of

multipliers contributing to low power consumption. During the pruning of both networks, parameters

such as biases in the model are discarded. Even when biases are discarded, the accuracy rate (over

77%) was maintained as described in Chapter 4, section 4.1. Thus, there is no memory allocation

for the sum of the biases in neuron calculation. Such a shifting method significantly reduces the

model size for both models (using PIMA dataset: without pruning 2409 Bytes, with pruning 2202

Bytes, and using the sleep apnea dataset: without pruning 1994, with pruning 1921 bytes). Fig. 5.10

showcases the comparative study of resource utilization between two testing setup scenarios in pre-

and post-pruning. In Fig 5.11, zero RAMs were used in both models, and LUTs and slice registers

were mostly utilized in the design structure. Fig. 5.12 presents the total model size before and after

pruning for both (a) SA detection and (b) diabetes prediction.

Figure 5.10: Resource utilization analysis on re-programmable hardware before and after pruning
with integer quantization (a) apnea detection model (b) diabetes prediction model.

5.3.2 Test Bench Results

According to Fig. 5.13 and 5.14, the testbench simulation of the FNN models on Artix-7 FPGA

hardware shows accurate results. The embedded models are tested using the test sets from the

collected datasets and matched with the prediction results of the software and the provided labeled

dataset. According to Fig. 5.13, a set of input values represented as x1 and x2 from the two sensors

45

Figure 5.11: Number of digital logic units on re-programmable hardware before and after pruning and
integer quantization embedding on FPGA board (a) apnea detection model (b) diabetes prediction
model.

Figure 5.12: Final embedded model size on re-programmable hardware before and after pruning on
FPGA board (a) apnea detection model (b) diabetes prediction model.

46

(single channel ECG and SpO2 respectively) resulted in ”0” for normal condition and ”1” for detection

of apnea. In Fig. 5.14, eight input values x1, x2, x3, x4, x5, x6, x7, and x8 representing the diabetic

parameters resulted in ”0” for no risk of diabetes and ”1” for risk of diabetes based on a set of input

values. The output of both models matched the labels generated by the prediction results of the

FNNs. The models are simulated in Vivado HLx software. According to the sleep care foundation, if

R-R intervals are greater than 99 and SpO2 is smaller than 93%, then the patient has a possible

sleep apnea attack. In Fig 5.13, when the value of x1 is lower than 99, and SpO2 is higher than 93%,

then the output y results in ”0,” and when x1 value is greater than 99, and SpO2 is lower than 93%,

then the output y is ”1” detecting possible sleep apnea. Each classification was done in a 10 ms time

frame.

Figure 5.13: Simulation test result demonstrating the hardware prediction of SA detection (1: when
an apneic event occurs and 0: normal condition) using an unseen test data set.

In Fig. 5.14, according to the eight attributes, if the glucose level is around 140, blood pressure is

near 74.5, the insulin level is over 169.5, and BMI rate is near 34.3, then the patient aged over 35 is

considered to be diabetic [17].

5.4 Conclusion

Applying deep learning models (DL) such as DNNs in medical diagnosis is becoming increasingly

popular and is showing promising results. However, as DNN delivers highly accurate prediction

results and diagnosis, it still requires high-end computational processors, which require cloud services

that do not provide a cost-effective solution. In contrast, techniques enabling power-efficient, cost-

effective solutions must sacrifice performance accuracy, which is not beneficial in critical diagnosis,

47

Figure 5.14: Simulation test result demonstrating the hardware prediction of diabetes prediction (1:
diabetes predicted and 0: normal condition) by using unseen test data set.

especially in medical applications. In overcoming power consumption issues, the DeepSAC method

introduces power-efficient deep neural network models for digital hardware. However, this technique

is applicable in post-trained neural networks as the weights are irreplaceable after the inference on

hardware. The significant advantages of using the DeepSAC method are reducing memory access

due to minimal parametric (weights and biases) storage and the absence of multipliers in the neuron

units providing a low power consumption rate. This method shows promising results and accurate

testbench simulations when validated using two widely used medical data sets. Alongside this, many

digital logic parameters are implemented and is bench-marked using 3-hidden layer FNN models. In

the future, this design technique will be employed in developing and designing integrated circuits on

the CMOS platform, creating opportunities for fabricating smart wearable biomedical devices.

48

Chapter 6

SABINN: SHIFT ACCUMULATE BASED BINARIZED

NEURAL NETWORK

6.1 Introduction

A power-efficient hardware model called SABiNN: Shift Accumulate Based Binarized Neural Network

has been developed in this work that converts all the hyper-parameters of the network, such as

weights and their biases, into binary values (between +1 and -1). The SABiNN model is inspired

by Matthieu Courbariaux, Yoshua Bengio, and his team’s [74] newly developed Binarized Neural

Network (BiNN) model. SABiNN significantly reduces the power consumption rate of the model and

decreases the percentage of resource utilization when embedded onto re-programmable hardware.

On-chip memories, such as SRAMs and DRAMs, were not used during inference as each weights and

biases of the network are fixed binary value.

This chapter focuses on implementing and experimenting with the SABiNN model in a proposed

sleep apnea detection system. Firstly, the model is embedded onto re-programmable general-purpose

hardware such as Nexys Artix-7 FPGA and later integrated onto 130 nm and 180 nm CMOS platforms

for low power and fast processing.

6.2 Design Scheme

Currently, there are a variety of accelerators and processors available which are used in training the

AI/ML models. The matrix multiplication function is the core component and the basic computation

of the machine learning-based hardware accelerators. Due to their parallel computational scheme

GPUs are widely used for their processing and calculation efficiency over traditional CPUs. ASIC-

based AI-accelerators, designed solely for AI/ML training, are being developed to increase efficiency

49

in model training, validation, and embedding. An AI/ML-based hardware accelerator such as Google

TPU’s single-core architecture is shown in Fig 6.1 that illustrates the training and computation

mechanism [83].

Figure 6.1: Google TPU block Diagram: System Architecture.

According to Fig 6.1, the matrix multiplication unit takes data from the input and multiplies

it in a first in, first out (FIFO) manner with its associated weights stored in DRAM chips. After

multiplication, the multiplied resultant is accumulated and classified according to its activation

function. Later, it is normalized (according to the model specificity), and is sent via the buffer for

back-propagation and weight update purposes.

One of the fastest ASIC-based hardware accelerators in the market is Google TPUs, which runs

on 70 MHz frequency with a clock period of 700ns. The specifications of a single google TPU core

are listed in Table 6.1. But due to its high-speed computational power and maintenance, it is one of

the most expensive accelerators in the market. Table 6.2 shows the current price range (2022) of a

google TPU [83].

It can be concluded from Table 6.2 that the accelerator chip fabricated on an ASIC platform is

highly expensive. As a result, most system developers and scientists still use CPUs and GPUs to

run machine-learning models. Thus, size reduction and accessibility remain to be important issues

as CPUs and GPUs take up much space, time, and power. Therefore it is more than necessary to

50

Table 6.1: Google TPU Signal Core Specification

Parameter Unit
Diameter 331mm2

Frequency 70mHz
Clock Period 700ns
Supply Voltage 1.8V

Table 6.2: Google TPU Pricing as of 2022

Cloud TPU POD Price/hr 1-yr commitment 3-yr commitment
32-core Pod slice $24 USD $132,451 USD $283,824 USD
128-core Pod slice $96 USD $529,805 USD $1,135,296 USD
256-core Pod slice $192 USD $1,059,610 USD $2,270,592 USD
512-core Pod slice $384 USD $2119,219 USD $4541,184 USD

develop power-efficient ways to reduce the pricing and size and introduce alternative ways to create

on-chip acceleration and classification.

It is evident from the study that due to multipliers consuming the highest power and the most

extensive area, the target was to replace the multiplier block with a shifter. The DeepSAC module

eliminated the issue and completely removed the matrix multiplication section of the hardware by

introducing shifter-based multipliers. The target for SABiNN is converting all the weight values into

1-bit binarized values. An illustration of the extraction and conversion process of the weight values

into binarized values of +1 and -1 from a trained FNN model is shown in Fig 6.2 below.

Figure 6.2: Extraction and conversion process of weights transformed into binarized weights.

To create the SABiNN module, first, a targeted NN model was trained, in this case, a feedforward

model, and all its weights and biases were extracted. To convert them into binary values, element-wise

weight distribution was executed by calculating the mean value of the weights from each layer. By

taking the mean value of each hidden layer, binarization of +1 and -1 and distribution was done

among the weights. After a successful conversion, it was plugged into the original NN model, and

a forward pass was executed to check if the accuracy was maintained. Upon gaining acceptable

accuracy, the model parameters and architecture are extracted from the software and used for

hardware implementation. Otherwise, the FNN model is re-designed, discarding the binarized value

51

to avoid vanishing gradients when executing backpropagation.

6.3 SABiNN for Sleep Apnea Detection

The proposed sleep apnea detection system illustrated in Fig 2.1 from Chapter 2 takes in pre-

processed and normalized R-R intervals from the ECG signal and oxygen saturation level data from

SpO2 signal. Then the input data is classified between apneic and normal conditions. Machine-

learning-based FNN module executes the classification of the input data and results output of ”0”

and ”1”. The FNN structure requires a high memory size and consumes significant energy in its MAC

operation. Due to this limitation, most diagnostic systems avoid using a machine-learning-based

model in real-time detection and only use it in computer simulation and cloud-based applications,

especially during data processing and analysis. This dissertation aims to design and infer the FNN

model on hardware that requires near-zero memory storage for weights and biases and consumes low

power by replacing the multiplier component with an alternative logic block in the MAC operation.

Thus, the proposed energy-efficient SABiNN module is used in the decision-making section of the

system. Fig. 6.3 showcases the newly developed sleep apnea detection system.

Figure 6.3: SABiNN module embedded proposed sleep apnea detection block diagram.

According to [74], a significant reduction is observed in the memory size when binarizing the

weights in +1 or -1. This is due to the arithmetic operations being replaced with bit-wise operations.

Besides, it reduces power consumption rate, contributing to compact design architecture. In this

work [74], an NN with binarized weights and activations was trained and benchmarked on MNIST,

CIFAR-10, and SVHN datasets which produced near state-of-the-art results. A recent work [84]

introduced XNOR gate in a parallel computation scheme where both the weights and the input

values were binarized. This drastically reduced the memory size and showcased high energy efficiency.

However, these models were benchmarked with image datasets. Images can be easily transformed

52

into their histogram version where the pixel values are in binary “-1/0” and “+1” forms. The binary

operation applied in convolution is shown in Fig. 6.4.

Figure 6.4: Approximation of a convolution using binary operations. The input data are converted
into binary and multiplied with weights of +1 and 1. W = weights, X1 and X2 are binarized input
values, sign() = sign activation function, K = filter [84].

But physiological signals generated from biosensors cannot be translated into the binary format

as a significant amount of data will be lost due to their 1-dimensional nature. Thus, this binarization

method [74, 84] results in a low accuracy rate even if it is power-efficient. Considering this, the

post-training SABiNN model is developed where the binarization technique is used only on the

hyperparameters instead of the input values [31], and the input values are quantized into n-bit

integers instead of 1-bit binary values. A significant reduction in memory and power is observed

when the data is forward passed through the proposed network. Instead of using traditional sigmoid

function at the output node as its activation function [74], the sign function was used post-training

for balanced distribution shown in Fig. 6.5

Figure 6.5: Comparative study between quantized input and binary input values. The input data
are multiplied with weights of +1 and 1. By using NAND-based 2s compliment, the accuracy rate is
achieved around 70% whereas using binary input and hyperparameters then, the accuracy degrades
to 40%.

53

6.3.1 Software Simulation Results

Table 6.3 shows that the accuracy level between FNN, DeepSAC, and SABiNN are similar based on

the evaluation metrics. Thus, no data loss during weight binarization was observed upon verifying

the model accuracy. The SABiNN module is a 3-hidden layer-based neural network with ReLU as

its hidden layer activation function and hard sigmoid (sign) function as its output layer activation

function. Fig 6.6 showcases a graphical representation of the 3-hidden layer neural network model

embedded in re-configurable hardware (Artix Nexys-7 FPGA).

Figure 6.6: Construction of a 3-layer 2-(8-6-4)-1 SABiNN model with two 30-second segmented
1-dimensional sensor inputs (x1: R-R interval and x2: SpO2) generated from ECG patch and pulse
oximeter. The hidden layer consists of ReLU activation function, and the hard-sigmoid is the output
layer activation function.

Table 6.3: Performance Evaluation Metrics Between FNN, DeepSAC, and SABiNN

Parameter FNN DeepSAC SABiNN
Accuracy % 80 78 77
Precision % 77 77 71
Recall % 78 77 73

F1-Score % 84 81 81

6.3.2 Experiments on Re-programmable Hardware

A re-programmable hardware prototype is developed to test and validate the proposed model. The

reconfigurable hardware setup calculates the power consumption analysis and the resource utilization

percentage. For training and validating the hardware model, sleep apnea data was collected from

the PhysioNET bank, and for added versatility, two data sets were combined. One was collected

from the Philips University Medical Center, and the other from St. Vincent’s Hospital [40, 41]. All

patients were aged over 18 years and each patient had sleep data for over 8-10 hours.

54

SABiNN Synapse-Neuron Design

According to Fig 6.7, in the synapse part of the design, for -1 valued weights, the input values x[n]

are complemented using 2’s complement, and for +1 valued weights, the x[n] values are directly

forward passed. All the on-passed or completed values s[n] accumulate with an adder and then are

sent to its associated activation function f for classification. If bias is included in the model, the bias

bi[0:n] gets added to the accumulated value si[0:n].

Figure 6.7: Binarized synapse-neuron connection converted from the traditional synapse-neuron
connection.

Results

Two types of power consumption analysis are performed to properly evaluate both DeepSAC and

SABiNN models. One is a software-based power consumption analysis shown in Table 6.4, and the

other is when the proposed design was physically embedded in the selected FPGA hardware as shown

in Table 6.5. Both the models are optimized and quantized before embedding them onto digital

hardware. According to Tables 6.4 and 6.5, between the DeepSAC and SABiNN modules, the power

consumption rate of the SABiNN module is significantly reduced by 9x times.

Table 6.4: Power Consumption Analysis: Vivado HLx Software Simulation

Parameter DeepSAC SABiNN
Signal 3.288 1.446

I/O Ports 3.380 0.117
Logic Block 0.709 1.792
Dynamic 7.668 4.015
Static 0.308 0.116
Total 7.976 4.131

Thermal Margin 47 12.1

55

Table 6.5: Power Consumption Analysis: Nexys Artix-7 FPGA Embedded Simulation

Parameters DeepSAC SABiNN
Signals 2.364 1.736

I/O Ports 2.781 2.459
Logic Block 8.733 0.068
Dynamic 13.879 4.263
Static 0.308 0.105
Total 14.186 4.368

Thermal Margin 47 11.4

Table 6.6 is a comparative study of resource utilization between DeepSAC and SABiNN models.

Based on the results of Table 6.6, it could be identified that the SABiNN module also significantly

reduced the component number by 4x times, and the maximum temperature it dissipates is 44oC

which eliminates the need for extra cooling sink during processing.

Table 6.6: Resource Utilization on Nexys Artix-7 FPGA

Parameters DeepSAC SABiNN
LUTs 114 108

I/O Ports 29 18
Buffer 1 1

Registers 171 7
Flipflops 60 33

Highest Operating Temperature 89.7oC 44.3oC

As described, the multiply-accumulate (MAC) unit of the neural network plays a significant role

in consuming the maximum percentage of power. It also uses a larger part of the available hardware

resources. Fig. 6.8 illustrates the hardware resource utilization percentage between multiply, shifter,

and binarized accumulation. According to the bar chart MAC and SAC introduce a digital signal

processing unit (DSP) for the multiplication unit whereas BAC has no DSP unit.

According to Table 6.7, the total power of the MAC unit is 3x times higher than the binarized

accumulator (BAC) and 4x times higher than the shift accumulator (SAC).

Based on the data type, system design, and accuracy requirement, the design of SAC and BAC

goes hand in hand. Some applications, such as [17] and [85], utilize shift-accumulate-based neuron

design, whereas in [31] binarized neuron design is more beneficial.

56

Figure 6.8: Hardware resource utilization percentage between Multiply-Accumulate (MAC), Shift-
Accumulate (SAC), and Binarized Accumulate (BAC).

Table 6.7: Power Consumption Rate Between MAC, SAC, and BAC

Parameters MAC 8-
bit

MAC
16-bit

SAC 8-
bit

SAC 16-
bit

BAC 8-
bit

BAC 16-
bit

Signals (W) 0.434 1.047 0.56 0.117 0.098 0.198
I/O Ports (W) 13.885 30.402 3.804 7.604 5.942 12.399
Logic (W) 0.139 0.475 0.035 0.064 0.059 0.120
DSP (W) 0.933 1.490 0 0.053 0 0
Dynamic (W) 15.391 33.414 3.895 7.838 6.009 12.717
Total Power
(W)

15.66 33.946 3.985 7.953 6.201 12.903

57

Performance

Fig 6.9 shows the physical instrumentation of the FPGA hardware setup with its associated connec-

tions. Since actual sensors are not integrated, such as an ECG patch and pulse oximeter, to measure

the heart rate and blood oxygen saturation level, the computer acted as a dummy sensor module

connected to the FPGA board via USB/UART port. For validating and testing the whole system, a

test bench is generated from the data set collected from PhysioNET [19,40], and a 7-segment display

is used to showcase the results. Whenever apnea is detected, it shows ”1” in its LSB (Least-significant

bit) unit, and in normal conditions, it shows ”0”.

Figure 6.9: Physical implementation of the SABiNN module integrated onto a general purpose Nexys
Artix-7 series FPGA with the computer acting as dummy sensors of the ECG patch and SpO2 Sensor
(pulse oximeter) and a 7-segment display showcasing the output result.

The processing speed of an 8-bit SABiNN module in FPGA hardware is around 10 ms. The

test bench generation wave is executed on Vivado HLx software, shown in Fig 6.10. According to

Fig. 6.10, in a 10 ms time interval, the module detected apneic and non-apneic occurrences. x1[7:0]

and x2[7:0] are the input ports for ECG and SpO2 signals, respectively. ”clk” is the clock period

embedded onto the design, and y is the 1-bit output port. From the test dataset, according to

the Sleepcare foundation, if the RR interval from the ECG signal is over 99% and SpO2 values

are less than 93%, then that patient underwent apneic event. In the testbench results, the model

detected possible apneic cases when the ECG signal is over 99%, and SpO2 value is less than 95%.

Furthermore, the model showed normal conditions when the RR interval was below 100%, and SpO2

was over 90%. In realistic scenarios human biophysical data varies from person to person. Events

when the R-R interval is high even though the blood oxygen saturation is normal (in the range over

93%) is also considered an apneic case. According to the testbench simulation shown in Fig. 6.10,

the system successfully detected apneic events when the R-R intervals were over 99 even though the

58

blood saturation level was normal. From the measurement results, it can be concluded that SABiNN

can be successfully deployed on CMOS with minimal area requirements.

Figure 6.10: Test-bench simulation test demonstrating the hardware prediction of SA detection (1:
when an apneic event occurs and 0: normal condition) using the unseen test dataset.

After properly validating and testing the SABiNN model, the proposed hardware model is

translated onto the ASIC platform for low-power calculation. For on-chip processing and classification,

the digital hardware module is designed onto both the 130 nm CMOS process provided by Google-

Skywater [86] and a 180 nm commercial CMOS process.

6.3.3 Experiments on CMOS Platform

The goal of developing the SABiNN model is to design a low-cost, low-power, and high-precision

wearable healthcare device that can run for 8-10 hours straight while enabling real-time automatic

detection. Thus, customization and miniaturization are highly important to design the SA detection

device successfully. This section documents two implementations of the SABiNN model on two

different CMOS process design kits (130 nm and 180 nm). A basic multi-layer perceptron (MLP) is

designed and fabricated on 180 nm.

Experimental Results: Multi-Layer-Perception (MLP)

A multilayer perception (MLP) is a fundamental component that makes up a neural network. It has

three layers: input, hidden, and output. It is a fully connected class of feedforward artificial neural

networks. Fig. 6.11 (a) showcases a 3-layer MLP with two inputs and one output, and (b) showcases

an ASIC implementation of a binarized MLP with the same design architecture.

According to the SABiNN architecture design, MAC units are replaced with BAC. When weights

are ”-1”, a 2s complement is introduced, and the input value gets flipped. When weights are ”+1,”

the input values are forward passed without any 2s complements. Lastly, the weights are accumulated

59

Figure 6.11: Illustration of a baseline MLP model (a) graphical view of a typical fully connected
3-layer 2-(4)-1 MLP (b) CMOS layout of 3-layer 2-(4)-1 binarized MLP with the rectified linear unit
as its hidden layer activation function and hard sigmoid (sign) as its output activation function. The
red label indicates the binarized MAC unit (Adder and 2s compliment), the purple indicates the
ReLU function, and the blue indicates the hard sigmoid function.

using adders and fed into their associated activation functions. The indirect multiplication of weights

”1” and ”-1” can be represented as XNOR gates in hardware implementation. However, in CMOS

ASIC design, the XNOR gate results in lower precision and higher noise-induced signal, contributing

to significant accuracy degradation when utilizing a dense number of XNOR gates in neuron-synapse

connection. When an XNOR gate is implemented in CMOS, a significant 279 mV to 456 mV spike is

observed on the XNOR gate. This spike repeatedly occurred when input A flipped the bit from “1”

to “0” and input B flipped the bit from “0” to “1”. For 1-bit XNOR gate this can be overlooked

however when designing 8-bit, 16-bit neuron-synapse unit on digital hardware platforms, these voltage

spikes will significantly contribute to the resultant value. As a result, this will reduce the precision

rate of the overall model classification. Therefore, a NAND-based XNOR gate is designed on the

BAC unit to ensure clean voltage reading and reduce voltage spikes, achieving a higher precision rate

and clean signal generation. Transient analysis of XNOR and NAND-based XNOR gate is presented

in Fig. 6.12 (a)-(b), indicating the voltage spikes in the XNOR gate.

The SABiNN-based MLP layout with its integrated 5mm2 pad frame is shown in Fig 6.13. The

total area of the MLP model resulted in around 0.327 um2. The SABiNN-MLP chip has an input

voltage of 5 V. From the layout image, VDD is the input DC voltage source, GND is the ground

connection, x1 and x2 are 8-bit input signals, and output is a 1-bit output signal.

Transient analysis is done to calculate the speed of the proposed MLP; according to Fig. 6.14,

the rise-fall time of each edge was around 1 ns with an input pulse voltage of 5 V with a 10 ns

60

Figure 6.12: Comparative study of the output values during transient analysis between (a) XNOR
gate and (n) NAND-based XNOR gate. In the XNOR gate, (-279 mV to 456 mV) voltage spike is
observed during bit flipping in transient analysis indicated at (b), where the NAND-based XNOR
gate resulted in a much cleaner signal.

Figure 6.13: Layout image of the SABiNN MLP chip inside a 5 mm2 pad frame where VDD = DC
voltage source (1.8 V), x1 and x2 are 8-bit inputs, the output is a 1-bit output. The entire chip was
designed on a 180 nm CMOS process.

61

period. The total power consumption rate of the MLP model is estimated to be around 44 mW. The

SABiNN-MLP characteristics are shown in Table 6.7

Table 6.8: SABiNN-MLP Chip Characteristics

Parameters Unit
MLP 2-4-1

Supply Voltage (Vdc) 5V
Period 10ns

Total Area 0.327 µ m2
Power Consumption 44mW

Total Energy 44.61uJ

Table 6.8 showcases a comparative study between the simulated and experimental results of

the SABiNN-MLP chip and the software baseline MLP model, which uses MAC units between

synapse-neuron connections.

Design Space Exploration: SABiNN Layout

Two SA detection prototypes are created that successfully detect apneic events. In the 180 nm

process, a 3-hidden layer 8-bit quantized NN is developed, shown in Fig. 6.15; in the 130 nm process,

a 4-hidden layer 16-bit quantized NN is developed in Fig 6.16. Both NN models follow the SABiNN

design architecture.

Fig. 6.17 showcases a schematic view of the 3-hidden layer SABiNN model where a) is both the

input and layer one with an eight-node connection, b) is layer 2 with six nodes, c) is layer 3 with four

nodes, and d) are the output layer with one node and a sigmoid block at the end for classification.

Fig. 6.18 illustrates the layout model designed on 180 nm commercial CMOS process. The total

design area took 9.5um2, and each component showcases gate-level design.

Fig 6.19 (a) showcases a schematic view of the 4-hidden layer SABiNN model, (b) illustrates the

physical layout of the model designed on 130 nm CMOS process and (c) showcases the caravel digital

pad frame where the SABiNN model was integrated. The total area is around 0.16 mm2, which

utilized only 32% of the design area. Fig. 6.18 showcases the physical view of the SABiNN chip

integrated into the 20mm2 Google+Skywater pad frame with 10mm2 design area. The entire model

is implemented using digital synthesis on Vivado. The full GitHub repository can be found [87].

62

Figure 6.14: SABiNN-MLP test circuit and simulation results. a(1-8) and b(1-8) are input pulse
voltage signals, and out is the output signal generated by the MLP circuit.

63

Figure 6.15: Construction of a 3-layer 2-(-6-8-4)-1 FNN model for 180nm PDK process with two
30-second segmented 1-dimensional sensor inputs (x1: R-R interval and x2: SpO2) generated from
ECG patch and pulse oximeter. The hidden layer consists of ReLU activation function and the
sigmoid as the output layer activation function.

Figure 6.16: Design of a 4-layer 2-(8-12-6-4)-1 SABiNN model for 130nm PDK process with two
30-second segmented 1-dimensional sensor inputs (x1: R-R interval and x2: SpO2) generated from
ECG patch and pulse oximeter. The hidden layer consists of the ReLU activation function and
sigmoid as the output layer activation function.

64

Figure 6.17: Schematic view of a full three hidden layer SABiNN model on 180nm. (a) is both the
input and layer one with an eight-node connection, (b) is layer 2 with six nodes, (c) is layer 3 with
four nodes, and (d) is the output layer with one node and a sigmoid block at the end for classification.

65

Figure 6.18: Full layout image of a 3-hidden layer SABiNN model.

66

Figure 6.19: Full layout image of a 4-hidden layer 16-bit input SABiNN model with its schematic. (a)
schematic view of the digital 4-hidden layer SABiNN model designed on Vivado HLx. (b) the digital
layout of the synthesized SABiNN model and (c) 16-bit 4-hidden layer SABiNN model integrated
onto Google+Skywater’s caravel digital padframe.

67

SABiNN Result on CMOS Platform

Testbench simulation is executed on both designs to ensure the proper precision rate and speed.

Fig. 6.20 showcases the transient analysis result of the 8-bit two-input signal and a 1-bit output

signal. The entire design process was performed on the Cadence Virtuoso platform. According to the

simulation results the rise time of each detection had a delay of 1.5 ns and the fall-time was 2 ns an

input pulse voltage of 5 V with a 10 ns period was supplied to the input ports.

Fig. 6.21 showcases the digital simulation result of the 4-hidden layer SABiNN model with two

16-bit input ports, 1 ”clk” port, 1 ”rst” port, and 1-bit output port. [31].The characteristics of both

chips are described in Table 6.8.

Table 6.9: SABiNN Chip Characteristics between 180nm and 130nm PDK

Parameters 180 nm CMOS 130 nm CMOS
FNN 2-(6-8-4)-1 2-(8-12-6-4)-1

Supply Voltage (Vdc) 5V 1.8V
Period 10ns 100ns

Total Area 9.5 µm2 0.16 mm2

Power Consumption 0.4W 10 µ W
Total Energy 3.98nJ 1nJ

6.4 Discussion

Inference of trained SABiNN model with a power consumption rate below 10 uW opens up the

opportunities to infer deeper and denser neural network (NN) models with higher complexity and

sensitivity rate. Currently, most NN models for classification are built on cloud platforms limiting

on-chip prediction and analysis even though ensuring high accuracy but with no assurance of power

efficiency [82,84,88–93]. In contrast with the FPGA schemes, neither ML nor NN models were utilized,

and no power consumption rate was documented [94–96]. The proposed SABiNN architecture can

optimize and infer deep neural networks (DNN) more straightforwardly while cutting the overhead cost.

The CMOS implementation introduces future intelligent wearable devices with on-chip classification

without the help of the cloud and servers, enabling higher security and lower latency of around 10

µs per prediction. SABiNN design architecture is the first to introduce CMOS implementation of an

optimized binarized neural network for sleep apnea (SA) detection. Table 6.9 compares the proposed

state-of-the-art methods of detecting sleep apnea with the 130 nm SABiNN model, demonstrating

promising results. However, this technique is currently applicable in post-trained NNs as the weights

68

Figure 6.20: SABiNN on 180nm CMOS test circuit and simulation results. a(1-8) and b(1-8) are
input pulse voltage signals, and out is the output signal generated by the MLP circuit.

69

Figure 6.21: Test-bench simulation test demonstrating prediction of SA detection (1: when an apneic
event occurs and 0: normal condition) using the unseen test dataset.

are fixed after the inference on hardware. But the significant advantage of using the proposed

SABiNN method is the reduction of memory access due to the need for storing hyperparametric

values and the absence of multipliers in neuron units. The proposed method showed promising results

and accurate testbench simulations when validated using an open-source, widely used dataset.

Table 6.10: State-of-the-art Method in SA Detection

Year/Work 2022
[97]

2021 [98] 2022 [99] 2021
[100]

2022 [101] This Work

Platform Real-
Time

Wearable Software IoT ASIC =
180nm

ASIC
=130nm

Feature Audio:
Snor-
ing

PSG: ECG Nasal airflow:
respiratory
cycle, respi-
ratory rate
(RR), tidal
volume (TV)

ECg
and
SpO2

RR Interval,
R-S Ampli-
tude

SpO2, RR
Interval from
ECG

Classifier TCN SVM XGBoost 1D-
CNN

SVM SABiNN

Sample
Window

1.04
sec

60 sec 5 sec 1 sec 10 sec 30 sec

Sensitivity - 71% 83.82% 97.44% 83.85% 91%
Specificity 96% 88% 85.97% - 85.58% 86%
Accuracy 96% 83% 83.76% 99.62% 84.60% 88%
Area N/A N/A N/A N/A 0.429mm2 0.16mm2

Power N/A N/A N/A N/A 0.46 µ W 10 µ W
Energy N/A N/A N/A N/A 0.46nJ 1pJ

6.5 Conclusion

The application of DL models, such as neural networks (NN), in medical diagnosis and monitoring,

is becoming increasingly popular. However, as NN delivers highly accurate prediction diagnosis, it

still requires high-end computational processors which leverage expensive cloud services. In contrast,

techniques enabling energy-efficient, cost-effective solutions must sacrifice performance accuracy.

To overcome such issues, the proposed SABiNN method is energy-efficient, resulting in 5mJ on

general-purpose FPGAs and 1pJ on the CMOS platform. However, this technique is applicable in

70

post-trained NNs as the weights are fixed after the inference on hardware. But the major advantage

of using the proposed SABiNN method is the reduction of memory access due to the lack of storing

hyperparametric values and the absence of multipliers in neuron units. The proposed method showed

promising results and accurate testbench simulations when validated using an open-source, widely

used dataset. The success of this design technique can be further employed in developing a fully

System-on-Chip (SoC) integrated biomedical system that could accurately detect and screen SA

events with designated front-end sensors.

71

Chapter 7

BENCHMARK OF PROPOSED MODEL ARCHITECTURE

7.1 Introduction

Benchmarking a proposed model’s architecture and it’s algorithm is necessary to ensure versatility

when developing a specific design architecture for various platforms. The term benchmarking is used

for evaluating and comparing a proposed algorithm or method on widely used ”benchmarked” models

and datasets. This way, the specific architecture or method can learn patterns on various DL models

using various datasets. In this research, the SABiNN architecture is benchmarked on popular DL

models with widely used image datasets.

7.2 Model and Dataset Selection

Three popularly used DL models are selected for benchmarking the design architecture of SABiNN,

where SABiNN is implemented on each model’s ”Dense” (Fully Connected) layers. These models

are: Karen Simonyan and Andrew Zisserman’s VGG19 [102], which is a very deep convolutional

neural network, Microsoft’s ResNET50 [103], which is a residual neural network, and Google’s

MobileNetV2 [104] which is used in developing embedded system and IoT applications requiring

low area, power, and restricted resources. The two selected datasets for training and validation

are: Cifar10 [105], which consists of various RGB images of animals, objects, plants, etc., and

MedMNIST [106], a databank consisting of MNIST-like collection of standardized biomedical images

that are 2-dimensional. This chapter briefly introduces each model architecture and the datasets and

documents the evaluation results before and after implementing the SABiNN model architecture.

72

7.2.1 VGG19

Introduced by Sominyan and Zisserman [102], VGG19 is a deep convolutional network for large-scale

image recognition. It is an improved version of Ciresan et al. (2011) and Krizhevsky et al. (2021) [102]

ConvNet architecture by increasing the depth of the model architecture as shown in Fig. 7.1.

Figure 7.1: Example of a VGG19 model with 19.6 billion FLOPs [102].

During training, the input to the proposed ConvNet is a fixed-size 224x224 RGB image, where

pre-processing is done only by subtracting the mean RGB. The in-depth structure and parameters of

the full VGG19 model are shown in Table 7.1

VGG19 takes 32x32 or 224x224 RGB image sizes. The first convolutional layer is a 3x3 filter size

with 64 kernels; then, through max-pooling, the next layer is a 128-kernel convolutional layer with

another max-pool layer. Each convolution layer of the VGG19 model ends with a max pool layer,

and the final layers end with a fully connected neural net. Lastly, classification is executed through

an activation function of either softmax or sigmoid.

7.2.2 ResNet50

Developed by Kaiming He and his team at Microsoft Research [103], they introduced a residual

learning framework that is easy to train and substantially deeper than previous DL models. It is a

50-layer residual network. The first 48 are the convolutional neural networks (CNN); the rest are

dense or fully connected neural nets (FNN) with a max pool layer shown in Fig. 7.2. Activation

functions like softmax and sigmoid are used as the classification layer.

Figure 7.2: A residual network with 34 parameter layers (3.6 Billion FLOPS). The dotted shortcuts
of the residual network are increased dimensions. The last layer is the feedforward layer, and the
model is fed in with image dataset [103].

