### VACUUM DEGASIFICATION OF WATER

# A Thesis

### Presented to

The Faculty of the Graduate School University of Missouri - Columbia

In Partial Fulfillment of the Requirements for the Degree Master of Science

. . . .

by Andrew J. Wilson December 1979

Truman S. Storvick, Thesis Supervisor

The undersigned, appointed by the Dean of the Graduate Faculty, have examined a thesis entitled

#### VACUUM DEGASIFICATION OF WATER

presented by

Andrew J. Wilson

a candidate for the degree of

Master of Science

and hereby certify that in their opinion it is worthy of acceptance.

Tuma Souris

Richard M. angus

#### December 1979

#### Wilson, Andrew J.

#### VACUUM DEGASIFICATION OF WATER

A procedure for design of a water vacuum degasifier is presented for removing oxygen, carbon dioxide, nitrogen, and argon from water from 35 to 90 F. This procedure is based on gas solubilities following Henry's law and diffusivities following the Stokes-Einstein equation. Column mass transfer is described in terms of the number and height of overall liquid transfer units,  $N_{OL}$  and  $H_{OL}$ . A computer performance program is presented.

### ACKNOWLEDGEMENTS

The author wishes to express his appreciation to Dr. Truman S. Storvick for his guidance and insight in the development of this work, and to Mr. Lester C. Webb for his willingness and support for this work to be performed.

Appreciation is also due to Black & Veatch Consulting Engineers for the use of their computing facilities and library resources.

A great deal of credit belongs to Priscilla, my wife, for her expressions of love and encouragement in assisting this work.

### TABLE OF CONTENTS

•

|            |         |       |      |      |     |      |    |   |   |   |   |   |   |   |   |   |   | Page |
|------------|---------|-------|------|------|-----|------|----|---|---|---|---|---|---|---|---|---|---|------|
| LIST OF TA | ABLES . | • •   | •••  | •    | • • | •    | •  | • | • | • | • | • | • | • | • | • | • | iii  |
| LIST OF F  | IGURES  | • •   | ••   | •    | • • | •_ • | •  | • | • | • | • | • | • | • | • | • | • | iv   |
| Chapter    |         |       |      |      |     |      |    |   |   |   |   |   |   |   |   |   |   |      |
| I.         | INTRODU | JCTIO | N.   | •    | • • | •    | •  | • | • | • | • | • | • | • | • | • | • | 1    |
| II.        | VACUUM  | DEGA  | SIFI | [CA  | TIC | DN   | •  | • | • | • | • | • | • | • | • | • | • | 3    |
| III.       | DESIGN  | CRIT  | ERIA | ł    | • • | •    | •  | • | • | • | • | • | • | • | • | • | • | 9    |
| IV.        | DESIGN  | PROC  | EDUI | RE   | • • | • •  | •  | • | • | • | • | • | • | • | • | • | • | 36   |
| ν.         | DESIGN  | PROG  | RAM  | •    | • • | • •  | •  | • | • | • | • | • | • | • | • | • | • | 44   |
| APPENDICES |         |       |      |      |     |      |    |   |   |   |   |   |   |   |   |   |   |      |
| Α.         | COMPUTE | ER PR | OGRA | AM : | LIS | STI  | NG | • | • | • | • | • | • | • | ٠ | • | • | 45   |
| В.         | TYPICAI | L DES | IGN  | CA   | SES | 3.   | •  | • | • | • | • | • | • | • | • | • | • | 51   |
| NOMENCLAT  | JRE     | • •   | •••  | •    | • • | •    | •  | • | • | • | • | • | • | • | • | • | • | 57   |
| REFERENCES | 5       | • •   | • •  | •    | • • | •    | •  | • | • | • | • | • | • | • | • | • | • | 60   |

.

# LIST OF TABLES

Page

# Table

| II-1.  | Typical Degasifier Inlet Water<br>Analysis Ranges | 8  |
|--------|---------------------------------------------------|----|
| III-1. | Henry's Law Constant Correlations                 | 16 |
| III-2. | Constants for MASPAC Packing                      | 25 |
| III-3. | Stokes-Einstein Equation Constants                | 29 |
| IV-1.  | Air Ejector Function Constants                    | 43 |

# LIST OF FIGURES

Figure

| TT-1.    | Typical vacuum degasifier                                                    | 4  |
|----------|------------------------------------------------------------------------------|----|
| <b>.</b> |                                                                              |    |
| II-2.    | Demineralizer arrangement with degasifier following primary cation exchanger | 6  |
| II-3.    | Demineralizer arrangement with degasifier following primary exchangers       | 7  |
| III-1.   | Henry's law constants for argon in water                                     | 12 |
| III-2.   | Henry's law constants for carbon dioxide<br>in water                         | 13 |
| III-3.   | Henry's law constants for nitrogen in water                                  | 14 |
| III-4.   | Henry's law constants for oxygen in water                                    | 15 |
| III-5.   | Degasifier stage                                                             | 20 |
| III-6.   | Height of a liquid-film mass transfer unit<br>for MASPAC FN200               | 23 |
| III-7.   | Height of a liquid-film mass transfer unit<br>for MASPAC FN90                | 24 |
| III-8.   | Density of water                                                             | 28 |
| III-9.   | Diffusion coefficients of argon in water                                     | 30 |
| III-10.  | Diffusion coefficients of carbon dioxide<br>in water                         | 31 |
| III-11.  | Diffusion coefficients of nitrogen in water                                  | 32 |
| III-12.  | Diffusion coefficients of oxygen in water                                    | 33 |
| IV-1.    | Nash air ejector 2-80 with CL-203 vacuum<br>pump at 1750 RPM                 | 38 |
| IV-2.    | Nash air ejector 3-170 using CL-403<br>vacuum pump at 1170 RPM               | 39 |

| IV-3. | Nash air ejector 3-280 with CL-703<br>vacuum pump at 890 RPM  | 40 |
|-------|---------------------------------------------------------------|----|
| IV-4. | Nash air ejector 4-450 with CL-1003<br>vacuum pump at 690 RPM | 41 |
| IV-5. | Nash air ejector with CL-2003 vacuum pump at 590 RPM          | 42 |

v

#### CHAPTER I

#### INTRODUCTION

The design of vacuum degasification equipment in demineralization systems for boiler feedwater treatment was studied. The dissolved gases requiring removal were oxygen and carbon dioxide. The vacuum degasifier equipment consisted of a packed column having one or more stages and a vacuum source.

The design of a vacuum degasifier was based upon the water flow rate, temperature, concentrations of dissolved gases and solids, and the required effluent gas concentrations. The design variables were the column diameter, number of stages, type and height of packing, and the stage pressure and evacuation rate.

Henry's law was used to model gas solubilities. Correlations for the solubilities of argon, carbon dioxide, nitrogen, and oxygen by Weiss (51, 52) were used. The correlations were compared with experimental data. Carbon dioxide solubility was corrected for ionization. Dalton's law and Raoult's law were also used to model gas-liquid behavior.

The mass transfer performance of a stage was based on the liquid diffusivity of the gases and packing mass transfer characteristics. MASPAC packing and its published performance characteristics were used. The liquid diffusion coefficients

were assumed to follow the Stokes-Einstein equation. The Stokes-Einstein constant results for each gas were compared to experimental diffusion coefficient data.

A design procedure for equipment selection was developed. Correlations for Nash air ejector performance were developed for incorporation into the design equations. The procedure outlines the selection of column diameter, type of packing, the height of packing, and size of vacuum system in each stage. A design performance program was developed to evaluate degasifier designs.

#### CHAPTER II

#### VACUUM DEGASIFICATION

Vacuum degasification refers to the removal of dissolved gases from water by reducing their solubility with vacuum. This takes advantage of the decreased gas solubility at low pressure. Vacuum degasification is used as a water treatment process where dissolved gases would pose problems in the distribution and use of the water.

Vacuum degasification was first used to remove oxygen from water to prevent corrosion in water pipeline systems (38, 39, 1). Among its current applications vacuum degasification is used in ion exchange demineralizers to remove dissolved carbon dioxide and oxygen in treating feedwater for a boiler. It was this application to which this study was directed.

The purpose of vacuum degasification in this application is generally two-fold. The removal of carbon dioxide reduces the anion exchanger load which results in reductions in the size of the anion exchanger and in chemical consumption. The removal of oxygen prevents corrosion in the demineralized water piping to the boiler deaerator.

A typical vacuum degasifier column is shown schematically in fig. (II-1). This degasifier column has two stages



containing packing. Water enters the top and is distributed on and passes through the packing in each stage. An interstage water seal allows maintenance of different pressures while allowing the water to flow from the first to the second stage. Vacuum is drawn at the top of each stage. The vacuum source may be mechanical vacuum pumps, steam or air ejectors or a combination of these devices.

In this study the vacuum degasifier was located in a demineralization system, either following a primary cation exchanger when the primary anion exchanger contains strong base anion resin, as shown in fig. (II-2), or following a primary cation and anion exchanger pair when the primary anion contains weak base anion resin, as shown in fig. (II-3). In the first case the influent to the degasifier was decationized. The cations in the raw water have been removed and replaced by hydrogen ions, resulting in an acidic water. The water, in the second case, was neutral, having been demineralized.

