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LEARNING ANALYTICS AND PSYCHOPHYSIOLOGY: UNDERSTANDING THE 

LEARNING PROCESS IN A STEM GAME 

JOE GRIFFIN 

Dr. James Laffey and Dr. Joi Moore Dissertation Co-Supervisors 

Abstract 

This study focuses on the exploration of player experience in educational games and its 

potential impact on predicting learning outcomes. Specifically, the research aims to investigate 

the connection psychophysiology data, obtained through a summative study involving nine 

participants, and the results of a learning analytics model derived from a larger field test. The 

study incorporates eye tracking and electrodermal activity data to gain insights into the predictive 

power of this data. 

Through the analysis of player experience data, the study sheds light on the factors that 

contribute to effective educational game design. By examining the eye tracking and EDA data, 

the researchers explored the participants' engagement levels, attention patterns, and emotional 

arousal during gameplay. These findings revealed a connection between spikes of visual 

attention and EDA during interactions with character faces as well as in game cinematics. 

In conclusion, the outcomes of this study provide valuable insights for future educational 

game designers. By understanding the relationship between user experience indicators and 

learning analytics, designers can tailor game elements to enhance engagement, attention, and 

emotional arousal, ultimately leading to improved learning outcomes. The integration of eye 

tracking and EDA data in user experience studies adds a new dimension to the evaluation and 

design of educational games. The findings pave the way for future research in the field and 

highlight the importance of considering user experience as a crucial factor in educational game 

design and development. 
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Chapter 1: Introduction 

Overview 

We are currently in the Golden Age of Brain Research (Kaku, 2014), as we see 

substantial advances in understanding the biological processes of learning. 

Being able to measure functions of the brain at increasingly finer grained detail, 

makes reducing the noise to signal ratio caused by the context surrounding a 

learning experience more critical for accurate interpretation than ever. Serious 

Games, due to their inherent nature of being deep learning environments (Gee, 

2003) while also being extremely controlled digital environments, are a rich 

context for insightful discoveries during this era of learning research. The current 

problem is that assessment of learning in games comes primarily from two top-

down places: curricular designers and game designers, in the forms of pre and 

posttest assessments and embedded assessments respectively. This study will 

be a preliminary examination, triangulating current pre-post and embedded 

assessment standards with more player-centric psychophysiology measures. 

The findings from this study will contribute to the fields of learning analytics and 

psychophysiology by building a better understanding of the interconnections 

between the two and the systems necessary for data collection and analysis 

To get a better understanding of when and where learning happens in 

various data rich digital environments, Learning Analytics (LA) have been 

developed (Kinnebrew, Loretz, & Biswas, 2013), (Harley, Trevors, Azevedo, & 

others, 2013), (Winne & Baker, 2013). These computational methods can be 
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used to identify which patterns of virtual behaviors are associated with high or 

low performance outcomes (Xing, Guo, Petakovic, & Goggins, 2015). Although 

these insights can shed light on students’ progress in otherwise foreign 

environments to most teachers; they are still limited to the behaviors trackable as 

logs, and possibly by the inputs chosen for analysis. These behavior patterns 

cannot tell us how this learning happens for an individual or why those specific 

game features may elicit a specific result for some members of the population, 

but not others.  

However, by combining Learning Analytics with in-depth player experience 

analysis including Psychophysiology data, we can start to get a more holistic 

view of the students’ progression. The moment-to-moment analysis of the 

arousal state of players begins to help us shed light on exactly what features 

within the game curricula had what specific impact for which players (Chanel, 

Rebetez, Bétrancourt, & Pun, 2011), and how all those factors impact learning 

overall (Morgan, 1951).   

In this exploratory project I brought in nine users for three 2-hour sessions 

each (27 sessions total) to play Mission HydroSci (MHS), a STEM game 

currently being developed to teach water science and scientific argumentation. 

Using data collected from those sessions, I experimentally explored the arousal 

state of players in moments of student learning as well as exploring player 

behaviors during moments of high and low arousal. Understanding the 

relationship between arousal states, game moments, and assessment 
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performance can help both designers and educators enact their instruction 

better. 

Serious Games 

Serious Games refers to any game, video, analog, or otherwise, created for a 

purpose other than entertainment (Roepke et al., 2015). For example, it can refer 

to a game designed to deliver a behavioral intervention (Schmidt, Laffey, 

Stichter, Goggins, & Schmidt, 2008), a physical rehabilitation regimen (Huo et al., 

2015), or to elicit learning gains from players (Laffey, 2016). By harnessing the 

features naturally found within games such as: narrative, rewards, fully animated 

3D contexts, just-in-time feedback, etc. and using them to teach a curriculum; 

serious games have the potential to be the most personalized field trip, 

accessible right at home or in any classroom.   

Serious Games have been a rising field in education since Gee’s seminal 

work in 2003 (Gee, 2003). By laying out 31 Learning Principles (Gee, 2005) Gee 

showed how every game is inherently a learning environment. Games spanning 

all areas of subject matter began to be developed. As a result, students who 

struggled to keep up with their classmates’ progress through traditional 

educational methods have been seen as top achievers in the class (Fried, 2005). 

Calls for serious games research have indicated the question has begun to shift 

from whether games can be effective teaching tools to how games can be best 

made to enhance teachers’ abilities to instruct and evaluate. 
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STEM Game Based Learning 

A popular curricular focus area for serious games is STEM content (Mayo, 2009), 

(D’Angelo et al., 2014), (Freeman et al., 2014). One factor contributing to this is 

the call for America to rise in the international Science rankings requiring greater 

STEM education and career interest (DeJarnette, 2012). Another contributing 

factor is that STEM learning may be easier to automatically assess than other 

fields such as creative writing for example (Kapp, 2012) enabling greater 

potential for effective just in time feedback. The combination of these and other 

factors leads to a great societal need for Serious Games in Stem that also seems 

achievable with today’s game technology. 

In terms of game-based STEM learning, Quest Atlantis was a pioneer in 

the field, first launching in 2002. This was the environment where Barab first 

developed his transformational play framework (Barab, Thomas, Dodge, 

Carteaux, & Tuzun, 2005). Two years later, River City was developed in 2004 by 

Dede’s team at Harvard. This team later also developed EcoMUVE, a Multi-User 

Virtual Environment for Learning Scientific Inquiry and 21st Century Skills 

(Metcalf, Clarke, & Dede, 2009). More recently Mission Biotech was developed 

by Sadler (Lamb, Annetta, Vallett, & Sadler, 2014). All these and many more 

since (Hussein et al, 2019) projects have been able to show gains in STEM 

scores as a result of playing serious games. 
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Mission HydroSci 

In this study, players will engage with Mission HydroSci, a game aimed at 

teaching 6-8 graders water systems and scientific argumentation. The game 

consists of 6 units and takes on average 6-8 hours to complete. During these 

units’ players will control a character and use it to solve various problems and 

accomplish different tasks, such as tracing a pollutant up a stream or distilling 

seawater into drinkable water. After completing all the units, players will have 

successfully turned a crashed landing on a distant planet into a sustainable 

community. 

Embedded Assessments and Learning Analytics 

Embedded assessments are classroom activities that provide data for specific 

learning outcomes. In a game context, these would be in-game tasks specifically 

designed to assess a certain learning objective (Ketelhut, Nelson, Schifter, & 

Kim, 2013). In Mission HydroSci we place embedded assessments in every Unit 

to get a measure of whether students understand the concepts we are 

presenting. Here are a few examples of how we use embedded assessments 

within MHS Units. In the first unit our learning objectives are not scientific in 

nature, but instead focus on learning the controls and interface for the game. We 

have several tasks which require the students to perform the basic functions of 

the game: movement, conversation, jumping, etc. (See Figure 1 below). 
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Figure 1: A screenshot from Unit 1 of the Teacher Guide showing the jumping tutorial. 
 

The second unit teaches players about topography. In that unit, the player 

has become separated from the group and must use a topographic map and 

topographic clues to locate the rest of their team. We made this embedded 

assessment a side quest continuing throughout the game, where players search 

for pieces of their crashed spaceship based on topographic clues they receive 

allowing us to track their performance over time. Unit 3 features a more 

traditional summative embedded assessment where students are tasked to 

identify garden sites based on how a beneficial nutrient would disperse through a 

river system. Each of these are all expertly designed top-down embedded 

assessments. Our design team consists of game designers, instructional 

designers, and subject matter experts all working collaboratively to design the 

most engaging and educational gameplay possible. 

Embedded Assessments make powerful variables for Learning Analytics. 

The Learning Analytics process starts by collecting logs of user interactions in a 

learning environment. In an online class these logs might track discussion posts 

made, or class resources accessed. In a serious game, these logs could be 

responses to multiple choice questions, or accessing their map. Logs like these 

and players’ behaviors during embedded assessments are then all used as input 
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for machine learning algorithms capable of handling high volume, high 

dimensionality data used to predict learning outcomes (e.g., post test scores). If 

this prediction is accurate enough; a model can be constructed to classify new 

students as they are engaging in the learning experience based on their 

anticipated assessment outcomes. This classification allows for early 

interventions or dynamic feedback to be delivered in the hopes of increasing 

students’ opportunities and subsequent likelihood to learn. 

Player Experience and Psychophysiology 

On the Mission HydroSci team it is not enough that students are required to play 

our game. We want players to want to play it, and for that reason Player 

Experience is equally as important as curricular fidelity. To assure the game is 

the right balance of fun and challenge to as many middle school students as 

possible we run extensive Playability testing. Playability testing is a form of 

usability testing tailored for game play and player experience (Nacke et al., 

2009). We bring players into a lab setting often to run through small portions of 

the game. While they are playing, we observe to see whether they complete the 

game as designed, if anything confuses them, and how much they enjoy the 

experience. Afterwards we have a short debrief where we ask them to tell us 

about their experience. We use this feedback, not just to make the game easier 

to play or to improve the embedded assessments, but also to maximize the 

player's engagement and interest. 

One quantitative method for gauging various cognitive aspects of a user’s 

experience is to measure psychophysiological responses. Eye tracking can be 
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used to trace to what and how long users give their visual attention. Heart Rate 

can be used to have an indication of users’ stress. Skin Conductance has been 

shown to accurately measure users’ excitement, and Facial EMG can reveal 

users subliminal affect states. All of these reactions are measured on the 

millisecond level and may even occur unknowingly to the user. By triangulating 

multiple measures, it is not only possible to detect more complex cognitive states 

such as flow, but also to detect what in the media caused the reaction. 

Transformational Play 

While embedding quality assessments in rich game play experience may be 

enough to make a serious game; there is still more needed to achieve 

Transformational Play. Transformational Play requires players to take on a new 

role and develop new skills within a game-based learning environment that then 

transfer to real world knowledge and skills after game play (Barab, Gresalfi, & 

Ingram-Goble, 2010).  The intent of Mission HydroSci is to take players of 

various science and gaming experience levels and make them ALL feel and 

behave like masters of natural water systems. They use their science knowledge 

and skills to be the hero, resolve conflicts, and ultimately save the planet. The 

goal is that this experience will subtly build mastery and self-efficacy, which in 

turn will lead players to higher masteries of science in the real world. 

Statement of the Problem 

The core problem is that assessment in games of whether learning is occurring 

or not currently only comes from two places. First, it comes from a traditional top-
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down expert in the form of curricular pre/post tests. Second, it comes from a 

game-based learning designer in the form of gameplay behavior logs. Embedded 

assessment scores could also be generated from either or both perspectives. 

Games are expertly designed systems full of lots of playful mechanics and 

aesthetics; so those two approaches both make sense. However, games are also 

active Human-Computer Interaction systems, meaning both the game and the 

player are processing interactions while engaged in play. When both approaches 

are triangulated with a third player centric approach; then the expert designers, 

the playful game, and the player themselves would all be included in the learning 

assessment. Unfortunately, there are not currently studies triangulating these 

three approaches into a single assessment of learning. 

Purpose of the Study 

The purpose of this study is to improve the impact of games on learning by 

advancing our understanding of (1) how Psychophysiological data can be used to 

enhance unsupervised learning analytics ability to predict player performance 

and (2) how unsupervised learning analytics can be used to predict player’s 

arousal states. 

Significance of the Study 
There are many intellectual merits and broader impacts contributing to the 

significance of this study. This first exploratory step into the player’s 

psychophysiological experience of a serious game will give researchers a deeper 

understanding of how players learn in a game-based learning environment. Is all 
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failure or success as defined by experts or embedded assessment scores equal, 

or does the player’s internal reaction to that experience impact its transfer? Does 

the player’s arousal impact retention? While it may not be possible to answer 

these questions at this time, this study will be a step toward building on learning 

analytics methods, describing characteristics of player behavior, and finding 

effective ways to connect Psychophysiology with Learning Analytics to better 

predict Assessments performance outcomes. 

In addition to these intellectual merits the project will advance important 

broader impacts. Being able to recognize the players’ arousal states through 

gameplay behaviors would allow for adaptive gameplay opportunities based on 

arousal states. Games could up the tempo if players are losing interest, or slow 

things down if players were starting to get frustrated. Finally, as an addition to 

current Playability testing, this research will help our field design better games for 

learning by expanding on current measures to enhance game designers' 

understanding of player engagement. 