73

Table 7.1: Full stack VGG Model

ConvNet Configuration
A A-LRN B C D E
11 weight lay-
ers

11 weight lay-
ers

13 weight lay-
ers

16 weight lay-
ers

16 weight lay-
ers

19 weight lay-
ers

input (224x224) RGB Images
conv3-64 conv3-64

LRN
conv3-64,
conv3-64

conv3-64,
conv3-64

conv3-64,
conv3-64

conv3-64,
conv3-64

maxpool
conv3-128 conv3-128 conv3-128,

conv3-128
conv3-128,
conv3-128

conv3-128,
conv3-128

conv3-128,
conv3-128

maxpool
conv3-256,
conv3-256

conv3-256,
conv3-256

conv3-256,
conv3-256

conv3-256,
conv3-256,
conv1-256

conv3-256,
conv3-256,
conv3-256

conv3-256,
conv3-256,
conv3-256,
conv3-256

maxpool
conv3-512,
conv3-512

conv3-512,
conv3-512

conv3-512,
conv3-512

conv3-512,
conv3-512,
conv1-512

conv3-512,
conv3-512,
conv3-512

conv3-512,
conv3-512,
conv3-512,
conv3-512

maxpool
conv3-512,
conv3-512

conv3-512,
conv3-512

conv3-512,
conv3-512

conv3-512,
conv3-512,
conv1-512

conv3-512,
conv3-512,
conv3-512

conv3-512,
conv3-512,
conv3-512,
conv3-512

maxpool
FC-4096
FC-4096
FC-1000

soft-max/sigmoid

74

Traditionally in CNN if deeper the network the higher the chances of vanishing gradients. During

back-propagation, the model’s hyperparameters are multiplied by the error gradient. However, in the

long chain of such multiplication, if multiple hyperparameters are multiplied by less than one, the

resulting gradient will be very small, resulting in zero gradients unable to update the early layers

for higher performance. This is why skip-connection or residual layers are used, which provides an

alternative path for the gradient. A residual network is made of off-residual connections, a type of

skip connection shown in Fig. 7.3.

Figure 7.3: Residual learning. A skip connection block.

As the name suggests, during feedforward and backpropagation, it skips some layers in the network

and feeds the output of one layer as the input to the subsequent layers. In residual architectures,

skip connections are used as vector addition through the identity function. Thus, in this case, the

gradient will be multiplied by one, and its value will be maintained in earlier layers. Equation 7.1

shows the mathematical representation of a residual block calculation:

y = F (x,W i) + x (7.1)

where y is the output of a layer, x is the input of that layer and F(x, Wi) is the residual mapping

to be learnt [103]. The in-depth structure and parameters of three variations of ResNet models are

shown in Table 7.2.

During the benchmark, ResNet with 50 layers is chosen, the final FNN layer was modified

according to the type of datasets used while maintaining the exact residual structure and layer

numbers of the model. The final fully connected layer is a single dense connection with around 128

nodes.

75

Table 7.2: 18-layer,34-layer and 50-layer ResNet Models

18-layer 34-layer 50-layer
conv7-64

max pool, 3
[con3-64, conv3-64]x3 [con3-64, conv3-64]x3 [conv1-64, conv3-64, conv1-256] x 3

[con3-128, conv3-128]x3 [con3-128, conv3-128]x3 [conv1-128, conv3-128, conv1-512] x 3
[con3-256, conv3-256]x3 [con3-256, conv3-256]x3 [conv1-256, conv3-256, conv1-1024] x 3
[con3-512, conv3-512]x3 [con3-512, conv3-512]x3 [conv1-512, conv3-512, conv1-2048] x 3

average pool
maxpool
FC-1000

soft-max/sigmoid

7.2.3 MobileNetV2

Introduced by Sandler and his team [104], MobileNetV2 is an improved version of MobilenetV1 and

is a convolutional neural network used in mobile applications. Previously Version 1 used depthwise

separable convolution to reduce the model complexity and size. The new version introduces an an

added block termed inverted residual structure, removing non-linearities in narrow layers. Fig. 7.4

illustrates the MobileNetV2 architecture.

Figure 7.4: MobileNetV2 basic construction of two blocks [104].

In MobileNetV2, there are two types of blocks one of which is a residual block with a stride of

1. Stride is a function used in convolutional neural networks for compressing the images during

fine-tuning. It modifies the amount of movement over the image. Another is a block with stride 2 for

76

downsizing. Each block consists of three different types of layers. The first layer is a 1x1 CovNet

with Rectified Linear Unit (ReLU) as its activation function, and the second layer is the depthwise

convolution taken from MobilNetV1. The final layer is another 1x1 convolution but without any

non-linearity.

7.2.4 Dataset Generation and Pre-processing

In benchmarking the SABiNN model, two types of image sets are used to evaluate the versatility of

the model architecture. Cifar10 colored image dataset and medical image dataset MedMNIST are

used in this process. To successfully feed into the two models, both the datasets are set as 32x32

inputs where cifar10 is in RGB, having 10 classes, and MedMNIST is in Black and White having

binary classes.

Cifar-10

The cifar-10 dataset contains 32x32 colored images. The sample size is around 60000 with 10 classes

each. During the evaluation, 5000 were used in training and the rest as testing. The dataset is

equally divided into five training batches and one test batch, where each has 1000 sample images.

The test batch contains 1000 randomly sampled images to avoid bias training. All the 10 classes in

the cifar-10 are mutually exclusive [105]. Fig. 7.5 shows a sample of the cifar-10 images with their

labels.

Figure 7.5: Sample of a cifar-10 dataset with image labels [105].

77

Medical MNIST: MedMNIST

MedMNIST is a large-scale MNIST-like dataset that includes a collection of standardized biomedical

images. The dataset contains twelve 2D and six 3D sets [106]. All the collected images are 28x28

for 2D and 28x28x28 for 3D. Since the selected model uses 32x32 as input, the MedMNIST dataset

is resized into 32x32 for accurate evaluation. The selected dataset for benchmarking the SABiNN

model is the ”peumoniaMNIST.” PneumoniaMNIST is a 28x28 black-white (BW) 2D image dataset

that detects white spots in a patient’s lung called infiltrates. Fig. 7.6 compares a healthy lung and

a pneumonic lung, where the red arrows indicate the white infiltrates.

Figure 7.6: Sample of (a) healthy lung and (b) affected lung (pneumonia patient) [107].

The models were trained to do binary classification between healthy and pneumonic lungs where

the healthy lung is labeled ”0,” and the pneumonic lung is labeled ”1”.

Transfer Learning on Deep Learning Models using Cifar10

Transfer learning on deep learning models (DL) is a machine-learning method where the hyperparam-

eters of a specific model are previously trained with a different dataset. Thus, the model parameters

are re-used for training on another dataset. It is a widely used method, especially in computer

vision and natural language processing applications. Reusing pre-trained models significantly reduces

the computational and time resources compared to building models from the ground up. This

optimization technique allows rapid progress and improved performance when modeling the second

task. However, transfer learning is valid if the DL model is trained on features used in general tasks

and the dataset was previously trained on a similar type. For example, when using cifar10 dataset

for training and evaluation, it is beneficial to reuse the model parameters trained on image datasets

rather than scripts in computer vision [108]

78

During the benchmarking of SABiNN, parameter-based transfer learning is utilized during the

training process. Parameter-based transfer learning is an approach that transfers knowledge at the

parametric level, such as the values of weights and biases.

The idea involves transferring knowledge through the shared parameters of the source and target

domain learner models. If the model is well-trained on the source domain with a well-defined structure

and two related tasks, then the structure can be transferred to the target model.

There are two ways to share the weights in DL models: soft weight sharing and hard weight

sharing [109].

Soft weight sharing: The model is expected to be close to the already learned features and

penalized if its weights deviate significantly from a given set of weights.

Hard weight sharing: share the exact weights among different models.

This research uses soft weight sharing to benchmark the SABiNN method—the cifar10 image

dataset is used during training and validation where the per-trained weights used are ”imageNET”.

Originally the models were trained on ImageNET dataset, and the hyperparameter collected were

learned weights that were then used for training on cifar10.

7.2.5 Binarizing Dense Layers

The SABiNN method is implemented on the proposed models: VGG19, ResNet50, and MobileNetV2

where the process is graphically showcased in Fig 7.7. During cifar training and benchmarking,

transfer learning techniques reduce training complexity and memory usage in software. ”ImageNET”

pre-trained weights are utilized because the dimensions and characteristics of cifar10 and ImageNet

are similar. Both datasets are 32x32 RGB (3-channel) images. Therefore, the model is initially

trained with ”ImageNet” After acquiring acceptable test results, each Dense layer is extracted,

and the weights are further binarized for SABiNN implementation. For MedMNIST dataset, the

models are trained with initial randomized weights and then extracted for binarization after attaining

acceptable accuracy.

7.3 Training and Evaluation

For cifar10 dataset, categorical cross entropy was used as a loss function, and for binary classification

on MedMNIST, binary cross entropy was used. The training features are presented in Table 7.3.

Stochastic Gradient Descent In short, SGD is a popular and standard algorithm used in

neural network training for optimizing the model. Gradient descent means descending a slope to

79

Figure 7.7: Algorithm for binarizing each layer through layer extraction using SABiNN method.

Table 7.3: Training Features for Cifar10 and MedMNIST Datasets

Optimizer Loss-Function Activation Function
Cifar-10 Dataset [105]

Sparse categorical cross entropy Stochastic Gradient Descent Hidden: ReLU, Output: Softmax
MedMNIST: Pneumonia Dataset [106]

Binary cross entropy Stochastic Gradient Descent Hidden: ReLU, Output: Sigmoid

reach the lowest point on that surface. It is an iterative algorithm that starts from a random point

on a function and travels down the slope until it reaches its lowest values. The steps in the algorithm

are: 1. Finding the slope of the function for each feature or parameter. This step computes the

gradient function. 2. Picking a random initial value (stochastic) and updating the gradient function

by plugging in the random values. 3. Calculation of the step sizes with a learning rate of each feature,

and 4. calculation of the new parametric values where new params = old params-step size. Finally 5,

repeating steps 3 and 5 until the gradient is 0. SGD is used for selecting data points at each step

to calculate the derivatives. SGD randomly picks one data point from each set at each iteration to

reduce computational complexity. The SGD formula is shown in the equation:

θ = θ − α ∗ ∇θJ(θ;x(I); y(I)) (7.2)

Where θ is the current set of model parameters, α is the learning rate that controls the step size

taken during optimization in each iteration and x(i) and y(i) are training examples.

Categorical Cross Entropy used in cifar10 image classification, also called the categorical

logarithmic loss, adjusts the model weights during training, and the perfect cross-entropy loss is ”0”.

Each predicted class probability is compared to the desired multiclass. A score/loss is calculated that

80

penalizes the probability based on how far or close it is to the actual expected value. The categorical

cross entropy function is used when the softmax is the output activation function. The equation

shows the calculation of the categorical cross-entropy shown in equation 7.2 [110]:

LCCE = −
n∑

i=1

tilog(i), fornclasses (7.3)

Where LCCE = Categorical crosses entropy loss function, pi is the softmax probability for iith

class and ti is the truth label. The true labels (expected output values) are one-hot encoded in

categorical cross-entropy. For example, if we have a 3-class classification problem, then the output

array will be [1,0,0],[0,1,0], and [0,0,1].

Binary Cross Entropy used in MedMNIST image dataset works with a classification task

having two classes, ”0” or ”1.” shown in equation 7.3. Binary cross-entropy is calculated as the

average across all data samples shown in equation 7.4. [110]:

L = −
2∑

i=1

tilog(i) = −[t1log(p1) + t2log(p2) = −[tlog(p) + (1− t)log(1− p)] (7.4)

L = −1/N [tjlog(pj) + (1− tj)log(1− pj) (7.5)

Both softmax and sigmoid can be used as the output activation function for classification. In this

research during binary classification, the sigmoid activation function was implemented as the last

classification layer.

Tables 7.4 and 7.5 represent the evaluation metrics of SABiNN model benchmarked in VGG19 [102],

ResNet50 [103] and MobilenNetV2, [104].In Table 7.4, the cifar-10 is a multi-class classification; thus,

the evaluation metric is between model accuracy on the test dataset and the top 5% accuracy. Top

5% accuracy describes the model’s top 5 highest probability answers that match the expected answer.

The classification is correct if the five predictions match the targetted label. It is a widely used

metric used for multiclass classification.

For MedMNIST, which performs binary classification, four popular metric calculations are

presented in Table 7.5: precision, recall, F1-score, and AUC. Area Under the ROC Curve

(AUC) measures the entire two-dimensional area underneath the entire ROC curve from (0,0) to

(1,1). It represents the measure of performance across all possible classification thresholds. The

mathematical equation for accuracy, precision, recall, and F1-score are given below in 7.2, 7.3, 7.4,

and 7.5, respectively.

81

Table 7.4: Evaluation Metric: Cifar10

Classifier Accuracy: Top 1% Accuracy: Top 5%
Original Weights

VGG19 86.61 98.92
ResNet50 95.33 60.65

MobileNetV2 70.32 48.32
Binarized weights

VGG19 85.08 100
ResNet50 93.17 100

MobileNetV2 67.63 62.83

accuracy = TN + TP/TN + FP + TP + FN (7.6)

precision = TP/TP + FP (7.7)

recall = TP/TP + FN (7.8)

f1− score = 2 ∗ ((precision∗)/(precision+ recall)) (7.9)

Table 7.5: Evaluation Metric: MedMNIST-pneumonia

Classifier Accuracy (%) Precision (%) Recall% F1-Score% AUC%
Original Weights

VGG19 89 93 89 89 93.98
ResNet50 85 87 85 85 92.81

MobileNetV2 77 82 77 74 93.64
Binarized Weights

VGG19 88 89 89 89 85.768
ResNet50 85 85 85 85 83.912

MobileNetV2 79.33 86 80 82 80.90

According to Tables 7.4 and 7.5, the overall accuracy degradation when converting from float32

weight value to binarized is around 1%-2.5%, which is relatively low compared to other widely used

compression techniques [74].

The ROC-AUC, termed the Area Under Receiving Operating Curve, is shown in Fig 7.8. A

receiver operating characteristic curve, or ROC curve, is a graphical plot illustrating the ability to

82

classify binary classification adequately. The ROC is a relationship between sensitivity and specificity.

According to the AUC the accuracy degraded only 2.5% while maintaining the discriminator

percentage to over 80%. If ROC-AUC percentage is in between 80% to 90% then the classifier or

model is considered an excellent discriminator which is acceptable in optimization and compression.

Due to sparsity reduction, the AUC curve showcases a straightforward learning curve.

According to the evaluation metrics, the transformed models showcase acceptable accuracy. To

estimate the model’s total energy during testing in each sample, calculating the layer-wise energy can

contribute to calculating the total energy consumption of a given model shown in equation 7.6 [111]:

Elayer = Edata flow + Ecomputational (7.10)

Where Elayer is the total energy of each model layer, Edata flow is the data flow, which includes

the off-chip on-chip data transmission and memory access read/write, and Ecomputational is the

computational energy of the performing MACs of a given layer. The main objective of this research

focuses on decreasing the energy of the performing MACs by reducing the sparsity of a given Deep

Neural Network (DNN) model. The total MAC units in each layer can be calculated by the shape of

the filter and the number of filters in a convolutional layer, and the number of neurons for a fully

connected layer.

Equation 7.7 calculates the total MAC unit per convolutional layer.

Conv Layer = (Hw ∗Hh ∗N i-1 + 1) ∗N i (7.11)

Where Hw is the width of the filter, Hh is the height of the filter, Ni-1 is the number of filters in

the previous layer, and Ni is the number of filters in the current layer. Since the proposed model did

not consider bias then, the equation stands as 7.8:

Conv Layer = Hw ∗Hh ∗N i-1 ∗N i (7.12)

Equation 7.9 calculates the total MAC unit per fully connected layer, FC Layer.

FC Layer = (ni ∗ n(i-1)) + 1 ∗ ni (7.13)

Where ni is the current layer neurons and n(i-1) is the previous layer neurons. Since bias is

discarded, then the final formula is given in 7.10:

83

Figure 7.8: Simulation test result demonstrating the hardware prediction of diabetes prediction (1:
diabetes predicted and 0: normal condition) by using unseen test data set.

84

Figure 7.9: Energy estimation methodology [111] where Ecomp is the computation energy being
consumed and Edata is the energy per data passing and access.

FC Layer = (ni ∗ n(i-1)) (7.14)

The classifiers used in the SABiNN benchmark were VGG19, ResNet50, and MobileNetV2, and

Table 7.6 presents the total MAC units of each classifier when bias is discarded. Each of the models

has a combination of Conv Layer and FC Layer.

Table 7.6: Total Number of MAC Units

DL Model Total Number of
MAC Units

Conv Layer
MAC Unit

FC Layer MAC
Unit

VGG19 20351040 20023232 327808
ResNet50 23790590 23581440 262272
MobileNetV2 2387264 2257408 163968

Each MAC unit comprises two FLOPs. FLOPs are the number of floating point operations

a computing entity can perform in one second. The FLOPs quantify the model performance on

hardware and represent the number of floating point operations required for a single forward pass.

Therefore, FLOPs estimate the model performance of each forward pass for each sample given to the

model. Since MAC is an operation that does an addition and a multiplication, thus it requires two

FLOP operations shown in equation 7.11:

MAC = 2 ∗ FLOPs = 1MULT + 1ADD (7.15)

If the models are designed on a 45nm CMOS process which is an industry-standard silicon process

and voltage supply of 0.9V is supplied, then the traditional energy rate of multipliers, adders, and 2s

complement are presented in Table 7.7.

85

Table 7.7: Energy Rate of each Logic Block used in MAC and BAC

Bit Multiplier [112] Adder [112] 2s Complement [113]
8-bit 0.2pJ 0.03 pJ 0.06 pJ
16-bit 0.4pJ 0.06pJ 0.12pJ
32-bit 3.1pJ 0.1pJ 0.23pJ

16-bit float 1.1pJ 0.4pJ -
32-bit float 3.7pJ 0.9pJ -

An n-bit barrel shifter is estimated to have an energy consumption of around 1.28pJ on a 45nm

CMOS process requiring a supply voltage of 0.8-0.9V. [114]. Then the estimated energy between

original classifiers, DeepSAC, and SABiNN-based models are presented in Table 7.8. DeepSAC and

SABiNN are calculated using 32-bit integer logic units (i.e., 32-bit multiplier and 32-bit adder), as

the model architecture uses n-bit quantized values during inference testing.

Table 7.8: Estimated energy consumption Rate between original, DeepSAC, and SABiNN-based
classifiers

Classifiers Original DeepSAC-Based SABiNN-Based
VGG19 93 mJ 0.645 µ J 0.64 µ J

ResNet50 109mJ 0.75 µ J 0.84 µ J
MobileNetV2 11mJ 0.744 µ J 0.727 µ J

According to Table 7.8, implementing DeepSAC-based models on the original classifiers reduced

the energy consumption by nearly 3x, and SABiNN-Based models decreased the energy efficiency by

14x, which is a significant reduction in energy consumption rate. This concludes that both DeepSAC

and SABiNN model architectures can be utilized in developing energy-efficient deep neural networks

while maintaining their accuracy rate.

7.4 Conclusion

In this chapter, the proper evaluation and benchmark of SABiNN model architecture are executed.

Three widely used and popular deep learning models such as VGG19 [102], ResNet50 [103], and

MobileNetV2 [104] are carefully chosen to add versatility to the benchmark. VGG19 is a deep

convolutional neural network, whereas ResNet50 is a deep residual neural network that optimizes

deep neural nets’ backpropagation and training complexity. MobileNetV2 is a neural net consisting

of convolutional and residual networks designed for mobile and embedded system applications. To

add another dimension of versatility, two different image datasets are used during training and

86

evaluation. Cifar10 is an RGB dataset consisting of multi-class labels, and MedMNIST: Pneumonia

is a biomedical image data in BW format consisting of binary class. The SABiNN model architecture

evaluation metrics on the proposed models showed promising results. The accuracy degradation was

less than 2.5% which is significantly lower than currently documented optimization and compression

techniques used in NN models. The energy consumption rate of the computational unit of both

DeepSAC-Based and SABiNN-Based reduced significantly by 3x-14x times in contrast with the

original classifiers.

87

Chapter 8

CONCLUSION

In recent years, almost all intelligent systems in various applications, from healthy harvesting in

agriculture to detecting complex diseases in healthcare, use Artificial-Intelligence (AI)/ Machine

Learning (ML) models. The market size of AI/ML is estimated to reach its compound annual growth

(CAGR) from USD 94 billion as of 2021-2022 to USD 1 trillion in 2030, an estimated increase of

38.1% [115]. The competition in creating and developing highly complex deep neural networks is

rising. Technological companies and industries are constantly battling to design revolutionary AI

models that can predict, generate and classify complex problems that the average human brain

cannot. However, the deployment of such sophisticated models on edge for real-time applications

is challenging due to the existence of limited hardware resources. Moreover, running and training

complex algorithms requires a higher power budget to achieve a high accuracy rate which exhausts

the computational power of both CPUs and GPUs. Due to Moore’s Law being stagnant, the amount

of memory and existing hardware technology is inadequate to drive and execute advanced high

computing models. The lack of advanced hardware technology creates a massive gap between model

computation and available hardware resources. Future technological advancement in healthcare,

agriculture, and even solutions to the environmental and economic crisis will be stagnating if proper

steps are not taken. This dissertation aims to reduce this gap by answering how to effectively deploy

computationally intensive models on edge in the post-Moore era- providing re-designing solutions

to available hardware resources that will maximize memory utilization while maintaining a high

accuracy rate. A software-hardware co-simulation is developed that walks through the process from

neural network training on software to inference on CMOS platform, ensuring low error margin in

designing and fabrication cost shown in Fig. 8.1.

Two energy-efficient, hardware-friendly models are developed: DeepSAC: Shift accumulate-

based Deep Neural Network and SABiNN: Shift accumulate-based binarized neural networks.

88

Figure 8.1: Software-Hardware co-simulation method [16].

The DeepSAC method uses compression and optimization techniques, such as pruning and n-bit

quantization, and replaces multipliers with shifters by transforming the weights in the multiple

of 2s. This technique is used in developing a diabetes prediction model for pregnant women that

can be used as a mobile application that will showcase prediction results in real-time. Another

application DeepSAC uses is a wearable sleep apnea classification device for adults that can detect

real-time obstructive sleep apnea. Both the design architecture was tested on reconfigurable hardware

(Nexys Artix-7 FPGA) to ensure energy efficiency and precision rate. The SABiNN model is used to

develop a wearable healthcare device that detects sleep apnea among adults with minimal sensor

involvement. The model is tested on reconfigurable hardware, and the final trained model is integrated

into a 180 nm and 130 nm CMOS platforms. Furthermore, the SABiNN model is evaluated by

benchmarking the design technique on various popularly used deep neural network modes such as

VGG19, ResNet50, and MobileNetV2 and validating it on two different image datasets cifar10 and

MedMNIST: pneumonia. Both the models DeepSAC and SABiNN showcase promising accuracy and

energy efficiency results. SABiNN and DeepSAC reduced the power consumption rate by 13x times

from a regular deep neural network model using traditional matrix multiplication calculation.

The central concept of this dissertation is the development of low-power, energy-efficient circuit

design techniques for embedding ML models, specifically deep neural networks (DNN) on edge. The

dissertation can be represented in a four-dimensional matrix inspired by Song Han’s [1] dissertation

summary shown in Fig. 8.2. Thus, the ultimate goal is to reduce sparsity and increase efficiency.

Reducing sparsity translates to reducing components and parameters that do not directly impact

89

Figure 8.2: Summary of the thesis.

the calculation in a neural network model. Implementing pruning, 2s multiple conversion, and n-bit

quantization on DeepSAC and binarization on SABiNN greatly reduces the model size and utilizes

the memory allocation when working with integer and binary values. Thus, resulting in replacing

multipliers with shifters and XNOR gates.

• Design Method and Benchmark: To ensure a low error rate and avoid significant degradation

of accuracy, the software-hardware co-simulation method presents a seamless software-to-edge

implementation during the training and testing phase. The algorithms of the proposed models

are benchmarked during training to ensure versatility and robustness.

• Model Compression and Optimization After properly training and validating the model,

further optimization and compression are done by introducing and replacing logic blocks such as

multipliers and n-bit floating points (n = 16,32) to shifters, 2s complement, and n-bit integers

(n = 8, 16). The proposed and implemented methods significantly reduced the size and power

consumption rate by maintaining a balanced accuracy across different types of applications.

• DeepSAC and SABiNN DeepSAC and SABiNN are two proposed model architectures

developed when embedding a trained deep neural network model on hardware. These models

are extensively used during the inference phase, ensuring a low power consumption rate, high

90

energy efficiency, and precision rate.

Currently, the main application of this research includes designing hardware architectures for

biomedical applications such as sleep apnea (SA) detection. The detection system uses minimal yet

essential biophysical sensors such as an ECG (Electrocardiogram) patch to detect heart rate and a

finger-tip pulse oximeter to measure blood saturation level for SA screening. The targeted power

consumption rate is below 50 µW, enabling the device to operate efficiently with a coin-sized lithium

battery.

8.1 Future Work

This dissertation can be divided into two potential future directions: (i) developing methods for

designing low-power, energy-efficient deep learning models on edge and (ii) designing and creating

low-cost, wearable, and smart healthcare devices. The emergence of neuromorphic computing has

sparked interest in the device and electronics field, which aids in highly complex and high-speed

computation. Alternatively, it introduces energy efficiency, precision, and durability challenges.

• Deep-Learning Model in Analog Computation (ML-on-Chip): Electronics industries

are gaining new interest in neuromorphic computing as this could be the future in high-speed,

high-precision, and low-power computing. Various neuromorphic chips and neural engine

frameworks (NEF) are developed for high-processing computation [116,117]. But it is yet to be

used in a wide range of applications. There is a huge opportunity to solve efficient ways to

design high computational models with various analog device components such as memristors,

amplifiers, converters, etc.

• Deep-Learning Model in Digital Computation (TinyML): Challenges still exist in

realizing parallel computing using digital logic units. Deep-learning scientists and AI-powered

industries still leverage GPUs and their ASIC-based TPUs to train intensive and complex

ML models requiring high power and energy. Thus, the carbon footprint of such models is

becoming a significant concern. Developing and exploring efficient AI/ML inference techniques

and re-designing digital logic blocks can be a potential future green technology direction.

• Energy-Efficient Embedded System Development for Healthcare: There is a significant

need for hardware resources to run high computational models that can diagnose complex

diseases. Developing and constructing energy-efficient models during the inference phase will

minimize the energy efficiency challenge in AI/ML.

91

Figure 8.3: 2022 Artificial Intelligence Accelerators Surveys and Trends [118].

The ultimate goal is to deliver energy-efficient solutions in redesigning and developing AI/ML-

based hardware accelerators that can seamlessly run highly complex models without exhausting

the available resources. Currently, the AI accelerator market where accelerators labeled as very

low power are inference and integer types shown in Fig 8.3. Introducing an ML-on-chip solution

where the AI/ML models are trained and updated on the chip in real-time without exhausting

the hardware resources can significantly change resource utilization and reduce carbon emissions

produced by the current AI models in the market. AI/ML is on the rise of technological advancement,

and providing energy-efficient solutions will make the advancement faster. The proposed methods

and model architectures can be a stepping stone into democratizing AI in the future and open spaces

for applications requiring real-time detection and prediction.

92

93

Appendix A

PYTHON CODE: FNN, DEEPSAC AND SABINN

import numpy as np

#Data Normal izat ion and Pre−Process ing

from s k l e a rn . p r ep ro c e s s i ng import MinMaxScaler

from s k l e a rn . p r ep ro c e s s i ng import StandardSca ler

de f i n e min max s c a l e r

s c a l e r = MinMaxScaler ()

xs = s c a l e r . f i t t r a n s f o rm (x)

print (xs)

#tra in t e s t s p l i t

from s k l e a rn . mode l s e l e c t i on import t r a i n t e s t s p l i t

x t ra in , x val , y t ra in , y va l = t r a i n t e s t s p l i t (xs , y , t e s t s i z e =0.30)

print (x t r a i n . shape)

print (y t r a i n . shape)

print (x va l . shape)

print (y va l . shape)

#model b u i l d and t r a i n

from s k l e a rn . mode l s e l e c t i on import St ra t i f i edKFo ld

from keras . l a y e r s import LeakyReLU

94

from keras . models import Sequent i a l

from keras . l a y e r s import Dense

from keras . l a y e r s import LSTM

from keras . l a y e r s import Dropout

from keras . models import Model

f i x random seed f o r r e p r o d u c i b i l i t y

seed = 10

np . random . seed (seed)

de f i n e 10− f o l d c ros s v a l i d a t i o n t e s t harness

k f o ld = St ra t i f i edKFo ld (n s p l i t s =10 , s h u f f l e=True , random state=seed)

cv s co r e s = []

for t ra in , t e s t in k f o l d . s p l i t (x t ra in , y t r a i n) :

model = Sequent i a l ()

model . add (Dense (4 , input dim = 2 , a c t i v a t i o n = ’ r e l u ’ , u s e b i a s= False))

model . add (Dense (8 , a c t i v a t i o n = ’ r e l u ’ , u s e b i a s= False))

model . add (Dense (6 , a c t i v a t i o n = ’ r e l u ’ , u s e b i a s= False))

model . add (Dense (4 , a c t i v a t i o n = ’ r e l u ’ , u s e b i a s= False))

model . add (Dense (1 , a c t i v a t i o n = ’ s igmoid ’ , u s e b i a s= False))

#opt = SGD(l r =0.01 , momentum=0.9)

model . compile (l o s s=’ mean squared error ’ , opt imize r=’adam ’ , met r i c s=[’ accuracy ’])

Fit the model

h i s t o r y= model . f i t (x t r a i n [t r a i n] , y t r a i n [t r a i n] ,

v a l i d a t i on da t a= (x t r a i n [t e s t] , y t r a i n [t e s t]) ,

epochs=1000 , b a t ch s i z e =10, verbose=0)

eva l ua t e the model

s c o r e s = model . eva luate (x t r a i n [t e s t] , y t r a i n [t e s t] , verbose=0)

print (”%s : %.2 f%%” % (model . metr ics names [1] , s c o r e s [1] ∗ 1 0 0))

cv s co r e s . append (s c o r e s [1] ∗ 100)

print (”%.2 f%% (+/− %.2 f%%)” % (np .mean(cv s co r e s) , np . std (cv s co r e s)))

95

#eva l ua t i on

model . eva luate (x val , y va l . round ())

model . summary ()

, accuracy = model . eva luate (x val , y va l)

print (’ t e s t Accuracy : %.2 f ’ % (accuracy ∗100))

, accuracy1 = model . eva luate (x t ra in , y t r a i n . round ())

print (’ va l Accuracy : %.2 f ’ % (accuracy1 ∗100))

#confus ion metr ix genera t ion

y pred = model . p r ed i c t (x va l)

from s k l e a rn . met r i c s import con fus i on matr ix

cm = con fus i on matr ix (y val , y pred . round () , normal ize= None)

print (cm)

#pre c i s i on

from s k l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t

print (c l a s s i f i c a t i o n r e p o r t (y val , y pred . round ()))

#matrix = [TP, FP,

FN, TN]

#DeepSAC Pruning and weigh t e x t r a c t i on f o r convers ion

import pandas as pd

#weigh t pruning

a l l w e i g h t s = {}

for l a y e r no in range (t o t a l n o l a y e r s − 1) :

l a y e r we i gh t s = (pd . DataFrame (

tra ined mode l . l a y e r s [l ay e r no] . g e t we i gh t s () [0]) . s tack ()) . t o d i c t ()

96

l a y e r we i gh t s = { (layer no , k [0] , k [1]) : v for k , v in l a y e r we i gh t s . i tems () }

a l l w e i g h t s . update (l a y e r we i gh t s)

a l l w e i g h t s s o r t e d = {k : v for k , v in sorted (a l l w e i g h t s . i tems () ,

key=lambda item : abs (item [1])) }

t o t a l n o we i gh t s = len (a l l w e i g h t s s o r t e d)

t o t a l n o we i gh t s

we i gh t p run ing s co r e s = []

for prun ing percent in K:

new model = ’ load the model ’

new weights = tra ined mode l . g e t we i gh t s () . copy ()

p rune f r a c t i on = prun ing percent /100

number o f we ights to be pruned = int (p rune f r a c t i on ∗ t o t a l n o we i gh t s)

we ight s to be pruned =

{k : a l l w e i g h t s s o r t e d [k] for k in l i s t (a l l w e i g h t s s o r t e d)

[: number o f we ights to be pruned]}

for k , v in weight s to be pruned . i tems () :

new weights [k [0]] [k [1] , k [2]] = 0

for l a y e r no in range (t o t a l n o l a y e r s − 1) :

new layer we ight s =

new weights [l ay e r no] . reshape (1 , new weights [l ay e r no] . shape [0] ,

new weights [l ay e r no] . shape [1])

new model . l a y e r s [l ay e r no] . s e t we i gh t s (new layer we ight s)

new score = new model . eva luate (x val , y val , verbose=0)

we i gh t p run ing s co r e s . append (new score [1])

97

#neuron pruning

a l l n eu r on s = {}

for l a y e r no in range (t o t a l n o l a y e r s − 1) :

l aye r neurons = {}

l a y e r n eu r on s d f = pd . DataFrame (tra ined mode l . l a y e r s [l ay e r no] . g e t we i gh t s () [0])

for i in range (len (l a y e r n eu r on s d f . columns)) :

l aye r neurons . update ({ i : np . array (l a y e r n eu r on s d f . i l o c [: , i]) })

l aye r neurons = { (layer no , k) : v for k , v in l aye r neurons . i tems () }

a l l n eu r on s . update (l aye r neurons)

a l l n e u r o n s s o r t e d = {k : v for k , v in sorted (a l l n eu r on s . i tems () ,

key=lambda item : np . l i n a l g . norm(item [1] , ord=2, ax i s =0))}

t o t a l no neu ron s = len (a l l n e u r o n s s o r t e d)

t o t a l no neu ron s

neuron prun ing sco r e s = []

for prun ing percent in K:

new model = ’ load the model ’

p rune f r a c t i on = prun ing percent /100

number o f neurons to be pruned = int (p rune f r a c t i on ∗ t o t a l no neu ron s)

neurons to be pruned = {k : a l l n e u r o n s s o r t e d [k]

for k in l i s t (a l l n e u r o n s s o r t e d) [: number o f neurons to be pruned]}

98

for k , v in neurons to be pruned . i tems () :

new weights [k [0]] [: , k [1]] = 0

for l a y e r no in range (t o t a l n o l a y e r s − 1) :

new layer we ight s = new weights [l ay e r no] . reshape (1 ,

new weights [l ay e r no] . shape [0] , new weights [l ay e r no] . shape [1])

new model . l a y e r s [l ay e r no] . s e t we i gh t s (new layer we ight s)

new score = new model . eva luate (x val , y val , verbose=0)

neuron prun ing sco r e s . append (new score [1])

#ex t r a c t i on o f the we i gh t s

w0= new model . l a y e r s [0] . g e t we i gh t s ()

print (w0)

#ex t r a c t i on o f the we i gh t s

w1=new model . l a y e r s [1] . g e t we i gh t s ()

print (w1)

#ex t r a c t i on o f the we i gh t s

w2 = new model . l a y e r s [2] . g e t we i gh t s ()

print (w2)

#ex t r a c t i on o f the we i gh t s

w3= new model . l a y e r s [3] . g e t we i gh t s ()

print (w3)

#Binar i za t i on o f we i gh t s f o r SABiNN

bin0=model . l a y e r s [0] . g e t we i gh t s ()

bin1=model . l a y e r s [1] . g e t we i gh t s ()

bin2=model . l a y e r s [2] . g e t we i gh t s ()

99

bin3=model . l a y e r s [3] . g e t we i gh t s ()

bin4=model . l a y e r s [4] . g e t we i gh t s ()

#eva l ua t i n g model wi th s h i f t e r

import t en so r f l ow as t f

m = t f . keras . met r i c s .Mean()

b0 = m(t f . math . abs (bin0))∗ t f . ke ras . backend . s i gn (bin0)

b0= t f . reshape (b0 , [2 , 4]) . numpy()

print (b0)