The typical design conditions considered were those shown on Table II-1. The leakage of ions from cation and anion exchangers was taken to be less than 20 milligrams per liter, sodium and chloride respectively, when the total dissolved solids of the raw water feed to the demineralizer was less than 600 milligrams per liter. General limits for oxygen and carbon dioxide were a maximum of 0.02 and 5.0 milligrams per liter respectively. Oxygen, nitrogen, and argon were assumed dissolved to their atmospheric saturated solubility at the given water temperature.



DEMINERALIZER ARRANGEMENT WITH DEGASIFIER Following Primary Cation Exchanger

Fig. (II-2)



DEMINERALIZER ARRANGEMENT WITH Degasifier following primary exchangers

Fig. (II-3)

# TABLE II-1

# TYPICAL DEGASIFIER INLET WATER

### ANALYSIS RANGES

|                                            | Primary Cation<br>Exchanger Effluent | Primary Anion<br>Exchanger Effluent |
|--------------------------------------------|--------------------------------------|-------------------------------------|
| Na (mg/l as CaCO <sub>3</sub> )            | 0 - 20                               | 0 - 20                              |
| Cl (mg/l as CaCO <sub>3</sub> )            | 0 - 170                              | 0 - 20                              |
| CO <sub>2</sub> (mg/l as CO <sub>2</sub> ) | 5 - 200                              | 5 - 200                             |
| Oxygen (mg/l as 0 <sub>2</sub> )           | 0 – Saturated                        | 0 - Saturated                       |
| рH                                         | 2.0 - 6.0                            | 5.0 - 7.5                           |
| Temperature (F)                            | 35 - 90                              | 35 - 90                             |

#### CHAPTER III

#### DESIGN CRITERIA

The design of a vacuum degasifier was based upon the water flow rate, water temperature, concentrations of dissolved gases and total dissolved solids in the incoming water, and the required effluent gas concentrations. The design parameters which were varied to accomplish the required degasification are the column diameter, the number of stages, the type and height of packing, and the size of the vacuum source. Temperature may also be adjusted to improve performance, although this work did not consider it as a design variable.

In a degasifier stage the pressure of the stage is reduced by the vacuum pump or ejector so that the solubilities of the dissolved gases are exceeded in the entering water. The gases diffuse to the liquid-gas interface and diffuse across the interface into the vapor phase where they are removed from the stage by the vacuum pump or ejector. The rate of transfer of these gases across the interface depends upon the interface area, the diffusivities of the gases, and the degree of supersaturation which exists in the stage. Thus, the packing type selection, height of packing and vacuum source size were based upon the mass transfer

characteristics of the packing and the solubilities and diffusivities of the dissolved gases. The diameter of the column is determined by the hydraulic performance of the packing media. The general design of the degasifier column followed the recommendations of Eckert (13), Leva (27), McCabe and Smith (29), and Treybal (46) with regard to packing size, liquid distribution, and redistribution.

#### Column Diameter

The degasifier column diameter determination does not follow general packed column design practice (55, 13, 27, 29, 46). Generally, packed column diameters are established by assuming operation at 50 to 75 percent of loading. The low gas flow rates in a degasifier column would allow the column diameter to be almost the same size as the inlet water piping. Thus, to provide the required interface area, packing heights would be excessive. The degasifier diameter was selected to be small enough to prevent channelling yet large enough to obtain a reasonable column height. This in practice is a cost optimization problem considering both the degasifier column and structural design. A flow of 25 gallons per minute per square foot flow through the degasifier was assumed in this study.

#### Gas Solubilities

The relationship of gas solubility to pressure most often used in design is Henry's law (25, 23, 2, 19, 30, 40, 5). Henry's law can be stated as "the mass of gas dissolved in a given volume of solvent at constant temperature is proportional to the partial pressure of the gas with which it is in equilibrium" (16). Henry's law is generally followed by gases of low solubility as long as pressures are not too high or temperatures too low. Comparisons of the experimental Henry's law constants with Henry's law correlations derived from Weiss (51, 52) are shown in figs. (III-1) to (III-4). The correlations given by Weiss and correlation coefficients are shown on Table III-1.

The correlations by Weiss (51, 52) correct solubility with respect to salinity which is useful for sea water and brackish water degasification. This correction accounts for the "salting-out" effect in which the solubility of a gas decreases as salinity increases. In the demineralization systems studied, this effect was assumed to be negligible. Typically, the total dissolved solids would be under 600 milligrams per liter which, if taken as sodium chloride, would represent less than a one percent reduction in gas solubility.

Alternate Henry's law constant correlations for oxygen, nitrogen, and argon have been developed by Benson and Krause (3). Correlations of other authors are also reported and discussed by them. The derived correlations are possibly more consistent with theory, but the deviation from Weiss' correlation was not significant enough to affect the results of this work.

The experimental data for argon solubility reported by Estreicher, Winkler, Lannung (4), Klots and Benson (24),



Fig. (III-1)



Fig. (III-2)



Fig. (III-3)



Fig. (III-4)

#### TABLE III-1

### HENRY'S LAW CONSTANT CORRELATIONS

Equation form for argon, nitrogen and oxygen is:

$$\ln \beta = A_{1} + A_{2}(100/T) + A_{3}\ln(T/100) + S^{0}/00(B_{1} + B_{2}(T/100) + B_{3}(T/100)^{2})$$

where the A's and B's are constants, T is absolute temperature, S<sup>O</sup>/oo is salinity in grams per kilogram, and  $\beta$  is the Bunsen solubility coefficient (51).

| Gas            | <u>A</u> 1 | <u>A</u> 2 | <u>A</u> 3 | <sup>B</sup> 1 | <sup>B</sup> 2 | <sup>B</sup> 3 |
|----------------|------------|------------|------------|----------------|----------------|----------------|
| <sup>N</sup> 2 | -59.6274   | 85.7661    | 24.3696    | -0.051580      | 0.026329       | -0.0037252     |
| <sup>0</sup> 2 | -58.3877   | 85.8079    | 23.8439    | -0.034892      | 0.015568       | -0.0019387     |
| Ar             | -55.6578   | 82.0262    | 22.5929    | -0.036267      | 0.016241       | -0.0020144     |

Equation form for carbon dioxide is:

$$lnK_{o} = A_{1} + A_{2}(100/T) + A_{3}ln(T/100) + S^{0}/00(B_{1} + B_{2}(T/100) + B_{3}(T/100)^{2})$$

where  $K_0$  is the solubility coefficient in moles per liter atmosphere (52).

Antropoff, Morrison and Johnstone, Konig, Douglas (11), and Murray and Riley (33) are shown in fig. (III-1). Close agreement is shown by most points with Weiss' correlation. The data of Konig appears to be high, while the data of Estreicher and Winkler appears to be low. There was no apparent reason found for these deviations.

The experimental data for carbon dioxide solubility reported by Houghton, McLean, and Ritchie (18); and Li and Tsui (28) are shown in fig. (III-2). Close agreement with Weiss' correlation is shown for all points.

The experimental data for nitrogen solubility reported by Winkler, Fox, Benson and Parker (4); Klots and Benson (24); Adeney and Becker; Morrison and Billet; Douglas (11); and Murray, Riley, and Wilson (35) are shown in fig. (III-3). Close agreement with Weiss' correlation is shown for all points.

The experimental data for oxygen solubility reported by Winkler; Fox; Truesdale, Downing and Lowden (47); Elmore and Hayes; Benson and Parker (4); Klots and Benson (24); Douglas (11); Montgomery, Thom, and Cockburn (32); and Murray and Riley (34) are shown in fig. (III-3). Close agreement is shown by most points with Weiss' correlation. The data of Truesdale, Downing and Lowden, and of Murray and Riley (34) appears to be high. The deviation in the values of Truesdale et al. have been attributed to systematic errors caused by loss of iodine by volitilization. No explanation is apparent for the deviation of Murray and Riley. The solubility of carbon dioxide in a neutral or high pH water (pH greater than 6.5) is increased, because it ionizes. At low pH values, the solubility approaches that predicted by Henry's law. Weiss (52) suggested that the solubility be corrected by the ionization constant determined by Harned and Davis (17). The ionization constant was expressed by the following correlation:

$$\log_{10} K_{\text{DI}} = -3404.71/\text{T} + 14.8435 - 0.032786\text{T}$$
 (III-1)

where K<sub>DI</sub> is the ionization constant and T is the temperature in degrees Kelvin. Using the method described by King (22), carbon dioxide solubility may be corrected as follows:

$$x_{CO_2} = P_{CO_2/H_{CO_2}} (1 - K_{DI}/10^{-PH})$$
 (III-2)

where  $x_{CO_2}$  is the concentration of carbon dioxide,  $p_{CO_2}$  is the partial pressure of carbon dioxide, and  $H_{CO_2}$  is the Henry's law constant.

At the low operating pressure of a vacuum degasifier the gases may be assumed to follow ideal gas behavior. Dalton's law of additive partial pressures may be assumed valid. Dalton's law states that the total pressure is the sum of the gas partial pressures (43) or:

$$P = \Sigma P_{i} = \Sigma \frac{n_{i}^{RT}}{V}$$
 (III-3)

where P is the total pressure, and  $p_i$  is the individual gas component partial pressure.