Statement of the Research Questions 

What are the Virtual Behaviors which distinguish high and low 

performance outcomes in MHS? 

To explore this question, I used archived field test data from a 2019 testing of 

MHS that included over 632 students’ gameplay and pre/posttest records. The 

primary data used were the player behavior logs collected while playing Unit 3 of 

MHS as well as the pretest scores associated with each player. All these data 

were used as the dependent variables in a clustering algorithm, which grouped 
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players into clusters of similar behavior. Finally, the post scores were used as the 

independent variable in order to predict players post test score outcomes. When 

this was done, I had clusters of students with similar features, each related to 

specific post assessment outcomes. This model can now be used on future 

students as they are playing through the game to dynamically classify them into a 

cluster and predict their post assessment outcomes. This information can either 

be used during gameplay to dynamically react to the player, or it could be 

uploaded to a server in the form of a teacher notification; so, they can follow up 

on the student in person.  

What are the specific PP patterns that indicate embodied motivational 

processes such as flow and attention, and what game features elicit those 

patterns? 

For this question, I had 9 participants play through the same version of MHS that 

was used for the field test mentioned above. While playing, participants were 

measured using a Tobii Eye Tracker and an E4 Bracelet collecting heart rate, 

temperature, and galvanic skin response (GSR). While the participants were 

playing, a researcher observed the player, their gameplay, and the incoming data 

streams. Particular attention was paid to players’ emotional reactions, and what 

they were doing at that time during the game (e.g., participant 7’s GSR spiked 

after looking at the non-playable characters face during the 2nd task). After 

participants finished playing, we had debriefing interviews where I had a chance 

to follow up with them about any reactions I noticed to see if the event stuck out 

to them as well. When all of my participants were done, I compiled a data set of 

GSR spikes per player triangulated with what they were visually attending to and 
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what in-game events were occurring when they reacted. While I feel that visual 

stimulus is highly relevant to GSR spikes; I do not want to discount other possible 

stimuli (e.g., sound effects or something external to the game like figuring out a 

solution).  

How and to what extent can the cognitive-affective state of players be 

inferred from virtual behaviors? 

For this triangulation question I grouped the case-study players based on GSR 

spikes during similar game events or while visually attending to the same 

stimulus. I then compared and contrasted behaviors and learning outcomes of 

players who had and did not have GSR spikes at specific points of gameplay to 

explore any patterns present. There were a few interactions which elicited a 

similar reaction among most participants. These exploratory findings need more 

investigation but may be an indication that the interaction elicits that reaction for 

a large portion of the general population. If so, those types of interactions may 

then be better utilized by designers to harness users' engagement and attention 

during learning experiences.  

How and to what extent can high or low performance be inferred from the 

cognitive-affective state of players? 

I answered the final triangulation question by looking at which posttest outcome 

clusters my 9 participants are classified into based on RQ1 and exploring if there 

were any patterns between those outcome clusters and GSR spikes based on 

RQ3. Then I could examine any similarities or differences in Psychophysiology 

reactions among participants in successful vs unsuccessful clusters in terms of 
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the pre/post outcomes. If there was a lot of separation such as successful 

students being either bored or in flow much more frequently, while unsuccessful 

students were more often the opposite; then that could be a good indication that 

Psychophysiology could be a useful distinction in performance. While this sample 

is far too small to predict learning outcomes based on Psychophysiological 

response, exploring approaches to answering this question may be an important 

first step toward that goal. 

Design of the Study 

This study is an exploratory psychophysiology case study, within the context of a 

large-scale learning analytics study. Data collection took place in two separate 

phases. The first source is archival data from the MHS field test, which had over 

600 students play through MHS during February - April 2019. These students 

took a pre and posttest, a demographic survey, and provided logs automatically 

collected through gameplay over the course of 8 days. The purpose of examining 

the field test data was to build classification models for examining individual 

cases, The second set of data was collected during summative player experience 

testing with 9 participants that took place during Fall 2018. Using the model 

generated from the log data collected in the Field Test these players were 

dynamically classified based on their gameplay logs. While they played eye 

tracking software and E4 bracelets, allowed us to collect psychophysiology data 

to measure their attention and reactions. The purpose of this exploratory study is 

to build methods and insights into how the Psychophysiology data might enhance 
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our understanding of the player experiences and outcomes when integrated into 

the current MHS learning analytics systems. 

Study Delimitations 

A delimitation in this study is the choice not to account for the moderating factors 

of science interest and game experience. While both the factors of subject matter 

interest and experience with the medium have been shown to have significant 

impact on players’ experiences with serious games (Bergey, Ketelhut, Liang, 

Natarajan, & Karakus, 2015), it was beyond the scope of this study to recruit 

adequately to account for those factors. In the future, a pre-survey could allow for 

participant screening to balance out a proper 2-by-2 experimental design (while 

remaining gender balanced).  

A second delimitation is the choice to analyze only Unit 3 from the 

summative player experience testing. An important consideration in making 

sense of this study is that the percent completion for MHS was significantly lower 

than the level of completion for the comparison curriculum during the field test. 

The percent completion threshold required that 80% of a teacher’s class reach 

the 4th unit of MHS (approximately half-way through the game). Only 2 of the 13 

teachers met the threshold for MHS while all the comparison classes had 

students reach a comparable threshold for completion. This was one of the main 

considerations for limiting the study to Unit 3 findings only.  
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Key Terms 

Serious Games Terms 

Aesthetics: The look and feel of the game created by the visual art, sound, and 

narrative.  

Dynamics: The outcome the play experience has on the player. 

Game Moments: Specific moments of game play related to context (player 

action, narrative, feedback, etc.). 

Mechanics: The code enabling the game systems and player actions.  

Player Experience: The totality of the experience a player has including 

usability, playability, and outcomes.  

Serious Games: A game created for a purpose other than solely entertainment 

such as education or wellness.  

Learning Analytics Terms 

Clustering: Grouping points of data within a set based on their relatedness. In 

general, this can either be done by repeatedly bisecting the data or by creating 

kernels and repeatedly adding points to them.  

Embedded Assessment: A task or activity that is designed to assess a specific 

learning outcome, which has been placed within a larger context such as a class 

or game.  

Learning Analytics: The process of analyzing logs collected in learning contexts 

with the goal of gaining greater understanding of if and how learning is occurring.  
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Pre/Post Assessment Outcomes: Students scores on the external pre and 

posttests which may be viewed in terms of gains.  

Principal Component Analysis: A process for reducing the dimensionality of a 

data set by transforming the data such that the variable with the greatest 

variance lies on the first axis, the second greatest variance on the second axis, 

and so on. In this way the variables with the most explanatory power can be 

quickly identified.  

Supervised Method: A category of AI training which uses pre-classified data for 

the model to learn to differentiate between after which raw data can be classified, 

vs an unsupervised approach which would have unclassified data being 

differentiated after which classes can be defined and applied to future data.  

Psychophysiology Terms 

Arousal State: A cognitive-affective state detectable through Psychophysiology 

technology such as the E4 bracelet used in this study. This could be a positive 

state such as engagement or a negative state such as frustration. 

Eye Tracking: The process of tracing an infrared reflection of a user’s pupils to 

triangulate the gaze from each eye to determine where a user is focusing their 

visual attention over time. 

Flow: The cognitive-affective state produced when the current challenge 

someone is facing is perfectly balanced with their skills for overcoming that 

challenge, resulting in intense focus, progress, and feeling of accomplishment.  
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Psychophysiology: The study of examining how cognitive states manifest 

responses biologically.  

Skin Conductance (or Galvanic Skin Response or Electro dermal Activity): A 

measure of how conductive the skin is due to external or internal stimulus.  
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Chapter 2: Literature Review 

Overview 

The purpose of this Literature Review is to provide a background of the research 

methodologies that I used in this study. The review includes three fields, the first 

being Learning Analytics and the second Psychophysiology, and ultimately 

attempts to find intersection between the two within the context of the third field, 

Serious Games. The analytics section primarily tracks two methods, Principal 

Component Analysis and Clustering, in their use in online courses, commercial 

games, and finally serious games. In this way the methodology is demonstrated 

in a purely academic setting and a purely entertainment setting before being 

examined in an environment used for both. Similarly, the Psychophysiology 

section looks at two primary methods, Eye Tracking and Galvanic Skin Response 

Analyses. Those methods are also detailed in non-game media as well as 

commercial entertainment games before being examined in academic 

educational game settings.  

For this Literature Review, I limited all my search results to things 

published in 2015 or more recently. I began my search with broad terms like 

“Psychophysiology/Learning Analytics in Games”. This led me to a lot of articles 

and a large variety of methods including Clustering, Bayesian Trees, 

Electromyography (EMG), Galvanic Skin Response (GSR), etc. It also led me to 

two researchers I focused my attention on early, Lennart Nacke and Guillaume 

Chanel. These two researchers’ interest both centered on using 

Psychophysiological data to measure player experience during gameplay. 
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Through these sources and early methodological testing, I narrowed my search 

terms down very specifically to “PCA, Clustering, GSR, or Eye Tracking, to which 

I then added either “in serious games” or “in games ‘-serious’”. These terms 

produced fewer results, but usually a few relevant articles per search including 

the articles I reference below. 

Why Research Serious Games 

Games in general are inherent learning systems as described by Gee (2005) 

where players learn new narratives, environments, actions, etc. Serious games 

have the additional constraint of teaching a specific curriculum (Squire, 2003). 

These learning objectives need to be delivered in a way that allows the concepts 

to transfer to the real world in a meaningful way (Barab, Gresalfi, & Ingram-

Goble, 2010). The highly controlled nature of the environments and interactions 

makes serious games a prime field to test various theories and work towards 

deeper insights into learning. Game based learning in a single player game is an 

independent student activity in the sense that unless the teacher’s role is 

explicitly designed into the experience (Stichter, Laffey, Galyen, & Herzog, 2014), 

they are not directly present, which standardizes curricular delivery by removing 

all human elements except the learner. In addition, games afford for explorative 

and constructive learning while also being able to log every fine detail of the 

environment, context, and player’s actions allowing for a deep level of analysis 

and insight. 

Serious Games are often sought after for a desired increase in learner 

engagement as compared to traditional instructional methods (Hookham, Nesbitt, 
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& Lambkin, 2016), however this engagement is usually measured via post-play 

survey or in game pop-up (Shernoff, Hamari, & Rowe, 2014). Serious Games 

can also be designed to elicit specific gains for specific users such as increasing 

attention for players with ADHD (Roh & Lee, 2014) and other Learning Disabilities 

(García-Redondo, García, Areces, Núñez, & Rodríguez, 2019) as measured with 

specific validated pre/post-tests.  

Learning Analytics 

Learning Analytics in Online Classes 

In a one-on-one tutoring scenario, a teacher is able to be intimately involved in 

every moment of the student’s learning process, and that affords them access to 

subtle cues to gauge engagement and understanding. In a traditional face-to-

face classroom with many students to attend to at once, teachers extend these 

observation practices to allow them to monitor groups. However, in an online 

learning environment there are fewer but more complex cues. As online learning 

rose in popularity; so, did the need for Learning Analytics research, seeking to 

identify and make sense of these sparse clues (Lias & Elias, 2011). The need for 

Learning Analytics was further exacerbated by the push to increase online class 

sizes, even to the extreme case of MOOCs (Daniel, 2012). Although these 

classes can deliver education on a large scale (Cress, 2014), often at a free or 

reduced price; the learning (instruction, assessment, and feedback) is by 

necessity very standardized and automated, as it is not possible for a person to 

monitor and provide feedback to that many students in depth. This led to a well-

studied decline of student engagement causing early departures (Khalil & Ebner, 
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2014). At the same time, the technology capable of performing big data analysis 

also became more prevalent (Han Hu, Yonggang Wen, Tat-Seng Chua, & 

Xuelong Li, 2014). The outcomes generated by predictive Learning Analytics 

began helping teachers by producing a short list of which students needed extra 

instruction or feedback. This way they could focus their efforts where most 

needed instead of the impossible task of engaging with the entire class 

individually (Dyckhoff, Zielke, Bültmann, Chatti, & Schroeder, 2012). Enter 

machine learning methods focused on predicting final course evaluation scores. 

With enough training data, teachers could identify the patterns of behaviors of 

students that were most likely to fail using methods like Principal Component 

Analysis. Empowered with this new insight, teachers could focus their limited 

time on the students who needed help the most. 

Principal Component Analysis (PCA) in Online Classes 

 Hegde’s work (2016) is a good example of data reduction.  Hegde’s study, titled 

Dimensionality reduction technique for developing undergraduate student 

dropout model using principal component analysis through R package, tried to 

predict the course dropout rates of 150 students in two cohorts over two 

semesters. The data gathered for this study came from a 51-item survey. The 

authors were able to use PCA to reduce the necessary questions to 25 or 19 

depending on the desired accuracy. PCA is necessary to understand core 

defining features of large datasets with complex varieties of data types. 
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Clustering in Online Classes 

A large complex data set, even after being reduced, can still require analysis to 

construct meaning. Ezen-Can’s study (2015), titled Unsupervised modeling for 

understanding MOOC discussion forums: a learning analytics approach, shows a 

popular clustering method for grouping large subsets of data into meaningful 

outcomes. Ezen-Can and colleague’s goal was to empirically investigate the 

extent to which unsupervised models can provide insights into the flow of 

conversations among learners on a discussion forum. They studied an 8-week 

MOOC for teachers with 155 students. Through Discussion Board Mining they 

logged 550 posts from 57 distinct discussions which were then manually coded. 