#eva l ua t i n g model wi th s h i f t e r

b1 = m(t f . math . abs (bin1))∗ t f . ke ras . backend . s i gn (bin1)

b1= t f . reshape (b1 , [4 , 8]) . numpy()

print (b1)

#eva l ua t i n g model wi th s h i f t e r

b2 = m(t f . math . abs (bin2))∗ t f . ke ras . backend . s i gn (bin2)

b2= t f . reshape (b2 , [8 , 6]) . numpy()

print (b2)

b3 = m(t f . math . abs (bin3))∗ t f . ke ras . backend . s i gn (bin3)

b3= t f . reshape (b3 , [6 , 4]) . numpy()

print (b3)

b4 = m(t f . math . abs (bin4))∗ t f . ke ras . backend . s i gn (bin4)

b4= t f . reshape (b4 , [4 , 1]) . numpy()

print (b4)

b10= b0/ 0.5886239 # mean va lue o f the f i r s t l a y e r

print (b10)

100

b11= b1 /0.46663094

print (b11)

b12= b2 /0.48054782

print (b12)

b13= b3 /0.5224517

print (b13)

b14= b4/ 0.5637053

print (b14)

model bin . l a y e r s [0] . s e t we i gh t s ([b10])

model bin . l a y e r s [1] . s e t we i gh t s ([b11])

model bin . l a y e r s [2] . s e t we i gh t s ([b12])

model bin . l a y e r s [3] . s e t we i gh t s ([b13])

model bin . l a y e r s [4] . s e t we i gh t s ([b14])

model bin . eva luate (x val , y va l)

101

Appendix B

VHDL CODE: DEEPSAC FOR SA DETECTION

l i b r a r y i e e e ;

use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

#top c e l l

e n t i t y n eu r a l n e t s p r i n g e r i s

port (x1 , x2 : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : s t d l o g i c ;

y : out s t d l o g i c) ;

end n eu r a l n e t s p r i n g e r ;

a r c h i t e c t u r e hidden o f n e u r a l n e t s p r i n g e r i s

component hidden0 i s

port (x1 , x2 : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : s t d l o g i c ; y1 , y2 , y3 , y4 ,

y5 , y6 , y7 , y8 : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component hidden1 i s

port (x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 : in s t d l o g i c v e c t o r (8 downto 0) ;

c l k : s t d l o g i c ; y1 , y2 , y3 , y4 , y5 , y6 : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component hidden2 i s

102

port (x1 , x2 , x3 , x4 , x5 , x6 : in s t d l o g i c v e c t o r (8 downto 0) ;

c l k : s t d l o g i c ; y1 , y2 , y3 , y4 : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component hidden3 i s

port (x1 , x2 , x3 , x4 : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : s t d l o g i c ;

y1 : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component s h i f t 8 o u t i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c) ;

end component ;

s i g n a l h11 , h12 , h13 , h14 , h15 , h16 , h17 , h18 , h21 , h22 , h23 , h24 ,

h25 , h26 , h31 , h32 , h33 , h34 , yout : s t d l o g i c v e c t o r (8 downto 0) ;

begin

h0 : hidden0 port map (x1 , x2 , c lk , h11 , h12 , h13 , h14 , h15 ,

h16 , h17 , h18) ;

h l : hidden1 port map (h11 , h12 , h13 , h14 , h15 , h16 , h17 , h18 ,

c lk , h21 , h22 , h23 , h24 , h25 , h26) ;

h2 : hidden2 port map (h21 , h22 , h23 , h24 , h25 , h26 , c lk , h31 ,

h32 , h33 , h34) ;

h3 : hidden3 port map (h31 , h32 , h33 , h34 , c lk , yout) ;

s : s h i f t 8 o u t port map (yout , c lk , y) ;

end hidden ;

hidden 0

103

en t i t y hidden0 i s

port (x1 , x2 : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : s t d l o g i c ; y1 , y2 ,

y3 , y4 , y5 , y6 , y7 , y8 : out s t d l o g i c v e c t o r (8 downto 0)) ;

end hidden0 ;

a r c h i t e c t u r e hidden o f hidden0 i s

component s h i f t 1 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component s h i f t 3 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (10 downto 0)) ;

end component ;

component s h i f t 4 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (11 downto 0)) ;

end component ;

component s h i f t 5 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (12 downto 0)) ;

end component ;

component s h i f t 6 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (13 downto 0)) ;

end component ;

104

component s h i f t 7 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (13 downto 0)) ;

end component ;

component S7 i s

port (din : in s t d l o g i c v e c t o r (13 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component S6 i s

port (din : in s t d l o g i c v e c t o r (13 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component S5 i s

port (din : in s t d l o g i c v e c t o r (12 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component S4 i s

port (din : in s t d l o g i c v e c t o r (11 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component S3 i s

port (din : in s t d l o g i c v e c t o r (10 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component S1 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

105

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component add9 i s

port (A,B: in s t d l o g i c v e c t o r (8 downto 0) ; Cin : in s t d l o g i c ; Co :

out s t d l o g i c ; Sum: out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component r e l u9 i s

port (x : in s t d l o g i c v e c t o r (8 downto 0) ;

y : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component compliment2s

port (Din : in s t d l o g i c v e c t o r (8 downto 0) ; Co : out s t d l o g i c ;

Do : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

s i g n a l xs11 , xs12 , xs21 , xs22 , xs31 , xs32 , xs41 , xs42 , xs51 , xs52 , xs61 ,

xs62 , xs71 , xs72 , xs81 , xs82 : s t d l o g i c v e c t o r (8 downto 0) ;

s i g n a l xs82c , xs42c , xs52c , xs62c , xs72c , xs21c , xs31c ,

xs71c : s t d l o g i c v e c t o r (8 downto 0) ;

s i g n a l xs61s : s t d l o g i c v e c t o r (8 downto 0) ; −−1 s h i f t

s i g n a l xs21s : s t d l o g i c v e c t o r (10 downto 0) ; −−3 s h i f t

s i g n a l xs81s , xs82s : s t d l o g i c v e c t o r (11 downto 0) ; −−4 s h i f t

s i g n a l xs11s , xs12s , xs31s , xs41s , xs42s , xs52s , xs62s , xs72s :

s t d l o g i c v e c t o r (12 downto 0) ; −−5 s h i f t

s i g n a l xs22s , xs32s , xs51s : s t d l o g i c v e c t o r (13 downto 0) ; −−6 s h i f t

s i g n a l xs71s : s t d l o g i c v e c t o r (13 downto 0) ; −−7 s h i f t

s i g n a l Ca112 , Ca212 , Ca312 , Ca412 , Ca512 , Ca612 , Ca712 , Ca812 , Cab1 ,

106

Cab2 , Cab3 , Cab4 , Cab5 , Cab7 , Cab8 : s t d l o g i c ;

s i g n a l co21 , co31 , co71 , co42 , co52 , co62 , co72 , co82 : s t d l o g i c ;

s i g n a l ABo1 , ABo2 , ABo3 , ABo4 , ABo5 , ABo6 , ABo7 , ABo8 , Ao112 ,

Ao212 , Ao312 , Ao412 , Ao512 , Ao712 , Ao812 : s t d l o g i c v e c t o r (8 downto 0) ;

begin

S11 : s h i f t 5 port map (x1 , c lk , xs11s) ;

SS11 : S5 port map (xs11s , c lk , xs11) ;

S12 : s h i f t 5 port map (x2 , c lk , xs12s) ;

SS12 : S5 port map (xs12s , c lk , xs12) ;

A112 : add9 port map (xs12 , xs11 , ’ 0 ’ , Ca112 , Ao112) ;

AB1: add9 port map (Ao112 ,”111100000” , ’ 0 ’ , Cab1 , ABo1) ;

S21 : s h i f t 3 port map (x1 , c lk , xs21s) ;

SS21 : S3 port map (xs21s , c lk , xs21c) ;

C21 : compliment2s port map (xs21c , co21 , xs21) ;

S22 : s h i f t 6 port map (x2 , c lk , xs22s) ;

SS22 : S6 port map (xs22s , c lk , xs22) ;

A212 : add9 port map (xs22 , xs21 , ’ 0 ’ , Ca212 , Ao212) ;

AB2: add9 port map (Ao212 , ”111110000” , ’ 0 ’ , Cab2 , ABo2) ;

S31 : s h i f t 5 port map (x1 , c lk , xs31s) ;

SS31 : S5 port map (xs31s , c lk , xs31c) ;

C31 : compliment2s port map (xs31c , co31 , xs31) ;

S32 : s h i f t 6 port map (x2 , c lk , xs32s) ;

SS32 : S6 port map (xs32s , c lk , xs32) ;

A312 : add9 port map (xs31 , xs32 , ’ 0 ’ , Ca312 , Ao312) ;

AB3: add9 port map (Ao312 , ”111111100” , ’ 0 ’ , Cab3 , ABo3) ;

107

S41 : s h i f t 5 port map (x1 , c lk , xs41s) ;

SS41 : S5 port map (xs41s , c lk , xs41) ;

S42 : s h i f t 5 port map (x2 , c lk , xs42s) ;

SS42 : S5 port map (xs42s , c lk , xs42c) ;

C42 : compliment2s port map (xs42c , co42 , xs42) ;

A412 : add9 port map (xs42 , xs41 , ’ 0 ’ , Ca412 , Ao412) ;

AB4: add9 port map (Ao412 , ”000000100” , ’ 0 ’ , Cab4 , ABo4) ;

S51 : s h i f t 6 port map (x1 , c lk , xs51s) ;

SS51 : S6 port map (xs51s , c lk , xs51) ;

S52 : s h i f t 5 port map (x2 , c lk , xs52s) ;

SS52 : S5 port map (xs52s , c lk , xs52c) ;

C53 : compliment2s port map (xs52c , co52 , xs52) ;

A512 : add9 port map (xs52 , xs51 , ’ 0 ’ , Ca512 , Ao512) ;

AB5: add9 port map (Ao512 , ”000000001” , ’ 0 ’ , Cab5 , ABo5) ;

S61 : s h i f t 1 port map (x1 , c lk , xs61s) ;

SS61 : S1 port map (xs61s , c lk , xs61) ;

S62 : s h i f t 5 port map (x2 , c lk , xs62s) ;

SS62 : S5 port map (xs62s , c lk , xs62c) ;

C61 : compliment2s port map (xs62c , co62 , xs62) ;

AB6: add9 port map (xs62 , xs61 , ’ 0 ’ , Ca612 , ABo6) ;

S71 : s h i f t 7 port map (x1 , c lk , xs71s) ;

SS71 : S7 port map (xs71s , c lk , xs71c) ;

C71 : compliment2s port map (xs71c , co71 , xs71) ;

S72 : s h i f t 5 port map (x2 , c lk , xs72s) ;

SS72 : S5 port map (xs72s , c lk , xs72c) ;

C73 : compliment2s port map (xs72c , co72 , xs72) ;

108

A712 : add9 port map (xs72 , xs71 , ’ 0 ’ , Ca712 , Ao712) ;

AB7: add9 port map (Ao712 ,”000100000” , ’ 0 ’ ,Cab7 ,ABo7) ;

S81 : s h i f t 4 port map (x1 , c lk , xs81s) ;

SS81 : S4 port map (xs81s , c lk , xs81) ;

S82 : s h i f t 4 port map (x2 , c lk , xs82s) ;

SS82 : S4 port map (xs82s , c lk , xs82c) ;

C82 : compliment2s port map (xs82c , co82 , xs82) ;

A812 : add9 port map (xs82 , xs81 , ’ 0 ’ , Ca812 , Ao812) ;

AB8: add9 port map (Ao812 ,”111111100” , ’ 0 ’ ,Cab8 ,ABo8) ;

RE1 : r e l u9 port map (ABo1 , y1) ;

RE2 : r e l u9 port map (ABo2 , y2) ;

RE3 : r e l u9 port map (ABo3 , y3) ;

RE4 : r e l u9 port map (ABo4 , y4) ;

RE5 : r e l u9 port map (ABo5 , y5) ;

RE6 : r e l u9 port map (ABo6 , y6) ;

RE7 : r e l u9 port map (ABo7 , y7) ;

RE8 : r e l u9 port map (ABo8 , y8) ;

end hidden ;

#hidden 1

en t i t y hidden1 i s

port (x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 : in s t d l o g i c v e c t o r

(8 downto 0) ; c l k : s t d l o g i c ; y1 , y2 , y3 , y4 , y5 , y6 : out

s t d l o g i c v e c t o r (8 downto 0)) ;

end hidden1 ;

109

a r c h i t e c t u r e hidden o f hidden1 i s

component s h i f t 1 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component s h i f t 2 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (9 downto 0)) ;

end component ;

component s h i f t 3 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (10 downto 0)) ;

end component ;

component s h i f t 4 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (11 downto 0)) ;

end component ;

component s h i f t 5 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (12 downto 0)) ;

end component ;

component s h i f t 6 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (13 downto 0)) ;

end component ;

110

component s h i f t 7 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (13 downto 0)) ;

end component ;

component S7 i s

port (din : in s t d l o g i c v e c t o r (13 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component S6 i s

port (din : in s t d l o g i c v e c t o r (13 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component S5 i s

port (din : in s t d l o g i c v e c t o r (12 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component S4 i s

port (din : in s t d l o g i c v e c t o r (11 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component S3 i s

port (din : in s t d l o g i c v e c t o r (10 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component S2 i s

port (din : in s t d l o g i c v e c t o r (9 downto 0) ; c l k : in s t d l o g i c ;

111

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component S1 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component add9 i s

port (A,B: in s t d l o g i c v e c t o r (8 downto 0) ; Cin : in s t d l o g i c ; Co : out

s t d l o g i c ; Sum: out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component r e l u9 i s

port (x : in s t d l o g i c v e c t o r (8 downto 0) ; y : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component compliment2s

port (Din : in s t d l o g i c v e c t o r (8 downto 0) ; Co : out s t d l o g i c ; Do : out

s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

s i g n a l xs11 , xs12 , xs13 , xs14 , xs15 , xs16 , xs17 , xs18 ,

xs21 , xs22 , xs23 , xs24 ,

xs25 , xs26 , xs27 , xs28 , xs31 , xs32 , xs33 , xs34 , xs35 ,

xs36 , xs37 , xs38 , xs41 ,

xs42 , xs43 , xs44 , xs45 , xs46 , xs47 , xs48 , xs51 , xs52 ,

xs53 , xs54 , xs55 , xs56 ,

xs57 , xs58 , xs61 , xs62 , xs63 , xs64 , xs65 , xs66 , xs67 ,

xs68 : s t d l o g i c v e c t o r (8 downto 0) ;

s i g n a l xs11c , xs13c , xs15c , xs16c , xs18c , xs24c , xs25c ,

xs27c , xs28c , xs31c ,

112

xs33c , xs34c , xs35c , xs36c , xs38c , xs42c , xs43c , xs46c ,

xs54c , xs55c , xs56c ,

xs61c , xs67c , xs68c : s t d l o g i c v e c t o r (8 downto 0) ;

s i g n a l xs58s : s t d l o g i c v e c t o r (9 downto 0) ; −−2 s h i f t

s i g n a l xs16s , xs21s , xs25s , xs31s , xs32s , xs36s , xs37s , xs46s

: s t d l o g i c v e c t o r (10 downto 0) ; −−3 s h i f t

s i g n a l xs12s , xs18s , xs26s , xs28s , xs33s , xs34s , xs38s , xs48s , xs54s

: s t d l o g i c v e c t o r (11 downto 0) ; −−4 s h i f t

s i g n a l xs11s , xs22s , xs35s , xs42s , xs52s , xs56s , xs63s , xs66s , xs67s ,

xs68s : s t d l o g i c v e c t o r (12 downto 0) ; −−5 s h i f t

s i g n a l xs14s , xs15s , xs24s , xs27s , xs41s , xs44s , xs53s , xs55s , xs57s ,

xs62s , xs64s : s t d l o g i c v e c t o r (13 downto 0) ; −−6 s h i f t

s i g n a l xs13s , xs17s , xs23s , xs43s , xs47s , xs51s , xs61s , xs65s

: s t d l o g i c v e c t o r (13 downto 0) ; −−7 s h i f t

s i g n a l Ca112 , Ca134 , Ca156 , Ca178 , Ca114 , Ca158 , Ca118 , Ca212 , Ca234 ,

Ca256 , Ca278 , Ca214 , Ca258 , Ca218 , Ca312 , Ca334 , Ca356 , Ca378 , Ca314 ,

Ca358 , Ca318 , Ca412 , Ca434 , Ca456 , Ca478 , Ca414 , Ca458 , Ca418 , Ca512 ,

Ca534 , Ca556 , Ca578 , Ca514 , Ca558 , Ca518 , Ca612 , Ca634 , Ca656 , Ca678 ,

Ca614 , Ca658 , Ca618 , Cab1 , Cab2 , Cab3 , Cab4 , Cab5 , Cab6 : s t d l o g i c ;

s i g n a l co11 , co13 , co16 , co18 , co24 , co25 , co27 , co28 , co31 , co33 ,

co34 , co35 , co36 , co38 , co42 , co43 , co46 , co54 , co55 , co56 , co61 , co67 ,

co68 : s t d l o g i c ;

s i g n a l ABo1 , ABo2 , ABo3 , ABo4 , ABo5 , ABo6 , Ao112 , Ao134 , Ao156 , Ao178 ,

Ao114 , Ao158 , Ao118 , Ao212 , Ao234 , Ao256 , Ao278 , Ao214 , Ao258 , Ao218 ,

Ao312 , Ao334 , Ao356 , Ao378 , Ao314 , Ao358 , Ao318 , Ao412 , Ao434 , Ao456 ,

Ao478 , Ao414 , Ao458 , Ao418 , Ao512 , Ao534 , Ao556 , Ao578 , Ao514 , Ao558 ,

Ao518 , Ao612 , Ao634 , Ao656 , Ao678 , Ao614 , Ao658 , Ao618

: s t d l o g i c v e c t o r (8 downto 0) ;

113

begin

S11 : s h i f t 5 port map (x1 , c lk , xs11s) ;

SS11 : S5 port map (xs11s , c lk , xs11c) ;

C11 : compliment2s port map (xs11c , co11 , xs11) ;

S12 : s h i f t 4 port map (x2 , c lk , xs12s) ;

SS12 : S4 port map (xs12s , c lk , xs12) ;

S13 : s h i f t 7 port map (x3 , c lk , xs13s) ;

SS13 : S7 port map (xs13s , c lk , xs13c) ;

C13 : compliment2s port map (xs13c , co13 , xs13) ;

S14 : s h i f t 6 port map (x4 , c lk , xs14s) ;

SS14 : S6 port map (xs14s , c lk , xs14) ;

S15 : s h i f t 6 port map (x5 , c lk , xs15s) ;

SS15 : S6 port map (xs15s , c lk , xs15) ;

S16 : s h i f t 3 port map (x6 , c lk , xs16s) ;

SS16 : S3 port map (xs16s , c lk , xs16c) ;

C16 : compliment2s port map (xs16c , co16 , xs16) ;

S17 : s h i f t 7 port map (x7 , c lk , xs17s) ;

SS17 : S7 port map (xs17s , c lk , xs17) ;

S18 : s h i f t 4 port map (x8 , c lk , xs18s) ;

SS18 : S4 port map (xs18s , c lk , xs18c) ;

C18 : compliment2s port map (xs18c , co18 , xs18) ;

A112 : add9 port map (xs12 , xs11 , ’ 0 ’ , Ca112 , Ao112) ;

A134 : add9 port map (xs13 , xs14 , ’ 0 ’ , Ca134 , Ao134) ;

A156 : add9 port map (xs16 , xs15 , ’ 0 ’ , Ca156 , Ao156) ;

A178 : add9 port map (xs18 , xs17 , ’ 0 ’ , Ca178 , Ao178) ;

A114 : add9 port map (Ao112 , Ao134 , ’ 0 ’ , Ca114 , Ao114) ;

A158 : add9 port map (Ao156 , Ao178 , ’ 0 ’ , Ca158 , Ao158) ;

A118 : add9 port map (Ao114 , Ao158 , ’ 0 ’ , Ca118 , Ao118) ;

AB1: add9 port map (Ao118 ,”000000100” , ’ 0 ’ , Cab1 , ABo1) ;

S21 : s h i f t 3 port map (x1 , c lk , xs21s) ;

114

SS21 : S3 port map (xs21s , c lk , xs21) ;

S22 : s h i f t 5 port map (x2 , c lk , xs22s) ;

SS22 : S5 port map (xs22s , c lk , xs22) ;

S23 : s h i f t 7 port map (x3 , c lk , xs23s) ;

SS23 : S7 port map (xs23s , c lk , xs23) ;

S24 : s h i f t 6 port map (x4 , c lk , xs24s) ;

SS24 : S6 port map (xs24s , c lk , xs24c) ;

C24 : compliment2s port map (xs24c , co24 , xs24) ;

S25 : s h i f t 3 port map (x5 , c lk , xs25s) ;

SS25 : S3 port map (xs25s , c lk , xs25c) ;

C25 : compliment2s port map (xs25c , co25 , xs25) ;

S26 : s h i f t 4 port map (x6 , c lk , xs26s) ;

SS26 : S4 port map (xs26s , c lk , xs26) ;

S27 : s h i f t 6 port map (x7 , c lk , xs27s) ;

SS27 : S6 port map (xs27s , c lk , xs27c) ;

C27 : compliment2s port map (xs27c , co27 , xs27) ;

S28 : s h i f t 4 port map (x8 , c lk , xs28s) ;

SS28 : S4 port map (xs28s , c lk , xs28c) ;

C28 : compliment2s port map (xs28c , co28 , xs28) ;

A212 : add9 port map (xs22 , xs21 , ’ 0 ’ , Ca212 , Ao212) ;

A234 : add9 port map (xs23 , xs24 , ’ 0 ’ , Ca234 , Ao234) ;

A256 : add9 port map (xs26 , xs25 , ’ 0 ’ , Ca256 , Ao256) ;

A278 : add9 port map (xs28 , xs27 , ’ 0 ’ , Ca278 , Ao278) ;

A214 : add9 port map (Ao212 , Ao234 , ’ 0 ’ , Ca214 , Ao214) ;

A258 : add9 port map (Ao256 , Ao278 , ’ 0 ’ , Ca258 , Ao258) ;

A218 : add9 port map (Ao214 , Ao258 , ’ 0 ’ , Ca218 , Ao218) ;

AB2: add9 port map (Ao218 , ”000001000” , ’ 0 ’ , Cab2 , ABo2) ;

S31 : s h i f t 3 port map (x1 , c lk , xs31s) ;

SS31 : S3 port map (xs31s , c lk , xs31c) ;

C31 : compliment2s port map (xs31c , co31 , xs31) ;

115

S32 : s h i f t 3 port map (x2 , c lk , xs32s) ;

SS32 : S3 port map (xs32s , c lk , xs32) ;

S33 : s h i f t 4 port map (x3 , c lk , xs33s) ;

SS33 : S4 port map (xs33s , c lk , xs33c) ;

C33 : compliment2s port map (xs33c , co33 , xs33) ;

S34 : s h i f t 4 port map (x4 , c lk , xs34s) ;

SS34 : S4 port map (xs34s , c lk , xs34c) ;

C34 : compliment2s port map (xs34c , co34 , xs34) ;

S35 : s h i f t 5 port map (x5 , c lk , xs35s) ;

SS35 : S5 port map (xs35s , c lk , xs35c) ;

C35 : compliment2s port map (xs35c , co35 , xs35) ;

S36 : s h i f t 3 port map (x6 , c lk , xs36s) ;

SS36 : S3 port map (xs36s , c lk , xs36c) ;

C36 : compliment2s port map (xs36c , co36 , xs36) ;

S37 : s h i f t 3 port map (x7 , c lk , xs37s) ;

SS37 : S3 port map (xs37s , c lk , xs37) ;

S38 : s h i f t 4 port map (x8 , c lk , xs38s) ;

SS38 : S4 port map (xs38s , c lk , xs38c) ;

C38 : compliment2s port map (xs38c , co38 , xs38) ;

A312 : add9 port map (xs32 , xs31 , ’ 0 ’ , Ca312 , Ao312) ;

A334 : add9 port map (xs33 , xs34 , ’ 0 ’ , Ca334 , Ao334) ;

A356 : add9 port map (xs36 , xs35 , ’ 0 ’ , Ca356 , Ao356) ;

A378 : add9 port map (xs38 , xs37 , ’ 0 ’ , Ca378 , Ao378) ;

A314 : add9 port map (Ao312 , Ao334 , ’ 0 ’ , Ca314 , Ao314) ;

A358 : add9 port map (Ao356 , Ao378 , ’ 0 ’ , Ca358 , Ao358) ;

A318 : add9 port map (Ao314 , Ao358 , ’ 0 ’ , Ca318 , Ao318) ;

AB3: add9 port map (Ao318 , ”111111110” , ’ 0 ’ , Cab3 , ABo3) ;

S41 : s h i f t 6 port map (x1 , c lk , xs41s) ;

SS41 : S6 port map (xs41s , c lk , xs41) ;

S42 : s h i f t 5 port map (x2 , c lk , xs42s) ;

116

SS42 : S5 port map (xs42s , c lk , xs42c) ;

C42 : compliment2s port map (xs42c , co42 , xs42) ;

S43 : s h i f t 7 port map (x3 , c lk , xs43s) ;

SS43 : S7 port map (xs43s , c lk , xs43c) ;

C43 : compliment2s port map (xs43c , co43 , xs43) ;

S44 : s h i f t 6 port map (x4 , c lk , xs44s) ;

SS44 : S6 port map (xs44s , c lk , xs44) ;

S46 : s h i f t 3 port map (x6 , c lk , xs46s) ;

SS46 : S3 port map (xs46s , c lk , xs46c) ;

C46 : compliment2s port map (xs46c , co46 , xs46) ;

S47 : s h i f t 7 port map (x7 , c lk , xs47s) ;

SS47 : S7 port map (xs47s , c lk , xs47) ;

S48 : s h i f t 4 port map (x8 , c lk , xs48s) ;

SS48 : S4 port map (xs48s , c lk , xs48) ;

A412 : add9 port map (xs42 , xs41 , ’ 0 ’ , Ca412 , Ao412) ;

A434 : add9 port map (xs43 , xs44 , ’ 0 ’ , Ca434 , Ao434) ;

A456 : add9 port map (xs46 , ”000000000” , ’ 0 ’ , Ca456 , Ao456) ;

A478 : add9 port map (xs48 , xs47 , ’ 0 ’ , Ca478 , Ao478) ;

A414 : add9 port map (Ao412 , Ao434 , ’ 0 ’ , Ca414 , Ao414) ;

A458 : add9 port map (Ao456 , Ao478 , ’ 0 ’ , Ca458 , Ao458) ;

A418 : add9 port map (Ao414 , Ao458 , ’ 0 ’ , Ca418 , Ao418) ;

AB4: add9 port map (Ao418 , ”000001000” , ’ 0 ’ , Cab4 , ABo4) ;

S51 : s h i f t 7 port map (x1 , c lk , xs51s) ;

SS51 : S7 port map (xs51s , c lk , xs51) ;

S52 : s h i f t 5 port map (x2 , c lk , xs52s) ;

SS52 : S5 port map (xs52s , c lk , xs52) ;

S53 : s h i f t 6 port map (x3 , c lk , xs53s) ;

SS53 : S6 port map (xs53s , c lk , xs53) ;

S54 : s h i f t 4 port map (x4 , c lk , xs54s) ;

SS54 : S4 port map (xs54s , c lk , xs54c) ;

117

C54 : compliment2s port map (xs54c , co54 , xs54) ;

S55 : s h i f t 6 port map (x4 , c lk , xs55s) ;

SS55 : S6 port map (xs55s , c lk , xs55c) ;

C55 : compliment2s port map (xs55c , co55 , xs55) ;

S56 : s h i f t 5 port map (x6 , c lk , xs56s) ;

SS56 : S5 port map (xs56s , c lk , xs56c) ;

C56 : compliment2s port map (xs56c , co56 , xs56) ;

S57 : s h i f t 6 port map (x7 , c lk , xs57s) ;

SS57 : S6 port map (xs57s , c lk , xs57) ;

S58 : s h i f t 2 port map (x8 , c lk , xs58s) ;

SS58 : S2 port map (xs58s , c lk , xs58) ;

A512 : add9 port map (xs52 , xs51 , ’ 0 ’ , Ca512 , Ao512) ;

A534 : add9 port map (xs53 , xs54 , ’ 0 ’ , Ca534 , Ao534) ;

A556 : add9 port map (xs56 , xs55 , ’ 0 ’ , Ca556 , Ao556) ;

A578 : add9 port map (xs58 , xs57 , ’ 0 ’ , Ca578 , Ao578) ;

A514 : add9 port map (Ao512 , Ao534 , ’ 0 ’ , Ca514 , Ao514) ;

A558 : add9 port map (Ao556 , Ao578 , ’ 0 ’ , Ca558 , Ao558) ;

A518 : add9 port map (Ao514 , Ao558 , ’ 0 ’ , Ca518 , Ao518) ;

AB5: add9 port map (Ao518 , ”000000010” , ’ 0 ’ , Cab5 , ABo5) ;

S61 : s h i f t 7 port map (x1 , c lk , xs61s) ;

SS61 : S7 port map (xs61s , c lk , xs61c) ;

C61 : compliment2s port map (xs61c , co61 , xs61) ;

S62 : s h i f t 6 port map (x2 , c lk , xs62s) ;

SS62 : S6 port map (xs62s , c lk , xs62) ;

S63 : s h i f t 5 port map (x3 , c lk , xs63s) ;

SS63 : S5 port map (xs63s , c lk , xs63) ;

S64 : s h i f t 6 port map (x4 , c lk , xs64s) ;

SS64 : S6 port map (xs64s , c lk , xs64) ;

S65 : s h i f t 7 port map (x4 , c lk , xs65s) ;

SS65 : S7 port map (xs65s , c lk , xs65) ;

118

S66 : s h i f t 5 port map (x6 , c lk , xs66s) ;

SS66 : S5 port map (xs66s , c lk , xs66) ;

S67 : s h i f t 5 port map (x7 , c lk , xs67s) ;

SS67 : S5 port map (xs67s , c lk , xs67c) ;

C67 : compliment2s port map (xs67c , co67 , xs67) ;

S68 : s h i f t 5 port map (x8 , c lk , xs68s) ;

SS68 : S5 port map (xs68s , c lk , xs68c) ;

C68 : compliment2s port map (xs68c , co68 , xs68) ;

A612 : add9 port map (xs62 , xs61 , ’ 0 ’ , Ca612 , Ao612) ;

A634 : add9 port map (xs63 , xs64 , ’ 0 ’ , Ca634 , Ao634) ;

A656 : add9 port map (xs66 , xs65 , ’ 0 ’ , Ca656 , Ao656) ;

A678 : add9 port map (xs68 , xs67 , ’ 0 ’ , Ca678 , Ao678) ;

A614 : add9 port map (Ao612 , Ao634 , ’ 0 ’ , Ca614 , Ao614) ;

A658 : add9 port map (Ao656 , Ao678 , ’ 0 ’ , Ca658 , Ao658) ;

A618 : add9 port map (Ao614 , Ao658 , ’ 0 ’ , Ca618 , Ao618) ;

AB6: add9 port map (Ao618 , ”111111000” , ’ 0 ’ , Cab6 , ABo6) ;

RE1 : r e l u9 port map (ABo1 , y1) ;

RE2 : r e l u9 port map (ABo2 , y2) ;

RE3 : r e l u9 port map (ABo3 , y3) ;

RE4 : r e l u9 port map (ABo4 , y4) ;

RE5 : r e l u9 port map (ABo5 , y5) ;

RE6 : r e l u9 port map (ABo6 , y6) ;

end hidden ;

#hidden 2

en t i t y hidden2 i s

port (x1 , x2 , x3 , x4 , x5 , x6 : in s t d l o g i c v e c t o r (8 downto 0) ;

119

c l k : s t d l o g i c ; y1 , y2 , y3 , y4 : out s t d l o g i c v e c t o r (8 downto 0)) ;

end hidden2 ;

a r c h i t e c t u r e hidden o f hidden2 i s

component s h i f t 1 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component s h i f t 2 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (9 downto 0)) ;

end component ;

component s h i f t 3 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (10 downto 0)) ;

end component ;

component s h i f t 4 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (11 downto 0)) ;

end component ;

component s h i f t 5 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (12 downto 0)) ;

end component ;

component s h i f t 6 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

120

dout : out s t d l o g i c v e c t o r (13 downto 0)) ;

end component ;

component s h i f t 7 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (13 downto 0)) ;

end component ;

component S7 i s

port (din : in s t d l o g i c v e c t o r (13 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component S6 i s

port (din : in s t d l o g i c v e c t o r (13 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component S5 i s

port (din : in s t d l o g i c v e c t o r (12 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component S4 i s

port (din : in s t d l o g i c v e c t o r (11 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component S3 i s

port (din : in s t d l o g i c v e c t o r (10 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

121

component S2 i s

port (din : in s t d l o g i c v e c t o r (9 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component S1 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component add9 i s

port (A,B: in s t d l o g i c v e c t o r (8 downto 0) ;

Cin : in s t d l o g i c ; Co : out s t d l o g i c ;

Sum: out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component r e l u9 i s

port (x : in s t d l o g i c v e c t o r (8 downto 0) ;

y : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component compliment2s

port (Din : in s t d l o g i c v e c t o r (8 downto 0) ;

Co : out s t d l o g i c ; Do : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

s i g n a l xs11 , xs12 , xs13 , xs14 , xs15 , xs16 , xs21 , xs22 ,

xs23 , xs24 , xs25 , xs26 , xs31 , xs32 , xs33 , xs34 , xs35 ,

xs36 , xs41 , xs42 , xs43 , xs44 , xs45 , xs46 : s t d l o g i c v e c t o r (8 downto 0) ;

s i g n a l xs13c , xs14c , xs15c , xs16c , xs24c , xs25c , xs33c ,

xs44c , xs46c : s t d l o g i c v e c t o r (8 downto 0) ;

122

s i g n a l xs16s , xs31s : s t d l o g i c v e c t o r (10 downto 0) ; −−3 s h i f t

s i g n a l xs11s , xs14s , xs46s : s t d l o g i c v e c t o r (11 downto 0) ; −−4 s h i f t

s i g n a l xs12s , xs13s , xs22s , xs26s , xs32s , xs34s ,

xs36s : s t d l o g i c v e c t o r (12 downto 0) ; −−5 s h i f t

s i g n a l xs15s , xs21s , xs25s , xs35s , xs41s , xs42s ,

xs45s : s t d l o g i c v e c t o r (13 downto 0) ; −−6 s h i f t

s i g n a l xs23s , xs24s , xs33s , xs43s ,

xs44s : s t d l o g i c v e c t o r (13 downto 0) ; −−7 s h i f t

s i g n a l Ca112 , Ca134 , Ca156 , Ca114 , Ca116 , Ca212 , Ca234 ,

Ca256 , Ca214 , Ca216 , Ca312 , Ca334 , Ca356 , Ca314 , Ca316 ,

Ca412 , Ca434 , Ca456 , Ca414 , Ca416 , Cab1 , Cab2 , Cab3 , Cab4 : s t d l o g i c ;

s i g n a l co13 , co14 , co15 , co16 , co24 , co25 , co33 , co44 , co46 : s t d l o g i c ;

s i g n a l ABo1 , ABo2 , ABo3 , ABo4 , Ao112 , Ao134 , Ao156 ,

Ao114 , Ao116 , Ao212 , Ao234 , Ao256 , Ao214 , Ao216 , Ao312 ,

Ao334 , Ao356 , Ao314 , Ao316 , Ao412 , Ao434 , Ao456 , Ao414 ,

Ao416 : s t d l o g i c v e c t o r (8 downto 0) ;

begin

S11 : s h i f t 4 port map (x1 , c lk , xs11s) ;