When Henry's law is applicable to components in low concentrations, Raoult's law is valid for the component present at high concentrations. The liquid mole fraction of water in a degasification system is very nearly unity and, therefore, it can be assumed that water follows Raoult's law. Raoult's law is expressed as (43):

$$p_i = p'_i x_i \qquad (III-4)$$

where  $p_i$  is the individual component vapor pressure and  $x_i$  is the component mole fraction. As the mole fraction of water approaches unity, the partial pressure of water may be assumed to be equal to the water vapor pressure. The vapor pressure of water has been correlated by Wexler and Greenspan (53) in the form:

$$p_{H_20} = 2.9522 \times 10^{-4} e^{\alpha}$$
 (III-5)

where

with  $\alpha = E_0/T + E_1 + E_2(T) + B(lnT)$   $E_0 = -7246.5822$   $E_1 = 77.641232$   $E_2 = 0.0057447142$  B = -8.2470402

and T is the temperature in degrees Kelvin.

#### Mass Transfer

The mass transfer performance is determined by the gas concentrations and diffusivities, liquid flow rate, packing type and depth, and the vapor flow rate and pressure as established by the vacuum system. The difference between the gas concentrations and solubilities as determined by the operating pressure is the driving force for mass transfer. The gas diffusivities, liquid and vapor flow rates, and type and depth of packing establish the mass transfer rate.

The overall and component mass balances for a single degasifier stage as represented by fig. (III-5) are:





$$F = L + V$$
 (III-6)

and

$$Fx_{fi} = Lx_i + Vy_i \qquad (III-7)$$

where F and L are the entering and exiting liquid flow rates,  $x_{fi}$  and  $x_i$  are the entering and exiting component concentrations, V is the vapor flow rate, and  $y_i$  is the component vapor concentration.

From Henry's law for dissolved gas components in a liquid,

$$x_i^* = p_i/H_i \qquad (III-8)$$

where  $x_i^*$  is the component equilibrium concentration in a liquid. From Dalton's law for the gas components in a vapor,

$$y_{i}^{*} = p_{i}/P$$
 (III-9)

where  $y_i^*$  is the component equilibrium concentration in the gas. Eliminating  $p_i$  between Equations III-8 and III-9, the following may be derived:

$$y_{i}^{*} = H_{i}x_{i}^{*}/P.$$
 (III-10)

If the vapor is assumed to be in equilibrium with the liquid at the vapor-liquid interface, equation (III-10) may be substituted into equation (III-7) to yield:

$$Fx_{fi} = Lx_i + VH_i x_i^* / P$$
 (III-11)

Because the mass of gas removed with respect to the mass of liquid is small, the entering liquid flow may be assumed to be equal to the exiting liquid flow. Equation (III-11) may then be written as:

$$Fx_{fi} = Fx_i + VH_i x_i^*/P$$
 (III-12)

or by rearranging,

$$x_{i}^{*} = FP(x_{fi} - x_{i})/VH_{i}$$
 (III-13)

The packing height (2) may be expressed as the product of the number of overall liquid mass transfer units  $(N_{OL})$ times the height of an overall liquid mass transfer unit  $(H_{OL})$  (7, 12), or:

$$z = (N_{OL})(H_{OL}).$$
 (III-14)

The number of overall mass transfer units is given by Foust et al. as (15):

$$N_{OL} = ln((x_{fi} - x_i^*)/(x_i - x_i^*))$$
 (III-15)

The height of a liquid mass transfer unit  $(H_L)$  has been correlated by Sherwood and Holloway (42) as:

$$H_{L}^{o} := \beta \left(\frac{L}{\mu_{L}}\right)^{n} (N_{ScL})^{0.5}$$
 (III-16)

where the quantities  $\beta$  and n are characteristics of the particular packing,  $\mu_L$  is the liquid viscosity, L is the cross sectional area liquid flow rate, and N<sub>ScL</sub> is the liquid phase Schmidt number. For MASPAC packing, figs. (III-6) and (III-7) show the quantity  $\beta(L/\mu_L)^n$  or  $H_L^0/(H_{ScL})^{0.5}$  as a function of cross sectional area liquid flow rate (5). The curves shown by these figures were fit to the following equations:

$$\ln(H_{L}^{o}/(N_{ScL})^{0.5}) = C_{0} + C_{1} \ln(L) \qquad (III-17)$$

where  $C_0$  and  $C_1$  are constants. The constants for MASPAC FN200 and FN90 are shown on Table III-2.

The liquid phase Schmidt number (N<sub>ScL</sub>) may be expressed as:

$$N_{SeL} = \mu / \rho D_{AB}$$
 (III-18)

where  $\mu$  is the liquid viscosity,  $\rho$  is the liquid density and  $D_{AB}$  is the liquid diffusion coefficient of the solute (A) in



Fig. (III-6)



Fig. (III-7)

# TABLE III-2

# CONSTANTS FOR MASPAC PACKING

| Packing Type | <u>c</u> 0  | <u> </u>   |
|--------------|-------------|------------|
| FN200        | -6.05879348 | 0.36812290 |
| FN90         | -5.75738798 | 0.37688520 |

the solvent (B). The viscosity of water as a function of temperature is given from 0 to 20 degrees centigrade by Hardy and Cottingham (50) to be:

Log 
$$\mu = (1301/(998.333 + 8.1855 (T-20)) (III-19) + 0.00585 (T-20)^2) - 3.30233$$

where  $\mu$  is the water viscosity in poise and T is the temperature in degrees centigrade. From 20 to 100 degrees centigrade Swindell (50) expresses the water viscosity as:

$$\log \frac{\mu_{\rm T}}{\mu_{\rm 20}} = (1.3272(20-{\rm T})) \qquad (III-20)$$
  
0.001053(T-20)<sup>2</sup>)/(T-105)

where  $\mu_{\rm T}$  is the water viscosity at the water temperature,  $\mu_{20}$  is the water viscosity at 20 degrees centigrade, and T is the temperature in degrees centigrade (50). Water density data by Kell (50) was fit to the following equation:

$$\rho = C_0 + C_1(T) + C_2(T)^2 + C_3(T)^3 \qquad (III-21)$$

where

$$C_0 = 0.99988782$$

$$C_1 = 5.8558112 \times 10^{-5}$$

$$C_2 = 8.0158925 \times 10^{-6}$$

$$C_3 = 4.5214476 \times 10^{-8}$$

T is the temperature in degrees centigrade and  $\rho$  is the density in grams per milliliter. A comparison of the density data with the correlation is shown in fig. (III-8). Diffusion coefficient data for argon, carbon dioxide, and nitrogen were fit to the Stokes-Einstein equation, which is expressed as:

$$D_{AB} = K(T/\mu) \qquad (III-22)$$

where K is constant. St-Dennis and Fell (41) fit oxygen diffusion coefficients to the Stokes-Einstein equation. The values for K determined for each gas are shown on Table III-3. Comparisons of the Stokes-Einstein equation with diffusion coefficient data are shown on fig. (III-9) to (III-12). As shown on these figures, the data show some deviations from the correlation and inconsistencies with other data. No attempt was made to account for those deviations or inconsistencies. The argon data are those reported by Wise and Houghton (54), and Duda and Vrentas (12). The carbon dioxide data are those reported by Davidson and Cullen (9), Vivian and King (49), Ferrell and Himmelblau (14), Duda and Vrentas (12), Ng and Walkley (37), Unver and Himmelblau (48) Tang and Himmelblau (44), Thom et al. (45), and Malik and Hayduk (31). The data for nitrogen are those by Wise and Houghton (54), Ferrell and Himmelblau (14), and Ng and Walkley (37). The data for oxygen are those reported by Davidson and Cullen (9), Vivian and King (49), Wise and Houghton (54), Ferrell and Himmelblau (14), Krieger et al. (26), Duda and Vrentas (12), Ng and Walkley (37), Carlson (6), Jordan et al. (20), Jordan and Bauer (21), and Davis et al. (10).



Fig. (III-8)
# TABLE III-3

# STOKES-EINSTEIN EQUATION CONSTANTS

| Gas             | <u>K</u> (gm cm/sec <sup>2</sup> K) |
|-----------------|-------------------------------------|
| Ar              | $6.72 \times 10^{-10}$              |
| CO <sub>2</sub> | 5.76 x $10^{-10}$                   |
| N <sub>2</sub>  | $7.23 \times 10^{-10}$              |
| 02              | $6.92 \times 10^{-10}$              |



Fig. (III-9)



Fig. (III-10)



Fig. (III-11)



Fig. (III-12)

The height of an overall mass transfer unit  $(H_{OL})$  is related to the height of a mass transfer unit  $(H_{L})$  as follows:

$$H_{OL} = H_{L} + (L_{m}/mG_{m})H_{G}$$
 (III-23)

where  $L_m$  and  $G_m$  are the molal mass velocities for liquid and gas, m is the slope of the operating line, and  $H_G$  is the height of a gas mass transfer unit. Generally, the term  $(L_m/mG_m)H_G$  is negligible in comparison to  $H_L$  for vacuum degasifiers, as  $H_G$  is small and m is large, offsetting  $L_m$ being much greater than  $G_m$ . Thus, the height of an overall liquid mass transfer unit  $(H_{OL})$  may be expressed as being equal to the height of a liquid mass transfer unit  $(H_L)$ , or:

$$H_{OL} \stackrel{\sim}{=} H_{L}$$
 (III-24)

The value for  $H_L$  computed from equation (III-16) should be corrected for packing height. The correction for the packing height is:

$$H_{L} = H_{L}^{O}(z/3)^{0.15}$$
 (III-25)

for MASPAC packing, where  $H_L^o$  is the height of a liquid mass transfer unit derived by equation III-16. This follows the form outlined by Van Krevelin and Hoftijzer and modified by Cornell, Knapp, and Fair (8).