The authors used K-medoids clustering with a greedy seed selection approach 

and Bayesian Information Criterion to arrive at seven clusters: agreements, 

opinions, declarations, disagreements, appreciations, questions, evaluations. 

The Ezan-Can paper is an example of how clustering can identify patterns in 

data but highlights the need for each cluster to be evaluated by a human 

afterwards to extract meaning. 

Learning Analytics in Commercial Games 

While analytics have been gathered privately within the games industry for quite 

some time; they have only recently begun to be explored academically. Although 

they often employ the same machine learning methods as learning analytics, it is 

for a different purpose. For example, players finding a successful learning 

strategy and sharing it with others in their community would be encouraged in an 

online class, and to a degree may be encouraged in a commercial game 
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community as well. However, if enough players in a commercial game realize 

that this strategy wins more often than other strategies, then the gameplay can 

become asymmetric, usually prompting the designers to make a change to that 

strategy. The ideal behavior of all students demonstrating mastery successfully in 

an online learning environment becomes a design issue needing to be corrected 

in a commercial game to keep the gameplay diversely balanced. 

Principal Component Analysis in Commercial Games 

The authors (Drachen, Thurau, Sifa, & Bauckhage, 2014) of A Comparison of 

Methods for Player Clustering via Behavioral Telemetry studied a huge dataset 

from the popular online game World of Warcraft. The dataset contained 

gameplay logs collected over a 5-year period from 70,014 players. Drachen and 

colleagues were trying to examine how different clustering algorithms produced 

different results on the same dataset. For each player they created a vector for 

the highest level that player achieved by the end of the day. This created growth 

patterns over time for each player. The authors compared clusters generated 

using Archetypal Analysis, Non-negative Matrix Factorization, K-means 

Clustering, C-means Clustering, and Principal Component Analysis. While their 

results had different meanings situated within World of Warcraft Gameplay, there 

were essentially two main takeaways.  First, different algorithms will produce 

different clusters, and it is important to try multiple approaches to see which 

works best in each context. Second, the number of clusters can also affect how 

clear or meaningful the results can be. While there are some algorithms which 

can choose a cluster number for you; the authors propose it is best left as a 
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parameter open for testing and tweaking until the best model fit is reached for the 

specific problem being solved. 

Clustering in Commercial Games 

Manero and colleagues (Manero, Torrente, Freire, & Fernández-Manjón, 2016) 

attempted to validate An instrument to build a gamer clustering framework 

according to gaming preferences and habits. They sought to make a standard 

instrument that was efficient, but still as explanatory as possible. To do this they 

created a 10-item survey and administered it in eight schools across Madrid to 

754 Spanish secondary students: 54% male, median age 14. The questions 

centered around how much and what kinds of video games they play. Using 

Principal Component Analysis, they were able to reduce their original 10 item 

survey to a simple 2 item survey. Following this dimensionality reduction the 

authors used K-Means Clustering to create 4 clusters of players: Everything, 

FPS/Sports, Casual, and Non-gamer. While not originally part of their study, the 

authors also found a high gender separation where males primarily fell in either 

the Everything or the FPS/Sports clusters and females were primarily in the 

Casual or Non-Gamer clusters. 

Learning Analytics in Serious Games 

Enter serious games, developing out of a separate school of thought these 

designers tried to marry the engagement of video games with the education 

potential of learning technology. No longer was early departure a concern 

(Squire, 2005) as these modules were designed to be fun, and to keep the 
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learner persisting until the end.  Scalability (Barab, Thomas, Dodge, Carteaux, & 

Tuzun, 2005) was no longer an issue either as games are usually designed to be 

played autonomously, requiring no additional teacher or students. However, 

because the interaction happens within the virtual environment, this creates the 

same absence of subtle intimacy the teacher can have naturally with students in 

a traditional classroom (Kebritchi, 2010). Complicating things is the fact that 

games are a fundamentally different structured medium than traditional education 

tends to use. For example, most classes online or traditional, structure the 

instruction so that the learning happens first followed by an assessment in which 

students might fail. This is repeated and then usually happens on a larger 

summative assessment in the form of a final exam or project at the end of the 

course. Video Games are quite to the contrary. They encourage failure multiple 

times to learn about the system and environment (Fudenberg & Levine, 1998). 

The embedded assessments are often designed to be repeated many times even 

within future tasks. For Serious Games it is not enough for the analytics system 

to simply report to a teacher that a student is predicted to fail a game task. 

Teachers of serious games, if there is one at all, have not designed the 

curriculum: the instruction, the embedded assessment, nor the feedback, and in 

the current state of the media have very little ability to customize the in-game 

curricula (Baek, 2008). Because of this they likely will not be well informed of 

what the player is doing or has done within the game at any given time. This lack 

of deep knowledge of the game play necessitates that the first purpose of 

Learning Analytics should be to accurately relay what the player is doing to the 
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teacher. In addition to this, games offer a substantial amount of interactivity and 

feedback which online course management systems simply do not match. 

Requiring the teacher to attend to, interpret, and respond to every player 

behavior counters the scalability of serious games. In this environment it 

becomes more efficient to identify a behavior signature that a student is falling 

behind on a certain task or is struggling more than you would like, and have the 

game deliver the necessary feedback to the learner just-in-time (Gee, 2005) 

rather than force the student to wait for the next teacher intervention. The second 

purpose of Learning Analytics then becomes to use those “found” behavior 

signatures to inform design for what specific feedback each student requires and 

how it can be embedded within game play. 

Principal Component Analysis in Serious Games 

Van der Graaf and colleagues (Van der Graaf, Segers, & Verhoeven, 2016) took 

the dimensionality reduction concepts seen above into educational games with 

Discovering the laws of physics with a serious game in kindergarten. They asked, 

“To what extent do children show comparable exploration and efficiency scores 

on the game plays, and how does individual variation in exploration and 

efficiency relate to executive control, reasoning ability, and vocabulary?” (p171). 

They examined 75 children around 5 and half years old, 41 of which were girls 

while they played 3 short games: The Hippo App, Flanker Fish, and Hearts and 

Flowers. The authors used Principal Component Analysis to confirm the three 

tasks measured different aspects of executive control. The researchers then 

conducted Mediation Analysis using ANOVA to find mediating factors. They 
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found that exploration and attentional control were mediated by the level of each 

player’s vocabulary competency, and efficiency and attentional control were 

mediated by non-verbal reasoning. 

Clustering in Serious Games 

One of the most rigorous articles I have found on using learning analytics in a 

serious game is Investigating Epistemic Stances in Game Play with Data Mining 

(Martinez-Garza & Clark, 2017). The researchers had two Goals with this study. 

First, they wanted to validate the Two-Stance (2SM) Framework for Game Based 

Learning, and then to explore automatically collecting log files of gameplay for 

evidence of learning. The 2SM framework is an application of the more general 

two-systems theory in human cognition. It posits that during educational games 

students enter 2 phases, or “stances”: one being a learning phase where 

students reflect on concepts and engage in sense making; and the other being a 

playing phase where students test ideas and optimize their performance over 

multiple trials. To guide this work, they had two Research Questions.  “Did 

students playing The Fuzzy Chronicles show evidence of dichotomous fast/slow 

modes of solution?”, and “Is there a connection between conceptual 

understanding and student performance in conceptually laden challenges?” (p9). 

The authors ran two studies both with pre/post-tests. The first study consisted of 

86 ninth graders while the second study had 123 seventh graders. Each study 

took 5 days of class time for the kids to play 32 levels of The Fuzzy Chronicles, a 

serious game teaching Newtonian kinematics. Over the course of this study 

16,239 logs were collected, each being a JSON object representing an individual 
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student’s attempt to solve a certain puzzle. From these logs, 23 variables were 

derived to extract meaning from each log. The authors performed extensive 

analysis on these data. First, they did data normalization and integrity checks to 

assure the data were clean and accurate. Then, using Principal Component 

Analysis they did variable selection and dimensionality reduction. Next, they 

performed Clustering of Gameplay Data and Sequence Mining. Finally, they 

conducted Contextual Feature Mapping to extract the meaning from their results. 

As intended, Principal Component Analysis reduced the variables drastically. 

They ended up with 6 clusters: Aborters, Tinkerers, Long Aborters, Repeat 

Failures, Winners, and Planners. According to the 2SM framework, they were 

able to differentiate between low and high prior knowledge based on differences 

in gameplay. For example, students with higher prior knowledge were better able 

to plan out solutions and then execute them versus the lower prior knowledge 

group’s more guess and check gameplay style. The 2SM appears to be a useful 

model to distinguish brute force trial and error gameplay from pre-planned 

thoughtful problem solving. 

Learning Analytics Conclusion 

Learning Analytics is a powerful tool capable of revealing hidden insights within 

large datasets. However, the utility of learning analytics is highly dependent on 

the proper data being collected and the proper methods being used for each 

specific problem being solved. Data must be pertinent to prevent misfitting and 

results must be actionable to make an impact. Often these data models are 

complex and difficult to interpret, but methods like clustering and PCA can 
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reduce that complexity. When combined with human analysis, and human 

readable definitions, they can help teachers be more present and aware of 

student learning in more varied and novel environments, such as serious games.  

Psychophysiology 

Psychophysiology in Non-Game Media 

Psychophysiology is a field linking the psychological (mind) and physiological 

(body) camps, for example the relation between a fight or flight response and an 

increase in heart rate (Morgan, 1951). Because these data are a collection of 

nervous systems responses, it is extremely fine grained (Gale & Edwards, 1983). 

The data exist on the millisecond level, and reactions are traced second by 

second (Martínez, Jhala, & Yannakakis, 2009). 

Psychophysiology studies originated outside of games in media where the 

consumer is usually a passive listener and/or viewer. In this way participants’ 

eyes can be tracked as their only active response indicating attention. Then data 

such as skin conductance and heart rate can be used to determine the 

audience's stimulus level at any moment. Finally, that stimulus can be valenced 

to determine the user’s affect through more rigorous methods like facial 

electromyography, but also through more usable methods such as facial 

recognition. These three cognitive factors (attention, stimulus level and affect) 

are used to construct an emotional image of how the audience is experiencing 

the media throughout its duration. 

Psychophysiology researchers have found a home in media reception 

studies (Ravaja, 2004). Understanding how a particular message is going to be 
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received or how it will emotionally impact an audience is critical, whether in 

television, movies, or video games (Ganglbauer, Schrammel, Deutsch, & 

Tscheligi, 2009). Skin conductance has long been validated as a general 

measure of arousal, while facial EMG specifically above and below the eye has 

been validated with positive or negative affect (Nakasone, Prendinger, & 

Ishizuka, 2005). Eye-tracking allows researchers to pinpoint these physical 

reactions to what precise visual information participants are attending to at any 

given moment (Alkan & Cagiltay, 2007), (Goggins, Schmidt, Guajardo, & Moore, 

2011). By combining these three points of data, we can identify elements on 

screen and determine whether the audience has a reaction to it, and if so, did 

they generally enjoy or dislike it. 

Eye Tracking in Non-Game Media 

Eye Tracking Data at its core are a series of XY coordinates mapped onto a 2-D 

surface. These raw coordinates are not very informative, and are often quickly 

converted into Gazes, points of prolonged attention, and Saccades, points of 

rapid eye movement. Jianu and Alam (2017) took that processing a step further 

to identify what objects are being gazed at using A Data Model and Task Space 

for Data of Interest (DOI) Eye-Tracking Analyses. This paper detailed 3 studies 

advancing this model. The first study asked subjects to visually track objects on 

screen and was primarily for testing the validity of the technology. The second 

study had 6 participants all in an architecture class using a web app. Finally, the 

third study had 16 construction workers training in a 3D simulated construction 

site. Each study used the same Eye Tracking methods. The construction site, 
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however, did have a secondary rendering. While the participants were viewing a 

normal looking environment, a second screen featured every object of interest 

rendered in a unique color (e.g., solid green crane, solid red hole, etc.). Using 

this specially colored render the authors were able to identify what object 

participants were looking at simply by logging the RGB value of their Gaze point. 

This allowed them to talk about gazes not in terms of area on screen, but in 

terms of contextualized resources and hazards. This Data of Interest can relay in 

real time details about user tasks as their being completed, where previously 

these gaze points would need to be post-processed to extract meaning.  

Most Eye Tracking studies assume the Eye-Mind Hypothesis, which is, 

where people look correlates with what people think. This was confirmed in the 

Jianu and Alam study when they found experts tended to use more peripheral 

vision, creating different Data of Interest patterns than novices. However, it is 

also important to note that not every gaze indicates intense concentration. Users 

can stare at an arbitrary point while contemplating without taking in visual 

information. 