SS11 : S4 port map (xs11s , c lk , xs11) ;

S12 : s h i f t 5 port map (x2 , c lk , xs12s) ;

SS12 : S5 port map (xs12s , c lk , xs12) ;

S13 : s h i f t 5 port map (x3 , c lk , xs13s) ;

SS13 : S5 port map (xs13s , c lk , xs13c) ;

C13 : compliment2s port map (xs13c , co13 , xs13) ;

S14 : s h i f t 4 port map (x4 , c lk , xs14s) ;

SS14 : S4 port map (xs14s , c lk , xs14c) ;

123

C14 : compliment2s port map (xs14c , co14 , xs14) ;

S15 : s h i f t 6 port map (x5 , c lk , xs15s) ;

SS15 : S6 port map (xs15s , c lk , xs15c) ;

C15 : compliment2s port map (xs15c , co15 , xs15) ;

S16 : s h i f t 3 port map (x6 , c lk , xs16s) ;

SS16 : S3 port map (xs16s , c lk , xs16c) ;

C16 : compliment2s port map (xs16c , co16 , xs16) ;

A112 : add9 port map (xs12 , xs11 , ’ 0 ’ , Ca112 , Ao112) ;

A134 : add9 port map (xs13 , xs14 , ’ 0 ’ , Ca134 , Ao134) ;

A156 : add9 port map (xs16 , xs15 , ’ 0 ’ , Ca156 , Ao156) ;

A114 : add9 port map (Ao112 , Ao134 , ’ 0 ’ , Ca114 , Ao114) ;

A116 : add9 port map (Ao114 , Ao156 , ’ 0 ’ , Ca116 , Ao116) ;

AB1: add9 port map (Ao116 ,”111111100” , ’ 0 ’ , Cab1 , ABo1) ;

S21 : s h i f t 6 port map (x1 , c lk , xs21s) ;

SS21 : S6 port map (xs21s , c lk , xs21) ;

S22 : s h i f t 5 port map (x2 , c lk , xs22s) ;

SS22 : S5 port map (xs22s , c lk , xs22) ;

S23 : s h i f t 7 port map (x3 , c lk , xs23s) ;

SS23 : S7 port map (xs23s , c lk , xs23) ;

S24 : s h i f t 7 port map (x4 , c lk , xs24s) ;

SS24 : S7 port map (xs24s , c lk , xs24c) ;

C24 : compliment2s port map (xs24c , co24 , xs24) ;

S25 : s h i f t 6 port map (x5 , c lk , xs25s) ;

SS25 : S6 port map (xs25s , c lk , xs25c) ;

C25 : compliment2s port map (xs25c , co25 , xs25) ;

S26 : s h i f t 5 port map (x6 , c lk , xs26s) ;

SS26 : S5 port map (xs26s , c lk , xs26) ;

A212 : add9 port map (xs22 , xs21 , ’ 0 ’ , Ca212 , Ao212) ;

A234 : add9 port map (xs23 , xs24 , ’ 0 ’ , Ca234 , Ao234) ;

124

A256 : add9 port map (xs26 , xs25 , ’ 0 ’ , Ca256 , Ao256) ;

A214 : add9 port map (Ao212 , Ao234 , ’ 0 ’ , Ca214 , Ao214) ;

A216 : add9 port map (Ao214 , Ao256 , ’ 0 ’ , Ca216 , Ao216) ;

AB2: add9 port map (Ao216 , ”111111100” , ’ 0 ’ , Cab2 , ABo2) ;

S31 : s h i f t 3 port map (x1 , c lk , xs31s) ;

SS31 : S3 port map (xs31s , c lk , xs31) ;

S32 : s h i f t 5 port map (x2 , c lk , xs32s) ;

SS32 : S5 port map (xs32s , c lk , xs32) ;

S33 : s h i f t 7 port map (x3 , c lk , xs33s) ;

SS33 : S7 port map (xs33s , c lk , xs33c) ;

C33 : compliment2s port map (xs33c , co33 , xs33) ;

S34 : s h i f t 5 port map (x4 , c lk , xs34s) ;

SS34 : S5 port map (xs34s , c lk , xs34) ;

S35 : s h i f t 6 port map (x5 , c lk , xs35s) ;

SS35 : S6 port map (xs35s , c lk , xs35) ;

S36 : s h i f t 5 port map (x6 , c lk , xs36s) ;

SS36 : S5 port map (xs36s , c lk , xs36) ;

A312 : add9 port map (xs32 , xs31 , ’ 0 ’ , Ca312 , Ao312) ;

A334 : add9 port map (xs33 , xs34 , ’ 0 ’ , Ca334 , Ao334) ;

A356 : add9 port map (xs36 , xs35 , ’ 0 ’ , Ca356 , Ao356) ;

A314 : add9 port map (Ao312 , Ao334 , ’ 0 ’ , Ca314 , Ao314) ;

A316 : add9 port map (Ao314 , Ao356 , ’ 0 ’ , Ca316 , Ao316) ;

AB3: add9 port map (Ao316 , ”111111110” , ’ 0 ’ , Cab3 , ABo3) ;

S41 : s h i f t 6 port map (x1 , c lk , xs41s) ;

SS41 : S6 port map (xs41s , c lk , xs41) ;

S42 : s h i f t 6 port map (x2 , c lk , xs42s) ;

SS42 : S6 port map (xs42s , c lk , xs42) ;

S43 : s h i f t 7 port map (x3 , c lk , xs43s) ;

125

SS43 : S7 port map (xs43s , c lk , xs43) ;

S44 : s h i f t 7 port map (x4 , c lk , xs44s) ;

SS44 : S7 port map (xs44s , c lk , xs44c) ;

C44 : compliment2s port map (xs44c , co44 , xs44) ;

S45 : s h i f t 6 port map (x5 , c lk , xs45s) ;

SS45 : S6 port map (xs45s , c lk , xs45) ;

S46 : s h i f t 4 port map (x6 , c lk , xs46s) ;

SS46 : S4 port map (xs46s , c lk , xs46c) ;

C46 : compliment2s port map (xs46c , co46 , xs46) ;

A412 : add9 port map (xs42 , xs41 , ’ 0 ’ , Ca412 , Ao412) ;

A434 : add9 port map (xs43 , xs44 , ’ 0 ’ , Ca434 , Ao434) ;

A456 : add9 port map (xs46 , ”000000000” , ’ 0 ’ , Ca456 , Ao456) ;

A414 : add9 port map (Ao412 , Ao434 , ’ 0 ’ , Ca414 , Ao414) ;

A416 : add9 port map (Ao414 , Ao456 , ’ 0 ’ , Ca416 , Ao416) ;

AB4: add9 port map (Ao416 , ”000000101” , ’ 0 ’ , Cab4 , ABo4) ;

RE1 : r e l u9 port map (ABo1 , y1) ;

RE2 : r e l u9 port map (ABo2 , y2) ;

RE3 : r e l u9 port map (ABo3 , y3) ;

RE4 : r e l u9 port map (ABo4 , y4) ;

end hidden ;

#hidden 3

l i b r a r y i e e e ;

use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

e n t i t y hidden3 i s

port (x1 , x2 , x3 , x4 : in s t d l o g i c v e c t o r (8 downto 0) ;

126

c l k : s t d l o g i c ; y1 : out s t d l o g i c v e c t o r (8 downto 0)) ;

end hidden3 ;

a r c h i t e c t u r e hidden o f hidden3 i s

component s h i f t 7 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (13 downto 0)) ;

end component ;

component S7 i s

port (din : in s t d l o g i c v e c t o r (13 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component add9 i s

port (A,B: in s t d l o g i c v e c t o r (8 downto 0) ; Cin : in s t d l o g i c ;

Co : out s t d l o g i c ; Sum: out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component s i g 9 i s

port (x : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : s t d l o g i c ;

s i g : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component compliment2s

port (Din : in s t d l o g i c v e c t o r (8 downto 0) ; Co : out s t d l o g i c ;

Do : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

s i g n a l xs11 , xs12 , xs13 , xs14 , xs21 , xs22 , xs23 , xs24 , xs31 , xs32 ,

127

xs33 , xs34 , xs41 , xs42 , xs43 , xs44 : s t d l o g i c v e c t o r (8 downto 0) ;

s i g n a l xs11c : s t d l o g i c v e c t o r (8 downto 0) ;

s i g n a l xs11s , xs12s , xs13s ,

xs14s : s t d l o g i c v e c t o r (13 downto 0) ; −−7 s h i f t

s i g n a l Ca112 , Ca134 , Ca114 , Cab1 : s t d l o g i c ;

s i g n a l co11 : s t d l o g i c ;

s i g n a l ABo1 , Ao112 , Ao134 , Ao114 : s t d l o g i c v e c t o r (8 downto 0) ;

begin

S11 : s h i f t 7 port map (x1 , c lk , xs11s) ;

SS11 : S7 port map (xs11s , c lk , xs11c) ;

C11 : compliment2s port map (xs11c , co11 , xs11) ;

S12 : s h i f t 7 port map (x2 , c lk , xs12s) ;

SS12 : S7 port map (xs12s , c lk , xs12) ;

S13 : s h i f t 7 port map (x3 , c lk , xs13s) ;

SS13 : S7 port map (xs13s , c lk , xs13) ;

S14 : s h i f t 7 port map (x4 , c lk , xs14s) ;

SS14 : S7 port map (xs14s , c lk , xs14) ;

A112 : add9 port map (xs12 , xs11 , ’ 0 ’ , Ca112 , Ao112) ;

A134 : add9 port map (xs13 , xs14 , ’ 0 ’ , Ca134 , Ao134) ;

A114 : add9 port map (Ao112 , Ao134 , ’ 0 ’ , Ca114 , Ao114) ;

AB1: add9 port map (Ao114 ,”111111001” , ’ 0 ’ , Cab1 , ABo1) ;

RE1 : s i g 9 port map (ABo1 , c lk , y1) ;

end hidden ;

128

#output

en t i t y s h i f t 8 o u t i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ;

c l k : in s t d l o g i c ;

dout : out s t d l o g i c) ;

end s h i f t 8 o u t ;

a r c h i t e c t u r e arch o f s h i f t 8 o u t i s

begin

proce s s (c l k)

begin

i f (c lk ’ event and c l k = ’1 ’) then dout <= din (8) ;

end i f ;

end proce s s ;

end arch ;

129

Appendix C

VERILOG CODE: SABINN FOR SA DETECTION

module SaBiNN sleep (

output c l a s s ,

input c lk ,

input r s t ,

input [1 5 : 0] x1 ,

input [1 5 : 0] x2

) ;

// S i gna l s f o r Layer 1

wire [1 5 : 0] x1c , x2c ;

wire Ca L1 o1 , Ca L1 o2 , Ca L1 o3 , Ca L1 o4 , Ca L1 o5 ,

Ca L1 o6 , Ca L1 o7 , Ca L1 o8 ;

wire Ca L2 o1 , Ca L2 o2 , Ca L2 o3 , Ca L2 o4 , Ca L2 o5 ,

Ca L2 o6 ;

wire [1 5 : 0] AB L1 o1 , AB L1 o2 , AB L1 o3 , AB L1 o4 ,

AB L1 o5 , AB L1 o6 , AB L1 o7 , AB L1 o8 ;

wire [1 5 : 0] y1 , y2 , y3 , y4 , y5 , y6 , y7 , y8 ;

// S i gna l s f o r Layer 2

130

wire [1 5 : 0] y1c , y2c , y3c , y4c , y5c , y6c , y7c , y8c ;

wire [1 5 : 0] AB L2 o1 , AB L2 o2 , AB L2 o3 , AB L2 o4 ,

AB L2 o5 , AB L2 o6 ; ;

wire Ca L2 1 12 , Ca L2 1 34 , Ca L2 1 56 , Ca L2 1 78 ,

Ca L2 1 1234 , Ca L2 1 5678 ;

wire [1 5 : 0] AB L2 1 12 , AB L2 1 34 , AB L2 1 56 ,

AB L2 1 78 , AB L2 1 1234 , AB L2 1 5678 ;

wire Ca L2 2 12 , Ca L2 2 34 , Ca L2 2 56 , Ca L2 2 78 ,

Ca L2 2 1234 , Ca L2 2 5678 ;

wire [1 5 : 0] AB L2 2 12 , AB L2 2 34 , AB L2 2 56 ,

AB L2 2 78 , AB L2 2 1234 , AB L2 2 5678 ;

wire Ca L2 3 12 , Ca L2 3 34 , Ca L2 3 56 , Ca L2 3 78 ,

Ca L2 3 1234 , Ca L2 3 5678 ;

wire [1 5 : 0] AB L2 3 12 , AB L2 3 34 , AB L2 3 56 ,

AB L2 3 78 , AB L2 3 1234 , AB L2 3 5678 ;

wire Ca L2 4 12 , Ca L2 4 34 , Ca L2 4 56 , Ca L2 4 78 ,

Ca L2 4 1234 , Ca L2 4 5678 ;

wire [1 5 : 0] AB L2 4 12 , AB L2 4 34 , AB L2 4 56 ,

AB L2 4 78 , AB L2 4 1234 , AB L2 4 5678 ;

wire Ca L2 5 12 , Ca L2 5 34 , Ca L2 5 56 , Ca L2 5 78 ,

Ca L2 5 1234 , Ca L2 5 5678 ;

wire [1 5 : 0] AB L2 5 12 , AB L2 5 34 , AB L2 5 56 ,

AB L2 5 78 , AB L2 5 1234 , AB L2 5 5678 ;

wire Ca L2 6 12 , Ca L2 6 34 , Ca L2 6 56 , Ca L2 6 78 ,

Ca L2 6 1234 , Ca L2 6 5678 ;

wire [1 5 : 0] AB L2 6 12 , AB L2 6 34 , AB L2 6 56 ,

131

AB L2 6 78 , AB L2 6 1234 , AB L2 6 5678 ;

// l ay e r 3 connec t i ons

wire [1 5 : 0] n1 , n2 , n3 , n4 , n5 , n6 ;

wire [1 5 : 0] n1c , n2c , n3c , n4c , n5c , n6c ;

wire co112 , co123 , co134 , co145 , co156 ;

wire [1 5 : 0] s131 , s132 , s133 , s134 , s145 , s156 ;

wire co212 , co223 , co234 , co245 , co256 ;

wire [1 5 : 0] s231 , s232 , s233 , s234 , s245 , s256 ;

wire co312 , co323 , co334 , co345 , co356 ;

wire [1 5 : 0] s331 , s332 , s333 , s334 , s345 , s356 ;

wire co412 , co423 , co434 , co445 , co456 ;

wire [1 5 : 0] s431 , s432 , s433 , s434 , s445 , s456 ;

wire co512 , co523 , co534 , co545 , co556 ;

wire [1 5 : 0] s531 , s532 , s533 , s534 , s545 , s556 ;

wire co612 , co623 , co634 , co645 , co656 ;

wire [1 5 : 0] s631 , s632 , s633 , s634 , s645 , s656 ;

// l ay e r 4 connec t i ons

wire [1 5 : 0] y31 , y32 , y33 , y34 , y35 , y36 ;

wire [1 5 : 0] y31c , y32c , y33c , y34c , y35c , y36c ;

wire co6112 , co6123 , co6134 , co6145 , co6156 ;

wire [1 5 : 0] s6131 , s6132 , s6133 , s6134 , s6145 ;

132

wire co6212 , co6223 , co6234 , co6245 , co6256 ;

wire [1 5 : 0] s6231 , s6232 , s6233 , s6234 , s6245 ;

wire co6312 , co6323 , co6334 , co6345 , co6356 ;

wire [1 5 : 0] s6331 , s6332 , s6333 , s6334 , s6345 ;

wire co6412 , co6423 , co6434 , co6445 , co6456 ;

wire [1 5 : 0] s6431 , s6432 , s6433 , s6434 , s6445 ;

// output l ay e r connect ion

wire [1 5 : 0] y41 , y42 , y43 , y44 ;

wire co012 , co023 , co034 ;

wire [1 5 : 0] s01 , s02 , s03 ;

wire [1 5 : 0] s i g o u t ;

//−−−−−−−−−−−−−−−−Hidden Layer1−−−−−−−−−−−−

// Layer 1 Complements

complement re j fdb CP L1 x1 (x1 , x1c) ;

complement re j fdb CP L1 x2 (x2 , x2c) ;

// Layer 1 Adders

c l o c kadde r r e j f db CA L1 1 (Ca L1 o1 , AB L1 o1 , x1c , x2c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L1 2 (Ca L1 o2 , AB L1 o2 , x1c , x2c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L1 3 (Ca L1 o3 , AB L1 o3 , x1 , x2c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L1 4 (Ca L1 o4 , AB L1 o4 , x1c , x2 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L1 5 (Ca L1 o5 , AB L1 o5 , x1c , x2 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L1 6 (Ca L1 o6 , AB L1 o6 , x1c , x2c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L1 7 (Ca L1 o7 , AB L1 o7 , x1c , x2 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L1 8 (Ca L1 o8 , AB L1 o8 , x1c , x2 , 1 ’ b0) ;

133

// Layer 1 Act ivat ion Function

re lu16 RE L1 o1 (AB L1 o1 , y1) ;

r e lu16 RE L1 o2 (AB L1 o2 , y2) ;

r e lu16 RE L1 o3 (AB L1 o3 , y3) ;

r e lu16 RE L1 o4 (AB L1 o4 , y4) ;

r e lu16 RE L1 o5 (AB L1 o5 , y5) ;

r e lu16 RE L1 o6 (AB L1 o6 , y6) ;

r e lu16 RE L1 o7 (AB L1 o7 , y7) ;

r e lu16 RE L1 o8 (AB L1 o8 , y8) ;

//−−−−−−−−−−−−−−−−−−−−−−− Hidden Layer2−−−−−−−−−−−−−−−

// Layer 2 Complements

complement re j fdb CP L2 y1 (y1 , y1c) ;

complement re j fdb CP L2 y2 (y2 , y2c) ;

complement re j fdb CP L2 y3 (y3 , y3c) ;

complement re j fdb CP L2 y4 (y4 , y4c) ;

complement re j fdb CP L2 y5 (y5 , y5c) ;

complement re j fdb CP L2 y6 (y6 , y6c) ;

complement re j fdb CP L2 y7 (y7 , y7c) ;

complement re j fdb CP L2 y8 (y8 , y8c) ;

// Layer 2 Adders

// Neuron 1

c l o c kadde r r e j f db CA L2 11 (Ca L2 1 12 , AB L2 1 12 , y1 , y2c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 12 (Ca L2 1 34 , AB L2 1 34 , y3 , y4c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 13 56 (Ca L2 1 56 , AB L2 1 56 , y5c , y6 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 14 78 (Ca L2 1 78 , AB L2 1 78 , y7 , y8c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 15 (Ca L2 1 1234 , AB L2 1 1234 ,

AB L2 1 12 , AB L2 1 34 , 1 ’ b0) ;

134

c l o c kadde r r e j f db CA L2 16 (Ca L2 1 5678 , AB L2 1 5678 ,

AB L2 1 56 , AB L2 1 78 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 17 (Ca L2 o1 , AB L2 o1 , AB L2 1 1234 ,

AB L2 1 5678 , 1 ’ b0) ;

// Neuron 2

c l o c kadde r r e j f db CA L2 21 (Ca L2 2 12 , AB L2 2 12 , y1 , y2c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 22 (Ca L2 2 34 , AB L2 2 34 , y3c , y4c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 23 (Ca L2 2 56 , AB L2 2 56 , y5 , y6c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 24 (Ca L2 2 78 , AB L2 2 78 , y7 , y8 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 25 (Ca L2 2 1234 , AB L2 2 1234 , AB L2 2 12 ,

AB L2 2 34 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 26 (Ca L2 2 5678 , AB L2 2 5678 , AB L2 2 56 ,

AB L2 2 78 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 27 (Ca L2 o2 , AB L2 o2 , AB L2 2 1234 ,

AB L2 2 5678 , 1 ’ b0) ;

// Neuron 3

c l o c kadde r r e j f db CA L2 31 (Ca L2 3 12 , AB L2 3 12 , y1 , y2c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 32 (Ca L2 3 34 , AB L2 3 34 , y3 , y4c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 33 (Ca L2 3 56 , AB L2 3 56 , y5c , y6 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 34 (Ca L2 3 78 , AB L2 3 78 , y7c , y8c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 35 (Ca L2 3 1234 , AB L2 3 1234 , AB L2 3 12 ,

AB L2 3 34 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 36 (Ca L2 3 5678 , AB L2 3 5678 , AB L2 3 56 ,

AB L2 3 78 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 37 (Ca L2 o3 , AB L2 o3 , AB L2 3 1234 ,

AB L2 3 5678 , 1 ’ b0) ;

// Neuron 4

135

c l o c kadde r r e j f db CA L2 41 (Ca L2 4 12 , AB L2 4 12 , y1 , y2c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 42 (Ca L2 4 34 , AB L2 4 34 , y3c , y4c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 43 (Ca L2 4 56 , AB L2 4 56 , y5 , y6 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 44 (Ca L2 4 78 , AB L2 4 78 , y7 , y8 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 45 (Ca L2 4 1234 , AB L2 4 1234 , AB L2 4 12 ,

AB L2 4 34 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 46 (Ca L2 4 5678 , AB L2 4 5678 , AB L2 4 56 ,

AB L2 4 78 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 47 (Ca L2 o4 , AB L2 o4 , AB L2 4 1234 ,

AB L2 4 5678 , 1 ’ b0) ;

// Neuron 5

c l o c kadde r r e j f db CA L2 51 (Ca L2 5 12 , AB L2 5 12 , y1 , y2 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 52 (Ca L2 5 34 , AB L2 5 34 , y3 , y4 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 53 (Ca L2 5 56 , AB L2 5 56 , y5c , y6 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 54 (Ca L2 5 78 , AB L2 5 78 , y7c , y8c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 55 (Ca L2 5 1234 , AB L2 5 1234 , AB L2 5 12 ,

AB L2 5 34 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 56 (Ca L2 5 5678 , AB L2 5 5678 , AB L2 5 56 ,

AB L2 5 78 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 57 (Ca L2 o5 , AB L2 o5 , AB L2 5 1234 ,

AB L2 5 5678 , 1 ’ b0) ;

// Neuron 6

c l o c kadde r r e j f db CA L2 61 (Ca L2 6 12 , AB L2 6 12 , y1c , y2 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 62 (Ca L2 6 34 , AB L2 6 34 , y3 , y4 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 63 (Ca L2 6 56 , AB L2 6 56 , y5c , y6c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 64 (Ca L2 6 78 , AB L2 6 78 , y7c , y8 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 65 (Ca L2 6 1234 , AB L2 6 1234 , AB L2 6 12 ,

136

AB L2 6 34 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 66 (Ca L2 6 5678 , AB L2 6 5678 , AB L2 6 56 ,

AB L2 6 78 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L2 67 (Ca L2 o6 , AB L2 o6 , AB L2 6 1234 ,

AB L2 6 5678 , 1 ’ b0) ;

// Layer 2 Act ivat ion Function

re lu16 RE L2 o1 (AB L2 o1 , n1) ;

r e lu16 RE L2 o2 (AB L2 o2 , n2) ;

r e lu16 RE L2 o3 (AB L2 o3 , n3) ;

r e lu16 RE L2 o4 (AB L2 o4 , n4) ;

r e lu16 RE L2 o5 (AB L2 o5 , n5) ;

r e lu16 RE L2 o6 (AB L2 o6 , n6) ;

//−−−−−−−−−−−−−−−−− Hidden Layer3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// compliment the 12 inputs

complement re j fdb CP L3 n1 (n1 , n1c) ;

complement re j fdb CP L3 n2 (n2 , n2c) ;

complement re j fdb CP L3 n3 (n3 , n3c) ;

complement re j fdb CP L3 n4 (n4 , n4c) ;

complement re j fdb CP L3 n5 (n5 , n5c) ;

complement re j fdb CP L3 n6 (n6 , n6c) ;

// l ay e r 3

//Neuron1

c l o c kadde r r e j f db CA L3 6 11 (co112 , s131 , n1c , n2c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 12 (co123 , s132 , s131 , n3 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 13 (co134 , s133 , s132 , n4c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 14 (co145 , s134 , s133 , n5c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 15 (co156 , s145 , s134 , n6 , 1 ’ b0) ;

137

//Neuron 2

c l o c kadde r r e j f db CA L3 6 21 (co212 , s231 , n1c , n2 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 22 (co223 , s232 , s231 , n3 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 23 (co234 , s233 , s232 , n4c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 24 (co245 , s234 , s233 , n5c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 25 (co256 , s245 , s234 , n6 , 1 ’ b0) ;

//Neuron3

c l o c kadde r r e j f db CA L3 6 31 (co312 , s331 , n1c , n2 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 32 (co323 , s332 , s331 , n3c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 33 (co334 , s333 , s332 , n4c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 34 (co345 , s334 , s333 , n5 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 35 (co356 , s345 , s334 , n6c , 1 ’ b0) ;

//Neuron4

c l o c kadde r r e j f db CA L3 6 41 (co412 , s431 , n1 , n2c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 42 (co423 , s432 , s431 , n3 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 43 (co434 , s433 , s432 , n4 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 44 (co445 , s434 , s433 , n5 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 45 (co456 , s445 , s434 , n6c , 1 ’ b0) ;

//Neuron5

c l o c kadde r r e j f db CA L3 6 51 (co512 , s531 , n1c , n2c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 52 (co523 , s532 , s531 , n3c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 53 (co534 , s533 , s532 , n4 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 54 (co545 , s534 , s533 , n5 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 55 (co556 , s545 , s534 , n6 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 56 (co567 , s556 , s545 , n7 , 1 ’ b0) ;

138

c l o c kadde r r e j f db CA L3 6 57 (co578 , s567 , s556 , n8c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 58 (co589 , s578 , s567 , n9 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 59 (co5910 , s589 , s578 , n10 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 510 (co51011 , s5910 , s589 , n11 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 511 (co51112 , s51011 , s5910 , n12 , 1 ’ b0) ;

//Neuron6

c l o c kadde r r e j f db CA L3 6 61 (co612 , s631 , n1c , n2c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 62 (co623 , s632 , s631 , n3 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 63 (co634 , s633 , s632 , n4 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 64 (co645 , s634 , s633 , n5c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 65 (co656 , s645 , s634 , n6c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 66 (co667 , s656 , s645 , n7 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 67 (co678 , s667 , s656 , n8 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 68 (co689 , s678 , s667 , n9c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 69 (co6910 , s689 , s678 , n10c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 610 (co61011 , s6910 , s689 , n11 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 6 611 (co61112 , s61011 , s6910 , n12 , 1 ’ b0) ;

// r e l u out

r e lu16 RE L3 o1 (s11011 , y31) ;

r e lu16 RE L3 o2 (s21011 , y32) ;

r e lu16 RE L3 o3 (s31011 , y33) ;

r e lu16 RE L3 o4 (s41011 , y34) ;

r e lu16 RE L3 o5 (s51011 , y35) ;

r e lu16 RE L3 o6 (s61011 , y36) ;

//−−−−−−−−−−−−−−−−−−−−−−−−−− Hidden Layer 4−−−−−−−−−−−−

// compliment the 6 input

complement re j fdb CP L4 n1 (y31 , y31c) ;

complement re j fdb CP L4 n2 (y32 , y32c) ;

complement re j fdb CP L4 n3 (y33 , y33c) ;

139

complement re j fdb CP L4 n4 (y34 , y34c) ;

complement re j fdb CP L4 n5 (y35 , y35c) ;

complement re j fdb CP L4 n6 (y36 , y36c) ;

//Neuron 1

c l o c kadde r r e j f db CA L3 4 11 (co6112 , s6131 , y31c , y32c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 4 12 (co6123 , s6132 , s6131 , y33c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 4 13 (co6134 , s6133 , s6132 , y34c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 4 14 (co6145 , s6134 , s6133 , y35c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 4 15 (co6156 , s6145 , s6134 , y36c , 1 ’ b0) ;

//Neuron 2

c l o c kadde r r e j f db CA L3 4 21 (co6212 , s6231 , y31c , y32c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 4 22 (co6223 , s6232 , s6231 , y33c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 4 23 (co6234 , s6233 , s6232 , y34c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 4 24 (co6245 , s6234 , s6233 , y35c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 4 25 (co6256 , s6245 , s6234 , y36c , 1 ’ b0) ;

//Neuron3

c l o c kadde r r e j f db CA L3 4 31 (co6312 , s6331 , y31 , y32 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 4 32 (co6323 , s6332 , s6331 , y33c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 4 33 (co6334 , s6333 , s6332 , y34c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 4 34 (co6345 , s6334 , s6333 , y35 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 4 35 (co6356 , s6345 , s6334 , y36c , 1 ’ b0) ;

//Neuron4

c l o c kadde r r e j f db CA L3 4 41 (co6412 , s6431 , y31 , y32 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 4 42 (co6423 , s6432 , s6431 , y33c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 4 43 (co6434 , s6433 , s6432 , y34c , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 4 44 (co6445 , s6434 , s6433 , y35 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 4 45 (co6456 , s6445 , s6434 , y36c , 1 ’ b0) ;

140

// r e l u out

r e lu16 RE L4 o1 (s6145 , y41) ;

r e lu16 RE L4 o2 (s6245 , y42) ;

r e lu16 RE L4 o3 (s6345 , y43) ;

r e lu16 RE L4 o4 (s6445 , y44) ;

//−−−−−−−−−− output Layer−−−−−−−−−−−−−

//Neuron1

c l o c kadde r r e j f db CA L3 out 41 (co012 , s01 , y41 , y42 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 out 42 (co023 , s02 , s01 , y43 , 1 ’ b0) ;

c l o c kadde r r e j f db CA L3 out 43 (co034 , s03 , s02 , y44 , 1 ’ b0) ;

// s igmoid out

sigmoid ohbk4 SIG L out (s i g ou t , c lk , r s t , s03) ;

// d e c i s i o n

conve r t16 to 1 conv16 (s i g ou t , c l a s s) ;

endmodule

// s igmoid func t i on

module s igmoid ohbk4 (s ig , c lk , r s t , x) ;

input [1 5 : 0] x ;

input c l k ;

input r s t ;

output [1 5 : 0] s i g ;

wire [1 : 0] s ;

wire [1 5 : 0] x1 , x2 , x3 ;

wire [1 5 : 0] c1 , c2 ;

wire co ;

141

begin

s h i f t b a c k 2b i t S2 (x1 , x , c lk , r s t) ;

s h i f t b a c k 3b i t S3 (x2 , x , c lk , r s t) ;

s h i f t b a c k 5b i t S5 (x3 , x , c lk , r s t) ;

i f s t a t ement IS (x , s) ;

compare comp(s , x1 , x2 , x3 , c1) ;

compare2 comp2(s , c2) ;

c l o c kadde r r e j f db ad (co , s i g , c1 , c2 , 1 ’ b0) ;

end

endmodule

// 5 b i t s h i f t e r

module s h i f t b a c k 5b i t (

dout ,

din ,

c lk ,

r s t

) ;

output reg [1 5 : 0] dout ;

input [1 5 : 0] din ;

input c l k ;

input r s t ;

always @(posedge c l k)

begin

i f (r s t == 1 ’ b1) dout<= 16 ’ b0000000000000000 ;

e l s e i f (c l k == 1 ’ b1) dout [1 0 : 0] <= din [1 5 : 5] ;

dout [1 5 : 1 1] <= 5 ’ b00000 ;

end

endmodule

142

// 2 b i t s h i f t e r

module s h i f t b a c k 2b i t (

dout ,

din ,

c lk ,

r s t

) ;

output reg [1 5 : 0] dout ;

input [1 5 : 0] din ;

input c lk , r s t ;

always @(posedge c l k)

begin

i f (r s t == 1 ’ b1) dout <= 16 ’ b0000000000000000 ;

e l s e i f (c l k == 1 ’ b1) dout [1 3 : 0] <= din [1 5 : 2] ;

dout [1 5 : 1 4] <= 2 ’ b00 ;

end

endmodule

// 3 b i t s h i f t e r

module s h i f t b a c k 3b i t (

dout ,

din ,

c lk ,

r s t

) ;

output reg [1 5 : 0] dout ;

input [1 5 : 0] din ;

input c lk , r s t ;

always @(posedge c l k)

143

begin

i f (r s t == 1 ’ b1) dout <= 16 ’ b0000000000000000 ;

e l s e i f (c l k == 1 ’ b1) dout [1 2 : 0] <= din [1 5 : 3] ;

dout [1 5 : 1 3] <= 3 ’ b000 ;

end

endmodule

//compare module

module compare (

s , x1 , x2 , x3 , y

) ;

input [1 : 0] s ;

input [1 5 : 0] x1 , x2 , x3 ;

output reg [1 5 : 0] y ;

always @(s , x1 , x2 , x3)

begin

case (s)

2 ’ b00 : y = x1 ; //2 b i t s h i f t e r

2 ’ b01 : y = x2 ; //3 b i t s h i f t e r

2 ’ b10 : y = x3 ; //5 b i t s h i f t e r

d e f au l t : y = 0 ;

endcase

end

endmodule

//2nd compare

module compare2 (s , y) ;

input [1 : 0] s ;

144

output reg [1 5 : 0] y ;

always @(s)

begin

case (s)

2 ’ b00 : y = 16 ’ b0000001000000000 ; //2 b i t s h i f t e r

2 ’ b01 : y = 16 ’ b0000001010000000 ; //3 b i t s h i f t e r

2 ’ b10 : y = 16 ’ b0000001101100000 ; //5 b i t s h i f t e r

2 ’ b11 : y = 16 ’ b0000010000000000 ; // d i r e c t 1024

d e f au l t : y = 0 ;

endcase

end

endmodule

// i f −statement

module i f s t a t ement (x , y) ;

input [1 5 : 0] x ;

output reg [1 : 0] y ;

always @(x)

i f (x > 16 ’ b000000000000000 && x< 16 ’ b0000010000000000) y <= 2 ’ b00 ;

e l s e i f (x == 16 ’ b0000000000000000) y <= 2 ’ b00 ;

e l s e i f (x > 16 ’ b0000010000000000 && x< 16 ’ b0000100110000000) y <= 2 ’ b01 ;

e l s e i f (x > 16 ’ b0000100110000000 && x< 16 ’ b0001010000000000) y <= 2 ’ b10 ;

e l s e i f (x > 16 ’ b0001010000000000) y <= 2 ’ b11 ;

endmodule

// adder 16 b i t

module c l o c kadde r r e j f db (

output cout ,

output [1 5 : 0] s ,

145

input [1 5 : 0] a ,

input [1 5 : 0] b ,

input c in

) ;

wire [1 5 : 0] bin ;

a s s i gn bin [0]=b [0] ˆ c in ;

a s s i gn bin [1]=b [1] ˆ c in ;

a s s i gn bin [2]=b [2] ˆ c in ;

a s s i gn bin [3]=b [3] ˆ c in ;

a s s i gn bin [4]=b [4] ˆ c in ;

a s s i gn bin [5]=b [5] ˆ c in ;

a s s i gn bin [6]=b [6] ˆ c in ;

a s s i gn bin [7]=b [7] ˆ c in ;

a s s i gn bin [8]=b [8] ˆ c in ;

a s s i gn bin [9]=b [9] ˆ c in ;

a s s i gn bin [10]=b [1 0] ˆ c in ;

a s s i gn bin [11]=b [1 1] ˆ c in ;

a s s i gn bin [12]=b [1 2] ˆ c in ;

a s s i gn bin [13]=b [1 3] ˆ c in ;

a s s i gn bin [14]=b [1 4] ˆ c in ;

a s s i gn bin [15]=b [1 5] ˆ c in ;

wire [1 5 : 1] car ry ;