The number of overall liquid mass transfer units (N<sub>OL</sub>) may be expressed by combining equations (III-14), (III-15), and (III-25) to yield:

$$N_{0L} = z/(H_{L}^{0}(z/3)^{0.15}) - \ln \frac{x_{fi} - x_{i}^{*}}{x_{i} - x_{i}^{*}}.$$
 (III-26)

or

$$e^{-z/(H_{L}^{0}(z/3)^{0.15})} = \frac{x_{i} - x_{i}^{*}}{x_{fi} - x_{i}^{*}}.$$
 (III-27)

This result may be combined with equation (III-13) to give:

$$\frac{x_{i}}{x_{fi}} = \frac{(1 - e^{\alpha})(FP/VH_{i}) + e^{\alpha}}{(1 - e^{\alpha})(FP/VH_{i}) + 1}$$
(III-28)

where

$$\alpha = -z/(H_L^O(z/3)^{0.15}).$$

Equation (III-28) represents the mass transfer performance model for each gas component in each degasifier stage. By applying Dalton's law, the total evacuation or vapor flow rate may be checked by adding up the component vapor flow rates. This equation must be solved by trial and error for each gas component dissolved in the feed water and must be evaluated for each stage.

#### CHAPTER IV

### DESIGN PROCEDURE

The following procedure was used to size the degasifier column and vacuum system. It was assumed that the liquid flow rate, inlet and desired outlet gas concentrations, and temperature were known.

 The degasifier column diameter was selected based upon the liquid flow rate assuming a molal mass velocity of 25 gallons per minute per square feet.

2) The size and type of packing was chosen consistent with the column diameter and liquid flow rate. The maximum recommended packing size to column diameter ratios for several packings are as follows (13, 5):

| Rasching Rings  | 1:30         |
|-----------------|--------------|
| Berl Saddles    | 1:15         |
| Intalox Saddles | 1:15         |
| Pall Rings      | 1:10 to 1:15 |
| MASPAC          | 1:12.        |

3) The packing height and vacuum system capacity were computed using equation (III-28) and the desired outlet gas concentrations computed. The vacuum system selection was based on the air ejector performance curves shown on figs.

(IV-1) to (IV-5) (36). The performance curves were fit to the function:

$$\ln V = C_0 + C_1 \ln P + C_2 (\ln P)^2 + C_3 (\ln P)^3$$
 (IV-1)

where V is the evacuation rate in actual cubic feet per minute and P is the pressure in inches of mercury. The constants for the air ejectors are given on Table IV-1.











Fig. (IV-3)







Fig. (IV-5)

# TABLE IV-1

### AIR EJECTOR FUNCTION CONSTANTS

| Air Ejector<br>Model No. | c <sub>0</sub> | <u>c</u> 1 | <u>c</u> 2  | С <sub>3</sub> |
|--------------------------|----------------|------------|-------------|----------------|
| 2.80                     | 4.37780480     | 0.49571115 | -0.71514278 | 0.20616891     |
| 3-170                    | 5.11801154     | 0.48624600 | -0.88448594 | 0.30729692     |
| 3-280                    | 5.67209302     | 0.19574653 | -0.72743787 | 0.34458044     |
| 4-450                    | 6.16024028     | 0.31855519 | -0.45069421 | 0.10348750     |
| CL-2003                  | 6.83084125     | 0.44517675 | -0.57762709 | 0.13724532     |

·

.

### CHAPTER V

### DESIGN PROGRAM

A design performance program was developed to evaluate degasifier designs. A flowchart of this program is shown on fig. (V-1). A listing of the program is included as Appendix A. Example designs were run and are included as Appendix B.

The program requires the following input data:

- . number of stages,
- . vacuum system type of each stage,
- . temperature,
- . liquid flow rate,
- . inlet dissolved gas concentrations,
- . packing height of each stage,
- . column diameter, and
- . packing type.

The program results output are the pressure, evacuation rate, and outlet gas compositions of each stage of the degasifier.

## APPENDIX A

### COMPUTER PROGRAM LISTING

| -          |                                         |                                                                                                                                     | •                                                                     |                                                                                      |         |                          |                     |                                                                                                                                                 |                                  | <u>714</u>                         |                                                                                         |                                                 |                                                                                                                   |                | , <u>.</u>             |                                |                                                               |                                                              |                                                                                                         |                           | 4 ju                                    |                     | <u>,                                    </u>  |                                                                                                                          |                                                             |                                                              |                                                |                   |                                                             |                    |                                                | •              |                                                              |                                  | <u>131</u>                                                                    |                                     | <u></u>                       |                             | •                                                                   |                           |
|------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------|--------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------|------------------------|--------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------|---------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|-------------------|-------------------------------------------------------------|--------------------|------------------------------------------------|----------------|--------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------|-------------------------------------|-------------------------------|-----------------------------|---------------------------------------------------------------------|---------------------------|
| 000000     |                                         |                                                                                                                                     | 000000                                                                | 000000                                                                               | 0000000 | 000000                   | 000001              | 00000                                                                                                                                           | 000001                           | 000001                             | 00000                                                                                   | 000001                                          | 00000                                                                                                             | 000001         | 000001                 | 000001                         | 000001                                                        | 00000                                                        | 100000                                                                                                  | 000001                    |                                         | 00000               | 00000                                         | 200000                                                                                                                   | 000002                                                      | 200000                                                       | 000000                                         | 000024            | 000024                                                      | 000032             | 000032                                         | 0000052        | 000040                                                       | 000040                           | 0000040                                                                       | 0000040                             | 070000                        |                             | 000020                                                              | 000020                    |
|            | C VACUUM DEGASIFIER PERFORMANCE PROGRAM | C THIS PROGRAM MAY BE USED TO EVALUATE THE PERFORMANCE OF A VACUUM<br>C officient of the to tubee states and demoting any of all of | C THE FOLLOWING GASES: ARGON, CARBON DIOXIDE, NITROGEN, AND OXYGEN AT | C TEMPERATURES FROM 0 C(35 F) TO 32 C(90 F) USING AN AIR EJECTOR ON<br>C Each Stage. |         | C REAL L'LM.LA.MH.MHA.KI | INTEGER EJECT, PACK | DIMENSION - X (4,4) + X (4,4) + HH (4,4) + DL (4) + HL (4) + Y JEC (4) + V H (4) + F + F<br>4 44471 - 642 - 41 - 4444 - 41 - 444 - 41 - 41 - 41 | 26AS(4),TVAC(4),SPACK(2),SVAC(5) | C DENSITY CORRELATION COEFFICIENTS | DAIA DU,DI,DZ,D3,D4/29996/01/,.0004940005-4,-003243005-3,<br>1.81965782 E-755683796E-9/ | C WATER VAPOR PRESSURE CORRELATION COEFFICIENTS | DATA B,E0,E1,E2/-B.2470402,-7246.5822,//.041232,.005/447142/<br>c diffusion coffficients of GAS in vater at 25 c. | C DL(1)=0XYGEN | C DL(2)=CARBON DIOXIDE | C DLVJJ#NIRUGEN<br>PI(2)=ADCON | DATA DL(1),DL(2),DL(3),DL(4)/2.32E-5,1.93E-5,2.42E-5,2.25E-5/ | DATA 6AS(1), 6AS(2), 6AS(3), 6AS(4)/2HO2, 3HCO2, 2HN2, 2HAR/ | DATA SPACK(1),SPACK(2)/4HFN90,3HFN200/<br>DATA SVAC(1),SVAC(2),SVAC(3),SVAC(4),SVAC(5)/6HCL2003,4H2-80, | 15H3-170,5H3-280,5H4-450/ | C ENTER NUMBER OF STAGES (MAXIMUM OF 3) | SOO FORMAT (11)     | C ENTER AIR EJECTOR DESIGATION FOR EACH STAGE | C "280" FOR NASH AIR EJECTOR 2-80 WITH CL-203 VACUUM PUMP<br>r 12470" FOR NASH AIR FLETTOR 3-470 UITH FL-603 VACUUM PUMP | C 32280' FOR NASH AIR EJECTOR 3-280 WITH CL-703 VACUUM PUMP | C .4450° FOR NASH AIR EJECTOR 4-450 WITH CL-1003 VACUUM PUMP | L - 2005 FOR MASH ALR LELLUR MILL (L-2003 FORT | SOI FORMAT (215)  | C ENTER TEMPERATURE IN DEGREES FAHRENHEIT<br>Dein as Konn y | 502 FORMAT (F10.4) | C ENTER LIQUID FLOW RATE IN GALLONS PER MINUTE | READ (5,503) L | C ENTER INLET DISSOLVED GAS CONCENTRATIONS IN MILLIGRAMS PER | C LITER. ENTER "-1" IF SATURATED | C X (1,1) = 0 X Y GEN CONCENTRATION<br>C X 1 3) ~ CARDON DIVIDE CONCENTRATION | C XIIIIIICANUN ULUNUUNUUNUUNUUNUUUU | C X(1,4) = R60N CONCENTRATION | READ (5,504) (X(1,1),1=1,4) | SU4 FURMAI (4FIU-4)<br>C ENTER PACKING HEIGHT OF EACH STAGE IN FEET | READ (5,505) (2(J),J=1,N) |
| <b>#</b> * | 4 4 4<br>M 7 4                          |                                                                                                                                     |                                                                       | • • •<br>• •                                                                         | 11.     | 13*                      | - 7 [               | 15*                                                                                                                                             | • 4                              | 18+                                | - 6 F<br>- 7 0 +                                                                        | 21+                                             | 22*                                                                                                               | 24*            | 254                    | * 0 7<br>* 4 C                 | 28*                                                           | 29*                                                          | 40*<br>81*                                                                                              | 32*                       | # M M                                   | 4 4<br>5 10<br>7 10 | 36*                                           | 37.                                                                                                                      | - 6 M                                                       | *04                                                          |                                                | * M<br>• M<br>• M | 474                                                         | • 9 •              | 474                                            | 484            | 50+                                                          | 51+                              | 52 <b>*</b>                                                                   |                                     | * *                           | 264                         | 58*                                                                 | 59*                       |
| 00100      | 00100                                   | 00100                                                                                                                               | 00100                                                                 | 00100                                                                                | 00100   | 00100                    | 00103               | 00104                                                                                                                                           | 00104                            | 00104                              | 00100                                                                                   | 00105                                           | 00113                                                                                                             | 00113          | 00113                  | 21100                          | 00120                                                         | 00125                                                        | 00132                                                                                                   | 00135                     | 00135                                   | 00145               | 00146                                         | 00146                                                                                                                    | 00140                                                       | 00146                                                        | 07100                                          | 00155             | 00155                                                       | 00100              | 00161                                          | 00162          | 00165                                                        | 00165                            | 00165                                                                         |                                     | 00165                         | 00166                       | 12100                                                               | 00172                     |