Skin Conductance in Non-Game Media 

Like Eye-Tracking studies, Psychophysiology data usually require post 

processing to extract meaning. However, Green and colleagues (2014) 

attempted to automatically process the data. They asked, “Can the classical 

trough-to-peak amplitude of SCR be automated in a fashion closely matching 

manual scoring?” They studied 3 archived datasets of healthy adults from Duke 

University. The authors compared the results of 2 manual raters vs. 3 alternative 
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automated methods. The authors detailed how they compared common methods 

of Amplitude, Response Latency, Rise Time, and Half-Recovery Time. In 

general, there was high concordance between manual and automated ratings, 

and when algorithms would mis-classify they would err on the side of over or 

under classification consistently. Because manual coding is highly time 

consuming it would usually prohibit large data set analysis; however automated 

algorithms could run big data problems without an issue. 

Psychophysiology in Commercial Games 

Applying PP methodologies to games introduces one major unique challenge, 

namely asynchronous consumption of media. In a passive media study, it does 

not matter what the participant does, the commercial is always 2 minutes and 30 

seconds. However, in a game, player progress is entirely mitigated by player 

performance, allowing for variances in times when similar interesting events will 

occur.  

With the dynamic nature of games and inherent user interaction, 

psychophysiology data can take on a new meaning, even being used as a 

controller in a few cases (Nijholt & Tan, 2007). Flow Theory could present an 

interesting lens for Psychophysiology studies in games. Flow is simply a user's 

personal skill level compared with the level of challenge they are currently 

experiencing on a given task, which is hypothesized to produce complete 

absorption in a task (Nakamura & Csikszentmihalyi, 2014). The scaffolded nature 

of some video games, which aims to maintain engagement through a slow and 

steady increase in difficulty, makes them an ideal experimental context for flow. 
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Researchers have recently begun to look at the ability of psychophysiology data 

to measure flow within the video game research community (Cowley, Charles, 

Black, & Hickey, 2008), (Chen, 2007). Of particular interest, Chanel et al. 

(Chanel, Rebetez, Bétrancourt, & Pun, 2011) used flow theory and 

psychophysiology data to control the difficulty of Tetris, a game which relies on 

scaffolded difficulty to maintain engagement as mentioned above. They showed 

that lack of arousal data could be linked to the boredom and apathy states 

elicited from low challenge tasks described by flow theory. From there the 

researchers were able to use affect measures to determine whether the player 

was negatively aroused indicating frustration or stress or positively aroused 

indicating flow or engagement. 

Eye Tracking in Commercial Games 

Bagley, Lee, and Rankin (2015) detailed their work in The Development of an 

Eye-Tracking Program to Examine Working Memory During Gameplay. They 

were attempting to gain insight into the causes of differences in individual 

working memory performance. They examined 6 participants in a lab setting with 

a particular focus on eye tracking validity and accuracy. Each participant followed 

the same process of Closed Eye Rest, Open Eye Rest, and Eye Tracking 

Calibration, followed by playing Mahjong. During this process participants’ 

screens were recorded for Eye Tracking, and 4 nodes were collecting 

Electroencephalogram (EEG) Data. The authors first filtered the coordinates from 

the Eye Tribe Gaze API for off screen gazes, blinks, and any other 

disengagement. They then timestamped the data to synchronize it with the EEG 
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data. The eye tracking results indicated eye tracking can be effectively captured 

up to every 1/45 of a second. Although EEG was not used, the general process 

and comparison of PP with Eye Tracking for cognitive purposes is a model for 

what was done for this dissertation study. 

Skin Conductance in Commercial Games 

In Flow and Immersion in First-Person Shooters: Measuring the player’s 

gameplay experience, Nacke and Lindley, (2008) were trying to find “correlations 

between subjectively reported gameplay experiences and objectively measured 

player responses within the gameplay as measured by these 

psychophysiological measures in order to provide cross-validated descriptions of 

the emotional experience of players during gameplay.” (p83) They studied 25 

male college students 19-38, all of which were gamers, in a lab setting while they 

played three Half-Life 2 mods over a 2-hour session. During play the authors 

collected a wide variety of data including Electroencephalography, 

Electrocardiography, Electromyography, Galvanic Skin Response, video 

recording, and Eye Tracking. They first filtered the data to reduce noise then ran 

an ANOVA. The authors found that flow states were detectable using just GSR to 

detect stimulated states vs boredom and then EMG to give valence to the 

stimulus as either frustrating or engaging. Objective measures of valence are out 

of scope for this study; however, some inferences can still be made based on 

gameplay contexts. 
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Psychophysiology in Serious Games 

Adding a learning component to a video game does not necessarily change the 

Psychophysiology data collection, but it does imply a different set of research 

questions.  Researchers can ask how the Psychophysiology signals indicate that 

the player is learning. Things like what players are paying attention to at any 

specific moment of gameplay can inform efforts to understand why they are 

behaving as they do. Understanding the player’s emotional state can help us find 

new insights into how to gain the most impact out of a curriculum or garner the 

most retention of curricular content. 

Eye Tracking in Serious Games 

In this study Byun and colleagues (2014) tried using eye tracking for Serious 

Game Analytics. They asked, “Can Eye Tracking be used for assessment in role-

playing serious games?” Three experts and 3 novices played a Military Style 

Search and Rescue game. Each session consisted of Instruction, Practice, Eye 

Tracking Calibration, and finally the Test. Like the Data of Interest (DOI) 

described earlier, the authors here primarily tracked Areas of Interest (boxes on 

the screen, AOI) as their unit of analysis for AOI Sequencing, Binning, Event 

Statistics, and Line Graphing. They found that experts show different eye 

tracking patterns than novices, and that fixations per second decreased in 

general when participants reported being immersed. 
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Skin Conductance in Serious Games 

The most similar study to mine that I found was Assessing Knowledge Retention 

of an Immersive Serious Game vs. a Traditional Education Method in Aviation 

Safety (Chittaro and Buttussi, 2015). In this study Chittaro and Buttussi were 

trying to determine how gameplay vs more traditional learning methods affected 

a player's fear response via EDA and self-reported measures, and how both in 

turn affected retention. Forty-eight University students (26M and 22F) were split 

into two cohorts: the first would play a flight training game, and the other would 

learn from flashcards. The authors conducted baseline fear response measures 

for both groups before starting the intervention. They surveyed users for their 

Flight Experience, Game Experience, Fear Sensitivity, and gave each user a Pre, 

Post, and Retention Test. Results of the survey, sensor data, and test scores 

were analyzed using ANOVA. Results showed that while both interventions had 

similar pre/post gains, the game generated higher stimulus and fear response as 

well as much better retention scores. They concluded stimulus from an 

immersive experience may provide a deeper ingrained memory causing greater 

retention. 

Summary 

Each of these 12 articles helped shape my study in a very specific way. I used 

the exact methods of eye tracking (Byun et al, 2014), skin conductance (Chittaro 

& Buttussi, 2015), PCA (Van der Graaf, Segers, & Verhoeven, 2016), and 

clustering (Martinez-Garza & Clark, 2017). Also, I utilized the lessons learned, 

such as exploring multiple clustering options to determine the best approach for 
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the problem and remembering that the generated clusters require a human 

interpretation step to extract meaning. I gained similar valuable insights from the 

psychophysiology literature review. While it is beyond the scope of this study, the 

automation process for both Eye Tracking and Skin Conductance would be 

necessary for carrying out this research agenda and collecting Psychophysiology 

data from 1,000+ students in any reasonable amount of time. I did however 

include the processes identified for triangulating eye tracking and skin 

conductance (Nacke and Lindley, 2008), and for detecting arousal during game 

play (Green et al, 2014). Although I did not explicitly control for gender or 

experience; it is always helpful to keep in mind that those factors have been 

shown to have a strong influence. 

Mission HydroSci 

Overview 

In this section, I describe the research and learning objectives of Mission 

HydroSci. I detailed our lab’s production process. Finally, I give an overview of 

the MHS environment we produced, and our current distribution model. 
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Figure 2: The cover image of the teacher guide depicting the volcanic cavern of unit 5. 

Background on Mission HydroSci 

Mission HydroSci is a research project designed to teach Earth Science, 

specifically water science, and Scientific Argumentation in a game-based 

learning environment. All its learning objectives align with the Next Generation 

Science Standards (Bybee, 2014) which indicate that learning outcomes require 

application of knowledge not simply recall. The MHS water science curriculum 

starts with topography; so, students understand how the terrain’s shape 

determines its impact on the surface water that flows through it. The curriculum 

goes on to cover underground and atmospheric water, as well as touch on 

human impacts in the last mission. In parallel with this water learning curriculum, 

it teaches players scientific argumentation. MHS introduces players to what 

scientific claims, evidence, and reasoning are (Osborne, Henderson, 

MacPherson, & Szu, 2013), and how to use them together to form arguments. 
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The research questions for the project address the impact a game-based 

experience can have on science learning, but also include how best to design, 

implement, and distribute this curriculum. 

Mechanics, Dynamics, Aesthetics Model 

The MHS production process is modeled off the Mechanics-Dynamics-Aesthetics 

framework for designing games. While many games are driven by either 

mechanics (what actions the player will be able to perform) or aesthetics (what 

the story, art style, or environment will be) mentality, the MDA model advocates 

for a more holistic approach. Instead of either, it focuses first on the dynamics 

(what impact the experience has on the player), and then incorporates the best 

mechanics and aesthetics possible for that player experience (Hunicke, LeBlanc, 

& Zubek, 2004). In order to accomplish that as a serious games lab, we start with 

the learning objectives; those are the outcomes we want to impart on our players. 

Then three full time staff leads (art, design, and development) were each 

responsible for the creativity their work brings to the game. We then review that 

work as a team, and once each team has done the best work they are capable 

of; we present that to users for feedback. Through iteration, player feedback, and 

diverse expert review, MHS provides a rich player experience with fewer stones 

left unturned along the process.  

The Mission HydroSci Environment 

Mission HydroSci is a first-person narrative adventure where players use their 

newly discovered mastery of water systems to help set up a pioneer settlement 



40 
 

on an alien planet. The learning gains in MHS have been experimentally 

validated and confirmed by the What Works Clearinghouse (Reeves, 2020). In 

the first unit, the player awakens on a space station orbiting an alien planet. Just 

as they are getting geared up and re-acquainted with their team, there is an 

explosion on the space station leading to an emergency evacuation. After the 

team crash lands on the planet, they must use knowledge about topography and 

surface water to choose a suitable location to jumpstart their settlement mission. 

After getting settled, the other cadets on the mission begin to establish 

satellite bases to enhance the exploration and resources available. The first base 

established is Samantha’s, where the player uses knowledge of surface water 

flow to aid her in gathering supplies, removing a pollutant, and planting initial 

gardens. Afterwards, the player uses knowledge of ground water to help 

Anderson gain access to fresh water in his desert base and fix a flooding 

problem he is having. In unit 5, the player visits Bill’s tropical island and uses 

knowledge of atmospheric water when they become trapped by a volcano 

requiring them to distill seawater into drinkable water giving Bill a new idea for his 

factory. Finally, the player ends up on an alien shuttle orbiting the planet 

disguised as a moon. The player must prevent the ancient, deserted shuttle from 

taking off into deep space with a large portion of the planet’s water supply in 

order to save the planet. 

Unit 3 Summary 

This study examines players’ interactions and learning outcomes during Unit 3 of 

MHS. Unit 3 was primarily intended to teach two water science concepts, 
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dissolved materials flow downstream and rivers flow based on watershed 

elevations, as well as to introduce reasoning, or warrant statements, into the 

scientific argumentation process (note: argumentation was not examined in this 

study). It takes place in a gardenesque area between two rivers where the non-

playable character, Sam, has chosen to setup her base. Unfortunately, Sam is 

having some problems with scattered supplies, polluted water sources, and 

identifying downstream nutrient flow. To demonstrate mastery of these water 

science concepts two questions were determined valid after an Item Response 

Theory analysis performed in a previous study. These questions are shown in 

Appendix A. 

The Mission HydroSci Delivery Model 

MHS has been delivered at 9 schools across Missouri with over 800 students 

participating over the course of 8 class periods for 45 minutes each (See Figure 

3 below) of regular science class time. MHS was designed to be available for 

online classes with a remote teacher, however for this field test every class was a 

traditional Face to Face class in a public school. The executable for the beta is 

given to the districts’ technology coordinators who then push the game onto 

computers for the students to use. While tablet distribution models are still being 

explored, the game is currently only available on PC and Mac. When students 

are playing the game, behavior logs are collected in the background and sent to 

our server where we can use them to display students’ progress to their teacher 

or use it for later analysis to improve the quality of the game. 
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Figure 3: The pacing guide included in the Teacher’s Guide outlining the 10-day play schedule. 
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Chapter 3: Methodology 

Research Design  

This study is an exploratory case study consisting of two rounds of data 

collection and analysis. The first round examines archival data from a MHS field 

test looking at what behaviors players who are successful on the pre/post 

assessment, exhibit during unit 3 (approximately 1 hour of gameplay). The 

second round was collected from a Player Experience Test examining how 

players subconsciously react to their successes and failures along the way 

during the same unit. This exploratory study, using best practices of Learning 

Analytics and Psychophysiology, hopes (1) to contribute to a growing knowledge 

base about the use of analytics and psychophysiological descriptions of learning 

and play in serious games and (2) to build a model for how new methods of study 

can be triangulated to give a deeper insight into the player experience to design 

better games for learning in the future. 
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Research Questions 

RQ# Research Question Data Source Sample 
Size 

Analysis 

RQ1 What are the Virtual Behaviors 
which distinguish high and low 
performance outcomes in U3? 