Ful l Adder FA0(carry [1] , s [0] , a [0] , bin [0] , c in) ;

Ful l Adder FA1(carry [2] , s [1] , a [1] , bin [1] , car ry [1]) ;

Ful l Adder FA2(carry [3] , s [2] , a [2] , bin [2] , car ry [2]) ;

Ful l Adder FA3(carry [4] , s [3] , a [3] , bin [3] , car ry [3]) ;

Ful l Adder FA4(carry [5] , s [4] , a [4] , bin [4] , car ry [4]) ;

Ful l Adder FA5(carry [6] , s [5] , a [5] , bin [5] , car ry [5]) ;

Ful l Adder FA6(carry [7] , s [6] , a [6] , bin [6] , car ry [6]) ;

Ful l Adder FA7(carry [8] , s [7] , a [7] , bin [7] , car ry [7]) ;

146

Full Adder FA8(carry [9] , s [8] , a [8] , bin [8] , car ry [8]) ;

Ful l Adder FA9(carry [1 0] , s [9] , a [9] , bin [9] , car ry [9]) ;

Ful l Adder FA10(car ry [1 1] , s [1 0] , a [1 0] , bin [1 0] , car ry [1 0]) ;

Ful l Adder FA11(car ry [1 2] , s [1 1] , a [1 1] , bin [1 1] , car ry [1 1]) ;

Ful l Adder FA12(car ry [1 3] , s [1 2] , a [1 2] , bin [1 2] , car ry [1 2]) ;

Ful l Adder FA13(car ry [1 4] , s [1 3] , a [1 3] , bin [1 3] , car ry [1 3]) ;

Ful l Adder FA14(car ry [1 5] , s [1 4] , a [1 4] , bin [1 4] , car ry [1 4]) ;

Ful l Adder FA15(cout , s [1 5] , a [1 5] , bin [1 5] , car ry [1 5]) ;

endmodule

module Ful l Adder (

cout ,

sum ,

ain ,

bin ,

c in

) ;

output reg sum , cout ;

input wire ain , bin , c in ;

always @ (ain , bin , c in)

begin

sum = ain ˆbin ˆ c in ;

cout= (a in&bin) | (a in&c in) | (bin&c in) ;

end

endmodule

// 2 s compliment

147

module complement re j fdb (in , out) ;

input [1 5 : 0] in ;

output [1 5 : 0] out ;

a s s i gn out=(˜ in) ;

endmodule

// r e l u

module r e lu16 (

input [1 5 : 0] d i n r e l u ,

output [1 5 : 0] dou t r e l u

) ;

a s s i gn dout r e l u = (d i n r e l u [15]==0)? d i n r e l u : 0 ;

endmodule

// d e c i s i o n func t i on

module conve r t16 to 1 (s i g ou t , c l a s s) ;

input [1 5 : 0] s i g o u t ;

output reg c l a s s ;

always @(s i g ou t)

i f (s i g ou t< 16 ’ b0000001000000000 | |

s i g o u t == 16 ’ b0000001000000000) c l a s s <=1’b0 ;

e l s e i f (s i g o u t > 16 ’ b0000001000000000) c l a s s <= 1 ’ b1 ;

endmodule

148

Appendix D

VHDL CODE: DEEPSAC FOR DIABETES PREDICTION

top l e v e l code

l i b r a r y i e e e ;

use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

e n t i t y neu ra l n e t i s

port (x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 : in s t d l o g i c v e c t o r (7 downto 0) ;

c l k : s t d l o g i c ; s y s ou t : out s t d l o g i c) ;

end neu ra l n e t ;

a r c h i t e c t u r e neura l o f n eu ra l n e t i s

component h i dd en sh i f t i s

port (x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 : in s t d l o g i c v e c t o r (7 downto 0) ;

c l k : s t d l o g i c ; y1 , y2 , y3 , y4 , y5 , y6 , y7 , y8 , y9 , y10 , y11 ,

y12 : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component Hidden Layer2 i s

port (x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10 , x11 ,

x12 : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : s t d l o g i c ; y1 , y2 , y3 ,

y4 , y5 , y6 , y7 , y8 : out s t d l o g i c v e c t o r (7 downto 0)) ;

149

end component ;

component Hidden Layer3 i s

port (x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 : in s t d l o g i c v e c t o r (7 downto 0) ;

c l k : s t d l o g i c ; y1 , y2 , y3 , y4 : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component Out Layer i s

port (x1 , x2 , x3 , x4 : in s t d l o g i c v e c t o r (7 downto 0) ;

c l k : s t d l o g i c ; y1 : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component s f t 8 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c) ;

end component ;

s i g n a l h11 , h12 , h13 , h14 , h15 , h16 , h17 , h18 , h19 , h110 ,

h111 , h112 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l h21 , h22 , h23 , h24 , h25 , h26 , h27 , h28 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l h31 , h32 , h33 , h34 , y1 : s t d l o g i c v e c t o r (7 downto 0) ;

begin

HL1 : h i dd en sh i f t port map (x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , c lk ,

h11 , h12 , h13 , h14 , h15 ,

h16 , h17 , h18 , h19 , h110 , h111 , h112) ;

HL2 : Hidden Layer2 port map (h11 , h12 , h13 , h14 , h15 , h16 , h17 ,

h18 , h19 , h110 , h111 , h112 ,

c lk , h21 , h22 , h23 , h24 , h25 , h26 , h27 , h28) ;

150

HL3 : Hidden Layer3 port map (h21 , h22 , h23 , h24 , h25 , h26 , h27 , h28 ,

c lk , h31 , h32 , h33 , h34) ;

HO: Out Layer port map (h31 , h32 , h33 , h34 , c lk , y1) ;

S OUT: s f t 8 port map(y1 , c lk , sy s ou t) ;

end neura l ;

#hidden s h i f t

e n t i t y h i dd en sh i f t i s

port (x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 : in s t d l o g i c v e c t o r

(7 downto 0) ; c l k : s t d l o g i c ; y1 , y2 , y3 , y4 , y5 , y6 , y7 , y8 , y9 ,

y10 , y11 , y12 : out s t d l o g i c v e c t o r (7 downto 0)) ;

end h i dden sh i f t ;

a r c h i t e c t u r e hidden o f h i dd en sh i f t i s

component s h i f t 1 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component s h i f t 2 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (9 downto 0)) ;

end component ;

component s h i f t 3 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (10 downto 0)) ;

151

end component ;

component s h i f t 4 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (11 downto 0)) ;

end component ;

component s h i f t 5 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (12 downto 0)) ;

end component ;

component s h i f t 6 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (13 downto 0)) ;

end component ;

component S6 i s

port (din : in s t d l o g i c v e c t o r (13 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component S5 i s

port (din : in s t d l o g i c v e c t o r (12 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component S4 i s

port (din : in s t d l o g i c v e c t o r (11 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

152

component S3 i s

port (din : in s t d l o g i c v e c t o r (10 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component S2 i s

port (din : in s t d l o g i c v e c t o r (9 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component S1 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component add8 i s

port (A,B: in s t d l o g i c v e c t o r (7 downto 0) ; Cin : in s t d l o g i c ;

Co : out s t d l o g i c ; Sum: out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component r e l u8 i s

port (x : in s t d l o g i c v e c t o r (7 downto 0) ; y :

out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component compliment2s

port (Din : in s t d l o g i c v e c t o r (7 downto 0) ; Co : out s t d l o g i c ;

Do : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

s i g n a l xs72s : s t d l o g i c v e c t o r (13 downto 0) ; −− 6 s h i f t

s i g n a l xs127s , xs121s , xs117s , xs115s , xs118s , xs112s , xs108s , xs105s , xs106s ,

153

xs96s , xs91s , xs86s , xs87s ,

xs88s , xs83s , xs81s , xs78s , xs71s , xs64s , xs66s , xs67s , xs62s , xs63s , xs51s ,

xs48s , xs46s , xs44s , xs41s , xs12s , xs17s , xs21s , xs22s , xs24s , xs25s , xs26s ,

xs27s , xs28s , xs33s , xs35s : s t d l o g i c v e c t o r (12 downto 0) ; −− 5 s h i f t

s i g n a l xs128s , xs125s , xs122s , xs114s , xs107s , xs104s , xs101s , xs98s , xs93s , xs94s ,

xs95s , xs84s , xs85s , xs73s , xs74s , xs75s , xs58s , xs55s , xs56s , xs52s , xs47s ,

xs42s , xs43s , xs36s , xs38s : s t d l o g i c v e c t o r (11 downto 0) ; −− 4 s h i f t

s i g n a l xs123s , xs102s , xs97s , xs92s , xs77s , xs54s , xs11s , xs16s , xs23s , xs32s ,

xs37s : s t d l o g i c v e c t o r (10 downto 0) ; −− 3 s h i f t

s i g n a l xs113s , xs111s , xs103s , xs82s , xs13s , xs14s , xs15s ,

xs18s : s t d l o g i c v e c t o r (9 downto 0) ; −− 2 s h i f t

s i g n a l xs124s , xs116s , xs76s , xs65s , xs68s , xs61s , xs57s , xs53s , xs45s ,

xs34s : s t d l o g i c v e c t o r (8 downto 0) ; −− 1 s h i f t

s i g n a l xs11c , xs12c , xs15c , xs16c , xs17c , xs18c , xs11 , xs12 , xs13 ,

xs14 , xs15 , xs16 , xs17 , xs18 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao112 , Ao134 , Ao156 , Ao178 , Ao11234 , Ao15678 ,

ABo1 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co11 , co12 , co15 , co16 , co17 , co18 , Ca112 , Ca134 ,

Ca156 , Ca178 , Ca11234 , Ca15678 , Cao1 : s t d l o g i c ;

s i g n a l xs24c , xs25c , xs21 , xs22 , xs23 , xs24 , xs25 , xs26 ,

xs27 , xs28 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao212 , Ao234 , Ao256 , Ao278 , Ao21234 , Ao25678 , ABo2 ,

AAo2 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co24 , co25 , Ca212 , Ca234 , Ca256 , Ca278 , Ca21234 ,

Ca25678 , Cao2 , Cab2 : s t d l o g i c ;

s i g n a l xs36c , xs32 , xs33 , xs34 , xs35 , xs36 , xs37 ,

xs38 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao312 , Ao334 , Ao356 , Ao378 , Ao31234 , Ao35678 ,

AAo3 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co36 , Ca312 , Ca334 , Ca356 , Ca378 , Ca31234 , Ca35678 ,

Cao3 , Cab3 : s t d l o g i c ;

154

s i g n a l xs43c , xs45c , xs48c , xs41 , xs42 , xs43 , xs44 , xs45 , xs46 ,

xs47 , xs48 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao412 , Ao434 , Ao456 , Ao478 , Ao41234 , Ao45678 ,

AAo4 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co43 , co45 , co48 , Ca412 , Ca434 , Ca456 , Ca478 , Ca41234 ,

Ca45678 , Cao4 , Cab4 : s t d l o g i c ;

s i g n a l xs53c , xs55c , xs56c , xs57c , xs58c , xs51 , xs52 , xs53 ,

xs54 , xs55 , xs56 , xs57 , xs58 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao512 , Ao534 , Ao556 , Ao578 , Ao51234 , Ao55678 ,

AAo5 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co53 , co55 , co56 , co57 , co58 , Ca512 , Ca534 , Ca556 ,

Ca578 , Ca51234 , Ca55678 , Cao5 , Cab5 : s t d l o g i c ;

s i g n a l xs61c , xs61 , xs62 , xs63 , xs64 , xs65 , xs66 , xs67 ,

xs68 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao612 , Ao634 , Ao656 , Ao678 , Ao61234 ,

Ao65678 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co61 , Ca612 , Ca634 , Ca656 , Ca678 , Ca61234 ,

Ca65678 , Cao6 : s t d l o g i c ;

s i g n a l xs71c , xs73c , xs76c , xs71 , xs72 , xs73 , xs74 ,

xs75 , xs76 , xs77 , xs78 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao712 , Ao734 , Ao756 , Ao778 , Ao71234 , Ao75678 ,

AAo7 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co71 , co73 , co76 , Ca712 , Ca734 , Ca756 , Ca778 , Ca71234 ,

Ca75678 , Cao7 , Cab7 : s t d l o g i c ;

s i g n a l xs82c , xs84c , xs87c , xs88c , xs81 , xs82 , xs83 , xs84 ,

xs85 , xs86 , xs87 , xs88 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao812 , Ao834 , Ao856 , Ao878 , Ao81234 , Ao85678 ,

AAo8 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co82 , co84 , co87 , co88 , Ca812 , Ca834 , Ca856 , Ca878 ,

Ca81234 , Ca85678 , Cao8 , Cab8 : s t d l o g i c ;

s i g n a l xs92c , xs93c , xs95c , xs96c , xs97c , xs98c , xs91 ,

xs92 , xs93 , xs94 , xs95 , xs96 , xs97 , xs98 : s t d l o g i c v e c t o r (7 downto 0) ;

155

s i g n a l Ao912 , Ao934 , Ao956 , Ao978 , Ao91234 ,

Ao95678 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co92 , co93 , co97 , co98 , co95 , co96 , Ca912 , Ca934 , Ca956 ,

Ca978 , Ca91234 , Ca95678 , Cao9 : s t d l o g i c ;

s i g n a l xs101c , xs102c , xs104c , xs101 , xs102 , xs103 , xs104 ,

xs105 , xs106 , xs107 , xs108 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao1012 , Ao1034 , Ao1056 , Ao1078 , Ao101234 , Ao105678 ,

AAo10 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co101 , co102 , co104 , Ca1012 , Ca1034 , Ca1056 , Ca1078 ,

Ca101234 , Ca105678 , Cao10 , Cab10 : s t d l o g i c ;

s i g n a l xs111c , xs112c , xs115c , xs117c , xs111 , xs112 , xs113 ,

xs114 , xs115 , xs116 , xs117 , xs118 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao1112 , Ao1134 , Ao1156 , Ao1178 , Ao111234 , Ao115678 ,

AAo11 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co111 , co112 , co115 , co117 , Ca1112 , Ca1134 , Ca1156 , Ca1178 ,

Ca111234 , Ca115678 , Cao11 , Cab11 : s t d l o g i c ;

s i g n a l xs122c , xs124c , xs125c , xs128c , xs121 , xs122 , xs123 , xs124 ,

xs125 , xs127 , xs128 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao1212 , Ao1234 , Ao1256 , Ao1278 , Ao121234 , Ao125678 ,

AAo12 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co122 , co124 , co125 , co128 , Ca1212 , Ca1234 , Ca1256 ,

Ca1278 , Ca121234 , Ca125678 , Cao12 , Cab12 : s t d l o g i c ;

s i g n a l ABo3 , ABo4 , ABo5 , ABo6 , ABo7 , ABo8 , ABo9 , ABo10 , ABo11 ,

ABo12 : s t d l o g i c v e c t o r (7 downto 0) ;

begin

S11 : s h i f t 3 port map (x1 , c lk , xs11s) ;

SS11 : S3 port map (xs11s , c lk , xs11c) ;

C11 : compliment2s port map (xs11c , co11 , xs11) ;

S12 : s h i f t 5 port map (x2 , c lk , xs12s) ;

SS12 : S5 port map (xs12s , c lk , xs12c) ;

C12 : compliment2s port map (xs12c , co12 , xs12) ;

S13 : s h i f t 2 port map (x3 , c lk , xs13s) ;

156

SS13 : S2 port map (xs13s , c lk , xs13) ;

S14 : s h i f t 2 port map (x4 , c lk , xs14s) ;

SS14 : S2 port map (xs14s , c lk , xs14) ;

S15 : s h i f t 2 port map (x5 , c lk , xs15s) ;

SS15 : S2 port map (xs15s , c lk , xs15c) ;

C15 : compliment2s port map (xs15c , co15 , xs15) ;

S16 : s h i f t 3 port map (x6 , c lk , xs16s) ;

SS16 : S3 port map (xs16s , c lk , xs16c) ;

C16 : compliment2s port map (xs16c , co16 , xs16) ;

S17 : s h i f t 5 port map (x7 , c lk , xs17s) ;

SS17 : S5 port map (xs17s , c lk , xs17c) ;

C17 : compliment2s port map (xs17c , co17 , xs17) ;

S18 : s h i f t 2 port map (x8 , c lk , xs18s) ;

SS18 : S2 port map (xs18s , c lk , xs18c) ;

C18 : compliment2s port map (xs18c , co18 , xs18) ;

A112 : add8 port map (xs12 , xs11 , ’ 0 ’ , Ca112 , Ao112) ;

A134 : add8 port map (xs13 , xs14 , ’ 0 ’ , Ca134 , Ao134) ;

A156 : add8 port map (xs15 , xs16 , ’ 0 ’ , Ca156 , Ao156) ;

A178 : add8 port map (xs17 , xs18 , ’ 0 ’ , Ca178 , Ao178) ;

A11234 : add8 port map (Ao112 , Ao134 , ’ 0 ’ , Ca11234 , Ao11234) ;

A15678 : add8 port map (Ao156 , Ao178 , ’ 0 ’ , Ca15678 , Ao15678) ;

AAo1 : add8 port map (Ao11234 , Ao15678 , ’ 0 ’ , Cao1 , ABo1) ;

S21 : s h i f t 5 port map (x1 , c lk , xs21s) ;

SS21 : S5 port map (xs21s , c lk , xs21) ;

S22 : s h i f t 5 port map (x2 , c lk , xs22s) ;

SS22 : S5 port map (xs22s , c lk , xs22) ;

S23 : s h i f t 3 port map (x3 , c lk , xs23s) ;

SS23 : S3 port map (xs23s , c lk , xs23) ;

S24 : s h i f t 5 port map (x4 , c lk , xs24s) ;

157

SS24 : S5 port map (xs24s , c lk , xs24c) ;

C24 : compliment2s port map (xs24c , co24 , xs24) ;

S25 : s h i f t 5 port map (x5 , c lk , xs25s) ;

SS25 : S5 port map (xs25s , c lk , xs25c) ;

C25 : compliment2s port map (xs25c , co25 , xs25) ;

S26 : s h i f t 5 port map (x6 , c lk , xs26s) ;

SS26 : S5 port map (xs26s , c lk , xs26) ;

S27 : s h i f t 5 port map (x7 , c lk , xs27s) ;

SS27 : S5 port map (xs27s , c lk , xs27) ;

S28 : s h i f t 5 port map (x8 , c lk , xs28s) ;

SS28 : S5 port map (xs28s , c lk , xs28) ;

A212 : add8 port map (xs22 , xs21 , ’ 0 ’ , Ca212 , Ao212) ;

A234 : add8 port map (xs23 , xs24 , ’ 0 ’ , Ca234 , Ao234) ;

A256 : add8 port map (xs25 , xs26 , ’ 0 ’ , Ca256 , Ao256) ;

A278 : add8 port map (xs27 , xs28 , ’ 0 ’ , Ca278 , Ao278) ;

A21234 : add8 port map (Ao212 , Ao234 , ’ 0 ’ , Ca21234 , Ao21234) ;

A25678 : add8 port map (Ao256 , Ao278 , ’ 0 ’ , Ca25678 , Ao25678) ;

AA02 : add8 port map (Ao21234 , Ao25678 , ’ 0 ’ , Cao2 , AAo2) ;

AB2: add8 port map (AAo2 , ”11111000” , ’ 0 ’ , Cab2 , ABo2) ;

S32 : s h i f t 3 port map (x2 , c lk , xs32s) ;

SS32 : S3 port map (xs32s , c lk , xs32) ;

S33 : s h i f t 5 port map (x3 , c lk , xs33s) ;

SS33 : S5 port map (xs33s , c lk , xs33) ;

S34 : s h i f t 1 port map (x4 , c lk , xs34s) ;

SS34 : S1 port map (xs34s , c lk , xs34) ;

S35 : s h i f t 5 port map (x5 , c lk , xs35s) ;

SS35 : S5 port map (xs35s , c lk , xs35) ;

S36 : s h i f t 4 port map (x6 , c lk , xs36s) ;

SS36 : S4 port map (xs36s , c lk , xs36c) ;

158

C36 : compliment2s port map (xs36c , co36 , xs36) ;

S37 : s h i f t 3 port map (x7 , c lk , xs37s) ;

SS37 : S3 port map (xs37s , c lk , xs37) ;

S38 : s h i f t 4 port map (x8 , c lk , xs38s) ;

SS38 : S4 port map (xs38s , c lk , xs38) ;

A312 : add8 port map (xs32 , x1 , ’ 0 ’ , Ca312 , Ao312) ;

A334 : add8 port map (xs33 , xs34 , ’ 0 ’ , Ca334 , Ao334) ;

A356 : add8 port map (xs35 , xs36 , ’ 0 ’ , Ca356 , Ao356) ;

A378 : add8 port map (xs37 , xs38 , ’ 0 ’ , Ca378 , Ao378) ;

A31234 : add8 port map (Ao312 , Ao334 , ’ 0 ’ , Ca31234 , Ao31234) ;

A35678 : add8 port map (Ao356 , Ao378 , ’ 0 ’ , Ca35678 , Ao35678) ;

AA03 : add8 port map (Ao31234 , Ao35678 , ’ 0 ’ , Cao3 , AAo3) ;

AB3: add8 port map (AAo3 , ”00001000” , ’ 0 ’ , Cab3 , ABo3) ;

S41 : s h i f t 5 port map (x1 , c lk , xs41s) ;

SS41 : S5 port map (xs41s , c lk , xs41) ;

S42 : s h i f t 4 port map (x2 , c lk , xs42s) ;

SS42 : S4 port map (xs42s , c lk , xs42) ;

S43 : s h i f t 4 port map (x3 , c lk , xs43s) ;

SS43 : S4 port map (xs43s , c lk , xs43c) ;

C43 : compliment2s port map (xs43c , co43 , xs43) ;

S44 : s h i f t 5 port map (x4 , c lk , xs44s) ;

SS44 : S5 port map (xs44s , c lk , xs44) ;

S45 : s h i f t 1 port map (x5 , c lk , xs45s) ;

SS45 : S1 port map (xs45s , c lk , xs45c) ;

C45 : compliment2s port map (xs45c , co45 , xs45) ;

S46 : s h i f t 5 port map (x6 , c lk , xs46s) ;

SS46 : S5 port map (xs46s , c lk , xs46) ;

S47 : s h i f t 4 port map (x7 , c lk , xs47s) ;

SS47 : S4 port map (xs47s , c lk , xs47) ;

159

S48 : s h i f t 5 port map (x8 , c lk , xs48s) ;

SS48 : S5 port map (xs48s , c lk , xs48c) ;

C48 : compliment2s port map (xs48c , co48 , xs48) ;

A412 : add8 port map (xs42 , xs41 , ’ 0 ’ , Ca412 , Ao412) ;

A434 : add8 port map (xs43 , xs44 , ’ 0 ’ , Ca434 , Ao434) ;

A456 : add8 port map (xs45 , xs46 , ’ 0 ’ , Ca456 , Ao456) ;

A478 : add8 port map (xs47 , xs48 , ’ 0 ’ , Ca478 , Ao478) ;

A41234 : add8 port map (Ao412 , Ao434 , ’ 0 ’ , Ca41234 , Ao41234) ;

A45678 : add8 port map (Ao456 , Ao478 , ’ 0 ’ , Ca45678 , Ao45678) ;

AA04 : add8 port map (Ao41234 , Ao45678 , ’ 0 ’ , Cao4 , AAo4) ;

AB4: add8 port map (AAo4 , ”00000100” , ’ 0 ’ , Cab4 , ABo4) ;

S51 : s h i f t 5 port map (x1 , c lk , xs51s) ;

SS51 : S5 port map (xs51s , c lk , xs51) ;

S52 : s h i f t 4 port map (x2 , c lk , xs52s) ;

SS52 : S4 port map (xs52s , c lk , xs52) ;

S53 : s h i f t 1 port map (x3 , c lk , xs53s) ;

SS53 : S1 port map (xs53s , c lk , xs53c) ;

C53 : compliment2s port map (xs53c , co53 , xs53) ;

S54 : s h i f t 3 port map (x4 , c lk , xs54s) ;

SS54 : S3 port map (xs54s , c lk , xs54) ;

S55 : s h i f t 4 port map (x5 , c lk , xs55s) ;

SS55 : S4 port map (xs55s , c lk , xs55c) ;

C55 : compliment2s port map (xs55c , co55 , xs55) ;

S56 : s h i f t 4 port map (x6 , c lk , xs56s) ;

SS56 : S4 port map (xs56s , c lk , xs56c) ;

C56 : compliment2s port map (xs56c , co56 , xs56) ;

S57 : s h i f t 1 port map (x7 , c lk , xs57s) ;

SS57 : S1 port map (xs57s , c lk , xs57c) ;

C57 : compliment2s port map (xs57c , co57 , xs57) ;

160

S58 : s h i f t 4 port map (x8 , c lk , xs58s) ;

SS58 : S4 port map (xs58s , c lk , xs58c) ;

C58 : compliment2s port map (xs58c , co58 , xs58) ;

A512 : add8 port map (xs52 , xs51 , ’ 0 ’ , Ca512 , Ao512) ;

A534 : add8 port map (xs53 , xs54 , ’ 0 ’ , Ca534 , Ao534) ;

A556 : add8 port map (xs55 , xs56 , ’ 0 ’ , Ca556 , Ao556) ;

A578 : add8 port map (xs57 , xs58 , ’ 0 ’ , Ca578 , Ao578) ;

A51234 : add8 port map (Ao512 , Ao534 , ’ 0 ’ , Ca51234 , Ao51234) ;

A55678 : add8 port map (Ao556 , Ao578 , ’ 0 ’ , Ca55678 , Ao55678) ;

AA05 : add8 port map (Ao51234 , Ao55678 , ’ 0 ’ , Cao5 , AAo5) ;

AB5: add8 port map (AAo5 , ”11111000” , ’ 0 ’ , Cab5 , ABo5) ;

S61 : s h i f t 1 port map (x1 , c lk , xs61s) ;

SS61 : S1 port map (xs61s , c lk , xs61c) ;

C61 : compliment2s port map (xs61c , co61 , xs61) ;

S62 : s h i f t 5 port map (x2 , c lk , xs62s) ;

SS62 : S5 port map (xs62s , c lk , xs62) ;

S63 : s h i f t 5 port map (x3 , c lk , xs63s) ;

SS63 : S5 port map (xs63s , c lk , xs63) ;

S64 : s h i f t 5 port map (x4 , c lk , xs64s) ;

SS64 : S5 port map (xs64s , c lk , xs64) ;

S65 : s h i f t 1 port map (x5 , c lk , xs65s) ;

SS65 : S1 port map (xs65s , c lk , xs65) ;

S66 : s h i f t 5 port map (x6 , c lk , xs66s) ;

SS66 : S5 port map (xs66s , c lk , xs66) ;

S67 : s h i f t 5 port map (x7 , c lk , xs67s) ;

SS67 : S5 port map (xs67s , c lk , xs67) ;

S68 : s h i f t 1 port map (x8 , c lk , xs68s) ;

SS68 : S1 port map (xs68s , c lk , xs68) ;

161

A612 : add8 port map (xs62 , xs61 , ’ 0 ’ , Ca612 , Ao612) ;

A634 : add8 port map (xs63 , xs64 , ’ 0 ’ , Ca634 , Ao634) ;

A656 : add8 port map (xs65 , xs66 , ’ 0 ’ , Ca656 , Ao656) ;

A678 : add8 port map (xs67 , xs68 , ’ 0 ’ , Ca678 , Ao678) ;

A61234 : add8 port map (Ao612 , Ao634 , ’ 0 ’ , Ca61234 , Ao61234) ;

A65678 : add8 port map (Ao656 , Ao678 , ’ 0 ’ , Ca65678 , Ao65678) ;

AA06 : add8 port map (Ao61234 , Ao65678 , ’ 0 ’ , Cao6 , ABo6) ;

S71 : s h i f t 5 port map (x1 , c lk , xs71s) ;

SS71 : S5 port map (xs71s , c lk , xs71c) ;

C71 : compliment2s port map (xs71c , co71 , xs71) ;

S72 : s h i f t 6 port map (x2 , c lk , xs72s) ;

SS72 : S6 port map (xs72s , c lk , xs72) ;

S73 : s h i f t 4 port map (x3 , c lk , xs73s) ;

SS73 : S4 port map (xs73s , c lk , xs73c) ;

C73 : compliment2s port map (xs73c , co73 , xs73) ;

S74 : s h i f t 4 port map (x4 , c lk , xs74s) ;

SS74 : S4 port map (xs74s , c lk , xs74) ;

S75 : s h i f t 4 port map (x5 , c lk , xs75s) ;

SS75 : S4 port map (xs75s , c lk , xs75) ;

S76 : s h i f t 1 port map (x6 , c lk , xs76s) ;

SS76 : S1 port map (xs76s , c lk , xs76c) ;

C76 : compliment2s port map (xs76c , co76 , xs76) ;

S77 : s h i f t 3 port map (x7 , c lk , xs77s) ;

SS77 : S3 port map (xs77s , c lk , xs77) ;

S78 : s h i f t 5 port map (x8 , c lk , xs78s) ;

SS78 : S5 port map (xs78s , c lk , xs78) ;

A712 : add8 port map (xs72 , xs71 , ’ 0 ’ , Ca712 , Ao712) ;

A734 : add8 port map (xs73 , xs74 , ’ 0 ’ , Ca734 , Ao734) ;

A756 : add8 port map (xs75 , xs76 , ’ 0 ’ , Ca756 , Ao756) ;

162

A778 : add8 port map (xs77 , xs78 , ’ 0 ’ , Ca778 , Ao778) ;

A71234 : add8 port map (Ao712 , Ao734 , ’ 0 ’ , Ca71234 , Ao71234) ;

A75678 : add8 port map (Ao756 , Ao778 , ’ 0 ’ , Ca75678 , Ao75678) ;

AA07 : add8 port map (Ao71234 , Ao75678 , ’ 0 ’ , Cao7 , AAo7) ;

AB7: add8 port map (AAo7,”11111110” , ’ 0 ’ ,Cab7 ,ABo7) ;

S81 : s h i f t 5 port map (x1 , c lk , xs81s) ;

SS81 : S5 port map (xs81s , c lk , xs81) ;

S82 : s h i f t 2 port map (x2 , c lk , xs82s) ;

SS82 : S2 port map (xs82s , c lk , xs82c) ;

C82 : compliment2s port map (xs82c , co82 , xs82) ;

S83 : s h i f t 5 port map (x3 , c lk , xs83s) ;

SS83 : S5 port map (xs83s , c lk , xs83) ;

S84 : s h i f t 4 port map (x4 , c lk , xs84s) ;

SS84 : S4 port map (xs84s , c lk , xs84c) ;

C84 : compliment2s port map (xs84c , co84 , xs84) ;

S85 : s h i f t 4 port map (x5 , c lk , xs85s) ;

SS85 : S4 port map (xs85s , c lk , xs85) ;

S86 : s h i f t 5 port map (x6 , c lk , xs86s) ;

SS86 : S5 port map (xs86s , c lk , xs86) ;

S87 : s h i f t 5 port map (x7 , c lk , xs87s) ;

SS87 : S5 port map (xs87s , c lk , xs87c) ;

C87 : compliment2s port map (xs87c , co87 , xs87) ;

S88 : s h i f t 5 port map (x8 , c lk , xs88s) ;

SS88 : S5 port map (xs88s , c lk , xs88c) ;

C88 : compliment2s port map (xs88c , co88 , xs88) ;

A812 : add8 port map (xs82 , xs81 , ’ 0 ’ , Ca812 , Ao812) ;

A834 : add8 port map (xs83 , xs84 , ’ 0 ’ , Ca834 , Ao834) ;

A856 : add8 port map (xs85 , xs86 , ’ 0 ’ , Ca856 , Ao856) ;

A878 : add8 port map (xs87 , xs88 , ’ 0 ’ , Ca878 , Ao878) ;

163

A81234 : add8 port map (Ao812 , Ao834 , ’ 0 ’ , Ca81234 , Ao81234) ;

A85678 : add8 port map (Ao856 , Ao878 , ’ 0 ’ , Ca85678 , Ao85678) ;

AA08 : add8 port map (Ao81234 , Ao85678 , ’ 0 ’ , Cao8 , AAo8) ;

AB8: add8 port map (AAo8,”00000010” , ’ 0 ’ ,Cab8 ,ABo8) ;

S91 : s h i f t 5 port map (x1 , c lk , xs91s) ;

SS91 : S5 port map (xs91s , c lk , xs91) ;

S92 : s h i f t 3 port map (x2 , c lk , xs92s) ;

SS92 : S3 port map (xs92s , c lk , xs92c) ;

C92 : compliment2s port map (xs92c , co92 , xs92) ;

S93 : s h i f t 4 port map (x3 , c lk , xs93s) ;

SS93 : S4 port map (xs93s , c lk , xs93c) ;

C93 : compliment2s port map (xs93c , co93 , xs93) ;

S94 : s h i f t 4 port map (x4 , c lk , xs94s) ;

SS94 : S4 port map (xs94s , c lk , xs94) ;

S95 : s h i f t 4 port map (x5 , c lk , xs95s) ;

SS95 : S4 port map (xs95s , c lk , xs95c) ;

C95 : compliment2s port map (xs95c , co95 , xs95) ;

S96 : s h i f t 5 port map (x6 , c lk , xs96s) ;

SS96 : S5 port map (xs96s , c lk , xs96c) ;

C96 : compliment2s port map (xs96c , co96 , xs96) ;

S97 : s h i f t 3 port map (x7 , c lk , xs97s) ;

SS97 : S3 port map (xs97s , c lk , xs97c) ;

C97 : compliment2s port map (xs97c , co97 , xs97) ;

S98 : s h i f t 4 port map (x8 , c lk , xs98s) ;

SS98 : S4 port map (xs98s , c lk , xs98c) ;

C98 : compliment2s port map (xs98c , co98 , xs98) ;

A912 : add8 port map (xs92 , xs91 , ’ 0 ’ , Ca912 , Ao912) ;

A934 : add8 port map (xs93 , xs94 , ’ 0 ’ , Ca934 , Ao934) ;

A956 : add8 port map (xs95 , xs96 , ’ 0 ’ , Ca956 , Ao956) ;

164

A978 : add8 port map (xs97 , xs98 , ’ 0 ’ , Ca978 , Ao978) ;

A91234 : add8 port map (Ao912 , Ao934 , ’ 0 ’ , Ca91234 , Ao91234) ;