· · · . · · · .

. ....

|        | •• /             |            | 2.3              |         |         |           |        | 1             |           | <br>T       |       |         |             | -T          |        |              | <u>.</u> | i            | T          | 11.       |          | 1      | 4                 |           |          | 2          |                    | <b>\$</b> | <u>.</u>     |             | 2.J        | 3_3            | <u></u> | ſ.                                        | <u></u>                               | ٦ <sup>1</sup> | نه_ د  | <u>, , , , , , , , , , , , , , , , , , , </u> | 4.7.<br>1 | <u></u>       | -1-         | · · · ·  |         |               | <u></u> | Ť           |
|--------|------------------|------------|------------------|---------|---------|-----------|--------|---------------|-----------|-------------|-------|---------|-------------|-------------|--------|--------------|----------|--------------|------------|-----------|----------|--------|-------------------|-----------|----------|------------|--------------------|-----------|--------------|-------------|------------|----------------|---------|-------------------------------------------|---------------------------------------|----------------|--------|-----------------------------------------------|-----------|---------------|-------------|----------|---------|---------------|---------|-------------|
|        |                  |            |                  |         |         |           |        |               |           |             |       |         |             |             |        | i            |          |              |            |           |          |        |                   |           |          |            |                    |           | 1            |             |            |                |         |                                           |                                       |                |        |                                               |           |               |             |          |         |               |         |             |
|        |                  |            |                  |         |         | •         |        |               |           | •           |       |         |             |             |        |              |          |              |            |           |          |        |                   |           |          |            |                    |           |              |             |            |                |         |                                           |                                       |                |        |                                               |           |               |             |          |         |               |         |             |
|        |                  |            |                  |         |         |           |        |               |           |             |       |         |             |             |        |              |          |              |            |           |          |        |                   |           |          |            |                    |           |              |             |            |                |         |                                           |                                       |                |        |                                               |           |               |             |          |         | *             |         |             |
|        |                  |            |                  |         |         | •         |        |               |           |             |       |         |             |             |        |              |          |              | •          |           |          |        |                   |           |          |            |                    |           |              |             |            |                |         |                                           |                                       |                |        |                                               | •         |               |             |          |         |               |         |             |
| 00062  | 00062            | 02000      | 02000            | 02000   | 000076  | 00016     | 00076  | 00106         | 00104     | 10100       | 00113 | 00115   | 00136       | 00136       | 01100  | 44100        | 100167   | 10111        | 121001     | 00213     | 712000   | 00241  | 00241             | 00241     | 000250   | 00262      | 000273             | 000301    | 000310       | 4 7 5 0 0 C | 000327     | 000334         | 192000  | 000366                                    | 000372                                | 000375         | 000401 | 8080800<br>000808                             | 000411    | 000424        | 000430      | 277000   | 000453  | 000455        | 000457  | 194000      |
| ōċ     | 00               | 00         | 00               | 00      | 00      | 0         | 00     | 0             | 00        | 0           | 0     | be      | 0           |             | 00     | 50           | 0        | 0            | 0          | 0         |          |        |                   |           |          |            |                    | U         |              |             |            |                |         |                                           | Ū                                     | -              | -      |                                               |           | -             |             |          |         |               |         |             |
|        |                  |            |                  |         |         |           |        |               |           |             |       |         |             |             |        |              |          |              |            |           | ÷        |        |                   |           |          |            |                    |           |              |             |            |                |         |                                           |                                       |                |        |                                               |           |               |             |          |         |               |         |             |
|        |                  |            |                  |         |         |           |        |               |           |             |       |         |             |             |        | 02339        |          |              | •          |           |          |        |                   | •         |          |            |                    |           |              |             |            |                |         |                                           |                                       |                |        |                                               |           |               |             |          |         | :             |         |             |
|        |                  |            |                  |         |         |           |        |               |           |             |       |         |             |             | •      | -2)-3-3      |          | :+105))      |            |           |          |        | AND               |           |          |            |                    |           | r            |             |            |                |         |                                           |                                       |                |        |                                               |           |               |             |          |         |               |         |             |
|        |                  |            |                  |         |         |           |        |               | (NI)      | •           |       |         |             |             |        | c - 20) #1   |          | *2)/(10      | •          |           | ~        |        | T CNOIT           |           |          |            |                    |           |              |             |            |                |         |                                           |                                       |                |        |                                               |           |               |             |          |         |               |         |             |
|        |                  |            |                  |         |         | GER       |        |               | ND KEL    |             |       |         |             |             |        | 058*(1       |          |              | 6.)        | 4         | -SQ FT   |        | E FRAC            |           |          |            |                    |           |              |             |            |                |         |                                           |                                       |                |        |                                               |           |               | 0.5)        |          |         | •••••••       |         | .5)         |
|        | FEET             |            |                  |         |         | EXCHAN    |        |               | RADE, A   |             |       |         |             |             |        | 0*0+00       |          | 1053+CT      | 4. OF H    | 2.9522E   | D LB/HR  |        | ATM/MOL           |           |          | ( * * *    |                    |           |              |             |            | * ^ / )        |         |                                           |                                       |                |        |                                               |           |               | E-5)++(     |          |         |               |         | -5) **0     |
|        | NIN              | 1          | SNTN.            | ING     | -       | ATION     |        |               | CENTI6    |             |       | SM/CC)  |             | ( d )       |        | 5 + ( TC - 2 |          | c)001        | I ON CI    | ( TK) ) + | / HR ANI | C 1    | ANTS (            |           |          | 0118 1     |                    | 444       |              |             | / 80 * 1 K | 4.3696         |         | 474C. 7                                   |                                       |                |        |                                               |           | 0             | 2 .2742     |          | 02      |               |         | -2742E      |
|        | ER COLU          | •          | DO PAC           | DO PACK |         | ROM A C   |        |               | ANK I N E | •           |       | LAND    | +0 = + < 0+ | TION C      | •      | +8.185       |          | *(20-1       | LCULAT     | B+ALOG    | LBMOLE   |        | LSNUJ             | (H6/L)    |          | 0.4040     | /RA+1              | +22 - 29  |              |             | -0-022     | 1+48+2         | /BC+1   | 2 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4   | 201                                   | 6200           |        | 190                                           |           | 062772        | * E H O 1 + |          | 0 TO 2  |               | ~       | * RH01+2    |
|        | SASIF I          |            | ATION<br>Par ent | PAC FN  |         | I IS FI   | ATER   |               | ONS CR.   | •           |       | CGM/W   | *10**2      | ALCULA      | 10 50  | 98.333       |          | 1.3272       | TER CA     | E2*TK+    | IONS (   | 533    |                   | TIONS     | •        | 209 207    | 100-10<br>100-10   | 069*48    |              | 98          | 4 - 8435   | 85.766         | 6+RH01  | 6 2 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 | 0 E C T C                             | 1)*177         |        | 0 60 10                                       |           |               | • X (1,2)   |          | .0.1)   |               | 10 170  | (1,2) ·     |
| 10.4)  | 0F DE(<br>6) DIA | ( * 0      | DESIGNI          | OR MASI | 7) PACI | N FL UEN' | TRAL U | а) Рн<br>0.4) | NVERSI    | а<br>т      | -     | ATI ONS | *76 +02     | ATER C      | 0) 00  | 301/(9       |          | 10**((       | OF WA      | TK+E1+    | LCULAT   | 27.792 | 104-70<br>7 HENRY | IC EN TRA | (100)    | . 70 7 0 F | 590 770            | 1+90.5    |              | *RH01/      | 71/TK+1    |                | 44.065  | + 9 / CO • 0                              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | I / MH (1.     |        |                                               |           | 1 H L L L A F | 10 ( (KI    | U H      | IF).LT. |               | .0) 60  | 0 ( (K I +) |
| AT (3F | AMETER<br>(5.50  | AT CFT     | CKING            | • 06•   | (5,50   | I II .    | OR NEU | AT (F1        | URECO     | +460        | C+273 | CALCUL  | =00+01      | Y 0F W      | C.6T.2 | 1)**01:      | u<br>u   | -1-002       | ESSURE     | XP.CEO/   | ATE CA   | ARHO1  | TON OF            | ION CON   | 1106 (TK | 00/1K      | : 11=10<br>- 11=10 | -58-091   | EXP (AC)     | = 55 • 506  | -3404-7    | E X P ( - 5 5  | 1,3)=12 | E X P ( - 5                               |                                       | 1)= 2          | =-1.0  | CX (1,2                                       | 7.0       | N=(2, 1       | =           | F = PH-P | (ABS(D  | PHC<br>*0.100 | (PH.6E  | -AL061      |
| S FORM | TER DI<br>Rfad   | 6 FORM     | TER PA           |         | READ    | TER PH    | -1- E  | READ          | MPERAT    | 7 = 7 L = 7 | T = 7 | ALISN   | RH01        | I SC OS I T | IF (1  | =SIN         |          | 00 VIS=      | POR PF     | 51 VP=E   | I OLID F |        | 1= V 1<br>1 = V 1 | ATURATI   | = Y Y =  | - 8V       |                    | 10 €      | <b>B</b> B=1 | HH A:       |            | - T 4<br>BC =1 | HH C    | 80 =                                      |                                       | × 1            | PHC    | 01 IF                                         | = Hd      | BO MH CS      | PHC         | DIF      | ΙF      | =Hd           | 90 IF   | = Hd        |
| 50     | CEN              | 20         |                  | د ار    | ŭ       |           | J      | 50            | C 1E      |             |       | 0       |             | [           |        |              |          | -            | C .        |           | ר<br>ט   |        |                   | 200       | n<br>h   |            |                    |           |              |             |            |                |         | •                                         |                                       |                |        | 2                                             |           | -             |             |          |         |               | ~       |             |
| •09    | 61+<br>62+       | 63*<br>63* | * 7 9            | • 99    | ÷29     |           | +02    | 72*           | 73+       | 74.         | 76*   | - 22+   | 78*         | 80*         | 81+    | 82*          | 8 C 8    |              | *98<br>*98 | 87+       | 88*      | 89*    | #06               | * < 0     | 93#      | *76        | # C 6              | 4 C O     | 98*          | ₹66         | +001       | 102*           | 103+    | 104#                                      | 105*                                  | -201           | 108*   | 109*                                          | 110+      | 111*          | 113.        | 114*     | 115+    | 116.          | 11/*    | 119*        |
| 00     | 00               | 10         | 70               | 10      | 205     |           | 10     | 112           | 510       | 215         | 217   | 217     | 220         | 122         | 222    | 224          | - 422    | () )<br>() ) | 226        | 227       | 227      | 230    | 231               | 162       | 232      | 233        | 254                | (C)       | 237          | 240         | 241        | 242            | 244     | 245                                       | 246                                   | 261            | 252    | 253                                           | 255       | 256           | 1020        | 1261     | 1262    | 1264          | 265     | 1270        |
| 005    | 200              | 005        | 200              | 005     | 200     | 200       | 200    | 200           | 200       |             | 100   | 200     | 00          |             | 100    | 00           | 00       |              |            | 00        | 00'      | 00     | 4                 | 7         | 00       | 00         | 000                |           |              | 00          | 00         |                | 00      | 00                                        | 000                                   |                | 000    | 00                                            | 00        |               |             |          | 00      | 000           |         | 0           |
|        |                  | ٠E         |                  |         |         |           | •      | • 1           |           |             | ; ;   | - 2     | 311         | 5.3         |        |              |          |              |            |           |          | Ĩ,     | ۰.                |           | ÷        | ÷          | =                  | 2 1       |              | •           | ٩          | •              |         | . 4                                       | • • •                                 | ·              |        | - '                                           | 1         |               | <b>د</b> ۲  | • * *    | - 13    | •             |         | - 4-1       |