Game Logs 
+ Post 

Assessment 
Outcomes 

806 Clustering 
Game Logs 

RQ2 What are the specific PP 
patterns that indicate 
embodied motivational 
processes such as flow and 
attention, and what game 
features elicit those patterns? 

Eye Tracking 
+ Skin 

Conductance 

9 Video 
Coding 

RQ3 How and to what extent can 
high or low performance be 
inferred from the cognitive-
affective state of players? 

RQ 2 
Results + 

RQ1 Results 

4 Contrast PP 
Results of 

LA Clusters 

RQ4 How and to what extent can 
the cognitive-affective state of 
players be inferred from virtual 
behaviors? 

RQ1 Results 
+ RQ2 
Results 

4 Comparing 
PP reactions 

during LA 
features 

 

Table 1: A summary of the Research Questions, Data Sources and Analysis Methods for this 

study. 

Field Test: Phase 1 

Field Test Participants 

The first round of data collection took place during the MHS summative field test 

(Reeves, 2020). MHS was played in the spring of 2019 by 13 middle school 

teachers’ classes. These classes each consisted of 20-30 students in grades 6-8. 

These classes were from schools across Missouri, and the total student sample 

in the treatment group (N=806) included 51% male and 49% female, as well as 

66% Caucasian, 11% African American, 6% Hispanic, 4% identifying as multi-

racial, 3% Asian, 2% American Indian, with the remaining students self-
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identifying as other. Of the total 806 students who participated in the treatment 

group of the field test, only 632 had all their logs collected from a complete 

playthrough qualifying them for the Learning Analytics.  

Field Test Setting 

These classes all played the game during their normal class schedule. Although 

the specific details of each classroom setup differed, the minimum requirements 

were that each student has access to their own computer to play MHS. Players 

needed to use the same computer to continue their progress from day to day. 

Field Test Delivery 

During the Field test each class was scheduled for 10 sessions each about 45-50 

minutes. The first and last days consisted of pre and posttests respectively, and 

the other eight days were used to play the 6 units of MHS.  

Field Test Dataset 

These students were all given pre/posttests consisting of the “Middle school 

Affect towards Science and Technology” survey to gauge student interests, and a 

traditional curricular assessment consisting of both Earth: Water Science and 

Scientific Argumentation assessments. While playing the game for the 8 class 

sessions, gameplay logs were automatically collected and sent to a remote 

server. This large data set was used for all the Learning Analytics work in this 

study. 

Participants played through the first available version of Mission HydroSci, 

a STEM game developed to teach water science and scientific argumentation. 



46 
 

Every time a student encountered one of the embedded assessments a log was 

collected. For example, in Unit 3, the player is required to plant 5 seeds in 5 of 11 

different garden boxes. The target gardens are all downstream of a mysterious 

nutrient. If the player plants 3 seeds in the correct gardens (downstream of the 

nutrient source) and 2 seeds in the wrong gardens, their performance for this 

task would be normalized to 3/5 or 0.6. In between embedded assessments, 

multiple logs of the player’s interactions will be collected: navigation, map use, 

time elapsed, etc. 

From the more than 400,000 logs collected per player throughout the 

entirety of their gameplay sessions, 57 logged behaviors were determined to be 

the most predictive of their post-test performance. These key virtual behaviors 

broke down into the following broad categories: amount of area explored, time to 

complete a task, frequency of in-game tool usage, and argumentation 

performance (See Figure 4 Below). While the model uses data items collected 

from units 1 and 2 in addition to unit 3 to predict success, the behaviors 

specifically taking place within unit 3 will be further used to help to answer 

Research Question 3. 

 
Figure 4: Left - An example navigation path reconstructed from a player's log data. Center - An 
example of the in-game tool menu. Right - An example argumentation scenario from within MHS. 
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Player Experience (PX) Testing: Phase 2 

Player Experience Participants 

For the second round of data collection, I recruited 10 (50% male and 50% 

female, 100% Caucasian) middle school students (age 11-12), who had not 

played the game before, to play all 6 units of MHS. These participants were 

recruited by word of mouth and received a $50 gift card for their participation in 

each session of the study. One was unable to participate due to interference with 

their glasses and the Tobii Eye Tracker. Each of the 9 remaining participants 

played MHS over the course of 3 two-hour sessions until they completed all 6 

units used in the Field Test. They each took the same pre/posttests (See their 

scores in Appendix B), and while the same logs should have been collected as 

the field test group; 5 of the participants' data had missing elements causing it to 

be unusable for the Learning Analytics models, but still usable for the 

Psychophysiology questions. This left 4 usable participants including 75% 

females and 25% males for research question #4 about LA-PP integration.  

Player Experience Setting 

For this study, I set up a testing station in the study room in a research facility of 

the university.  The room included a laptop, a Tobii Eye Tracker, and an E4 

bracelet. During testing students experienced the MHS virtual world described 

above in Chapter 2. 
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Player Experience Delivery 

My protocol (See Appendix C) for this Player Experience Testing (PX) mirrored 

the traditional MHS User Experience testing with the addition of the eye tracker 

and E4 bracelet. I greeted each participant and gave them a small introduction to 

what they would be doing that day. After answering any questions the participant 

had, the players completed the same MHS pretest used in the Field Test. Once 

completed, I sat them down at the computer and equipped them with the E4 

bracelet. Before playing, the Tobii Eye Tracker needed to be calibrated, which 

took approximately 30 seconds. Once setup was complete, I started MHS, and 

sat at a nearby desk only intervening if the participant had a question. For the 

duration of the 2 hours, I watched the Eye Tracking and E4 data feeds taking 

note of my initial observations of what the player was attending to in-game while 

any large PP reactions were detected. Halfway through the session, the Eye 

Tracker battery needed to be swapped out and then re-calibrated for the second 

half. After the session was complete, I stepped in and stopped the participant’s 

game session, eye tracking session, and E4 session in that order. I then 

conducted a debrief interview (See Appendix D) with the participant where I 

asked them to retell me what they did, and what they thought of their experience. 

After the final gameplay session, participants completed the MHS posttest (which 

is identical to the pretest) before being given a gift card for compensation and 

leaving.  
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Player Experience Dataset 

In addition to the same pre/posttest and log data collected in the Field Test, 

throughout the player-experience play, an E4 bracelet was worn by participants 

to collect skin conductance and heart rate data, and a Tobii system was used to 

trace users’ eye movements. Every data source was synchronized with the eye 

tracking video stream. This, for example, allowed me to distinguish how 

participants who were successful on the pre/post assessment reacted to first 

seeing the final crate vs participants who were less successful. 

Methods of Analysis 

After all the PX data had been collected for the 9 participants, I compiled the 

learning analytics from unit 3 of the Field Test to determine which virtual 

behaviors were associated with high and low performance outcomes (Xing, Guo, 

Petakovic, & Goggins, 2015). I classified my 4 PX participants who had complete 

gameplay logs into their respective categories according to the model (See Table 

4 on page 56 in chapter 4). 

 
Figure 5: An example image of raw E4 EDA data output showing activity across milliseconds of 
time 
 

I then examined the PP data of all 9 PX participants’ unit 3 sessions in 

depth to create a use case for each player. The data plot shown in Figure 5 

exists over a span of 10 seconds. The line plot indicates a player’s electro-



50 
 

dermal activity, or skin conductance, at any given moment. These data are 

shown to correlate with how “aroused” a person is in a non-valanced manner 

(e.g., this person could be experiencing frustration or engagement but is not 

experiencing apathy). The orange line indicates the chosen threshold. If this 

threshold is set too low (red line), too many false positives will be registered; if it 

is set too high (yellow line) too many significant reactions will be missed. I 

established a threshold of 7 (See Figure 5 Above) to define when a player’s skin 

conductance was at a high enough level to qualify as a spike, and then compiled 

a list of what the player was looking at and what was occurring to cause those 

reactions for each player (See Appendix G for complete list). Once the list of 

engagement triggers for each player was compiled, I compared the lists to 

determine if the players have differences in what engages them. 

Finally, I examined if the differences in engagement triggers aligned with 

any of the determining factors for the players’ pre/posttest outcome predictions. 

This allowed me a first look into whether certain virtual behaviors may be 

associated with affective responses, as well as whether moments, which learning 

analytics determine are indicative of improved pre/posttest performance, elicit 

any affective reaction. 

RQ1 Calculating Performance on the Field Test Assessment 

Player performance was determined from the 632 students’ scores on the 

external pre/post assessment given before and after playing MHS (Reeves, 

Romine, Laffey, Sadler, & Goggins, 2020). Because unit 3 only had 2 

assessment questions on the pre/post assessment, students could only receive a 
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score of 0,1, or 2 (See Table 4 on page 57 of chapter 4). The average score was 

a 1; so, students who scored a 0 were below average and were categorized as 

“Low”. Otherwise, students were categorized as “High” if they scored a 1 or a 2. 

Examining how the model links the pre/post assessment scores with players’ 

game logs, shows which in-game behaviors correlated with greater pre/post 

assessment gains.  

Feature Selection 

While I initially planned on including every variable and running Principal 

Component Analysis to reduce the feature set complexity to only the most 

predictive features; this ultimately did not turn out to be the best way to construct 

a model. The features used were chosen to optimize both the model's predictive 

power, and its usefulness. Each feature set (e.g., navigation logs, embedded 

assessment outcomes, tool interaction, quest completion times, etc.) were 

initially tested among many others for their expected relevance. Then each 

feature set was tested individually to validate its relevance in determining high vs 

low performing students. The results of this research were chosen as features for 

the final model. 

Predicting Field Test Outcomes 

Although this is a supervised method, the data that are put into the system 

entirely determine the outcomes of the algorithm. Table 2 shows an example of 

10 state update logs which were sent 20 times per second per player. In addition 

to player state logs, MHS had multiple unique “triggered” event logs that would 
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only be sent when a certain action was taken by the player such as completing a 

task, responding to dialogue, or using the in-game menu. During the field test 1.2 

million logs were collected in total. While I planned to enter all the player 

response data including player biographical info, interest results, game 

experience, and game feedback, these data ultimately did not improve the 

accuracy of the prediction outcomes in Unit 3.  

 
Table 2: A printout of 10 individual player state logs each containing a: log ID, classroom ID, build 
version type, install ID, player Name, player ID, timestamp, platform, session ID, teacher ID, log 
type, unit #, build version #, Player XYZ position, Player XYZ orientation, current Quest, current 
Task, and Scene Name. A more legible version is included in Appendix E. 

 

In the end, players were classified based on the logs according to their 

predicted post-test assessment. With this information I was able to determine 

what Unit 3 gameplay behaviors predicted success on the post assessment for 

my groups of PX students. While Random Forest became the exact algorithm 

used for this analysis, many were tested according to the above process until the 

best model was found. The Random Forrest Algorithm works by generating 

multiple decision trees for classification, and then ultimately selecting the class 
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chosen by the most trees. The 57 variables included in the model carry different 

weights of importance in the classification with the U3 pretest score being the 

most important variable. The top 20 variables and their relative weights are 

included in Table 3 below, and all 57 are listed in Appendix F. The algorithm's 

peak accuracy was 91%, but due to the variance created by initial conditions the 

actual expected accuracy converged to 84%. 

 
Table 3: A printout of the top 20 most important weighted variables in the model. If there is a 
conflict in sorting a player between two variables; the algorithm will classify the player according 
to the more heavily weighted variable.  

RQ2 Determining Emotional Response during Player Experience Testing 

Player reactions were collected through two primary means, a Tobii Eye-Tracker 

and an E4 bracelet. By using these two methods I was able to measure key 

elements of attention and engagement. These two measures combined gave me 

an accurate representation of when players got excited and what stimulated that 

reaction. 
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Using Eye Tracking to Determine Player Attention during Player Experience 

Testing 

The Tobii Eye-Tracker traces the reflection of users’ pupils to determine at what 

XY location on the screen they are looking. From the raw XY data, Tobii 

automatically compiles fixation and saccade data. While the saccades are 

essentially unseen sequences of time by the player as they move their eyes from 

one focus to another, the fixations are exactly what a player is looking at, during 

moments of focus. Tobii also compiles the fixations into gazes and scans. Gazes 

are periods of sustained fixation such as looking at a character or environment, 

while scans are much faster visual processing such as reading. After the 

sessions I analyzed the data to determine exactly what, and how much, players 

paid attention to in the game visually. Contrarily, if a player never looked at 

something in the game, I could be sure that they were at least visually unaware 

of it. 

Using the E4 Bracelet to Calculate Player Engagement during Player Experience 

Testing 

The E4 wristband is one of the least intrusive ways to collect Psychophysiology 

data from players particularly in comparison to facial EMG electrodes. The device 

slips onto any wrist in minutes and measures heart rate, temperature, and skin 

conductance. Spikes in skin conductance indicating emotional arousal allowed 

me to determine whether players were engaged or bored at any given time 

during play. By setting the threshold for skin conductance at 7, I was able to 

compile the list of interactions below of every moment (See Appendix G) of 

gameplay in U3 for which my PX participants were stimulated. By comparing 
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across all participants, I was able to determine the similarities and differences in 

emotional reactions to gameplay among players also detailed in chapter 4 below. 