A95678 : add8 port map (Ao956 , Ao978 , ’ 0 ’ , Ca95678 , Ao95678) ;

AA09 : add8 port map (Ao91234 , Ao95678 , ’ 0 ’ , Cao9 , ABo9) ;

S101 : s h i f t 4 port map (x1 , c lk , xs101s) ;

SS101 : S4 port map (xs101s , c lk , xs101c) ;

C101 : compliment2s port map (xs101c , co101 , xs101) ;

S102 : s h i f t 3 port map (x2 , c lk , xs102s) ;

SS102 : S3 port map (xs102s , c lk , xs102c) ;

C102 : compliment2s port map (xs102c , co102 , xs102) ;

S103 : s h i f t 2 port map (x3 , c lk , xs103s) ;

SS103 : S2 port map (xs103s , c lk , xs103) ;

S104 : s h i f t 4 port map (x4 , c lk , xs104s) ;

SS104 : S4 port map (xs104s , c lk , xs104c) ;

C104 : compliment2s port map (xs104c , co104 , xs104) ;

S105 : s h i f t 5 port map (x5 , c lk , xs105s) ;

SS105 : S5 port map (xs105s , c lk , xs105) ;

S106 : s h i f t 5 port map (x6 , c lk , xs106s) ;

SS106 : S5 port map (xs106s , c lk , xs106) ;

S107 : s h i f t 4 port map (x7 , c lk , xs107s) ;

SS107 : S4 port map (xs107s , c lk , xs107) ;

S108 : s h i f t 5 port map (x8 , c lk , xs108s) ;

SS108 : S5 port map (xs108s , c lk , xs108) ;

A1012 : add8 port map (xs102 , xs101 , ’ 0 ’ , Ca1012 , Ao1012) ;

A1034 : add8 port map (xs103 , xs104 , ’ 0 ’ , Ca1034 , Ao1034) ;

A1056 : add8 port map (xs105 , xs106 , ’ 0 ’ , Ca1056 , Ao1056) ;

A1078 : add8 port map (xs107 , xs108 , ’ 0 ’ , Ca1078 , Ao1078) ;

A101234 : add8 port map (Ao1012 , Ao1034 , ’ 0 ’ , Ca101234 , Ao101234) ;

165

A105678 : add8 port map (Ao1056 , Ao1078 , ’ 0 ’ , Ca105678 , Ao105678) ;

AA010 : add8 port map (Ao101234 , Ao105678 , ’ 0 ’ , Cao10 , AAo10) ;

AB10 : add8 port map (AAo10 , ”00000100” , ’ 0 ’ , Cab10 , ABo10) ;

S111 : s h i f t 2 port map (x1 , c lk , xs111s) ;

SS111 : S2 port map (xs111s , c lk , xs111c) ;

C111 : compliment2s port map (xs111c , co111 , xs111) ;

S112 : s h i f t 5 port map (x2 , c lk , xs112s) ;

SS112 : S5 port map (xs112s , c lk , xs112c) ;

C112 : compliment2s port map (xs112c , co112 , xs112) ;

S113 : s h i f t 2 port map (x3 , c lk , xs113s) ;

SS113 : S2 port map (xs113s , c lk , xs113) ;

S114 : s h i f t 4 port map (x4 , c lk , xs114s) ;

SS114 : S4 port map (xs114s , c lk , xs114) ;

S115 : s h i f t 5 port map (x5 , c lk , xs115s) ;

SS115 : S5 port map (xs115s , c lk , xs115c) ;

C115 : compliment2s port map (xs115c , co115 , xs115) ;

S116 : s h i f t 1 port map (x6 , c lk , xs116s) ;

SS116 : S1 port map (xs116s , c lk , xs116) ;

S117 : s h i f t 5 port map (x7 , c lk , xs117s) ;

SS117 : S5 port map (xs117s , c lk , xs117c) ;

C117 : compliment2s port map (xs117c , co117 , xs117) ;

S118 : s h i f t 5 port map (x8 , c lk , xs118s) ;

SS118 : S5 port map (xs118s , c lk , xs118) ;

A1112 : add8 port map (xs112 , xs111 , ’ 0 ’ , Ca1112 , Ao1112) ;

A1134 : add8 port map (xs113 , xs114 , ’ 0 ’ , Ca1134 , Ao1134) ;

A1156 : add8 port map (xs115 , xs116 , ’ 0 ’ , Ca1156 , Ao1156) ;

A1178 : add8 port map (xs117 , xs118 , ’ 0 ’ , Ca1178 , Ao1178) ;

A111234 : add8 port map (Ao1112 , Ao1134 , ’ 0 ’ , Ca111234 , Ao111234) ;

A115678 : add8 port map (Ao1156 , Ao1178 , ’ 0 ’ , Ca115678 , Ao115678) ;

166

AA011 : add8 port map (Ao111234 , Ao115678 , ’ 0 ’ , Cao11 , AAo11) ;

AB11 : add8 port map (AAo11 , ”11111000” , ’ 0 ’ , Cab11 , ABo11) ;

S121 : s h i f t 5 port map (x1 , c lk , xs121s) ;

SS121 : S5 port map (xs121s , c lk , xs121) ;

S122 : s h i f t 4 port map (x2 , c lk , xs122s) ;

SS122 : S4 port map (xs122s , c lk , xs122c) ;

C122 : compliment2s port map (xs122c , co122 , xs122) ;

S123 : s h i f t 3 port map (x3 , c lk , xs123s) ;

SS123 : S3 port map (xs123s , c lk , xs123) ;

S124 : s h i f t 1 port map (x4 , c lk , xs124s) ;

SS124 : S1 port map (xs124s , c lk , xs124c) ;

C124 : compliment2s port map (xs124c , co124 , xs124) ;

S125 : s h i f t 4 port map (x5 , c lk , xs125s) ;

SS125 : S4 port map (xs125s , c lk , xs125c) ;

C125 : compliment2s port map (xs125c , co125 , xs125) ;

S127 : s h i f t 5 port map (x7 , c lk , xs127s) ;

SS127 : S5 port map (xs127s , c lk , xs127) ;

S128 : s h i f t 4 port map (x8 , c lk , xs128s) ;

SS128 : S4 port map (xs128s , c lk , xs128c) ;

C128 : compliment2s port map (xs128c , co128 , xs128) ;

A1212 : add8 port map (xs122 , xs121 , ’ 0 ’ , Ca1212 , Ao1212) ;

A1234 : add8 port map (xs123 , xs124 , ’ 0 ’ , Ca1234 , Ao1234) ;

A1256 : add8 port map (xs125 , x6 , ’ 0 ’ , Ca1256 , Ao1256) ;

A1278 : add8 port map (xs127 , xs128 , ’ 0 ’ , Ca1278 , Ao1278) ;

A121234 : add8 port map (Ao1212 , Ao1234 , ’ 0 ’ , Ca121234 , Ao121234) ;

A125678 : add8 port map (Ao1256 , Ao1278 , ’ 0 ’ , Ca125678 , Ao125678) ;

AA012 : add8 port map (Ao121234 , Ao125678 , ’ 0 ’ , Cao12 , AAo12) ;

AB12 : add8 port map (AAo12 , ”00001000” , ’ 0 ’ , Cab12 , ABo12) ;

167

RE1: r e l u8 port map (ABo1 , y1) ;

RE2 : r e l u8 port map (ABo2 , y2) ;

RE3 : r e l u8 port map (ABo3 , y3) ;

RE4 : r e l u8 port map (ABo4 , y4) ;

RE5 : r e l u8 port map (ABo5 , y5) ;

RE6 : r e l u8 port map (ABo6 , y6) ;

RE7 : r e l u8 port map (ABo7 , y7) ;

RE8 : r e l u8 port map (ABo8 , y8) ;

RE9 : r e l u8 port map (ABo9 , y9) ;

RE10 : r e l u8 port map (ABo10 , y10) ;

RE11 : r e l u8 port map (ABo11 , y11) ;

RE12 : r e l u8 port map (ABo12 , y12) ;

end hidden ;

en t i t y Hidden Layer2 i s

port (x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10 , x11 ,

x12 : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : s t d l o g i c ; y1 , y2 , y3 , y4 , y5 ,

y6 , y7 , y8 : out s t d l o g i c v e c t o r (7 downto 0)) ;

end Hidden Layer2 ;

a r c h i t e c t u r e hidden2 o f Hidden Layer2 i s

component s h i f t 1 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component s h i f t 2 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (9 downto 0)) ;

end component ;

168

component s h i f t 3 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (10 downto 0)) ;

end component ;

component s h i f t 4 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (11 downto 0)) ;

end component ;

component s h i f t 5 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (12 downto 0)) ;

end component ;

component s h i f t 6 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (13 downto 0)) ;

end component ;

component S6 i s

port (din : in s t d l o g i c v e c t o r (13 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component S5 i s

port (din : in s t d l o g i c v e c t o r (12 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component S4 i s

port (din : in s t d l o g i c v e c t o r (11 downto 0) ; c l k : in s t d l o g i c ;

169

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component S3 i s

port (din : in s t d l o g i c v e c t o r (10 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component S2 i s

port (din : in s t d l o g i c v e c t o r (9 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component S1 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component add8 i s

port (A,B: in s t d l o g i c v e c t o r (7 downto 0) ; Cin : in s t d l o g i c ;

Co : out s t d l o g i c ; Sum: out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component r e l u8 i s

port (x : in s t d l o g i c v e c t o r (7 downto 0) ; y : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component compliment2s

port (Din : in s t d l o g i c v e c t o r (7 downto 0) ; Co : out s t d l o g i c ;

Do : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

170

−− 6 s h i f t

s i g n a l xs211s , xs711s : s t d l o g i c v e c t o r (13 downto 0) ; −− 6 s h i f t

−− 5 s h i f t

s i g n a l xs13s , xs14s , xs110s , xs22s , xs25s , xs27s , xs29s , xs210s ,

xs212s , xs31s , xs36s , xs38s , xs43s , xs44s , xs45s , xs46s , xs47s ,

xs49s , xs51s , xs52s , xs57s , xs511s , xs512s , xs64s , xs66s ,

xs611s , xs74s , xs78s , xs79s ,

xs81s , xs82s , xs85s , xs86s , xs88s ,

xs89s : s t d l o g i c v e c t o r (12 downto 0) ; −− 5 s h i f t

−− 4 s h i f t

s i g n a l xs11s , xs12s , xs17s , xs18s , xs111s , xs112s , xs23s , xs24s ,

xs26s , xs28s , xs34s , xs310s , xs312s , xs41s , xs42s , xs54s , xs55s ,

xs58s , xs59s , xs510s , xs61s , xs62s , xs67s , xs68s , xs69s ,

xs610s , xs72s , xs75s , xs76s , xs77s , xs710s , xs712s , xs811s ,

xs812s : s t d l o g i c v e c t o r (11 downto 0) ; −− 4 s h i f t

−− 3 s h i f t

s i g n a l xs15s , xs35s , xs48s , xs410s , xs411s , xs63s ,

xs84s : s t d l o g i c v e c t o r (10 downto 0) ; −− 3 s h i f t

−− 2 s h i f t

s i g n a l xs16s , xs19s , xs21s , xs311s , xs412s , xs56s , xs612s , xs73s ,

xs87s : s t d l o g i c v e c t o r (9 downto 0) ; −− 2 s h i f t

−− 1 s h i f t

s i g n a l xs32s , xs33s , xs37s , xs39s , xs65s , xs71s , xs83s ,

xs810s : s t d l o g i c v e c t o r (8 downto 0) ; −− 1 s h i f t

s i g n a l xs12c , xs14c , xs15c , xs16c , xs17c , xs19c , xs110c ,

xs112c , xs11 , xs12 , xs13 , xs14 , xs15 , xs16 , xs17 , xs18 ,

xs19 , xs110 , xs111 , xs112 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao112 , Ao134 , Ao156 , Ao178 , Ao1910 , Ao11112 , Ao11234 ,

Ao15678 , Ao19101112 , Ao11 8 , AAo1 , ABo1 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co12 , co14 , co15 , co16 , co17 , co19 , co110 , co112 ,

171

Ca112 , Ca134 , Ca156 , Ca178 , Ca1910 , Ca11112 , Ca11234 ,

Ca15678 , Ca19101112 , Ca11 8 , Cao1 , Cab1 : s t d l o g i c ;

s i g n a l xs23c , xs28c , xs21 , xs22 , xs23 , xs24 , xs25 , xs26 ,

xs27 , xs28 , xs29 , xs210 , xs211 , xs212 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao212 , Ao234 , Ao256 , Ao278 , Ao2910 , Ao21112 , Ao21234 ,

Ao25678 , Ao29101112 , Ao21 8 , ABo2 , AAo2 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co23 , co28 , Ca212 , Ca234 , Ca256 , Ca278 , Ca2910 ,

Ca21112 , Ca21234 , Ca25678 , Ca29101112 , Ca21 8 , Cao2 , Cab2 : s t d l o g i c ;

s i g n a l xs310c , xs311c , xs31 , xs32 , xs33 , xs34 , xs35 , xs36 , xs37 ,

xs38 , xs39 , xs310 , xs311 , xs312 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao312 , Ao334 , Ao356 , Ao378 , Ao3910 , Ao31112 , Ao31234 ,

Ao35678 , Ao39101112 , Ao31 8 , AAo3 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co310 , co311 , Ca312 , Ca334 , Ca356 , Ca378 , Ca3910 , Ca31112 ,

Ca31234 , Ca35678 , Ca39101112 , Ca31 8 , Cao3 , Cab3 : s t d l o g i c ;

s i g n a l xs43c , xs44c , xs45c , xs46c , xs48c , xs49c , xs411c , xs41 , xs42 ,

xs43 , xs44 , xs45 , xs46 , xs47 , xs48 , xs49 , xs410 , xs411 ,

xs412 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao412 , Ao434 , Ao456 , Ao478 , Ao4910 , Ao41112 , Ao41234 ,

Ao45678 , Ao49101112 , Ao41 8 , AAo4 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co43 , co44 , co45 , co46 , co48 , co49 , co411 , Ca412 , Ca434 ,

Ca456 , Ca478 , Ca4910 , Ca41112 , Ca41234 , Ca45678 , Ca49101112 ,

Ca41 8 , Cao4 , Cab4 : s t d l o g i c ;

s i g n a l xs51c , xs511c , xs51 , xs52 , xs54 , xs55 , xs56 , xs57 , xs58 ,

xs59 , xs510 , xs511 , xs512 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao512 , Ao534 , Ao556 , Ao578 , Ao5910 , Ao51112 , Ao51234 ,

Ao55678 , Ao59101112 , Ao51 8 , AAo5 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co51 , co511 , Ca512 , Ca534 , Ca556 , Ca578 , Ca5910 , Ca51112 ,

Ca51234 , Ca55678 , Ca59101112 , Ca51 8 , Cao5 , Cab5 : s t d l o g i c ;

172

s i g n a l xs61c , xs62c , xs64c , xs66c , xs68c , xs69c , xs610c , xs611c ,

xs612c , xs61 , xs62 , xs63 , xs64 , xs65 , xs66 , xs67 , xs68 , xs69 , xs610 ,

xs611 , xs612 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao612 , Ao634 , Ao656 , Ao678 , Ao6910 , Ao61112 , Ao61234 , Ao65678 ,

Ao69101112 , Ao61 8 , AAo6 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co61 , co62 , co64 , co66 , co68 , co69 , co610 , co611 , co612 , Ca612 ,

Ca634 , Ca656 , Ca678 , Ca6910 , Ca61112 , Ca61234 , Ca65678 , Ca69101112 ,

Ca61 8 , Cao6 , Cab6 : s t d l o g i c ;

s i g n a l xs71c , xs75c , xs76c , xs78c , xs710c , xs712c , xs71 , xs72 , xs73 ,

xs74 , xs75 , xs76 , xs77 , xs78 , xs79 , xs710 , xs711 ,

xs712 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao712 , Ao734 , Ao756 , Ao778 , Ao7910 , Ao71112 , Ao71234 , Ao75678 ,

Ao79101112 , Ao71 8 , AAo7 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co71 , co75 , co76 , co78 , co710 , co712 , Ca712 , Ca734 , Ca756 , Ca778 ,

Ca7910 , Ca71112 , Ca71234 , Ca75678 , Ca79101112 , Ca71 8 , Cao7 , Cab7 : s t d l o g i c ;

s i g n a l xs81c , xs83c , xs84c , xs85c , xs86c , xs87c , xs88c , xs89c , xs810c ,

xs811c , xs812c , xs81 , xs82 , xs83 , xs84 , xs85 , xs86 , xs87 , xs88 , xs89 ,

xs810 , xs811 , xs812 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao812 , Ao834 , Ao856 , Ao878 , Ao8910 , Ao81112 , Ao81234 , Ao85678 ,

Ao89101112 , Ao81 8 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co81 , co83 , co84 , co85 , co86 , co87 , co88 , co89 , co810 , co811 ,

co812 , Ca812 , Ca834 , Ca856 , Ca878 , Ca8910 , Ca81112 , Ca81234 , Ca85678 ,

Ca89101112 , Ca81 8 , Cbo8 : s t d l o g i c ;

s i g n a l ABo3 , ABo4 , ABo5 , ABo6 , ABo7 , ABo8 : s t d l o g i c v e c t o r (7 downto 0) ;

begin

S11 : s h i f t 4 port map (x1 , c lk , xs11s) ;

173

SS11 : S4 port map (xs11s , c lk , xs11) ;

S12 : s h i f t 4 port map (x2 , c lk , xs12s) ;

SS12 : S4 port map (xs12s , c lk , xs12c) ;

C12 : compliment2s port map (xs12c , co12 , xs12) ;

S13 : s h i f t 5 port map (x3 , c lk , xs13s) ;

SS13 : S5 port map (xs13s , c lk , xs13) ;

S14 : s h i f t 5 port map (x5 , c lk , xs14s) ;

SS14 : S5 port map (xs14s , c lk , xs14c) ;

C14 : compliment2s port map (xs14c , co14 , xs14) ;

S15 : s h i f t 3 port map (x5 , c lk , xs15s) ;

SS15 : S3 port map (xs15s , c lk , xs15c) ;

C15 : compliment2s port map (xs15c , co15 , xs15) ;

S16 : s h i f t 2 port map (x6 , c lk , xs16s) ;

SS16 : S2 port map (xs16s , c lk , xs16c) ;

C16 : compliment2s port map (xs16c , co16 , xs16) ;

S17 : s h i f t 4 port map (x7 , c lk , xs17s) ;

SS17 : S4 port map (xs17s , c lk , xs17c) ;

C17 : compliment2s port map (xs17c , co17 , xs17) ;

S18 : s h i f t 4 port map (x8 , c lk , xs18s) ;

SS18 : S4 port map (xs18s , c lk , xs18) ;

S19 : s h i f t 2 port map (x9 , c lk , xs19s) ;

SS19 : S2 port map (xs19s , c lk , xs19c) ;

C19 : compliment2s port map (xs19c , co19 , xs19) ;

S110 : s h i f t 5 port map (x10 , c lk , xs110s) ;

SS110 : S5 port map (xs110s , c lk , xs110c) ;

C110 : compliment2s port map (xs110c , co110 , xs110) ;

S111 : s h i f t 4 port map (x11 , c lk , xs111s) ;

SS111 : S4 port map (xs111s , c lk , xs111) ;

S112 : s h i f t 4 port map (x12 , c lk , xs112s) ;

SS112 : S4 port map (xs112s , c lk , xs112c) ;

C112 : compliment2s port map (xs112c , co112 , xs112) ;

174

A112 : add8 port map (xs12 , xs11 , ’ 0 ’ , Ca112 , Ao112) ;

A134 : add8 port map (xs13 , xs14 , ’ 0 ’ , Ca134 , Ao134) ;

A156 : add8 port map (xs15 , xs16 , ’ 0 ’ , Ca156 , Ao156) ;

A178 : add8 port map (xs17 , xs18 , ’ 0 ’ , Ca178 , Ao178) ;

A1910 : add8 port map (xs19 , xs110 , ’ 0 ’ , Ca1910 , Ao1910) ;

A11112 : add8 port map (xs111 , xs112 , ’ 0 ’ , Ca11112 , Ao11112) ;

A11234 : add8 port map (Ao112 , Ao134 , ’ 0 ’ , Ca11234 , Ao11234) ;

A15678 : add8 port map (Ao156 , Ao178 , ’ 0 ’ , Ca15678 , Ao15678) ;

A19101112 : add8 port map (Ao1910 , Ao11112 , ’ 0 ’ , Ca19101112 , Ao19101112) ;

A11 8 : add8 port map (Ao11234 , Ao15678 , ’ 0 ’ , Ca11 8 , Ao11 8) ;

AA01 : add8 port map (Ao11 8 , Ao19101112 , ’ 0 ’ , Cao1 , AAo1) ;

AB1: add8 port map (AAo1 , ”00010000” , ’ 0 ’ , Cab1 , ABo1) ;

S21 : s h i f t 2 port map (x1 , c lk , xs21s) ;

SS21 : S2 port map (xs21s , c lk , xs21) ;

S22 : s h i f t 5 port map (x2 , c lk , xs22s) ;

SS22 : S5 port map (xs22s , c lk , xs22) ;

S23 : s h i f t 4 port map (x3 , c lk , xs23s) ;

SS23 : S4 port map (xs23s , c lk , xs23c) ;

C23 : compliment2s port map (xs23c , co23 , xs23) ;

S24 : s h i f t 4 port map (x4 , c lk , xs24s) ;

SS24 : S4 port map (xs24s , c lk , xs24) ;

S25 : s h i f t 5 port map (x5 , c lk , xs25s) ;

SS25 : S5 port map (xs25s , c lk , xs25) ;

S26 : s h i f t 4 port map (x6 , c lk , xs26s) ;

SS26 : S4 port map (xs26s , c lk , xs26) ;

S27 : s h i f t 5 port map (x7 , c lk , xs27s) ;

175

SS27 : S5 port map (xs27s , c lk , xs27) ;

S28 : s h i f t 4 port map (x8 , c lk , xs28s) ;

SS28 : S4 port map (xs28s , c lk , xs28c) ;

C28 : compliment2s port map (xs28c , co28 , xs28) ;

S29 : s h i f t 5 port map (x9 , c lk , xs29s) ;

SS29 : S5 port map (xs29s , c lk , xs29) ;

S210 : s h i f t 5 port map (x10 , c lk , xs210s) ;

SS210 : S5 port map (xs210s , c lk , xs210) ;

S211 : s h i f t 6 port map (x11 , c lk , xs211s) ;

SS211 : S6 port map (xs211s , c lk , xs211) ;

S212 : s h i f t 5 port map (x12 , c lk , xs212s) ;

SS212 : S5 port map (xs212s , c lk , xs212) ;

A212 : add8 port map (xs22 , xs21 , ’ 0 ’ , Ca212 , Ao212) ;

A234 : add8 port map (xs23 , xs24 , ’ 0 ’ , Ca234 , Ao234) ;

A256 : add8 port map (xs25 , xs26 , ’ 0 ’ , Ca256 , Ao256) ;

A278 : add8 port map (xs27 , xs28 , ’ 0 ’ , Ca278 , Ao278) ;

A2910 : add8 port map (xs29 , xs210 , ’ 0 ’ , Ca2910 , Ao2910) ;

A21112 : add8 port map (xs211 , xs212 , ’ 0 ’ , Ca21112 , Ao21112) ;

A21234 : add8 port map (Ao212 , Ao234 , ’ 0 ’ , Ca21234 , Ao21234) ;

A25678 : add8 port map (Ao256 , Ao278 , ’ 0 ’ , Ca25678 , Ao25678) ;

A29101112 : add8 port map (Ao2910 , Ao21112 , ’ 0 ’ , Ca29101112 , Ao29101112) ;

A21 8 : add8 port map (Ao21234 , Ao25678 , ’ 0 ’ , Ca21 8 , Ao21 8) ;

AA02 : add8 port map (Ao21 8 , Ao29101112 , ’ 0 ’ , Cao2 , AAo2) ;

AB2: add8 port map (AAo2 , ”11111000” , ’ 0 ’ , Cab2 , ABo2) ;

S31 : s h i f t 5 port map (x1 , c lk , xs31s) ;

SS31 : S5 port map (xs31s , c lk , xs31) ;

S32 : s h i f t 1 port map (x2 , c lk , xs32s) ;

176

SS32 : S1 port map (xs32s , c lk , xs32) ;

S33 : s h i f t 1 port map (x3 , c lk , xs33s) ;

SS33 : S1 port map (xs33s , c lk , xs33) ;

S34 : s h i f t 4 port map (x4 , c lk , xs34s) ;

SS34 : S4 port map (xs34s , c lk , xs34) ;

S35 : s h i f t 3 port map (x5 , c lk , xs35s) ;

SS35 : S3 port map (xs35s , c lk , xs35) ;

S36 : s h i f t 5 port map (x6 , c lk , xs36s) ;

SS36 : S5 port map (xs36s , c lk , xs36) ;

S37 : s h i f t 1 port map (x7 , c lk , xs37s) ;

SS37 : S1 port map (xs37s , c lk , xs37) ;

S38 : s h i f t 5 port map (x8 , c lk , xs38s) ;

SS38 : S5 port map (xs38s , c lk , xs38) ;

S39 : s h i f t 1 port map (x9 , c lk , xs39s) ;

SS39 : S1 port map (xs39s , c lk , xs39) ;

S310 : s h i f t 4 port map (x10 , c lk , xs310s) ;

SS310 : S4 port map (xs310s , c lk , xs310c) ;

C310 : compliment2s port map (xs310c , co310 , xs310) ;

S311 : s h i f t 2 port map (x11 , c lk , xs311s) ;

SS311 : S2 port map (xs311s , c lk , xs311c) ;

C311 : compliment2s port map (xs311c , co311 , xs311) ;

S312 : s h i f t 4 port map (x12 , c lk , xs312s) ;

SS312 : S4 port map (xs312s , c lk , xs312) ;

A312 : add8 port map (xs32 , x1 , ’ 0 ’ , Ca312 , Ao312) ;

A334 : add8 port map (xs33 , xs34 , ’ 0 ’ , Ca334 , Ao334) ;

A356 : add8 port map (xs35 , xs36 , ’ 0 ’ , Ca356 , Ao356) ;

A378 : add8 port map (xs37 , xs38 , ’ 0 ’ , Ca378 , Ao378) ;

A3910 : add8 port map (xs39 , xs310 , ’ 0 ’ , Ca3910 , Ao3910) ;

A31112 : add8 port map (xs311 , xs312 , ’ 0 ’ , Ca31112 , Ao31112) ;

177

A31234 : add8 port map (Ao312 , Ao334 , ’ 0 ’ , Ca31234 , Ao31234) ;

A35678 : add8 port map (Ao356 , Ao378 , ’ 0 ’ , Ca35678 , Ao35678) ;

A39101112 : add8 port map (Ao3910 , Ao31112 , ’ 0 ’ , Ca39101112 , Ao39101112) ;

A31 8 : add8 port map (Ao31234 , Ao35678 , ’ 0 ’ , Ca31 8 , Ao31 8) ;

AA03 : add8 port map (Ao31 8 , Ao39101112 , ’ 0 ’ , Cao3 , AAo3) ;

AB3: add8 port map (AAo3 , ”00010000” , ’ 0 ’ , Cab3 , ABo3) ;

S41 : s h i f t 4 port map (x1 , c lk , xs41s) ;

SS41 : S4 port map (xs41s , c lk , xs41) ;

S42 : s h i f t 4 port map (x2 , c lk , xs42s) ;

SS42 : S4 port map (xs42s , c lk , xs42) ;

S43 : s h i f t 5 port map (x3 , c lk , xs43s) ;

SS43 : S5 port map (xs43s , c lk , xs43c) ;

C43 : compliment2s port map (xs43c , co43 , xs43) ;

S44 : s h i f t 5 port map (x4 , c lk , xs44s) ;

SS44 : S5 port map (xs44s , c lk , xs44c) ;

C44 : compliment2s port map (xs44c , co44 , xs44) ;

S45 : s h i f t 5 port map (x5 , c lk , xs45s) ;

SS45 : S5 port map (xs45s , c lk , xs45c) ;

C45 : compliment2s port map (xs45c , co45 , xs45) ;

S46 : s h i f t 5 port map (x6 , c lk , xs46s) ;

SS46 : S5 port map (xs46s , c lk , xs46c) ;

C46 : compliment2s port map (xs46c , co46 , xs46) ;

S47 : s h i f t 5 port map (x7 , c lk , xs47s) ;

SS47 : S5 port map (xs47s , c lk , xs47) ;

S48 : s h i f t 3 port map (x8 , c lk , xs48s) ;

SS48 : S3 port map (xs48s , c lk , xs48c) ;

C48 : compliment2s port map (xs48c , co48 , xs48) ;

S49 : s h i f t 5 port map (x9 , c lk , xs49s) ;

SS49 : S5 port map (xs49s , c lk , xs49c) ;

C49 : compliment2s port map (xs49c , co49 , xs49) ;

178

S410 : s h i f t 3 port map (x10 , c lk , xs410s) ;

SS410 : S3 port map (xs410s , c lk , xs410) ;

S411 : s h i f t 3 port map (x11 , c lk , xs411s) ;

SS411 : S3 port map (xs411s , c lk , xs411c) ;

C411 : compliment2s port map (xs411c , co411 , xs411) ;

S412 : s h i f t 2 port map (x12 , c lk , xs412s) ;

SS412 : S2 port map (xs412s , c lk , xs412) ;

A412 : add8 port map (xs42 , xs41 , ’ 0 ’ , Ca412 , Ao412) ;

A434 : add8 port map (xs43 , xs44 , ’ 0 ’ , Ca434 , Ao434) ;

A456 : add8 port map (xs45 , xs46 , ’ 0 ’ , Ca456 , Ao456) ;

A478 : add8 port map (xs47 , xs48 , ’ 0 ’ , Ca478 , Ao478) ;

A4910 : add8 port map (xs49 , xs410 , ’ 0 ’ , Ca4910 , Ao4910) ;

A41112 : add8 port map (xs411 , xs412 , ’ 0 ’ , Ca41112 , Ao41112) ;

A41234 : add8 port map (Ao412 , Ao434 , ’ 0 ’ , Ca41234 , Ao41234) ;

A45678 : add8 port map (Ao456 , Ao478 , ’ 0 ’ , Ca45678 , Ao45678) ;

A49101112 : add8 port map (Ao4910 , Ao41112 , ’ 0 ’ , Ca49101112 , Ao49101112) ;

A41 8 : add8 port map (Ao41234 , Ao45678 , ’ 0 ’ , Ca41 8 , Ao41 8) ;

AA04 : add8 port map (Ao41 8 , Ao49101112 , ’ 0 ’ , Cao4 , AAo4) ;

AB4: add8 port map (AAo4 , ”00000000” , ’ 0 ’ , Cab4 , ABo4) ;

S51 : s h i f t 5 port map (x1 , c lk , xs51s) ;

SS51 : S5 port map (xs51s , c lk , xs51c) ;

C51 : compliment2s port map (xs51c , co51 , xs51) ;

S52 : s h i f t 5 port map (x2 , c lk , xs52s) ;

SS52 : S5 port map (xs52s , c lk , xs52) ;

S54 : s h i f t 4 port map (x4 , c lk , xs54s) ;

SS54 : S4 port map (xs54s , c lk , xs54) ;

S55 : s h i f t 4 port map (x5 , c lk , xs55s) ;

179

SS55 : S4 port map (xs55s , c lk , xs55) ;

S56 : s h i f t 2 port map (x6 , c lk , xs56s) ;

SS56 : S2 port map (xs56s , c lk , xs56) ;

S57 : s h i f t 5 port map (x7 , c lk , xs57s) ;

SS57 : S5 port map (xs57s , c lk , xs57) ;

S58 : s h i f t 4 port map (x8 , c lk , xs58s) ;

SS58 : S4 port map (xs58s , c lk , xs58) ;

S59 : s h i f t 4 port map (x9 , c lk , xs59s) ;

SS59 : S4 port map (xs59s , c lk , xs59) ;

S510 : s h i f t 4 port map (x10 , c lk , xs510s) ;

SS510 : S4 port map (xs510s , c lk , xs510) ;

S511 : s h i f t 5 port map (x11 , c lk , xs511s) ;

SS511 : S5 port map (xs511s , c lk , xs511c) ;

C511 : compliment2s port map (xs511c , co511 , xs511) ;

S512 : s h i f t 5 port map (x12 , c lk , xs512s) ;

SS512 : S5 port map (xs512s , c lk , xs512) ;

A512 : add8 port map (xs52 , xs51 , ’ 0 ’ , Ca512 , Ao512) ;

A534 : add8 port map (x3 , xs54 , ’ 0 ’ , Ca534 , Ao534) ;

A556 : add8 port map (xs55 , xs56 , ’ 0 ’ , Ca556 , Ao556) ;

A578 : add8 port map (xs57 , xs58 , ’ 0 ’ , Ca578 , Ao578) ;

A5910 : add8 port map (xs59 , xs510 , ’ 0 ’ , Ca5910 , Ao5910) ;

A51112 : add8 port map (xs511 , xs512 , ’ 0 ’ , Ca51112 , Ao51112) ;

A51234 : add8 port map (Ao512 , Ao534 , ’ 0 ’ , Ca51234 , Ao51234) ;

A55678 : add8 port map (Ao556 , Ao578 , ’ 0 ’ , Ca55678 , Ao55678) ;

A59101112 : add8 port map (Ao5910 , Ao51112 , ’ 0 ’ , Ca59101112 , Ao59101112) ;

A51 8 : add8 port map (Ao51234 , Ao55678 , ’ 0 ’ , Ca51 8 , Ao51 8) ;

AA05 : add8 port map (Ao51 8 , Ao59101112 , ’ 0 ’ , Cao5 , AAo5) ;

AB5: add8 port map (AAo5 , ”11110000” , ’ 0 ’ , Cab5 , ABo5) ;

180

S61 : s h i f t 4 port map (x1 , c lk , xs61s) ;

SS61 : S4 port map (xs61s , c lk , xs61c) ;

C61 : compliment2s port map (xs61c , co61 , xs61) ;

S62 : s h i f t 4 port map (x2 , c lk , xs62s) ;

SS62 : S4 port map (xs62s , c lk , xs62c) ;

C62 : compliment2s port map (xs62c , co62 , xs62) ;

S63 : s h i f t 3 port map (x3 , c lk , xs63s) ;

SS63 : S3 port map (xs63s , c lk , xs63) ;

S64 : s h i f t 5 port map (x4 , c lk , xs64s) ;

SS64 : S5 port map (xs64s , c lk , xs64c) ;

C64 : compliment2s port map (xs64c , co64 , xs64) ;

S65 : s h i f t 1 port map (x5 , c lk , xs65s) ;

SS65 : S1 port map (xs65s , c lk , xs65) ;

S66 : s h i f t 5 port map (x6 , c lk , xs66s) ;

SS66 : S5 port map (xs66s , c lk , xs66c) ;

C66 : compliment2s port map (xs66c , co66 , xs66) ;

S67 : s h i f t 4 port map (x7 , c lk , xs67s) ;

SS67 : S4 port map (xs67s , c lk , xs67) ;

S68 : s h i f t 4 port map (x8 , c lk , xs68s) ;

SS68 : S4 port map (xs68s , c lk , xs68c) ;