.

|                                                                               |                                                                          | <u></u>                                                        |                                                                        |                                                           |                                                 |                             |                                                |                                                                              |                  |                                                                     |              |                                          | Comparing the second se<br>Second second sec | •<br>•                                                     |             | <u> </u>                                               |                                |                                 | <u> </u>                        |              |                                  |               |                              |                          | <u>* -</u>      | 99)                                 |                     |           | <u></u>                            |                |               | -1- ·                        |        | <u>, , , , , , , , , , , , , , , , , , , </u> |                |                 |           | <u>ø</u>                           |                |               |                                                               |  |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|-----------------------------|------------------------------------------------|------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------|--------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------|--------------------------------------------------------|--------------------------------|---------------------------------|---------------------------------|--------------|----------------------------------|---------------|------------------------------|--------------------------|-----------------|-------------------------------------|---------------------|-----------|------------------------------------|----------------|---------------|------------------------------|--------|-----------------------------------------------|----------------|-----------------|-----------|------------------------------------|----------------|---------------|---------------------------------------------------------------|--|
| 000477<br>000502<br>000516                                                    | 000520                                                                   | 0005250000527                                                  | 000527                                                                 | 000534                                                    | 000536                                          | 000552                      | 000554                                         | 000565                                                                       | 000270           | 000606                                                              | 000624       | 000624                                   | 000632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000635                                                     | 000645      | 000645                                                 | 00005000                       | 000653                          | 000656                          | 000661       | 000665                           | 000667        | 000673                       | 000575                   | 000676          | 000702                              | 000204              | 000706    | 01/000                             | 000713         | 000715        | 000721                       | 000723 | 000724                                        | 000730         | 000732          | 000734    | 000/36                             | 000741         | 000743        | 000745                                                        |  |
| PHC=1.0<br>170 MH(1,2)=MHA/(1+KI/10++(-PH))<br>202 HF //14 EV 66 PV 60 TO 203 | <pre>CUC_IF (AA1;2)+6E+07 00 10 600<br/>X(1,3)±.78/MH(1,3)+1555000</pre> | 203 IF (X(1,4).6E.0) 60 TO 204<br>x(1,4)=.0093/MH(1,4)+2217100 | C CALCULATING RATIO OF HEIGHT OF TRANSFER UNIT OVER THE SQUARE ROOT OF | C LIQUID SCHMIDT NUMBER<br>204 if (Pack_Fq_200) 60 to 210 | HN SC = EXP (-5.7573898+.37688520 + AL 06 (LA)) | TPACK=SPACK(1)<br>Go to 211 | 210 HNSC = EXP(-6.05879348+.36812290*AL06(LA)) | TPACK=SPACK(2)<br>f schwidt winnefd and hfight of transfer innit calculation | 211 b0 212 I=1,4 | SNSC(I)=(VIS++2/(DL(I)+TK+RHO2)+3.3468)++0.5<br>HI (I)=UKS(+SNSC(I) | 212 CONTINUE | XM(1,1)=X(1,1)/1776200<br>V#f1 3)/54f200 | XM(1,3)=X(1,3)/1555000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XM(1,4)=X(1,4)/2217100<br>F stage defendance falfin attors | 00 30 J=1,N | C ASSIGNMENT OF VACUUM SOURCE PERFORMANCE COEFFICIENTS | IF (EJECT(J).EQ.280) 60 TO 100 | IF (EJECT(J).EQ.3280) 60 TO 102 | IF (EJECT(J).EQ.4450) 60 TO 103 | C0=6.8384125 | C1=0.547562709<br>C2=-0.57762709 | c3=0,13724532 | TVAC(J)=SVAC(1)<br>60 T0 200 | <b>100</b> C0=4.37780480 | c1 =0 .49571115 | C2=-U.(1)14.CC0<br>C3=0 20.61.6.801 | TVAC (J) = SVAC (2) | 60 10 200 | 101 C0=5.11801154<br>r1=0.48424600 | C2=-0.88448594 | C3=0.30729692 | IVAL(J)=SVAL(S)<br>60 TO 200 |        | C1 = 0 . 19574653                             | C2=-0.(Z/45/8/ | TVAC(1)=SVAC(4) | 60 T0 200 | 103 C0=6.16024028<br>C1=0.21855519 | C2=-0.45069421 | C3=0.10348750 | TVAC(J)=SVAC(5)<br>C CALCULATION OF OUTLET GAS CONCENTRATIONS |  |
| 121+                                                                          | 123+                                                                     | 124+                                                           | 126*                                                                   | 127*                                                      | 129*                                            | 130+                        | 132+                                           | 133+                                                                         | 135+             | 136+                                                                | 138=         | 139+                                     | 141+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 142*                                                       | 1444        | 145+                                                   | 1464                           | 148+                            | 1494                            | 150*         | 151#                             | 153+          | 154.                         | 156+                     | 157*            | 1504                                | 160                 | 161*      | 162*                               | 164*           | 165*          | 100                          | 168*   | 169*                                          | 170*           | 172*            | 173+      | 174*                               | 176*           | 177*          | 178.                                                          |  |
| 00271                                                                         | 00275                                                                    | 00276                                                          | 00200                                                                  | 00300                                                     | 00303                                           | 00304                       | 00306                                          | 00307                                                                        | 00310            | 00313                                                               | 00315        | 00317                                    | 00321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00322                                                      | 00323       | 00323                                                  | 00326                          |                                 | 00334                           | E 00336      | 003400<br>00340                  | 00341         | 00342                        | 00344                    | 00345           | 015400                              | 00350               | 00351     | 00352                              | 00354          | 00355         | 00350                        | 00360  | 00361                                         | 00362          | 20200           | 00365     | 00366                              | 00370          | 00371         | 0037200372                                                    |  |