Triangulating Game Behaviors, Player Experience, and Assessment 

Performance 

Although Learning Analytics and Psychophysiology studies have been done 

independently on learning games in the past, the gap this study begins to fill is 

putting the two together. Is the player’s emotional reaction a good indicator of 

whether they will repeat a failing game strategy or change it? Can player 

emotions be extracted or predicted from in game behaviors? These are the 

questions that this study begins to explore. With much larger numbers of 

participants generating PP data, it would have been possible to add the 

emotional responses directly into the machine learning algorithm detailed above 

to determine the most distinguishing behaviors associated with each reaction. 

However, while this PX case study has far too few participants for those results 

to be generalizable at all, the current study will evaluate methods and provide 

insights needed to make a larger sample size study most productive. 

RQ3 Predicting Pre/Post Assessment Performance based on Player Experience 

By examining the outcomes of the posttest outcomes for each of the players in 

the PX testing; I was able to begin to look at how different emotional reactions 

may be related to the patterns of learning outcomes for each group. For example, 

being stimulated by certain avatars may cause a rise in attention to the curricular 

content delivered by that avatar. Or reactions to embedded assessment items 

could indicate whether the player was confident, guessing, or surprised by their 
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outcome which may help to gauge player’s mastery level of a particular learning 

objective. Noting similarities and differences in the PP results of the PX 

participants as well as their post assessment outcomes, is a good first step 

toward finding an indication that the players’ emotional reaction impacts their 

performance. If it is possible to correlate PP and assessment outcomes; it may 

be possible to develop a hypothesis that could be tested with larger sample sizes 

to build predictive models. With greater numbers it would be possible to 

empirically validate whether certain PP reactions were indeed predictive of 

posttest performance outcomes. 

RQ4 Predicting Player Experience based on in Game Behaviors 

Finally, by examining the previously generated model’s features to determine 

which behaviors defined each group we can begin to determine if any gameplay 

behaviors may indicate certain emotional reactions from players. For example, if 

successfully planting seeds in each garden tends to produce an arousal that may 

indicate the player is feeling confident in their seed planting. Conversely if a 

player misses all the gardens and has an arousal that may indicate they are 

frustrated. By finding whether certain key defining gameplay behaviors for the 

model’s clusters are associated with engagement-related events, we can begin 

to get an indication of how a player’s emotional experience can be determined by 

their gameplay and how that may be impacting their eventual learning 

performance.  An interesting example pattern would be player’s getting aroused 

after placing the first seed in an incorrect garden, then subsequently planting the 

seeds in the correct gardens. A pattern like this may indicate that the player was 
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initially confused by the task, but after reflecting was able to improve their 

performance. Depending on the complexity, and of course the validity, of these 

emotional gameplay signatures, it may be possible in the future to check specific 

behavioral heuristics during gameplay to identify emotional reactions without any 

Psychophysiology measures.  
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Chapter 4: Results 

What are the Virtual Behaviors which predict high 

performance outcomes in MHS? 

RQ 1 utilizes insights gained through learning analytics to begin to answer this 

question. The answer to this question is a Random Forrest Model containing 57 

various gameplay behaviors which can all be found in Table 4. Although these 

predictive virtual  

U3 Pre-test Score dungeon Explored Area U2 argument Level U3 Same Area Sensors 

U3 Post-test Score explored Area U2 bigger Arg Score U3 Clean Sensors 

U3 Pre-test 
Performance dialogue Ave Speed 

U2 Jasper Critique 
Score U3 Downstream Clean 

U3 Post-test 
Performance hover Node Freq 

U2 Backing Info Menu 
Node frequency U3 Garden Score 

average Speed U1 argument Level 
U2 Chat Log Menu 

Node freq U3 Reasoning 1 

trigger Number U1 tutorial Arg Score 
U2 Crash Diagnostics 

Menu Node freq U3 Reasoning 2 

movement Number 
U1 Backing Info Menu 

Node 
U2 Help Menu Node 

freq U3 Reasoning 3 

mission Complete 
Number U1 Chat Log Menu Node 

U2 Map Menu Node 
freq U3 Reasoning 4 

State Update Number 
U1 Crash Diagnostics 

Menu Node 
U2 Quest Menu Node 

freq U3 Reasoning 5 

dialogue Number U1 Help Menu Node U3 Crate fails U3 Claim I 

arf Related Number U1 Map Menu Node U3 Crate successes U3 Claim II 

hot Key Number U1 Quest Menu Node U3 Crate Score U3 Evidence A 

toggle Number U2 find Team Ave Score U3 Polluted Sensors U3 Evidence B 

jump Number U2 CREI Score 
U3 Downstream 

Polluted U3 upstream Arg Score 

arg Number    

Table 4: This table shows the 57 variables in the LA model that were determined to be predictive 
of students Unit 3 posttest outcomes. 
 

behaviors were modeled from the 806 Field Test participants, the results shown 

in the Appendix are the 57 specific log values for each of the 4 PX participants.  
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Table 5: This shows the model prediction outcomes for my PX participants whose gameplay logs 
could be included in the Learning Analytics modeling. 
 

Table 5 shows how participants were classified according to high and low 

performance on the posttest and the model’s accuracy percentage for just these 

4 participants. High performance is defined as achieving high scores (1 or 2 out 

of 2) on the post assessment as described in the Data Collection Section above. 

Low performance would then be relatively low scores (0 out of 2) on the same 

post assessment. While performance can also be viewed as the gains players 

made from their pre-test score to their post test score, using gain scores 

essentially doubles the classification complexity from 2 groups (Low vs High) to 4 

groups (LL, LH, HL, HH) and was out of scope for this exploratory study. The 

benefit of having a large, diverse population of participants from the 2019 field 

test created a wide distribution of high and low performance across the entire 

group. In this case, there ended up being 449 High performers and 183 Low 

performers in the field test, and 3 High performers and 1 Low performer in my PX 

test (shown here in Table 6). 

 

 

Table 6: This shows the posttest performance outcomes for my PX participants whose gameplay 
logs could be included in the Learning Analytics modeling and their respective coding. 
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Once the performance data distribution was established and classified, 

various Clustering methods such as Random Forrest and Tree Bagging were 

used to identify patterns in groups of players at either end of the performance 

spectrum. For example, depending on the context of a certain task, a shorter 

time to completion could be either an indicator of successful performance (e.g., 

finding the team in Unit 2 quickly by using the map) or an indicator of poor 

performance (e.g., failing the garden task quickly by choosing the closest, but 

wrong gardens). The results of this research question are a set of virtual 

behaviors which differentiate between high and low posttest performance 

outcomes. The complete list of features chosen are listed in Appendix G. 

  

Table 7: Six of the top ten most predictive features out of the fifty-seven features selected in total 
to construct the model predicting posttest performance for Unit 3 with their respective values from 
4 PX participants as examples. 
 

Table 7 shows some interesting LA findings. In total 57 features (See 

Appendix F for complete list note the logs in the bottom column are all specific to 

Unit 3 gameplay) were used to predict players’ U3 posttest performance with an 

accuracy of 84%. This Table contains just 6 of these features, which are 

particularly understandable and actionable. These 6 items were also all among 

the top 10 weighted variables in the model, meaning they were among the 10 

most predictive variables. Pre-Test performance was one of the top weighted 
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variables in multiple models tested. Students who scored high on the test before 

playing were almost always more likely to score high on the same test after 

playing than those who scored low on the pretest. “U3 Garden Score” was a 

calculated value indicating performance on the third task, which happens to be 

the summative embedded assessment item for Unit 3. In the case of my PX 

participants, JG UX 3 had the lowest score on this item and was also the only 

Low performer in the post test. “U3 Crate Fails” on the other hand is the first task 

of the unit, and JG UX 2 actually had the worst score, this is a good example of 

why some items such as pre-test scores carry more weight than others. 

“Dialogue Number” and “Movement Number” are not unit 3 specific values but 

rather a count of the total dialogue and movement the player has experienced. 

However, the second task in this unit involves quite a bit of movement in order to 

trace a pollutant back to its source. A low value here may indicate that players 

performed well on this task even though this pattern does not seem to be present 

in my PX participants data.  In summary these 57 behaviors when taken together 

can accurately predict a player’s outcome 84% of the time, and the 6 behaviors 

discussed here are among the most predictive of all the variables. 

What are the specific Psychophysiology (PP) patterns 

that indicate embodied motivational processes such as 

attention and engagement, and what game features 

elicit those patterns? 

RQ 2 is primarily a Psychophysiology question. Examining users’ eye tracking 

data during EDA spikes measured with the E4 bracelet as described in the 
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Analysis section above resulted in a set 28 of in-game PP events (Listed in Table 

8, See Appendix G for the values and descriptions, note event totals tally all PP 

reactions) when the players 

Sam Morning Arg Final Crate 4 Cube Tutorial 

Same Base 1 Battery Cutscene Sam "Ta Da!" Dungeon Cinematic 

Crate Cutscene Sam Garden Intro 1st Sensor First Pump 

Toppo Video Garden Pump Halfway Dungeon Complete 

Crate 1 Super Tree 3 clean in a row First Garden 

Crate 2  Alien Ruins Holo- Toppo Second Garden 

Crate 3 Key Finish Arg 1 Last Garden 

Table 8: This shows the 28 in game events that generated EDA spikes in the 9 PX participants. 

 

entered the affective arousal state, a.k.a. their EDA rose above the threshold set 

at 7. There were many interesting insights identifiable from even this small 

sample of nine participants (see Table 9). One example of a feature which 

consistently seemed to elicit engagement was Face-to-face interaction with the 

non-playable character (NPC)  

 

Table 9: PP data from 9 PX participants showing the total number of PP events each experienced 
as well as the top 5 in game events generating PP reactions. 1 indicates the player had a PP 
reaction at that moment and 0 indicates they did not. 
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avatars, which in the case of Unit 3 was Sam and Holo-Topo. Both times players 

interacted with Sam in this way over half of the players had PP events (n=7, and 

n=6). There was also one interaction with a Hologram NPC, Holo-Topo, which 

resulted in 5 players having PP events. After that cutscenes, small spans of non-

playable gameplay in which there is usually more detailed and important 

animation being shown, seemed to generate engagement (n=7 and n=5). There 

were many other events: dialogue statements, quest updates, item interaction, 

and task completion, which produced PP events in less than half of the 

participants (n=1-4) that have been detailed in Appendix G. The final interesting 

result is noting the lack of PP events in the final third of the unit. There is 

interaction with Sam towards the beginning, and interesting cutscenes in the 

middle, but the last quest of the unit lacks either of these resulting in no major PP 

events. In summary, it appears that NPC interaction, and cutscene viewing are 

two of the most stimulating features of Unit 3 in Mission HydroSci. 

How and to what extent can high or low performance be 

inferred from the cognitive-affective state of players? 

 

Table 10: PP data from 4 PX participants showing how the PP events relate to PX participants’ 
Post Test performance. This portion shows 4 events that were only experienced by the Low 
Posttest performer and 1 event experienced by all PX participants.  
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RQ 3 is the first triangulation question. It begins with the results from RQ 2 and 

applies the analysis of RQ 1. The results for this analysis are detailed in the 

bottom row of Appendix G. “High” or “Low” indicate that a PP event was 

experienced (i.e., in game event caused EDA stimulation ABOVE the threshold 

level) by ONLY high or low post test performers respectively. This is the most 

important result for this research question, even though unfortunately there were 

no “High” events found. Other than “Dungeon Cinematic” the other 3 "Low” 

values are all on embedded assessment items, possibly indicating the player was 

confused or frustrated, rather than engaged, with the feedback and results they 

received (See Table 10 above). Next in order of importance would be “2H” and 

“1/1”. These values are inverses of each other indicating the low performer  

 
Table 11: PP data from 4 PX participants showing how the PP events relate to PX participants’ 
Post Test performance. This portion shows 4 events that were only experienced by 2 High 
Posttest performers and 2 events experienced by 1 High and 1 Low PX participants. 

 

reacted the same as one of the three high performers (See Table 11 above). 

With a much larger data set (such as the 632 in the FT) this sort of overlap would 

be expected between the groups of performers. However, with this small sample 

it is not possible to determine if this pattern is generalizable. Next least important 

is the “2/1” value. This indicated that 2 high performers experienced the same 

reaction as the low performer, if this pattern continued at scale, it would not be 
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very informative. Finally, least indicative of a relationship, and therefore least 

important are the ”All” and the “None” values. While it is great for engagement if 

an in-game event reliably excites all players who experience it, those data are 

not helpful for distinguishing between high and low future posttest performance. 

“None” indicates that while some of my PX participants experienced a PP event, 

none of the participants with log data experienced one. If this pattern continued 

at scale, it may be too weak a signal to be useful for model construction.  

One limitation of this study is the lack of valence measurements to 

accompany the E4 arousal data. These data could indicate that a student was 

frustrated rather than excited, perhaps at receiving poor feedback on various 

tasks. There were 2 events which resulted in 1 high performer and 1 low 

performer reacting. With more participants this could end up being an event in 

which most high performers do not react indicating low performance. All the other 

events had 2 or more of the high performing players aligned with the single low 

performing player, which correlates with the overall majority of players rather 

than a specific subgroup of performers. Unfortunately, due to the low number of 

participants in the PX study (n = 9) and the even lower number whose logs were 

not corrupted (n = 4); these results are not as predictive as are the results from 

RQ1; however, they are good indications of areas for interesting future research. 