C68 : compliment2s port map (xs68c , co68 , xs68) ;

S69 : s h i f t 4 port map (x9 , c lk , xs69s) ;

SS69 : S4 port map (xs69s , c lk , xs69c) ;

C69 : compliment2s port map (xs69c , co69 , xs69) ;

S610 : s h i f t 4 port map (x10 , c lk , xs610s) ;

SS610 : S4 port map (xs610s , c lk , xs610c) ;

C610 : compliment2s port map (xs610c , co610 , xs610) ;

S611 : s h i f t 5 port map (x11 , c lk , xs611s) ;

SS611 : S5 port map (xs611s , c lk , xs611c) ;

C611 : compliment2s port map (xs611c , co611 , xs611) ;

S612 : s h i f t 2 port map (x12 , c lk , xs612s) ;

181

SS612 : S2 port map (xs612s , c lk , xs612c) ;

C612 : compliment2s port map (xs612c , co612 , xs612) ;

A612 : add8 port map (xs62 , xs61 , ’ 0 ’ , Ca612 , Ao612) ;

A634 : add8 port map (xs63 , xs64 , ’ 0 ’ , Ca634 , Ao634) ;

A656 : add8 port map (xs65 , xs66 , ’ 0 ’ , Ca656 , Ao656) ;

A678 : add8 port map (xs67 , xs68 , ’ 0 ’ , Ca678 , Ao678) ;

A6910 : add8 port map (xs69 , xs610 , ’ 0 ’ , Ca6910 , Ao6910) ;

A61112 : add8 port map (xs611 , xs612 , ’ 0 ’ , Ca61112 , Ao61112) ;

A61234 : add8 port map (Ao612 , Ao634 , ’ 0 ’ , Ca61234 , Ao61234) ;

A65678 : add8 port map (Ao656 , Ao678 , ’ 0 ’ , Ca65678 , Ao65678) ;

A69101112 : add8 port map (Ao6910 , Ao61112 , ’ 0 ’ , Ca69101112 , Ao69101112) ;

A61 8 : add8 port map (Ao61234 , Ao65678 , ’ 0 ’ , Ca61 8 , Ao61 8) ;

AA06 : add8 port map (Ao61 8 , Ao69101112 , ’ 0 ’ , Cao6 , AAo6) ;

AB6: add8 port map (AAo6 , ”11111110” , ’ 0 ’ , Cab6 , ABo6) ;

S71 : s h i f t 1 port map (x1 , c lk , xs71s) ;

SS71 : S1 port map (xs71s , c lk , xs71c) ;

C71 : compliment2s port map (xs71c , co71 , xs71) ;

S72 : s h i f t 4 port map (x2 , c lk , xs72s) ;

SS72 : S4 port map (xs72s , c lk , xs72) ;

S73 : s h i f t 2 port map (x3 , c lk , xs73s) ;

SS73 : S2 port map (xs73s , c lk , xs73) ;

S74 : s h i f t 5 port map (x4 , c lk , xs74s) ;

SS74 : S5 port map (xs74s , c lk , xs74) ;

S75 : s h i f t 4 port map (x5 , c lk , xs75s) ;

SS75 : S4 port map (xs75s , c lk , xs75c) ;

182

C75 : compliment2s port map (xs75c , co75 , xs75) ;

S76 : s h i f t 4 port map (x6 , c lk , xs76s) ;

SS76 : S4 port map (xs76s , c lk , xs76c) ;

C76 : compliment2s port map (xs76c , co76 , xs76) ;

S77 : s h i f t 4 port map (x7 , c lk , xs77s) ;

SS77 : S4 port map (xs77s , c lk , xs77) ;

S78 : s h i f t 5 port map (x8 , c lk , xs78s) ;

SS78 : S5 port map (xs78s , c lk , xs78c) ;

C78 : compliment2s port map (xs78c , co78 , xs78) ;

S79 : s h i f t 5 port map (x9 , c lk , xs79s) ;

SS79 : S5 port map (xs79s , c lk , xs79) ;

S710 : s h i f t 4 port map (x10 , c lk , xs710s) ;

SS710 : S4 port map (xs710s , c lk , xs710c) ;

C710 : compliment2s port map (xs710c , co710 , xs710) ;

S711 : s h i f t 6 port map (x11 , c lk , xs711s) ;

SS711 : S6 port map (xs711s , c lk , xs711) ;

S712 : s h i f t 4 port map (x12 , c lk , xs712s) ;

SS712 : S4 port map (xs712s , c lk , xs712c) ;

C712 : compliment2s port map (xs712c , co712 , xs712) ;

A712 : add8 port map (xs72 , xs71 , ’ 0 ’ , Ca712 , Ao712) ;

A734 : add8 port map (xs73 , xs74 , ’ 0 ’ , Ca734 , Ao734) ;

A756 : add8 port map (xs75 , xs76 , ’ 0 ’ , Ca756 , Ao756) ;

A778 : add8 port map (xs77 , xs78 , ’ 0 ’ , Ca778 , Ao778) ;

A7910 : add8 port map (xs79 , xs710 , ’ 0 ’ , Ca7910 , Ao7910) ;

A71112 : add8 port map (xs711 , xs712 , ’ 0 ’ , Ca71112 , Ao71112) ;

A71234 : add8 port map (Ao712 , Ao734 , ’ 0 ’ , Ca71234 , Ao71234) ;

A75678 : add8 port map (Ao756 , Ao778 , ’ 0 ’ , Ca75678 , Ao75678) ;

A79101112 : add8 port map (Ao7910 , Ao71112 , ’ 0 ’ , Ca79101112 , Ao79101112) ;

A71 8 : add8 port map (Ao71234 , Ao75678 , ’ 0 ’ , Ca71 8 , Ao71 8) ;

183

AA07 : add8 port map (Ao71 8 , Ao79101112 , ’ 0 ’ , Cao7 , AAo7) ;

AB7: add8 port map (AAo7,”11111110” , ’ 0 ’ ,Cab7 ,ABo7) ;

S81 : s h i f t 5 port map (x1 , c lk , xs81s) ;

SS81 : S5 port map (xs81s , c lk , xs81c) ;

C81 : compliment2s port map (xs81c , co81 , xs81) ;

S82 : s h i f t 5 port map (x2 , c lk , xs82s) ;

SS82 : S5 port map (xs82s , c lk , xs82) ;

S83 : s h i f t 1 port map (x3 , c lk , xs83s) ;

SS83 : S1 port map (xs83s , c lk , xs83c) ;

C83 : compliment2s port map (xs83c , co83 , xs83) ;

S84 : s h i f t 3 port map (x4 , c lk , xs84s) ;

SS84 : S3 port map (xs84s , c lk , xs84c) ;

C84 : compliment2s port map (xs84c , co84 , xs84) ;

S85 : s h i f t 5 port map (x5 , c lk , xs85s) ;

SS85 : S5 port map (xs85s , c lk , xs85c) ;

C85 : compliment2s port map (xs85c , co85 , xs85) ;

S86 : s h i f t 5 port map (x6 , c lk , xs86s) ;

SS86 : S5 port map (xs86s , c lk , xs86c) ;

C86 : compliment2s port map (xs86c , co86 , xs86) ;

S87 : s h i f t 2 port map (x7 , c lk , xs87s) ;

SS87 : S2 port map (xs87s , c lk , xs87c) ;

C87 : compliment2s port map (xs87c , co87 , xs87) ;

S88 : s h i f t 5 port map (x8 , c lk , xs88s) ;

SS88 : S5 port map (xs88s , c lk , xs88c) ;

C88 : compliment2s port map (xs88c , co88 , xs88) ;

S89 : s h i f t 5 port map (x9 , c lk , xs89s) ;

SS89 : S5 port map (xs89s , c lk , xs89c) ;

C89 : compliment2s port map (xs89c , co89 , xs89) ;

S810 : s h i f t 1 port map (x10 , c lk , xs810s) ;

184

SS810 : S1 port map (xs810s , c lk , xs810c) ;

C810 : compliment2s port map (xs810c , co810 , xs810) ;

S811 : s h i f t 4 port map (x11 , c lk , xs811s) ;

SS811 : S4 port map (xs811s , c lk , xs811c) ;

C811 : compliment2s port map (xs811c , co811 , xs811) ;

S812 : s h i f t 4 port map (x12 , c lk , xs812s) ;

SS812 : S4 port map (xs812s , c lk , xs812c) ;

C812 : compliment2s port map (xs812c , co812 , xs812) ;

A812 : add8 port map (xs82 , xs81 , ’ 0 ’ , Ca812 , Ao812) ;

A834 : add8 port map (xs83 , xs84 , ’ 0 ’ , Ca834 , Ao834) ;

A856 : add8 port map (xs85 , xs86 , ’ 0 ’ , Ca856 , Ao856) ;

A878 : add8 port map (xs87 , xs88 , ’ 0 ’ , Ca878 , Ao878) ;

A8910 : add8 port map (xs89 , xs810 , ’ 0 ’ , Ca8910 , Ao8910) ;

A81112 : add8 port map (xs811 , xs812 , ’ 0 ’ , Ca81112 , Ao81112) ;

A81234 : add8 port map (Ao812 , Ao834 , ’ 0 ’ , Ca81234 , Ao81234) ;

A85678 : add8 port map (Ao856 , Ao878 , ’ 0 ’ , Ca85678 , Ao85678) ;

A89101112 : add8 port map (Ao8910 , Ao81112 , ’ 0 ’ , Ca89101112 , Ao89101112) ;

A81 8 : add8 port map (Ao81234 , Ao85678 , ’ 0 ’ , Ca81 8 , Ao81 8) ;

AA08 : add8 port map (Ao81 8 , Ao89101112 , ’ 0 ’ , Cbo8 , ABo8) ;

RE1 : r e l u8 port map (ABo1 , y1) ;

RE2 : r e l u8 port map (ABo2 , y2) ;

RE3 : r e l u8 port map (ABo3 , y3) ;

185

RE4: r e l u8 port map (ABo4 , y4) ;

RE5 : r e l u8 port map (ABo5 , y5) ;

RE6 : r e l u8 port map (ABo6 , y6) ;

RE7 : r e l u8 port map (ABo7 , y7) ;

RE8 : r e l u8 port map (ABo8 , y8) ;

end hidden2 ;

#hidden 3

en t i t y Hidden Layer3 i s

port (x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 : in s t d l o g i c v e c t o r (7 downto 0) ;

c l k : s t d l o g i c ; y1 , y2 , y3 , y4 : out s t d l o g i c v e c t o r (7 downto 0)) ;

end Hidden Layer3 ;

a r c h i t e c t u r e hidden3 o f Hidden Layer3 i s

component s h i f t 1 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component s h i f t 2 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (9 downto 0)) ;

end component ;

component s h i f t 3 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (10 downto 0)) ;

end component ;

186

component s h i f t 4 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (11 downto 0)) ;

end component ;

component s h i f t 5 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (12 downto 0)) ;

end component ;

component s h i f t 6 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (13 downto 0)) ;

end component ;

component S6 i s

port (din : in s t d l o g i c v e c t o r (13 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component S5 i s

port (din : in s t d l o g i c v e c t o r (12 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component S4 i s

port (din : in s t d l o g i c v e c t o r (11 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component S3 i s

port (din : in s t d l o g i c v e c t o r (10 downto 0) ; c l k : in s t d l o g i c ;

187

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component S2 i s

port (din : in s t d l o g i c v e c t o r (9 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component S1 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component add8 i s

port (A,B: in s t d l o g i c v e c t o r (7 downto 0) ; Cin : in s t d l o g i c ;

Co : out s t d l o g i c ; Sum: out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component r e l u8 i s

port (x : in s t d l o g i c v e c t o r (7 downto 0) ; y : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component compliment2s

port (Din : in s t d l o g i c v e c t o r (7 downto 0) ; Co : out s t d l o g i c ;

Do : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

−− 6 s h i f t

s i g n a l xs11s , xs15s , xs17s , xs21s , xs22s , xs31s , xs32s , xs37s ,

xs42s , xs47s : s t d l o g i c v e c t o r (13 downto 0) ; −− 6 s h i f t

−− 5 s h i f t

188

s i g n a l xs12s , xs13s , xs14s , xs18s , xs23s , xs24s , xs33s , xs35s ,

xs38s , xs46s : s t d l o g i c v e c t o r (12 downto 0) ; −− 5 s h i f t

−− 4 s h i f t

s i g n a l xs25s , xs28s , xs44s , xs45s : s t d l o g i c v e c t o r (11 downto 0) ; −− 4 s h i f t

−− 3 s h i f t

s i g n a l xs34s , xs43s : s t d l o g i c v e c t o r (10 downto 0) ; −− 3 s h i f t

−− 2 s h i f t

s i g n a l xs26s , xs36s , xs41s : s t d l o g i c v e c t o r (9 downto 0) ; −− 2 s h i f t

−− 1 s h i f t

s i g n a l xs16s : s t d l o g i c v e c t o r (8 downto 0) ; −− 1 s h i f t

s i g n a l xs11c , xs14c , xs16c , xs17c , xs18c , xs11 , xs12 , xs13 , xs14 ,

xs15 , xs16 , xs17 , xs18 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao112 , Ao134 , Ao156 , Ao178 , Ao11234 , Ao15678 , AAo1 ,

ABo1 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co11 , co14 , co16 , co17 , co18 , Ca112 , Ca134 , Ca156 , Ca178 ,

Ca11234 , Ca15678 , Cao1 , Cab1 : s t d l o g i c ;

s i g n a l xs22c , xs25c , xs26c , xs28c , xs21 , xs22 , xs23 , xs24 , xs25 ,

xs26 , xs28 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao212 , Ao234 , Ao256 , Ao278 , Ao21234 , Ao25678 , ABo2 ,

AAo2 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co22 , co25 , co26 , co28 , Ca212 , Ca234 , Ca256 , Ca278 ,

Ca21234 , Ca25678 , Cao2 , Cab2 : s t d l o g i c ;

s i g n a l xs34c , xs35c , xs36c , xs38c , xs31 , xs32 , xs33 , xs34 , xs35 ,

xs36 , xs37 , xs38 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao312 , Ao334 , Ao356 , Ao378 , Ao31234 , Ao35678 , AAo3 ,

ABo3 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co34 , co35 , co36 , co38 , Ca312 , Ca334 , Ca356 , Ca378 ,

Ca31234 , Ca35678 , Cao3 , Cab3 : s t d l o g i c ;

189

s i g n a l xs44c , xs47c , xs41 , xs42 , xs43 , xs44 , xs45 , xs46 ,

xs47 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao412 , Ao434 , Ao456 , Ao478 , Ao41234 , Ao45678 , AAo4 ,

ABo4 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co44 , co47 , Ca412 , Ca434 , Ca456 , Ca478 , Ca41234 , Ca45678 ,

Cao4 , Cab4 : s t d l o g i c ;

begin

S11 : s h i f t 6 port map (x1 , c lk , xs11s) ;

SS11 : S6 port map (xs11s , c lk , xs11c) ;

C11 : compliment2s port map (xs11c , co11 , xs11) ;

S12 : s h i f t 5 port map (x2 , c lk , xs12s) ;

SS12 : S5 port map (xs12s , c lk , xs12) ;

S13 : s h i f t 5 port map (x3 , c lk , xs13s) ;

SS13 : S5 port map (xs13s , c lk , xs13) ;

S14 : s h i f t 5 port map (x5 , c lk , xs14s) ;

SS14 : S5 port map (xs14s , c lk , xs14c) ;

C14 : compliment2s port map (xs14c , co14 , xs14) ;

S15 : s h i f t 6 port map (x5 , c lk , xs15s) ;

SS15 : S6 port map (xs15s , c lk , xs15) ;

S16 : s h i f t 1 port map (x6 , c lk , xs16s) ;

SS16 : S1 port map (xs16s , c lk , xs16c) ;

C16 : compliment2s port map (xs16c , co16 , xs16) ;

S17 : s h i f t 6 port map (x7 , c lk , xs17s) ;

SS17 : S6 port map (xs17s , c lk , xs17c) ;

C17 : compliment2s port map (xs17c , co17 , xs17) ;

S18 : s h i f t 5 port map (x8 , c lk , xs18s) ;

SS18 : S5 port map (xs18s , c lk , xs18c) ;

C18 : compliment2s port map (xs18c , co18 , xs18) ;

A112 : add8 port map (xs12 , xs11 , ’ 0 ’ , Ca112 , Ao112) ;

A134 : add8 port map (xs13 , xs14 , ’ 0 ’ , Ca134 , Ao134) ;

190

A156 : add8 port map (xs15 , xs16 , ’ 0 ’ , Ca156 , Ao156) ;

A178 : add8 port map (xs17 , xs18 , ’ 0 ’ , Ca178 , Ao178) ;

A11234 : add8 port map (Ao112 , Ao134 , ’ 0 ’ , Ca11234 , Ao11234) ;

A15678 : add8 port map (Ao156 , Ao178 , ’ 0 ’ , Ca15678 , Ao15678) ;

AA01 : add8 port map (Ao11234 , Ao15678 , ’ 0 ’ , Cao1 , AAo1) ;

AB1: add8 port map (AAo1 , ”11111000” , ’ 0 ’ , Cab1 , ABo1) ;

S21 : s h i f t 6 port map (x1 , c lk , xs21s) ;

SS21 : S6 port map (xs21s , c lk , xs21) ;

S22 : s h i f t 6 port map (x2 , c lk , xs22s) ;

SS22 : S6 port map (xs22s , c lk , xs22c) ;

C22 : compliment2s port map (xs22c , co22 , xs22) ;

S23 : s h i f t 5 port map (x3 , c lk , xs23s) ;

SS23 : S5 port map (xs23s , c lk , xs23) ;

S24 : s h i f t 5 port map (x4 , c lk , xs24s) ;

SS24 : S5 port map (xs24s , c lk , xs24) ;

S25 : s h i f t 4 port map (x5 , c lk , xs25s) ;

SS25 : S4 port map (xs25s , c lk , xs25c) ;

C25 : compliment2s port map (xs25c , co25 , xs25) ;

S26 : s h i f t 2 port map (x6 , c lk , xs26s) ;

SS26 : S2 port map (xs26s , c lk , xs26c) ;

C26 : compliment2s port map (xs26c , co26 , xs26) ;

S28 : s h i f t 4 port map (x8 , c lk , xs28s) ;

SS28 : S4 port map (xs28s , c lk , xs28c) ;

C28 : compliment2s port map (xs28c , co28 , xs28) ;

A212 : add8 port map (xs22 , xs21 , ’ 0 ’ , Ca212 , Ao212) ;

A234 : add8 port map (xs23 , xs24 , ’ 0 ’ , Ca234 , Ao234) ;

A256 : add8 port map (xs25 , xs26 , ’ 0 ’ , Ca256 , Ao256) ;

191

A278 : add8 port map (x7 , xs28 , ’ 0 ’ , Ca278 , Ao278) ;

A21234 : add8 port map (Ao212 , Ao234 , ’ 0 ’ , Ca21234 , Ao21234) ;

A25678 : add8 port map (Ao256 , Ao278 , ’ 0 ’ , Ca25678 , Ao25678) ;

AA02 : add8 port map (Ao21234 , Ao25678 , ’ 0 ’ , Cao2 , AAo2) ;

AB2: add8 port map (AAo2 , ”00100000” , ’ 0 ’ , Cab2 , ABo2) ;

S31 : s h i f t 6 port map (x1 , c lk , xs31s) ;

SS31 : S6 port map (xs31s , c lk , xs31) ;

S32 : s h i f t 6 port map (x2 , c lk , xs32s) ;

SS32 : S6 port map (xs32s , c lk , xs32) ;

S33 : s h i f t 5 port map (x3 , c lk , xs33s) ;

SS33 : S5 port map (xs33s , c lk , xs33) ;

S34 : s h i f t 3 port map (x4 , c lk , xs34s) ;

SS34 : S3 port map (xs34s , c lk , xs34c) ;

C34 : compliment2s port map (xs34c , co34 , xs34) ;

S35 : s h i f t 5 port map (x5 , c lk , xs35s) ;

SS35 : S5 port map (xs35s , c lk , xs35c) ;

C35 : compliment2s port map (xs35c , co35 , xs35) ;

S36 : s h i f t 2 port map (x6 , c lk , xs36s) ;

SS36 : S2 port map (xs36s , c lk , xs36c) ;

C36 : compliment2s port map (xs36c , co36 , xs36) ;

S37 : s h i f t 6 port map (x7 , c lk , xs37s) ;

SS37 : S6 port map (xs37s , c lk , xs37) ;

S38 : s h i f t 5 port map (x8 , c lk , xs38s) ;

SS38 : S5 port map (xs38s , c lk , xs38c) ;

C38 : compliment2s port map (xs38c , co38 , xs38) ;

A312 : add8 port map (xs32 , x1 , ’ 0 ’ , Ca312 , Ao312) ;

A334 : add8 port map (xs33 , xs34 , ’ 0 ’ , Ca334 , Ao334) ;

A356 : add8 port map (xs35 , xs36 , ’ 0 ’ , Ca356 , Ao356) ;

192

A378 : add8 port map (xs37 , xs38 , ’ 0 ’ , Ca378 , Ao378) ;

A31234 : add8 port map (Ao312 , Ao334 , ’ 0 ’ , Ca31234 , Ao31234) ;

A35678 : add8 port map (Ao356 , Ao378 , ’ 0 ’ , Ca35678 , Ao35678) ;

AA03 : add8 port map (Ao31234 , Ao35678 , ’ 0 ’ , Cao3 , AAo3) ;

AB3: add8 port map (AAo3 , ”00100000” , ’ 0 ’ , Cab3 , ABo3) ;

S41 : s h i f t 2 port map (x1 , c lk , xs41s) ;

SS41 : S2 port map (xs41s , c lk , xs41) ;

S42 : s h i f t 6 port map (x2 , c lk , xs42s) ;

SS42 : S6 port map (xs42s , c lk , xs42) ;

S43 : s h i f t 3 port map (x3 , c lk , xs43s) ;

SS43 : S3 port map (xs43s , c lk , xs43) ;

S44 : s h i f t 4 port map (x4 , c lk , xs44s) ;

SS44 : S4 port map (xs44s , c lk , xs44c) ;

C44 : compliment2s port map (xs44c , co44 , xs44) ;

S45 : s h i f t 4 port map (x5 , c lk , xs45s) ;

SS45 : S4 port map (xs45s , c lk , xs45) ;

S46 : s h i f t 5 port map (x6 , c lk , xs46s) ;

SS46 : S5 port map (xs46s , c lk , xs46) ;

S47 : s h i f t 6 port map (x7 , c lk , xs47s) ;

SS47 : S6 port map (xs47s , c lk , xs47c) ;

C47 : compliment2s port map (xs47c , co47 , xs47) ;

A412 : add8 port map (xs42 , xs41 , ’ 0 ’ , Ca412 , Ao412) ;

A434 : add8 port map (xs43 , xs44 , ’ 0 ’ , Ca434 , Ao434) ;

A456 : add8 port map (xs45 , xs46 , ’ 0 ’ , Ca456 , Ao456) ;

A478 : add8 port map (xs47 , x8 , ’ 0 ’ , Ca478 , Ao478) ;

A41234 : add8 port map (Ao412 , Ao434 , ’ 0 ’ , Ca41234 , Ao41234) ;

A45678 : add8 port map (Ao456 , Ao478 , ’ 0 ’ , Ca45678 , Ao45678) ;

193

AA04 : add8 port map (Ao41234 , Ao45678 , ’ 0 ’ , Cao4 , AAo4) ;

AB4: add8 port map (AAo4 , ”11110000” , ’ 0 ’ , Cab4 , ABo4) ;

RE1 : r e l u8 port map (ABo1 , y1) ;

RE2 : r e l u8 port map (ABo2 , y2) ;

RE3 : r e l u8 port map (ABo3 , y3) ;

RE4 : r e l u8 port map (ABo4 , y4) ;

end hidden3 ;

#output l ay e r

en t i t y Out Layer i s

port (x1 , x2 , x3 , x4 : in s t d l o g i c v e c t o r (7 downto 0) ;

c l k : s t d l o g i c ; y1 : out s t d l o g i c v e c t o r (7 downto 0)) ;

end Out Layer ;

a r c h i t e c t u r e Out L o f Out Layer i s

component s h i f t 1 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (8 downto 0)) ;

end component ;

component s h i f t 2 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (9 downto 0)) ;

end component ;

component s h i f t 3 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

194

dout : out s t d l o g i c v e c t o r (10 downto 0)) ;

end component ;

component s h i f t 4 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (11 downto 0)) ;

end component ;

component s h i f t 5 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (12 downto 0)) ;

end component ;

component s h i f t 6 i s

port (din : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (13 downto 0)) ;

end component ;

component S6 i s

port (din : in s t d l o g i c v e c t o r (13 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component S5 i s

port (din : in s t d l o g i c v e c t o r (12 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component S4 i s

port (din : in s t d l o g i c v e c t o r (11 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

195

component S3 i s

port (din : in s t d l o g i c v e c t o r (10 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component S2 i s

port (din : in s t d l o g i c v e c t o r (9 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component S1 i s

port (din : in s t d l o g i c v e c t o r (8 downto 0) ; c l k : in s t d l o g i c ;

dout : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component add8 i s

port (A,B: in s t d l o g i c v e c t o r (7 downto 0) ; Cin : in s t d l o g i c ;

Co : out s t d l o g i c ; Sum: out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component s i g 8 i s

port (x : in s t d l o g i c v e c t o r (7 downto 0) ; c l k : s t d l o g i c ;

s i g : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

component compliment2s

port (Din : in s t d l o g i c v e c t o r (7 downto 0) ; Co : out s t d l o g i c ;

Do : out s t d l o g i c v e c t o r (7 downto 0)) ;

end component ;

196

−− 6 s h i f t

s i g n a l xs11s , xs12s , xs13s ,

xs14s : s t d l o g i c v e c t o r (13 downto 0) ; −− 6 s h i f t

s i g n a l xs12c , xs13c , xs11 , xs12 , xs13 ,

xs14 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l Ao112 , Ao134 , AAo1 ,

ABo1 : s t d l o g i c v e c t o r (7 downto 0) ;

s i g n a l co12 , co13 , Ca112 , Ca134 , Cao1 , Cab1 : s t d l o g i c ;

begin

S11 : s h i f t 6 port map (x1 , c lk , xs11s) ;

SS11 : S6 port map (xs11s , c lk , xs11) ;

S12 : s h i f t 6 port map (x2 , c lk , xs12s) ;

SS12 : S6 port map (xs12s , c lk , xs12c) ;

C12 : compliment2s port map (xs12c , co12 , xs12) ;

S13 : s h i f t 6 port map (x3 , c lk , xs13s) ;

SS13 : S6 port map (xs13s , c lk , xs13c) ;

C13 : compliment2s port map (xs13c , co13 , xs13) ;

S14 : s h i f t 6 port map (x4 , c lk , xs14s) ;

SS14 : S6 port map (xs14s , c lk , xs14) ;

A112 : add8 port map (xs12 , xs11 , ’ 0 ’ , Ca112 , Ao112) ;

A134 : add8 port map (xs13 , xs14 , ’ 0 ’ , Ca134 , Ao134) ;

AA01 : add8 port map (Ao112 , Ao134 , ’ 0 ’ , Cao1 , AAo1) ;

AB1: add8 port map (AAo1 , ”11110000” , ’ 0 ’ , Cab1 , ABo1) ;

SIG1 : s i g 8 port map (ABo1 , c lk , y1) ;

197

end Out L ;

198

Appendix E

PYTHON CODE: BENCHMARK OF SABINN

import keras , os

from keras . models import Sequent i a l

from keras . l a y e r s import Dense , Conv2D , MaxPool2D , F lat ten

from keras . p r ep ro c e s s i ng . image import ImageDataGenerator

C l a s s i c a l array manipulat ion

import numpy as np

Image manipulat ion | OpenCV

import cv2

Showing images and e va l u a t i n g model r e s u l t s

import matp lo t l i b . pyplot as p l t

VGG19 Model

from keras . a pp l i c a t i o n s . vgg19 import VGG19

Preparing VGG19 Model

from keras . l a y e r s import Dense , Flatten , Input

from keras . models import Sequent i a l

199

One hot l a b e l encoding

from keras . u t i l s import t o c a t e g o r i c a l

CIFAR10 da t a s e t

from keras . da ta s e t s import c i f a r 1 0

import keras as K

Cifar10 Dataset Process

(x t ra in , y t r a i n) , (x t e s t , y t e s t) = c i f a r 1 0 . l oad data ()

print (”Shape o f x t r a i n i s ” , x t r a i n . shape)

print (”Shape o f y t r a i n i s ” , y t r a i n . shape)

print (”Shape o f x t e s t i s ” , x t e s t . shape)

print (”Shape o f y t e s t i s ” , y t e s t . shape)

def r e s i z e img (img) :

numberOfImage = img . shape [0]

new array = np . z e r o s ((numberOfImage , 48 ,48 , 3))

for i in range (numberOfImage) :

new array [i] = cv2 . r e s i z e (img [i , : , : , :] , (4 8 , 4 8))

return new array

x t r a i n = r e s i z e img (x t r a i n)

x t e s t = r e s i z e img (x t e s t)

print (”New shape o f x t r a i n i s ” , x t r a i n . shape)

print (”New shape o f x t e s t i s ” , x t e s t . shape)

one hot encoding

y t r a i n = t o c a t e g o r i c a l (y t ra in , num classes=10)

y t e s t = t o c a t e g o r i c a l (y t e s t , num classes=10)

print (”New shape o f y t r a i n i s ” , y t r a i n . shape)

200

print (”New shape o f y t e s t i s ” , y t e s t . shape)

#MedMNIST Dataset

! pip i n s t a l l medmnist

import medmnist

from medmnist import INFO, Evaluator

d a t a f l a g = ’ pneumoniamnist ’

download = True

NUMEPOCHS = 3

BATCH SIZE = 128

l r = 0.0001

i n f o = INFO[da t a f l a g]

task = i n f o [’ task ’]

n channe l s = i n f o [’ n channe l s ’]

n c l a s s e s = len (i n f o [’ l a b e l ’])

DataClass = getattr (medmnist , i n f o [’ py thon c l a s s ’])

preproce s s ing

data trans form = trans forms . Compose ([

t rans forms . ToTensor () ,

t rans forms . Normalize (mean= [. 5] , s td = [. 5])

])

load the data

t r a i n d a t a s e t = DataClass (s p l i t=’ t r a i n ’ ,

t rans form=data trans form , download=download)

t e s t d a t a s e t = DataClass (s p l i t=’ t e s t ’ ,

t rans form=data trans form , download=download)

201

p i l d a t a s e t = DataClass (s p l i t=’ t r a i n ’ , download=download)

encapsu la t e data in to da ta l oader form

t r a i n l o a d e r = data . DataLoader (datase t=t r a i n da t a s e t ,

b a t ch s i z e=BATCH SIZE, s h u f f l e=True)

t r a i n l o a d e r a t e v a l = data . DataLoader (datase t=t r a i n da t a s e t ,

b a t ch s i z e=2∗BATCH SIZE, s h u f f l e=False)

t e s t l o a d e r = data . DataLoader (datase t=t e s t da t a s e t ,

b a t ch s i z e=2∗BATCH SIZE, s h u f f l e=False)

print (t r a i n d a t a s e t)

print (”===================”)

print (t e s t d a t a s e t)

from s k l e a rn . mode l s e l e c t i on import t r a i n t e s t s p l i t

X train , X val , y t ra in , y va l =

t r a i n t e s t s p l i t (t r a i n d a t a s e t . imgs , t r a i n d a t a s e t . l a b e l s , t e s t s i z e =0.2)

x t r a i n = np . expand dims (X train , ax i s=−1)

x va l = np . expand dims (X val , ax i s=−1)

x t e s t = np . expand dims (t e s t d a t a s e t . imgs , ax i s=−1)

y t e s t = np . expand dims (t e s t d a t a s e t . l ab e l s , ax i s=−1)

X tra in = t f . image . r e s i z e (x t ra in , [3 2 , 3 2])

X val = t f . image . r e s i z e (x val , [3 2 , 3 2])

X tes t = t f . image . r e s i z e (x t e s t , [3 2 , 3 2])

print (X tra in . shape)

print (X val . shape)

print (X tes t . shape)

202

#VGG19

vgg model = t f . keras . a pp l i c a t i o n s .VGG19(

i n c l ude t op=False ,

weights = None ,

input shape =(32 ,32 ,1) ,

)

vgg model . summary ()

model = t f . keras . Sequent i a l ()

model . add (vgg model)

model . add (Flat ten ())

model . add (Dense (512 , a c t i v a t i o n = ’ r e l u ’ , u s e b i a s =False))

model . add (Dense (128 , a c t i v a t i o n = ’ r e l u ’ , u s e b i a s =False))

model . add (Dense (1 , a c t i v a t i o n = ’ s ’ , u s e b i a s =False))

model . summary ()

BATCH SIZE=10

EPOCHS = 25

opt imize r = t f . keras . op t im i z e r s .SGD(

l e a r n i n g r a t e =0.0001 ,

momentum=0.9)

acc = t f . keras . met r i c s . Accuracy (

name=’ accuracy ’ , dtype=None

)

prec = t f . keras . met r i c s . P r e c i s i on (

th r e sho ld s=None , top k=None , c l a s s i d=None , name=None ,

dtype=None

)

bce = t f . keras . l o s s e s . BinaryCrossentropy (f r om l o g i t s=Fal se)

203

model . compile (l o s s=bce ,

opt imize r=opt imizer ,

met r i c s=acc)

h i s t o r y = model . f i t (X train , y t ra in , epochs=EPOCHS,

ba t ch s i z e=BATCH SIZE, va l i d a t i on da t a = (X val , y va l) , verbose=0)

#for MEDMNIST [add t h i s b e f o r e f i t t i n g VGG19 model]

t r a in da tagen = ImageDataGenerator (

p r ep r o c e s s i n g f un c t i o n = t f . keras . a pp l i c a t i o n s . vgg19 . p r eproce s s input ,

r o t a t i on r ang e =10,

zoom range = 0 . 1 ,

w i d th sh i f t r ang e = 0 . 1 ,

h e i g h t s h i f t r a n g e = 0 . 1 ,

shear range = 0 . 1 ,

h o r i z o n t a l f l i p = True

)

t ra in da tagen . f i t (X tra in)

va l datagen = ImageDataGenerator (p r ep r o c e s s i n g f un c t i o n

= t f . keras . a pp l i c a t i o n s . vgg19 . p r ep ro c e s s i npu t)

va l datagen . f i t (X val)

#ResNET50

from keras . a pp l i c a t i o n s . r e sn e t import ResNet50

res mode l = ResNet50 (i n c l ude t op=False , weights=None ,

input shape =(32 , 32 , 1) , c l a s s e s =1)

res mode l . summary ()

model = t f . keras . Sequent i a l ()

model . add (res mode l)

204

model . add (Flat ten ())

model . add (Dense (128 , a c t i v a t i o n = ’ r e l u ’ , u s e b i a s =False))

model . add (Dense (1 , a c t i v a t i o n = ’ s igmoid ’ , u s e b i a s =False))

model . summary ()