| 000750<br>000753<br>000753                        | 000756 | 000756 |        | 001003                                                                      | 001003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 001023                      | 001034      | 001034                                  |                                                 |                              |                        | 00106 | 001071                                                     | 001075      | 001075                |                                               |                                       | 001143                                             | 001147          | 001152  |               | 001164                                | 001164                                          | 001172                                 | 001200                         | 001211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 001236                            | 001244                            | 001256                         | 001262      | 001264           | 001207 | 001272                         | 001275  | 001304      | 001304          | 001311                            | 001311 | 001316                                            | 001316        | 001525          | 001330                                                  | 001330                                   | 001335          | 1001343         | 001343                                                                  | 001351                                       |
|---------------------------------------------------|--------|--------|--------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------|-----------------------------------------|-------------------------------------------------|------------------------------|------------------------|-------|------------------------------------------------------------|-------------|-----------------------|-----------------------------------------------|---------------------------------------|----------------------------------------------------|-----------------|---------|---------------|---------------------------------------|-------------------------------------------------|----------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|--------------------------------|-------------|------------------|--------|--------------------------------|---------|-------------|-----------------|-----------------------------------|--------|---------------------------------------------------|---------------|-----------------|---------------------------------------------------------|------------------------------------------|-----------------|-----------------|-------------------------------------------------------------------------|----------------------------------------------|
| 200 P(J)=1_0<br>D0 5 I=1,4<br>Wur(1+1 1)=Wur(1,1) |        |        | P2=3.5 | VSY(J)=0<br>vicr(i)≖cvb(r0+r1++1)6(P(i))+r2+(A ∩6(P(J)))++2+C3+(A ∩6(P(J))) | ₩1 [ [ 17] - [ 2] - [ 2] [ (0] - [ 2] [ (0] - [ 2] [ (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] [ (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] - [ 2] ] (0] | VM(J)=P(J)+VJEC(J)+2~746/TR | D0 10 I=1.4 | ENOL=EXP(-Z(J)/(HL(I)+(Z(J)/3)++0,+15)) | PROD=(1.0-ENOL)+LM+P(1)+0.03342/(VM(1)+MH(1,1)) | b(],I) = (PROD+ENC)/(PROD+1) | X(1+1,1)=0(1,1)*X(1,1) |       | ₩1 < 0 × 1 × 1 × < 1 × 1 × × × × 0 × × × × × × × × × × × × | 10 CONTINUE | IF (PHC.LT.0) 60 TO 6 | PH=-AL0610((KI*X(J+1,2)*RH01+2.2742E-5)**0.5) | MH C = MHA/C 1 + KI/C 1 + KI/C + MH2) | DIF2=MHC-MH(J*1,2)<br>IF (ABS(DIF2)_LF_25) 60 TO 6 | MH(J+1,2) = MHC | 60 10 1 | 6 D0 20 1=1,4 | Y(J,J)=VY(J,J)/VJE((J)<br>On continue | C CONTINUE<br>VNC(1)={P{1}~VP}+VJEC(1)+Z_746/TR | DEV1=(VSY(J)-VNC(J))+2/(VSY(J)+VNC(J)) | IF (ABS(DEV1).LT.0.1) GO TO 30 | VALLET = [V31(1) + VALL) / 1 = [V1(1) + [V3(2)] + VALL = [V3(2)] + VALL = [V3(2)] + [V | VM A= (P(J) - VP) + AJEC+2.746/TR | DE V2 = (VA - VMA) +2/ (VA + VMA) | IF (ABS(DEV2).LT.0.01) 60 TO 1 |             | P(J)=(P(J)+P2)/2 |        | 5 P2=P(J)<br>Df 1)=fP(J)+P1)/2 | 60 TO 2 | 30 CONTINUE | C PRINT RESULTS | WRITE (6,799)<br>700 Exemat (444) |        | BOD FORMAT (20%,294VACUUM DEGASIFIER PERFORMANCE) | WRITE (6,801) | BOI FORMAT (IX) | WRITE (6,802)<br>Brogenati (1y.2040056ating fonditions) | UC TOWN TATENDER TO THE TOWN THE (6,803) | 803 FORMAT (1X) | WRITE (6,804) L | GU4 FORMAI (DA,IOMLIAUID TLOW KAIE **FI0.000-0001017<br>UDITE (A.RAS) T | BOS FORMAT (6X,13HTEMPERATURE =, F10.3,2H F) |
| 180*<br>181*                                      | 1874   | 184    | 185*   | 186*                                                                        | 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 189.                        | 190*        | 191*                                    | 192*                                            | 193*                         | 194*                   | 195*  | 107.                                                       | 198+        | 199*                  | 200*                                          | 201+                                  | 203*                                               | 204+            | 205*    | 206*          | 207*                                  | *00                                             | 210*                                   | 211+                           | -212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 214*                              | 215+                              | 216*                           | 218+        | 219*             | 220+   | -221                           | 223*    | 224*        | 225*            | 226*                              | 2284   | 229*                                              | 230+          | 231+            | 232*                                                    | 234*                                     | 235+            | 236*            | -22C+                                                                   |                                              |
| 00373<br>00374                                    | 11000  | 00402  | 00403  | 10100                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00400                       | 00402       | 00412                                   | 00413                                           | 00414                        | 00415                  | 00416 |                                                            | 00421       | 00423                 | 00425                                         | 00426                                 | 06200                                              | 00432           | 00433   | 00434         | 00437                                 | 04400                                           | 00443                                  | 77700 Q                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00420                             | 00451                             | 00452                          | 9090<br>900 | 00457            | 00400  | 00461                          | 00463   | 00464       | 00464           | 00466                             | 01400  | 00473                                             | 27200         | 00476           | 00477                                                   | 00202                                    | 00504           | 00505           |                                                                         | 00516                                        |