While these results do not have enough participants to test whether PP events 

can be predictive of posttest performance, this method of data representation 

and analysis would make sense for testing that hypothesis at scale.  



66 
 

How and to what extent can the cognitive-affective state 

of players be inferred from virtual behaviors? 

RQ 4 is the second triangulation question and the inverse of RQ 3. This question 

starts with the results from RQ 1 and then applies the analysis in RQ 2. The 

driving curiosity behind this question is if we have successfully identified 

indicators that lead to specific pre/post assessment outcomes through Machine 

Learning Analysis of logs and player behaviors, and those patterns correlate with 

specific PP event reactions; then it may be possible to detect those player 

reactions through gameplay behaviors. These results are detailed in the bottom 

highlighted section of Appendix F and a selection related to the embedded 

assessment tasks in U3 are in Table 12 below. During the crate return task, the 

first task of the unit, there were 2 events which only the low performer reacted to. 

Upon checking the results, the low performer only successfully returned 2 crates 

(the fourth crate is not present in the logs). Because these crate successes and 

failures are tallies it is not possible to determine whether the low performer 

reacted negatively to  

 
Table 12: This table shows the LA results from the embedded assessment tasks in U3. JG UX 3 
ended up being the Low Performer and their results show them on the outskirts of performance 
even among these 4. Looking at the PP events during these embedded assessments also 
indicates that JG UX 3 was reacting to some of these events perhaps feeling confusion or 
frustration for performing poorly. 
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their 2 failures, positively to their 2 successes or a combination of both. However, 

it does seem like variance in the performance of this task may be related to PP 

reactions during the task and eventual assessment performance. The only PP 

result from the pollution task (second task of the unit) was that 2 high performers 

reacted to the “halfway to the pollution” feedback dialogue. Upon inspecting the 

feature data from the log those 2 players also spent the least amount of time 

downstream in polluted portions of the river. This result may indicate that the 

dialogue statement positively reinforced students who were already succeeding. 

While the garden task did have one event (the first garden planting) where 2 high 

performing users reacted, this did not correlate with any pattern in the log feature 

data. This could be due to the data being condensed into a single score for this 

embedded assessment task and may indicate some value in adding the first 

garden planting’s results into the performance prediction model.  
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Chapter 5: Conclusion 

Overview of Findings 

Prior to this study LA have been used to gather interaction data and predict student 

performance outcomes, and PP has been used to get an in depth look at how media consumer’s 

subliminally experience media, but rarely have the two been used in conjunction. This study is 

intended to be an initial exploration of the impact PP data could have on the LA prediction 

process and results during game-based learning. The first two RQs ask straightforward LA and PP 

questions regarding what the predictors of posttest performance in MHS are and what are the 

in-game events which cause players to become stimulated. While these questions have both 

been asked and answered many times in other contexts it was important to establish these 

findings within the MHS context. The final questions examine two possible ways the data could 

be used in conjunction to enhance the outcomes they traditionally support. One possibility 

being to better predict learning outcomes by incorporating learners’ subliminal reactions into 

the prediction process, and another being using LA methods to predict PP events without 

requiring the advanced physical sensors. To this end a variety of methods have been employed 

during a summative Player Experience test of MHS including clustering, eye tracking, and PP 

data collection. The initial findings are lists of LA and PP variables that were shown to be 

important, and the latter findings are explorations into how the data could be used together.  

Discussion of RQ1 Findings 

What are the Virtual Behaviors which predict high performance outcomes in MHS? 

This study found 57 behaviors (See Appendix F) that predict a high performance on the 

Unit 3 questions of the MHS posttest. While these specific findings are novel and grounded in 

the context of MHS, they align with previous research on serious games and learning analytics. 
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One specific example of the relationship between in-game behaviors and players’ learning 

processes was found in the study by Martinez-Garza and Clark (2017) mentioned earlier, which 

emphasized the impact of prior knowledge on players problem solving vs guessing behaviors. 

Our findings build upon this growing body of research by providing further evidence of how 

guessing during gameplay on tasks such as the Unit crate collection, pollution testing, and 

garden planting tasks can negatively impact the learning outcomes. These findings can be 

utilized in 3 interesting ways. Most directly this classification can be used on a student-by-

student basis to alert teachers of potential player learning issues before they finish MHS and 

complete the posttest, allowing them to intervene and potentially course correct that student. 

With additional programming these findings could be directly incorporated into the game so 

that the gameplay dynamically course corrects players automatically as they play. For future 

researchers, while these results are specific to this MHS context there may be a pattern among 

the patterns of various serious games and this study provides one more data set to help 

determine that. Perhaps different genres (e.g., 3D adventure vs 2D puzzle) tend to have 

different predictor behaviors or perhaps games designed for different ages. The more studies 

done like this, the closer we are to finding that out.  

Discussion of RQ2 Findings 

What are the specific Psychophysiology (PP) patterns that indicate embodied motivational 

processes such as attention and engagement, and what game features elicit those patterns? 

 The specific pattern to identify these embodied processes was measuring a GSR spike 

above 7 using the E4 wristband during a Gaze period detected by the Tobii Eye Tracker. 28 

features (See Appendix G) were discovered to elicit a reaction in at least one of my participants. 

Again, these individual findings were specific to the MHS context, but overall, these 

psychophysiological findings support the same findings as Nacke and Lindley (2008), that 
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psychological states, such as positive emotions and arousal, can be accurately derived from 

physiological responses during gameplay; providing insight into the cognitive and affective 

processes involved in game experiences. The key takeaways here were identifying two key 

contexts that repeatedly caused spikes for my participants. The first context was NPC 

interaction. When a human face came on screen most participants were immediately engaged 

and attending to it. This could be because NPC interactions are somewhat infrequent in MHS 

(only 3 in the hour-long unit 3 gameplay), however as these NPCs are often vehicles for 

conveying curricular content; this finding is very interesting for serious game designers. The 

second engaging context across users were in-game cutscenes. These are more expected to be 

exciting as they often show more complex animations and interactions, like explosions. With 

knowledge like this serious game designers are better equipped to keep their students engaged 

and deliver content in ways that players will pay attention to. 

Discussion of RQ3 Findings 

How and to what extent can high or low performance be inferred from the cognitive-affective 

state of players? 

 By incorporating these PP data as inputs into a traditional LA data pipeline and analysis 

process it is possible to determine if performance can be inferred from a player’s cognitive-

affective state. While this study was small and exploratory, 4 states were found to be correlated 

exclusively with low performance indicating this may be a signal of a struggling student. In 

addition, 5 states were found to be correlated with a majority of high performers indicating that 

with a greater population these may also be powerful predictors. While we cannot judge the 

generalizability of these specific findings they do offer new directions for serious games research 

that have long been supported by the literature. As Chittaro and Buttussi, (2015) confirmed the 

relationship between intense emotional reactions and memory recall in a learning game, 
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findings like this, if validated at scale, would provide a rich new insight into the broader 

connection between emotional reactions and learning in serious games. Deeper insight into not 

just what behaviors predict learning, but what learners’ reactions to those behaviors mean will 

help begin to narrow down precisely when and how learning occurs; so ultimately better 

learning experiences can be designed.  

Discussion of RQ4 Findings 

How and to what extent can the cognitive-affective state of players be inferred from virtual 

behaviors? 

 If PP reactions are known to have an impact on learning; it, then becomes important to 

identify PP states as efficiently as possible. By targeting these PP states as outcomes of our 

traditional LA data pipeline and analysis process it may be possible to infer the cognitive-

affective state of a player from virtual behaviors. The results of this study showed all 3 of the 

main tasks and embedded assessments were both included in the LA model for predicting 

posttest performance, as well as the list of items that triggered PP events. These exploratory 

data indicate that players were reacting to their in-game task performance, a key learning 

predictor. Specifically, players who have PP reactions to successful performance may perceive 

that they are making valuable progress and may be motivated to continue learning. On the 

other hand, players who have PP reactions to unsuccessful performance may feel frustrated and 

understand that they are not learning effectively. This is the most novel finding of this study. 

Mapping out what in game behaviors, such as successes or failures are likely to trigger certain 

PP states could allow for a purely behavioral model that first predicts a player’s emotional state 

and then makes a more confident prediction on performance. Validating that players are 

reacting to their in-game performance could be an initial indication they are subliminally aware 

of whether learning is taking place. This finding would be valuable to learning researchers trying 
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to identify the process as well as serious game designers testing whether in-game feedback is 

effective. 

Future Directions 

Help for Learning Analysts 

Choosing an appropriate Learning Analytics method involved a rigorous process 

of exploring a variety of models and assessing their accuracy in predicting 

posttest results based on player performance. Tree Bagging was another method 

considered, however it’s prediction accuracy on the training data was only 82%. 

Ultimately the Random Tree Forest model demonstrated the best model fit for 

this data with a prediction accuracy of 84%. Its ability to handle nonlinear 

relationships and interactions among variables, combined with its high accuracy 

and robustness, made it the ideal choice for predicting player performance in my 

study. The careful selection of this model helped ensure that my results were 

reliable and relevant, and while the same method might not work for all serious 

games, the same method testing process should work for any project. 

Logging “everything” is the ultimate desire for any big data specialist but is 

not exactly practical development-wise or analysis-wise. These results from the 

PP methods described above can help to identify important types of events which 

may not currently be captured. Important curricular items like embedded 

assessments should be examined in detail to determine if and where players 

may be having PP reactions, such as the results of the first garden planting task. 

Additionally non-curricular items like NPC interactions and cutscene viewing time 

could be counted to determine in general how engaging of an experience the 
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player is having. By having a greater sense of how game features impact a 

player's experience, researchers would be able to better understand how that 

experience relates to previous and subsequent behavior. With better 

measurement tools, greater numbers of participants, and more automated data 

processing it would be possible to incorporate PP results directly into the LA 

performance prediction model providing much richer insights into the Learning 

Process.  

Help for Psychophysiology Researchers 

Games are playful emotional environments. This media provides a different 

context for rich insights into the user's learning experience, focused on engaging 

with media rather than passively consuming it. Chittaro and Buttussi (2015) found 

that emotional intensity can increase memory retention. My exploratory study 

also found a correlation between participants PP states, in game behaviors, and 

learning outcomes. Giving participants a more active, emotionally charged, role 

could help uncover new methods and insights for PP analysis. With more 

technology focused on non-linear dynamic eye-tracking, and more PP analysis 

automation, much larger studies can be run with greater insights being 

discovered. 

Help for Serious Game Designers 

Tailoring game development to a specific audience requires intense formative 

assessment with large amounts of user feedback to assure that the final product 

appeals to them. The kind of PX testing described above gives an extremely 
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deep perspective of play-testers experience which can in turn help serious game 

designers create more engaging and effective learning experiences. For 

example, in an early pilot test version of the game a small water drip animation 

would play when the players emerged from underwater that consistently 

produced PP results like the face-to-face NPC interaction found above. 

Designers could utilize these known stimulating game features to increase 

players engagement and attention either at key moments of curricular content or 

during slow portions of the unit such as the final third of unit 3 examined above. 

Help for Learning Researchers in General 

This is the Golden Age of Brain Research and to drive discovery we need to be 

constantly finding new ways to dive deeper into learning minds before, during, 

and after the actual moments where learning happens to uncover the contexts 

and processes that enable it to occur. By exploring how to map out the learning 

process for a large number of users in entirely defined contexts, we can begin to 

find the patterns and anomalies. Those patterns help define new theories, while 

the anomalies help drive experimental testing to determine the limits of those 

theories. The technology and time are ripe for these results; however, studies like 

this will require rich, controlled learning environments to provide highly detailed 

data to fuel the research. This will only come with more Serious Game 

development research like MHS as well as more supporting technology and 

interest in measuring the Player Experience within those games.  

Limitations 
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A limitation of this study was the use of only 9 participants. Due to the limited 

knowledge and lack of prior large-scale studies on these Psychophysiology 

phenomena, it is not appropriate to ask teachers and students to use their class 

time setting up and using the potentially burdensome artifacts required to collect 

the Psychophysiology data of this study on a significant number of students. Due 

to this limitation, the PP portions of this study are being approached as 

exploratory rather than as experimental. In the future it may be possible to have 

participants in each class wear an E4 bracelet or another Psychophysiology 

collection device during play. By distributing the devices among all participating 

classes in a large field test, such as the one used for the analytics portion of this 

study, it may be possible to achieve a significant number of participants. 

The second major limitation of this study stems from our lack of access to 

a usable and scalable facial EMG system. The long-term purpose for which this 

study is an initial step, is to investigate the benefits of incorporating PP data into 

the LA process. To that end the process for acquiring the PP data must be 

scalable to generate the large amounts of data necessary for the analytics to 

produce accurate usable results. While not having EMG is a limitation of my 

dissertation study, I hope to include it in future studies; if I can find a less 

intrusive sensor to collect the data. 

The third limitation of this study is the use of linear static eye tracking 

during gameplay. This resulted in the eye-tracking being analyzed separately and 

in a much more time-consuming, and probably less insight generating, manner. 