#tra in

%%time

BATCH SIZE=10

EPOCHS = 25

opt imize r = t f . keras . op t im i z e r s .SGD(

l e a r n i n g r a t e =0.0001 ,

momentum=0.9)

acc = t f . keras . met r i c s . Accuracy (

name=’ accuracy ’ , dtype=None

)

prec = t f . keras . met r i c s . P r e c i s i on (

th r e sho ld s=None , top k=None , c l a s s i d=None , name=None , dtype=None

)

bce = t f . keras . l o s s e s . BinaryCrossentropy (f r om l o g i t s=Fal se)

model . compile (l o s s=bce ,

opt imize r=opt imizer ,

met r i c s=prec)

h i s t o r y = model . f i t (X train , y t ra in , epochs=EPOCHS,

ba t ch s i z e=BATCH SIZE, va l i d a t i on da t a = (X val , y va l) , verbose=1)

#MobileNETV2

from keras . a pp l i c a t i o n s . mobi lenet v2 import MobileNetV2

205

mob model = MobileNetV2 (i n c l ude t op=False , weights=None ,

input shape =(32 , 32 , 1) , c l a s s e s =1)

mob model . summary ()

model = t f . keras . Sequent i a l ()

model . add (mob model)

model . add (Flat ten ())

model . add (Dense (128 , a c t i v a t i o n = ’ r e l u ’ , u s e b i a s =False))

model . add (Dense (1 , a c t i v a t i o n = ’ s igmoid ’ , u s e b i a s =False))

model . summary ()

%%time

BATCH SIZE=10

EPOCHS = 25

opt imize r = t f . keras . op t im i z e r s .SGD(l e a r n i n g r a t e =0.0001 ,momentum=0.9)

acc = t f . keras . met r i c s . Accuracy (name=’ accuracy ’ , dtype=None)

prec = t f . keras . met r i c s . P r e c i s i on (th r e sho ld s=None , top k=None ,

c l a s s i d=None , name=None , dtype=None)

bce = t f . keras . l o s s e s . BinaryCrossentropy (f r om l o g i t s=Fal se)

model . compile (l o s s=bce , opt imize r=opt imizer , met r i c s=acc)

h i s t o r y = model . f i t (X train , y t ra in , epochs=EPOCHS, ba t ch s i z e=BATCH SIZE,

va l i d a t i on da t a = (X val , y va l) , verbose=0)

#eva l ua t i on and v a l i d a t i o n o f the models

206

model . eva luate (X test , y t e s t)

y s t e s t = np . squeeze (y t e s t)

#confus ion metr ix genera t ion

from numpy import array

X pred = array (X tes t)

y pred = model . p r ed i c t (X pred)

print (y pred . shape , y t e s t . shape)

from s k l e a rn . met r i c s import con fus i on matr ix

cm = con fus i on matr ix (y s t e s t , y pred . round ())

print (cm)

#pre c i s i on

from s k l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t

print (c l a s s i f i c a t i o n r e p o r t (y s t e s t , y pred . round ()))

#matrix = [TP, FP,

FN, TN]

from s k l e a rn . met r i c s import r o c au c s c o r e

ca l c u l a t e roc auc

roc auc = ro c au c s c o r e (y s t e s t , y pred)

print (roc auc)

from s k l e a rn . met r i c s import r o c cu rve

roc curve f o r tp r = fp r

random probs = [0 for i in range (len (y s t e s t))]

p fpr , p tpr , = roc curve (y s t e s t , random probs)

roc curve f o r models

fpr , tpr , thresh = roc curve (y s t e s t , y pred)

207

ma t p l o t l i b

import matp lo t l i b . pyplot as p l t

p l o t roc curves

p l t . f i g u r e ()

ax = p l t . axes ((0 . 1 , 0 . 1 , 0 . 7 , 0 . 8))

p l t . p l o t (fpr , tpr , l i n e s t y l e=’−− ’ , c o l o r=’ orange ’ ,

l a b e l = ’VGG19 (%0.3 f) ’ % roc auc)

p l t . p l o t (p fpr , p tpr , c o l o r=’ blue ’ ,

l a b e l = ’ Base l i n e Model (0 . 5 0) ’)

t i t l e

x l a b e l

p l t . x l ab e l (’ Fa l se Po s i t i v e Rate ’ , f o n t s i z e = 15)

y l a b e l

p l t . y l ab e l (’ True Po s i t i v e ra t e ’ , f o n t s i z e =15)

p l t . l egend (l o c=’ best ’)

p l t . show ()

#b ina r i z a t i o n

#ge t we i gh t s from each l a y e r = n

layer name = laye r ’ s name

w d= model . g e t l a y e r (layer name) . g e t we i gh t s ()

p r i n t (np . shape (w d))

Mean weight value c a l c u l a t i o n

m = t f . keras . met r i c s .Mean()

d1 w = m(t f . math . abs (b in1 squeezed))∗ t f . ke ras . backend . s i gn (b in1 squeezed)

d1 w= t f . reshape (d1 w , [N, N]) . numpy() #where N i s the Matrix

208

pr in t (d1 w)

#b i n a r i z e

b10 in t= d1 w/M #mean value o f each l ay e r

b10 = b10 in t . round ()

#s e t the weights

layerName1 = lay e r name

b1= model . g e t l a y e r (layerName1) . s e t we i gh t s ([b10])

#eva lua t i on

, accuracy = model . eva luate (X test , y s t e s t)

p r i n t (’ t e s t Accuracy : %.2 f ’ % (accuracy ∗100))

#con fus i on metrix gene ra t i on

from numpy import array

X pred = array (X tes t)

yb pred = modelb . p r ed i c t (X pred)

p r i n t (y pred . shape , y t e s t . shape)

from sk l ea rn . met r i c s import con fus i on matr ix

cm = con fus i on matr ix (y s t e s t , yb pred . round ())

p r i n t (cm)

#p r e c i s i o n

from sk l ea rn . met r i c s import c l a s s i f i c a t i o n r e p o r t

p r i n t (c l a s s i f i c a t i o n r e p o r t (y s t e s t , yb pred . round ()))

#matrix = [TP, FP,

FN, TN]

209

BIBLIOGRAPHY

[1] S. Han, Efficient methods and hardware for deep learning. PhD thesis, Stanford University,

2017.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[3] A. Page, N. Attaran, C. Shea, H. Homayoun, and T. Mohsenin, “Low-power manycore

accelerator for personalized biomedical applications,” in Proceedings of the 26th edition on

Great Lakes Symposium on VLSI, pp. 63–68, 2016.

[4] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-efficient dataflow

for convolutional neural networks,” ACM SIGARCH computer architecture news, vol. 44, no. 3,

pp. 367–379, 2016.

[5] E. L. Andrews, “Ai’s carbon footprint problem,” July 2020.

[6] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu, B. Anderson,

M. Breughe, M. Charlebois, W. Chou, et al., “Mlperf inference benchmark,” in 2020 ACM/IEEE

47th Annual International Symposium on Computer Architecture (ISCA), pp. 446–459, IEEE,

2020.

[7] G. E. Moore, “Lithography and the future of moore’s law,” in Integrated Circuit Metrology,

Inspection, and Process Control IX, vol. 2439, pp. 2–17, SPIE, 1995.

[8] M. Shoaran, B. A. Haghi, M. Taghavi, M. Farivar, and A. Emami-Neyestanak, “Energy-efficient

classification for resource-constrained biomedical applications,” IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, vol. 8, no. 4, pp. 693–707, 2018.

[9] Y. Wei, J. Zhou, Y. Wang, Y. Liu, Q. Liu, J. Luo, C. Wang, F. Ren, and L. Huang, “A review

of algorithm & hardware design for ai-based biomedical applications,” IEEE transactions on

biomedical circuits and systems, vol. 14, no. 2, pp. 145–163, 2020.

210

[10] C. Shea, A. Page, and T. Mohsenin, “Scalenet: A scalable low power accelerator for real-time

embedded deep neural networks,” in Proceedings of the 2018 on Great Lakes Symposium on

VLSI, pp. 129–134, 2018.

[11] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing fpga-based accelerator

design for deep convolutional neural networks,” in Proceedings of the 2015 ACM/SIGDA

international symposium on field-programmable gate arrays, pp. 161–170, 2015.

[12] A. Kulkarni, A. Page, N. Attaran, A. Jafari, M. Malik, H. Homayoun, and T. Mohsenin, “An

energy-efficient programmable manycore accelerator for personalized biomedical applications,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 1, pp. 96–109,

2017.

[13] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, “A 240 g-ops/s mobile coprocessor

for deep neural networks,” in Proceedings of the IEEE conference on computer vision and

pattern recognition workshops, pp. 682–687, 2014.

[14] O. Hassan, S. Shamsir, and S. K. Islam, “Machine learning based hardware model for a

biomedical system for prediction of respiratory failure,” in 2020 IEEE International Symposium

on Medical Measurements and Applications (MeMeA), pp. 1–5, IEEE, 2020.

[15] O. Hassan, D. Parvin, and S. Kamrul, “Machine learning model based digital hardware system

design for detection of sleep apnea among neonatal infants,” in 2020 IEEE 63rd International

Midwest Symposium on Circuits and Systems (MWSCAS), pp. 607–610, IEEE, 2020.

[16] O. Hassan, T. Paul, M. H. Shuvo, D. Parvin, R. Thakker, M. Chen, A. S. M. Mosa, and S. K.

Islam, “Energy efficient deep learning inference embedded on fpga for sleep apnea detection,”

Journal of Signal Processing Systems, pp. 1–11, 2022.

[17] M. M. H. Shuvo, O. Hassan, D. Parvin, M. Chen, and S. K. Islam, “An optimized hardware

implementation of deep learning inference for diabetes prediction,” in 2021 IEEE International

Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6, IEEE, 2021.

[18] L. D. Victor, “Obstructive sleep apnea,” American family physician, vol. 60, no. 8, p. 2279,

1999.

[19] T. Young, L. Finn, P. E. Peppard, M. Szklo-Coxe, D. Austin, F. J. Nieto, R. Stubbs, and K. M.

Hla, “Sleep disordered breathing and mortality: eighteen-year follow-up of the wisconsin sleep

cohort,” Sleep, vol. 31, no. 8, pp. 1071–1078, 2008.

211

[20] J. G. Suni Eric, “Sleep apnea: What it is, its risk factors, its health impacts, and how it can

be treated,” July 2021. [Online; posted 9-July-2021].

[21] S. S. Mostafa, J. P. Carvalho, F. Morgado-Dias, and A. Ravelo-Garćıa, “Optimization of sleep

apnea detection using spo2 and ann,” in 2017 XXVI international conference on information,

communication and automation technologies (ICAT), pp. 1–6, IEEE, 2017.

[22] M. Cheng, W. J. Sori, F. Jiang, A. Khan, and S. Liu, “Recurrent neural network based

classification of ecg signal features for obstruction of sleep apnea detection,” in 2017 IEEE

International Conference on Computational Science and Engineering (CSE) and IEEE Interna-

tional Conference on Embedded and Ubiquitous Computing (EUC), vol. 2, pp. 199–202, IEEE,

2017.

[23] D. Dey, S. Chaudhuri, and S. Munshi, “Obstructive sleep apnoea detection using convolutional

neural network based deep learning framework,” Biomedical engineering letters, vol. 8, no. 1,

pp. 95–100, 2018.

[24] S. S. Mostafa, F. Mendonça, F. Morgado-Dias, and A. Ravelo-Garćıa, “Spo2 based sleep apnea

detection using deep learning,” in 2017 IEEE 21st international conference on intelligent

engineering systems (INES), pp. 000091–000096, IEEE, 2017.

[25] H. Qin and G. Liu, “A dual-model deep learning method for sleep apnea detection based on

representation learning and temporal dependence,” Neurocomputing, vol. 473, pp. 24–36, 2022.

[26] N. Selvaraj and R. Narasimhan, “Automated prediction of the apnea-hypopnea index using a

wireless patch sensor,” in 2014 36th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society, pp. 1897–1900, IEEE, 2014.

[27] M. Kopaczka, O. Oezkan, and D. Merhof, “Face tracking and respiratory signal analysis for

the detection of sleep apnea in thermal infrared videos with head movement,” in New Trends

in Image Analysis and Processing–ICIAP 2017: ICIAP International Workshops, WBICV,

SSPandBE, 3AS, RGBD, NIVAR, IWBAAS, and MADiMa 2017, Catania, Italy, September

11-15, 2017, Revised Selected Papers 19, pp. 163–170, Springer, 2017.

[28] X. Wang, M. Cheng, Y. Wang, S. Liu, Z. Tian, F. Jiang, and H. Zhang, “Obstructive sleep

apnea detection using ecg-sensor with convolutional neural networks,” Multimedia Tools and

Applications, vol. 79, no. 23, pp. 15813–15827, 2020.

212

[29] Y. Zhou, D. Shu, H. Xu, Y. Qiu, P. Zhou, W. Ruan, G. Qin, J. Jin, H. Zhu, K. Ying, et al.,

“Validation of novel automatic ultra-wideband radar for sleep apnea detection,” Journal of

thoracic disease, vol. 12, no. 4, p. 1286, 2020.

[30] S. Akbarian, N. M. Ghahjaverestan, A. Yadollahi, and B. Taati, “Noncontact sleep monitoring

with infrared video data to estimate sleep apnea severity and distinguish between positional

and nonpositional sleep apnea: Model development and experimental validation,” Journal of

Medical Internet Research, vol. 23, no. 11, p. e26524, 2021.

[31] O. Hassan, R. Thakker, T. Paul, D. Parvin, A. S. M. Mosa, and S. K. Islam, “Sabinn: Fpga

implementation of shift accumulate binary neural network model for real-time automatic

detection of sleep apnea,” in 2022 IEEE International Instrumentation and Measurement

Technology Conference (I2MTC), pp. 1–6, IEEE, 2022.

[32] O. Hassan, T. Paul, N. Amin, T. Twisha, R. Thakker, D. Parvin, A. S. M. Mosa, and S. K.

Islam, “An optimized hardware inference of sabinn: Shift-accumulate binarized neural network

for sleep apnea detection,” IEEE Transactions on Instrumentation and Measurement, 2023.

[33] P. Várady, T. Micsik, S. Benedek, and Z. Benyó, “A novel method for the detection of apnea

and hypopnea events in respiration signals,” IEEE Transactions on Biomedical Engineering,

vol. 49, no. 9, pp. 936–942, 2002.

[34] J. V. Marcos, R. Hornero, D. Alvarez, F. del Campo, and C. Zamarrón, “Assessment of four

statistical pattern recognition techniques to assist in obstructive sleep apnoea diagnosis from

nocturnal oximetry,” Medical engineering & physics, vol. 31, no. 8, pp. 971–978, 2009.

[35] P. De Chazal, C. Heneghan, E. Sheridan, R. Reilly, P. Nolan, and M. O’Malley, “Automated

processing of the single-lead electrocardiogram for the detection of obstructive sleep apnoea,”

IEEE transactions on biomedical engineering, vol. 50, no. 6, pp. 686–696, 2003.

[36] D. Novák, K. Mucha, and T. Al-Ani, “Long short-term memory for apnea detection based on

heart rate variability,” in 2008 30th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society, pp. 5234–5237, IEEE, 2008.

[37] B. Yılmaz, M. H. Asyalı, E. Arıkan, S. Yetkin, and F. Özgen, “Sleep stage and obstructive

apneaic epoch classification using single-lead ecg,” Biomedical engineering online, vol. 9, no. 1,

pp. 1–14, 2010.

213

[38] R. Wei, X. Zhang, J. Wang, and X. Dang, “The research of sleep staging based on single-lead

electrocardiogram and deep neural network,” Biomedical engineering letters, vol. 8, no. 1,

pp. 87–93, 2018.

[39] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning lecture 6a

overview of mini-batch gradient descent,” Cited on, vol. 14, no. 8, p. 2, 2012.

[40] T. Penzel, G. B. Moody, R. G. Mark, A. L. Goldberger, and J. H. Peter, “The apnea-ecg

database,” in Computers in Cardiology 2000. Vol. 27 (Cat. 00CH37163), pp. 255–258, IEEE,

2000.

[41] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E.

Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “Physiobank, physiotoolkit, and physionet:

components of a new research resource for complex physiologic signals,” circulation, vol. 101,

no. 23, pp. e215–e220, 2000.

[42] D. López-Garćıa, M. Ruz, J. Ramı́rez, and J. Górriz, “Automatic detection of sleep disorders:

Multi-class automatic classification algorithms based on support vector machines,” in Conf.

Time Ser. Forecast.(ITISE 2018), vol. 3, pp. 1270–1280, 2018.

[43] A. Rahimi, A. Safari, and M. Mohebbi, “Sleep stage classification based on ecg-derived

respiration and heart rate variability of single-lead ecg signal,” in 2019 26th National and 4th

International Iranian Conference on Biomedical Engineering (ICBME), pp. 158–163, IEEE,

2019.

[44] Y. Zhao, J. Zhao, and Q. Li, “Derivation of respiratory signals from single-lead ecg,” in 2008

International Seminar on Future BioMedical Information Engineering, pp. 15–18, IEEE, 2008.

[45] A. Sawant, R. L. Smith, R. B. Venkat, L. Santanam, B. Cho, P. Poulsen, H. Cattell, L. J.

Newell, P. Parikh, and P. J. Keall, “Toward submillimeter accuracy in the management of

intrafraction motion: the integration of real-time internal position monitoring and multileaf

collimator target tracking,” International Journal of Radiation Oncology* Biology* Physics,

vol. 74, no. 2, pp. 575–582, 2009.

[46] L. Liu, W. Chen, and G. Cao, “Prediction of neonatal amplitude-integrated eeg based on lstm

method,” in 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),

pp. 497–500, IEEE, 2016.

214

[47] M. J. Banner, N. R. Euliano, V. Brennan, C. Peters, A. J. Layon, and A. Gabrielli, “Power of

breathing determined noninvasively with use of an artificial neural network in patients with

respiratory failure,” Critical care medicine, vol. 34, no. 4, pp. 1052–1059, 2006.

[48] B. R. F. F. P. E. M. A. M. E. B. J. R. Bataille, Benoit, “Integrated use of bedside lung

ultrasound and echocardiography in acute respiratory failure: A prospective observational

study in icu,” Chest, vol. 146, pp. 1586–1593, 2014.

[49] I. Mahbub, M. S. Hasan, S. A. Pullano, F. Quaiyum, C. P. Stephens, S. K. Islam, A. S. Fiorillo,

M. S. Gaylord, V. Lorch, and N. Beitel, “A low power wireless apnea detection system based

on pyroelectric sensor,” in 2015 IEEE Topical Conference on Biomedical Wireless Technologies,

Networks, and Sensing Systems (BioWireleSS), pp. 1–3, IEEE, 2015.

[50] F. Mendonça, S. S. Mostafa, A. G. Ravelo-Garćıa, F. Morgado-Dias, and T. Penzel, “Devices

for home detection of obstructive sleep apnea: A review,” Sleep medicine reviews, vol. 41,

pp. 149–160, 2018.

[51] S. Shamsir, S. H. Hesari, S. K. Islam, I. Mahbub, S. A. Pullano, and A. S. Fiorillo, “Instrumen-

tation of a pyroelectric transducer based respiration monitoring system with wireless telemetry,”

in 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC),

pp. 1–6, IEEE, 2018.

[52] S. A. Pullano, I. Mahbub, M. G. Bianco, S. Shamsir, S. K. Islam, M. S. Gaylord, V. Lorch,

and A. S. Fiorillo, “Medical devices for pediatric apnea monitoring and therapy: past and new

trends,” IEEE reviews in biomedical engineering, vol. 10, pp. 199–212, 2017.

[53] S. Shamsir, O. Hassan, and S. K. Islam, “Smart infant-monitoring system with machine learning

model to detect physiological activities and ambient conditions,” in 2020 IEEE International

Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6, IEEE, 2020.

[54] A. Yüzer, H. Sümbül, and K. Polat, “A novel wearable real-time sleep apnea detection system

based on the acceleration sensor,” Irbm, vol. 41, no. 1, pp. 39–47, 2020.

[55] S. Kristiansen, K. Nikolaidis, T. Plagemann, V. Goebel, G. M. Traaen, B. Øverland, L. Aakerøy,

T.-E. Hunt, J. P. Loennechen, S. L. Steinshamn, et al., “Machine learning for sleep apnea

detection with unattended sleep monitoring at home,” ACM Transactions on Computing for

Healthcare, vol. 2, no. 2, pp. 1–25, 2021.

215

[56] G. Ye, H. Yin, T. Chen, H. Chen, L. Cui, and X. Zhang, “Fenet: A frequency extraction network

for obstructive sleep apnea detection,” IEEE Journal of Biomedical and Health Informatics,

vol. 25, no. 8, pp. 2848–2856, 2021.

[57] F. Mendonça, S. S. Mostafa, F. Morgado-Dias, and A. G. Ravelo-Garćıa, “An oximetry based

wireless device for sleep apnea detection,” Sensors, vol. 20, no. 3, p. 888, 2020.

[58] S. Hanson and L. Pratt, “Comparing biases for minimal network construction with back-

propagation,” Advances in neural information processing systems, vol. 1, 1988.

[59] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” Advances in neural information

processing systems, vol. 2, 1989.

[60] B. Hassibi and D. Stork, “Second order derivatives for network pruning: Optimal brain surgeon,”

Advances in neural information processing systems, vol. 5, 1992.

[61] F. Manessi, A. Rozza, S. Bianco, P. Napoletano, and R. Schettini, “Automated pruning for

deep neural network compression,” in 2018 24th International conference on pattern recognition

(ICPR), pp. 657–664, IEEE, 2018.

[62] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang, and J. Zhu, “Discrimination-

aware channel pruning for deep neural networks,” Advances in neural information processing

systems, vol. 31, 2018.

[63] A. Aghasi, A. Abdi, N. Nguyen, and J. Romberg, “Net-trim: Convex pruning of deep neural

networks with performance guarantee,” Advances in Neural Information Processing Systems,

vol. 30, 2017.

[64] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for efficient

neural network,” Advances in neural information processing systems, vol. 28, 2015.

[65] C. J. C. B. Yann LeCun, Corinns Cortes, “The mnist database.”

[66] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for benchmarking

machine learning algorithms,” arXiv preprint arXiv:1708.07747, 2017.

[67] E. Ravussin, M. E. Valencia, J. Esparza, P. H. Bennett, and L. O. Schulz, “Effects of a

traditional lifestyle on obesity in pima indians,” Diabetes care, vol. 17, no. 9, pp. 1067–1074,

1994.

216

[68] C. Varon, A. Caicedo, D. Testelmans, B. Buyse, and S. Van Huffel, “A novel algorithm for the

automatic detection of sleep apnea from single-lead ecg,” IEEE Transactions on Biomedical

Engineering, vol. 62, no. 9, pp. 2269–2278, 2015.

[69] C. Song, K. Liu, X. Zhang, L. Chen, and X. Xian, “An obstructive sleep apnea detection

approach using a discriminative hidden markov model from ecg signals,” IEEE Transactions

on Biomedical Engineering, vol. 63, no. 7, pp. 1532–1542, 2015.

[70] Z. Zhang, “Improved adam optimizer for deep neural networks,” in 2018 IEEE/ACM 26th

International Symposium on Quality of Service (IWQoS), pp. 1–2, IEEE, 2018.

[71] M. C. Mukkamala and M. Hein, “Variants of rmsprop and adagrad with logarithmic regret

bounds,” in International conference on machine learning, pp. 2545–2553, PMLR, 2017.

[72] Z. Zhang and M. Sabuncu, “Generalized cross entropy loss for training deep neural networks

with noisy labels,” Advances in neural information processing systems, vol. 31, 2018.

[73] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (mae) over the root

mean square error (rmse) in assessing average model performance,” Climate research, vol. 30,

no. 1, pp. 79–82, 2005.

[74] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neural networks

with binary weights during propagations,” Advances in neural information processing systems,

vol. 28, 2015.

[75] A. Bytyn, R. Leupers, and G. Ascheid, “Convaix: An application-specific instruction-set

processor for the efficient acceleration of cnns,” IEEE Open Journal of Circuits and Systems,

vol. 2, pp. 3–15, 2020.

[76] C. Marimuthu, P. Thangaraj, and A. Ramesan, “Low power shift and add multiplier design,”

arXiv preprint arXiv:1006.1179, 2010.

[77] A. Hussein, V. Gaudet, H. Mostafa, and M. Elmasry, “A 16-bit high-speed low-power hybrid

adder,” in 2016 28th International Conference on Microelectronics (ICM), pp. 313–316, IEEE,

2016.

[78] R. Rafati, S. M. Fakhraie, and K. C. Smith, “A 16-bit barrel-shifter implemented in data-driven

dynamic logic (d̂3l),” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53,

no. 10, pp. 2194–2202, 2006.

217

[79] A. Hazarika, A. Jain, S. Poddar, and H. Rahaman, “Shift and accumulate convolution processing

unit,” in TENCON 2019-2019 IEEE Region 10 Conference (TENCON), pp. 914–919, IEEE,

2019.

[80] A.-M. Šimundić, “Measures of diagnostic accuracy: basic definitions,” ejifcc, vol. 19, no. 4,

p. 203, 2009.

[81] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural networks:

A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–2329, 2017.

[82] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop operation and dataflow in fpga

acceleration of deep convolutional neural networks,” in Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, pp. 45–54, 2017.

[83] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,

N. Boden, A. Borchers, et al., “In-datacenter performance analysis of a tensor processing unit,”

in Proceedings of the 44th annual international symposium on computer architecture, pp. 1–12,

2017.

[84] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet classification using

binary convolutional neural networks,” in European conference on computer vision, pp. 525–542,

Springer, 2016.

[85] D. Parvin, O. Hassan, T. Oh, and S. K. Islam, “Design of a smart maximum power point

tracker (mppt) for rf energy harvester,” International Journal of High Speed Electronics and

Systems, vol. 29, no. 01n04, p. 2040006, 2020.

[86] R. T. Edwards, “Google/skywater and the promise of the open pdk,”

[87] “Github repository of sabinn model using google+skywater pdk,” November 2021.

[88] M. Bahrami and M. Forouzanfar, “Sleep apnea detection from single-lead ecg: A compre-

hensive analysis of machine learning and deep learning algorithms,” IEEE Transactions on

Instrumentation and Measurement, vol. 71, pp. 1–11, 2022.

[89] S. Hu, W. Cai, T. Gao, and M. Wang, “A hybrid transformer model for obstructive sleep

apnea detection based on self-attention mechanism using single-lead ecg,” IEEE Transactions

on Instrumentation and Measurement, vol. 71, pp. 1–11, 2022.

218

[90] M. Yeo, H. Byun, J. Lee, J. Byun, H.-Y. Rhee, W. Shin, and H. Yoon, “Robust method

for screening sleep apnea with single-lead ecg using deep residual network: Evaluation with

open database and patch-type wearable device data,” IEEE Journal of Biomedical and Health

Informatics, vol. 26, no. 11, pp. 5428–5438, 2022.

[91] M. M. Moussa, Y. Alzaabi, and A. H. Khandoker, “Explainable computer-aided detection of

obstructive sleep apnea and depression,” IEEE Access, vol. 10, pp. 110916–110933, 2022.

[92] M. H. Chyad, S. K. Gharghan, H. Q. Hamood, A. S. H. Altayyar, S. L. Zubaidi, and H. M. Ridha,

“Hybridization of soft-computing algorithms with neural network for prediction obstructive sleep

apnea using biomedical sensor measurements,” Neural Computing and Applications, vol. 34,

no. 11, pp. 8933–8957, 2022.

[93] K. Li, W. Pan, Y. Li, Q. Jiang, and G. Liu, “A method to detect sleep apnea based on

deep neural network and hidden markov model using single-lead ecg signal,” Neurocomputing,

vol. 294, pp. 94–101, 2018.

[94] M. J. Lado, X. A. Vila, L. Rodŕıguez-Liñares, A. J. Méndez, D. N. Olivieri, and P. Félix,

“Detecting sleep apnea by heart rate variability analysis: assessing the validity of databases and

algorithms,” Journal of medical systems, vol. 35, pp. 473–481, 2011.

[95] D. Álvarez, A. Cerezo-Hernández, A. Crespo, G. C. Gutiérrez-Tobal, F. Vaquerizo-Villar,

V. Barroso-Garćıa, F. Moreno, C. A. Arroyo, T. Ruiz, R. Hornero, et al., “A machine learning-

based test for adult sleep apnoea screening at home using oximetry and airflow,” Scientific

reports, vol. 10, no. 1, pp. 1–12, 2020.

[96] L. Almazaydeh, K. Elleithy, M. Faezipour, and A. Abushakra, “Apnea detection based on

respiratory signal classification,” Procedia Computer Science, vol. 21, pp. 310–316, 2013.

[97] H. Luo, L. Zhang, L. Zhou, X. Lin, Z. Zhang, and M. Wang, “Design of real-time system based

on machine learning for snoring and osa detection,” in ICASSP 2022-2022 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1156–1160, IEEE, 2022.

[98] M. Yeo, H. Byun, J. Lee, J. Byun, H.-Y. Rhee, W. Shin, and H. Yoon, “Respiratory event detec-

tion during sleep using electrocardiogram and respiratory related signals: Using polysomnogram

and patch-type wearable device data,” IEEE Journal of Biomedical and Health Informatics,

vol. 26, no. 2, pp. 550–560, 2021.

219

[99] X. Yan, L. Wang, J. Zhu, S. Wang, Q. Zhang, and Y. Xin, “Automatic obstructive sleep apnea

detection based on respiratory parameters in physiological signals,” in 2022 IEEE International

Conference on Mechatronics and Automation (ICMA), pp. 461–466, IEEE, 2022.

[100] A. John, K. K. Nundy, B. Cardiff, and D. John, “Multimodal multiresolution data fusion using

convolutional neural networks for iot wearable sensing,” IEEE Transactions on Biomedical

Circuits and Systems, vol. 15, no. 6, pp. 1161–1173, 2021.

[101] R. Parmar, M. Janveja, G. Trivedi, P. Jan, and Z. Nemec, “An area and power efficient vlsi

architecture to detect obstructive sleep apnea for wearable devices,” in 2022 32nd International

Conference Radioelektronika (RADIOELEKTRONIKA), pp. 1–5, IEEE, 2022.

[102] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

[103] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,

2016.

[104] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted

residuals and linear bottlenecks,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 4510–4520, 2018.

[105] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,” 2009.

[106] J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni, “Medmnist v2-a

large-scale lightweight benchmark for 2d and 3d biomedical image classification,” Scientific

Data, vol. 10, no. 1, p. 41, 2023.

[107] R. Kundu, R. Das, Z. W. Geem, G.-T. Han, and R. Sarkar, “Pneumonia detection in chest

x-ray images using an ensemble of deep learning models,” PloS one, vol. 16, no. 9, p. e0256630,

2021.

[108] J. Brownlee, “Transfer learning for deep learning,” September 2019.

[109] P. Baheti, “Kernel description,” September 2019.

[110] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tutorial on the cross-entropy

method,” Annals of operations research, vol. 134, pp. 19–67, 2005.

220

[111] T.-J. Yang, Y.-H. Chen, J. Emer, and V. Sze, “A method to estimate the energy consumption

of deep neural networks,” in 2017 51st asilomar conference on signals, systems, and computers,

pp. 1916–1920, IEEE, 2017.

[112] M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),” in 2014 IEEE

International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10–14,

IEEE, 2014.

[113] V. Leon, S. Xydis, D. Soudris, and K. Pekmestzi, “Energy-efficient vlsi implementation of

multipliers with double lsb operands,” IET Circuits, Devices & Systems, vol. 13, no. 6, pp. 816–

821, 2019.

[114] J. S. Sahoo and N. K. Rout, “Comparative study on low power barrel shifter/rotator at 45nm

technology,” International Journal of Advanced Engineering and Nano Technology (IJAENT),

vol. 2, no. 6, pp. 11–18, 2015.

[115] “Artificial intelligence market size report, 2022-2030,” November 2022.

[116] T. Rizzo, S. Strangio, and G. Iannaccone, “Time domain analog neuromorphic engine based on

high-density non-volatile memory in single-poly cmos,” IEEE Access, vol. 10, pp. 49154–49166,

2022.

[117] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi,

N. Imam, S. Jain, et al., “Guruguhanathan, venkataramanan, yi-hsin weng, andreas wild,

yoonseok yang, and hong wang. 2018. loihi: A neuromorphic manycore processor with on-chip

learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[118] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner, “Ai and ml

accelerator survey and trends,” in 2022 IEEE High Performance Extreme Computing Conference

(HPEC), pp. 1–10, IEEE, 2022.

221

VITA

Omiya Hassan is born and raised in Dhaka, Bangladesh. After completing her undergraduate studies

at the United International University, Bangladesh, she traveled to the USA to pursue her doctorate

in Electrical Engineering at the University of Missouri, Columbia. She worked as a research assistant

in Prof. Syed Kamrul Islam’s Analog/Mixed-Signal, VLSI and Devices Laboratory for two years and

later as a graduate instructor in the Department of Electrical Engineering and Computer Science

(EECS) at the University of Missouri.

Ms. Hassan’s Ph. D. research topic focuses on developing and designing low-power integrated

circuits (IC) while venturing through the field of AI/Machine-Learning techniques on edge. She is a

2021 Graduate Fellow of the IEEE Instrumentation and Measurement Society, a 2022 Rising Star of

Electrical Engineering and Computer Science, and an NSF iRedefined fellow of 2023. She has won

numerous awards throughout her career namely, the prestigious 2022 outstanding undergraduate

research mentor of the Year from the University of Missouri, the 2021 outstanding doctoral student of

Electrical and Computer Engineering, and the 1907 Women in Engineering Award from the College

of Engineering at the University of Missouri.

Besides researching on developing future technology, she is a professionally trained vocalist in

traditional South-Asian music and has experience freelancing for over five years in digital illustration.

222

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Motivation
	Contribution and Dissertation Outline

	Background
	Neural Network Architecture for Biomedical Applications
	Sleep Apnea Detection System
	Current Devices in the Market
	Emerging Solutions for Sleep Apnea Detection Systems

	Conclusion

	Design Methodology of Machine-Learning Based Hardware
	Introduction
	Software-Hardware Co-Simulation Process
	Discussion
	Experimental Benchmark

	Model Optimization and Compression Techniques
	Introduction
	Pruning
	Pruning Experiments

	n-bit Integer Quantization
	Methodology

	Conclusion

	DeepSAC: Shift Accumulate Based Deep Learning Model
	Introduction
	DeepSAC for Biomedical Applications
	Experiments on Re-programmable Hardware

	Significant Improvement
	Simulation Results
	Test Bench Results

	Conclusion

	SABiNN: Shift Accumulate Based Binarized Neural Network
	Introduction
	Design Scheme
	SABiNN for Sleep Apnea Detection
	Software Simulation Results
	Experiments on Re-programmable Hardware
	Experiments on CMOS Platform

	Discussion
	Conclusion

	Benchmark of Proposed Model Architecture
	Introduction
	Model and Dataset Selection
	VGG19
	ResNet50
	MobileNetV2
	Dataset Generation and Pre-processing
	Binarizing Dense Layers

	Training and Evaluation
	Conclusion

	Conclusion
	Future Work

	Python Code: FNN, DeepSAC and SABiNN
	VHDL Code: DeepSAC for SA Detection
	Verilog Code: SABiNN for SA Detection
	VHDL Code: DeepSAC for Diabetes Prediction
	Python Code: Benchmark of SABiNN
	BIBLIOGRAPHY
	VITA