After conducting this exploratory study, I have found GazeMapping by iMotions 
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which can collect facial EMG through webcams and does not require training to 

set up properly. Using this or another “nonlinear dynamic eye tracking solution” 

would enable us to automate the eye tracking analysis into our usual learning 

analytic pipeline. 

Conclusion 

Michio Kaku described these times as the golden age of brain research. His statement sets the 

stage for risky research and inspires researchers to make big breakthroughs. This exploratory 

study has been a small first step into taking these risks and making these breakthroughs. 

Discerning the impact that a player’s emotional experience has on their learning outcomes could 

pave the way for deeper discoveries and insights. Player’s take notice and respond positively to 

in-game characters and cutscenes, and this spike in attention and engagement may be able to 

be harnessed by serious game designers for delivering key instructional content. Ensuring games 

are designed, developed, and tested not just from a behavioral perspective but also from an 

emotional perspective will be an important next step towards these goals. 

The present study aimed to enhance our understanding of the role of PP data in predicting 

player performance in the context of learning games. The results suggest that it may be feasible 

to use PP data to predict player performance, and additionally that LA may be useful in 

predicting player arousal states. This study contributes to the growing body of research on the 

importance of PP and LA in game-based learning, and by continuing to identify the types of in-

game behaviors that trigger psychophysiological reactions, serious game designers will be better 

able to deliver key instructional content for maximizing learning outcomes. 

Future research should continue to explore the use of psychophysiological data in game-based 

learning, with a focus on developing more accurate and efficient methods for measuring and 
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analyzing these data. Additionally, future studies could investigate the impact of specific game 

features and design elements on psychophysiological responses and learning outcomes. 

Ultimately, a more comprehensive understanding of the role of psychophysiological experiences 

in game-based learning could lead to the development of more effective and engaging learning 

games. 
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Appendices 

Appendix A - Unit 3 Assessment Items 

For the following items, refer to the image below, which represents an overhead view of a 
watershed 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14. Suppose there is pollution at Site D, which location would you expect would become polluted? 

A. Site F B.   Site E C.   Site G D.  Site B  
 
For the following items, refer to the image below, which highlights the Mississippi River 
watershed, which is outlined by a dashed line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
17. The image above highlights the Mississippi river watershed. If the red dots indicate polluted 
water and the blue dots indicate clean water, where is the most likely source of the pollution? 

o A   
o B   
o C   
o D   
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Appendix B – Pre and Post Test Scores 

 



80 
 

Appendix C - Player Experience Protocol 

 
Pre PX Testing 

1. Schedule Participant 
2. Reserve the Collab and Study Room 
3. Make sure “MHS Spring FT 18.exe” is installed on the computer 
4. Charge the E4 Bracelet 

 
 

PX Testing 

1. Greet Participant 
2. Have Participant’s parent sign Consent Form 
3. Have Participant sign Youth Assent Form 
4. Orient Participant to the activities for the day 
5. Calibrate Tobii Eye Tracker and E4 Bracelet for Participant 
6. Have Participant play “MHS Spring FT 18.exe” 
7. Help Participant only when directly asked 
8. Debrief Participant with PX Interview Questions 
9. Give the Participant a gift card 

 

 

Post PX Testing 

1. Transfer the Eye Tracking Video and PP data stream to the external HDD 
2. Return the Tobii Eye Tracker to the IE Lab 
3. Return the external HDD and the E4 Bracelet to MULE Games 
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Appendix D - Player Experience Interview Questions 

What did you all think of MHS? 
 

Was it fun? 
 
        What was your favorite part? 
        What was your least favorite part? 
        What would you change about it?  
 
Did you feel like you learned anything by playing MHS? 
     
        What did you learn? 
        Did you think MHS was a fun way to learn science, or not much better than regular 
science lessons? 
 
If we wanted students to learn even more about water systems while playing MHS, do 
you have any suggestions for how we could improve MHS? 
 
What did you think of the story? 
         
        Was it interesting? Did you like it? 
        Was anything confusing or did you have any questions about it? 
     
    What would be some good rewards for completing missions in the game? 

What fun stuff should we add to the game? 
 
What did you think of the first level on the space station before it crashed? 
     
    Do you feel like it was a good way to get started in the game? 
         

Were you ever confused on what to do? 
 

What did you think of the characters? 
             

        Who was your favorite? 
        Who was your least favorite? 
        What would you change about them?  
 
What did you think of exploring the outside environments like the mountains, river valley, 
and desert? 
 
    Was it fun to explore the environments? 
 

    What was your favorite? 
        What was your least favorite? 
        What would you change about those parts?  
 
    Did you find any of our secrets or collectibles? 
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        What did you find? 
        Would you like more of that stuff? 
 
What did you think of exploring the Alien Ruins with the power cubes? 
 
    Was it fun to explore the Alien Ruins? 
 

    What was your favorite part? 
        What was your least favorite part? 
        What would you change about the ruins?  
 
    What was your characters purpose for going through the puzzles? 
         
        What did you find? 
        Would you like more of that stuff? 
 
What did you think of the Argumentation System with the drag and drop circles? 
 
    Was it fun to make the Arguments? 
 

    What was your favorite part? 
        What was your least favorite part? 
        What would you change about the argumentation? 
  
We have heard that some players may have just guessed while doing the arguments. 
Tell us how you figured them out? 
 
    Did you read each of the options before trying one? 
    Did you read each of the feedbacks, and were they helpful? 
    Was there a point when you stopped reading the feedback? 
 
    What was your character's purpose for making the arguments? 
         
    Would you like more chances to do arguments in MHS? 
 
What did you think of the final mission to the moon? 
 
    Was it fun? 
    Was it scary or tense? 
    What would you like to see happen at the end? 
 
Thanks for all your help today….one last question…..if you could make any change to 
MHS that you wanted what would it be (not counting bugs, crashes or slow 
performance). 
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Appendix E – Example Log Data From MHS 
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Appendix F – LA Model Values for PX Participants 
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U3 Pre-test Score 
Raw Assessment Score out of 

2 
U2 argument 

Level 

The number of times the 
player attempted the 

argument.  

U3 Post-test 
Score 

Raw Assessment Score out of 
2 

U2 bigger Arg 
Score 

Argument Success 
Outcome (2=completed; 

1=hints; 0=failed) 

U3 Pre-test 
Performance 

Raw Score Classification 
(H=1 or 2 & L=0) 

U2 Jasper 
Critique Score 

A normalized value of how 
many attempts the player 

used to critique. 

U3 Post-test 
Performance 

Raw Score Classification 
(H=1 or 2 & L=0) 

U2 Backing Info 
Menu Node freq 

The amount of time the 
player viewed the backing 

info. 

average Speed 
The Average Speed it took 
players to complete a task. 

U2 Chat Log 
Menu Node freq 

The amount of time the 
player viewed the chat log 

menu. 

trigger Number 

The total number of 
"triggered" events players 

interacted with. 

U2 Crash 
Diagnostics Menu 

Node freq 

The amount of time the 
player viewed the crash 

diagnostics. 

movement 
Number 

A normalized value of how 
much the player moved 

throughout the unit 
U2 Help Menu 

Node freq 

The amount of time the 
player viewed the help 

menu. 

mission 
Complete 
Number 

Percentage of how much of 
the total Game the player 

completed  
U2 Map Menu 

Node freq 

The amount of time the 
player viewed the map 

menu. 

State Update 
Number 

A normalized value of how 
much the player's state 

change throughout the unit 
U2 Quest Menu 

Node freq 

The amount of time the 
player viewed the quest 

menu. 

dialogue Number 

A normalized value of how 
many dialogue statements the 
player encountered dialouge.  U3 Crate fails 

The number of crates the 
player threw into the 

wrong river. 

arf Related 
Number 

A normalized value of how 
many times the player 

interacted with the arf menu. 
U3 Crate 

successes 

The number of crates the 
player threw into the 

correct river. 

hot Key Number 

A normalized value of how 
many times the player used 

hot keys. U3 Crate Score 

A normalized value of how 
successful the player was 

with the crates. 

toggle Number 

A normalized value of how 
many times the player toggled 

the escape menu. 
U3 Polluted 

Sensors 

The number of sensors 
the player threw in 

polluted water. 

jump Number 

A normalized value of how 
many times the player 

jumped.  
U3 Downstream 

Polluted 
The amount of polluted 

area the player explored. 

arg Number 

A normalized value of how 
many times the player 

attempted the argument. 
U3 Same Area 

Sesnors 

The number of sensors 
the player threw in areas 
they already explored. 

dungeon 
Explored Area 

A normalized value of how 
much the player moved inside 

the dungeon.  U3 Clean Sensors 

The number of sensors 
the player threw in clean 

water. 
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explored Area 

A normalized value of how 
much the player moved 

around the exterior terrain. 
U3 Downstream 

Clean 
The amount of clean area 

the player explored. 

dialogue Ave 
Speed 

The average amount of time 
dialogued statements 
remained on screen.  U3 Garden Score 

A normalized value of how 
successful the player was 

with the gardens. 

hover Node Freq 

The number of times the 
player got off and on the 

hoverboard.  U3 Reasoning 1 

The amount of time the 
player viewed the first 
reasoning statement. 

U1 argument 
Level 

The number of times the 
player attempted the 

argument.  U3 Reasoning 2 

The amount of time the 
player viewed the second 

reasoning statement. 

U1 tutorial Arg 
Score 

Argument Success Outcome 
(1=completed; 0=failed) U3 Reasoning 3 

The amount of time the 
player viewed the third 
reasoning statement. 

U1 Backing Info 
Menu Node 

The amount of time the player 
viewed the backing info. U3 Reasoning 4 

The amount of time the 
player viewed the fourth 

reasoning statement. 

U1 Chat Log 
Menu Node 

The amount of time the player 
viewed the chat log menu. U3 Reasoning 5 

The amount of time the 
player viewed the fifth 
reasoning statement. 

U1 Crash 
Diagnostics 
Menu Node 

The amount of time the player 
viewed the crash diagnostics. U3 Claim I 

The amount of time the 
player viewed the first 

claim statement. 

U1 Help Menu 
Node 

The amount of time the player 
viewed the help menu. U3 Claim II 

The amount of time the 
player viewed the second 

claim statement. 

U1 Map Menu 
Node 

The amount of time the player 
viewed the map menu. U3 Evidence A 

The amount of time the 
player viewed the first 
evidence statement. 

U1 Quest Menu 
Node 

The amount of time the player 
viewed the quest menu. U3 Evidence B 

The amount of time the 
player viewed the second 

evidence statement. 

U2 find Team 
Ave Score 

A discretized and then 
normalized value of how long 
the player searched for the 

team. 
U3 upstream Arg 

Score 

Argument Success 
Outcome (2=completed; 

1=hints; 0=failed) 

U2 CREI Score 

A normalized value of how 
many attempts the player 

used to classify arguments.   
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Appendix G – PP Moments for PX Participants 
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Sam 
Morning 

The dialogue statement telling the 
player to go see Sam  Arg Final 

A dialogue statement letting the 
player know they finished the 

argument. 

Same 
Base 1 

The first time the player sees Sam in 
the Unit. 

Battery 
Cutscene 

A cutscene showing the 
polluted battery being dug up. 

Crate 
Cutscene 

The cutscene first showing where 
the crates are. 

Sam Garden 
Intro 

The player sees same for the 
second time in the unit. 

Toppo 
Video 

A short video explaining 
downstream pollution. 

Garden 
Pump 

A cutscene introducing the 
garden pumps. 

Crate 1 

A cut scene showing whether the 
players succeeded or failed when 

they threw crate 1. Super Tree 

A cutscene showing the super 
tree when the player first 

discovers it.  

Crate 2  

A cut scene showing whether the 
players succeeded or failed when 

they threw crate 2. Alien Ruins 
A cinematic cutscene showing 

the player the alien ruins. 

Crate 3 

A cut scene showing whether the 
players succeeded or failed when 

they threw crate 3 Key Finish 

The player successfully 
completing the key puzzle to 

enter the dungeon. 

Crate 4 

A cut scene showing whether the 
players succeeded or failed when 

they threw crate 4. 
Cube 

Tutorial 
A cutscene showing the players 

how to use the cubes. 

Sam "Ta 
Da!" 

The cut scene showing Sam’s new 
base after receiving the crates. 

Dungeon 
Cinematic 

A cinematic showing an 
overview of the dungeon. 

1st Sensor 

An animation showing the results of 
the tutorial where a player throws 

the first sensor. First Pump 

The first time a player recovers 
a pump for completing a 

dungeon wing. 

Halfway 

A dialogue statement that shows 
where the player is halfway through 

the pollution task. 
Dungeon 
Complete 

When the player completes the 
dungeon and receives the final 

pump. 

3 clean in a 
row 

A reaction a single player had after 
messing up 3 in a row. First Garden 

The first time a player installs a 
pump at a garden. 

Holo- 
Toppo 

A hologram version of Toppo where 
the players talked to right before the 

argument. 
Second 
Garden 

The second time a player 
installs a pump at a garden. 

Arg 1 
The first time the player submitted 

an argument. Last Garden 
The third time a player installs 

a pump at a garden. 
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