| 001351<br>001357<br>001352                   | 001364                                                   | 001364<br>001400                    | 001400 | 001405      | 001412                                  |                              | 001417            | 001425                                                         | 001433                               | 001441                                                          | 001446        | 001446                       | 001463                                         | 001470                                      | 001505                                                                                       | 001505         | 001516                         | 001516          | 001524                                  | 001531                         | 201537                | 001537                                                               | 001545                                                | 001552                                                      | 001572                                | 001572                                              | 001576 |       |                      | <u>, , , , , , , , , , , , , , , , , , , </u> |   |  |   |
|----------------------------------------------|----------------------------------------------------------|-------------------------------------|--------|-------------|-----------------------------------------|------------------------------|-------------------|----------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|---------------|------------------------------|------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------|----------------|--------------------------------|-----------------|-----------------------------------------|--------------------------------|-----------------------|----------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|---------------------------------------|-----------------------------------------------------|--------|-------|----------------------|-----------------------------------------------|---|--|---|
| WRITE (6,825) PH<br>format (6x,4HPH =,f10.3) | WRITE (6,806)<br>Format (6x.24Hinlet 6as concentrations) | URITE (6,807) (GAS(I),X(1,1),I=1,4) |        | FORMAT (1X) | FORMAT (1X,24HVACUUM DEGASIFIER DESIGN) | WRITE (6,810)<br>Format (1x) | WRITE (6,811) DIA | FORMAT (6X,17HCOLUMN DIAMETER ≖,FIU.5,2HFI)<br>⊔rite (6.812) n | FORMAT (6X,18HNUMBER OF STAGES =,12) | WRITE (6,815) IPACK<br>Format (6x,22HPacking Type = Maspac ,AS) | URITE (6,814) | WRITE (6,815) (J,2(J),J#1,N) | : FORMAT (11X,6HSTAGE 012,2H =0F10.3,2HFT)<br> | HALLE KOTOLOV<br>FORMAT (6X,11HVACUUM PUMP) | WRITE (6,817) (J,TVAC(J),J=1,N)<br>P command (11% Austrade - 12,20H = NASH AIR EJECTOR • A6) | URITE (6,818)  | 3 FORMAT (1X)<br>5.0 751 1=1 N | WRITE (6,819) J | P FORMAT (1X,6HSTAGE ,12,10H OPERATION) | WRITE (0,824)<br>6 format (1x) | WRITE (6,820) VJEC(J) | D FORMAI (6%)I/HEVALUALIUM MATE TETUGOTATUALUU<br>Urite (6,821) P(J) | 1 FORMAT (6x,16HSTAGE PRESSURE = F10.5,10HIN. OF H6.) | WRITE (0,822)<br>7 FORMAT (6X,25HOUTLET GAS CONCENTRATIONS) | WRITE (6,823) (6AS(I),X(J+1,I),I=1,4) | 3 FORMAT (11X,A15,3H = ,F10.6,4HM6/L)<br>1 continue | STOP   | END   | ION: NO DIAGNOSTICS. |                                               | • |  | - |
| 825                                          | 806                                                      |                                     | 202    | 808         | 803                                     | 810                          |                   | 811                                                            | 812                                  | 813                                                             |               | 4                            | 815                                            | 816                                         |                                                                                              |                | 818                            |                 | 819                                     | 824                            | •                     | 820                                                                  | 821                                                   | 822                                                         |                                       | 821                                                 |        |       | TAT LAT 1            |                                               |   |  |   |
| 240*<br>241*                                 | 242*                                                     | 4442                                | 245    | 2474        | 249*                                    | 250*                         | 252*              | 253*                                                           | 255+                                 | 256*                                                            | 258+          | 259 <b>*</b>                 | 261-                                           | 262*                                        | 264                                                                                          | 266 <b>*</b>   | 267*                           | 269 <b>*</b>    | 270*                                    | 271*                           | 273+                  | 275*                                                                 | 276*                                                  | 277*                                                        | 279.                                  | 280*                                                | 282*   | 283*  | END OF C             |                                               |   |  |   |
| 00520<br>00520                               | 00521                                                    | 00524                               | 00534  | 00536       | 00541                                   | 00542                        | 00245             | 00550                                                          | 92500                                | 00555                                                           | 00561         | 00563                        | 00573                                          | 00574                                       | 00577                                                                                        | 00000<br>00007 | 00611                          | 00615           | 02900 5                                 | C 00621                        | 00624                 | 00627                                                                | 00633                                                 | 00634                                                       | 00637                                 | 00646                                               | 00651  | 00652 |                      |                                               |   |  |   |

# APPENDIX B

TYPICAL DESIGN CASES

### TYPICAL DESIGN CASES

Example design cases were run to illustrate the effect of design variables upon the system design. In the first case, shown on Table B-1, the design was based upon the following data:

1. The inlet water flow rate was 650 gpm.

2. The system operating temperature was 45° F.

3. The inlet concentration of carbon dioxide dissolved in the water was 15.4 milligrams per liter. The other dissolved gas constituents were assumed to be present at their atmospheric solubility.

4. The degasifier was assumed to be located following the primary cation and anion exchangers and therefore the pH is only affected by the presence of dissolved carbon dioxide.

5. The vacuum degasifier design assumed a six foot diameter, two stage column with ten feet of MASPAC FN200 packing per stage. A NASH Model 3-170 air ejector was evacuating each stage.

The results indicated that this degasifier could be expected to meet the limit of 20 micrograms per liter oxygen, but would be somewhat marginal in achieving 5 milligrams per liter carbon dioxide.

## TABLE B-1

VACUUM DEGASIFIER PERFORMANCE Case 1

|      | OPERATING CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.   | LIQUID FLOW RATE = $650.000$ GPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1    | TEMPERATURE = 45.000 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | PH = 5.210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| é    | INLET GAS CONCENTRATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | 02 = 12.25558 MG/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3    | $c_0 = 15.40000 \text{ MG/I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | $N^2 = 19.53593 MG/I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| :0   | AP = -98515  MG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12:  | VACUUM DEGASIFIER DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 941  | COLUMN DIAMETER = 6-000 FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | NUMBER OF STAGES = $2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ·e   | PACKING TYPE = MASPAC EN200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | PACKING DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •    | STAGE 1 = 10.000FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | STAGE 2 = 10.000FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | STAGE 1 = NACH ATD ELECTOR $3-170$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | STAGE 2 = NASH ATP ELECTOR $3-170$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | STACE E - WHON AIR EVELVIOR 5-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 24   | STAGE 1 OPERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 26 . | EVACUATION RATE = $148.617$ ACFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 27   | STAGE PRESSURE = $.836611N$ OF HG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | DITLET GAS CONCENTRATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 29   | $D_2 = -629166 \text{MG}/t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | $\Gamma_{02} = 7.142911 \text{wc/s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ,    | N2 = 740317%C/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | STAGE 2 OPERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3-   | EVACUATION DATE = 45.000ACEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | STAGE PRESSURE = $619767M$ of uc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | $0 \rightarrow 0 \land 1791 \land 0 \land 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | $\frac{1}{100} = \frac{1}{100} $ |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | AK - • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | a FTN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 19   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 85   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 22   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

In Case 2 on Table B-2, the design condition are the same as in Case 1 except:

1. The inlet concentration of carbon dioxide was 162 milligrams per liter.

2. A NASH air ejector with a Model CL-2003 vacuum pump on each stage was used.

The results show satisfactory oxygen removal, but inadequate removal of carbon dioxide.

Case 3, on Table B-3, is the same as Case 2 except the degasifier was assumed to be located downstream of the primary cation exchanger receiving a decationized influent with a pH of 3.02. Carbon dioxide removed was only slightly improved by this change.

# TABLE B-2

| VACUUM DE                                                 | GASIFIER PERFORMANCE                   | Case 2                                |
|-----------------------------------------------------------|----------------------------------------|---------------------------------------|
| OPERATING CONDITIONS                                      |                                        |                                       |
|                                                           |                                        |                                       |
| LIQUID FLOW RATE = 65                                     | 0.000GPM                               |                                       |
| IEMPERATORE = 40.000                                      | F                                      |                                       |
| INLET GAS CONCENTRATION                                   | S                                      |                                       |
| 02 = 12.25558 Mg/                                         | L                                      |                                       |
| CO2 = 162.00000  Mg/                                      | L                                      |                                       |
| N2 = 19.53593 MG/                                         | L                                      |                                       |
| AR = .98515MG/                                            | L                                      |                                       |
| VACUUM DEGASIETER DESIGN                                  |                                        |                                       |
|                                                           |                                        |                                       |
| COLUMN DIAMETER = 6                                       | .000 FT                                |                                       |
| NUMBER OF STAGES = 2                                      |                                        |                                       |
| PACKING TYPE = MASPAC F                                   | N200                                   |                                       |
| PACKING DEPTH<br>STAGE 1 - 10 0                           | 0.0 FT                                 |                                       |
| $\frac{31 \text{ AGE } 1 - 10.0}{\text{STAGE } 2 = 10.0}$ | 00FT                                   |                                       |
| VACUUM PUMP                                               |                                        |                                       |
| STAGE 1 = NASH AI                                         | R EJECTOR CL2003                       |                                       |
| STAGE 2 = NASH AI                                         | R EJECTOR CL2003                       |                                       |
|                                                           |                                        |                                       |
| STAGE 1 OPERATION                                         |                                        |                                       |
| EVACUATION RATE = 701                                     | -156ACFM                               |                                       |
| STAGE PRESSURE = .66                                      | 611IN. OF HG.                          |                                       |
| OUTLET GAS CONCENTRATIO                                   | NS                                     |                                       |
| 02 =                                                      | .411843MG/L                            |                                       |
|                                                           | 28.336331MG/L                          |                                       |
|                                                           | - 036821¥G/L                           |                                       |
| STAGE 2 OPERATION                                         |                                        |                                       |
|                                                           | 4 4 <b>4 8 6 5 1</b>                   |                                       |
| STACE PRESSURE = 334                                      | ALOTN. OF HG.                          |                                       |
| OUTLET GAS CONCENTRATIO                                   | NS                                     | · · · · · · · · · · · · · · · · · · · |
| 02 =                                                      | .016019MG/L                            |                                       |
| <u> </u>                                                  | 8.087854MG/L                           |                                       |
| N2 =                                                      | .017962MG/L                            |                                       |
| AR =                                                      | .001657MG/L                            |                                       |
| <b>AFIN</b>                                               |                                        |                                       |
|                                                           |                                        |                                       |
|                                                           |                                        |                                       |
| •                                                         |                                        |                                       |
|                                                           |                                        |                                       |
|                                                           | ·                                      |                                       |
| 1                                                         |                                        |                                       |
|                                                           |                                        |                                       |
|                                                           | ······································ |                                       |
|                                                           |                                        |                                       |
|                                                           | <b>b</b> b                             |                                       |
|                                                           |                                        |                                       |

# TABLE B-3

|            | VACUUM DEGASIFIER PERFORMANCE Case 3     |
|------------|------------------------------------------|
| 6          | OPERATING CONDITIONS                     |
| 2          |                                          |
| ٠          | LIQUID FLOW RATE = 650.000GPM            |
| .4         | TEMPERATURE = 45.000 F                   |
| 5          | PH = 3.020                               |
|            | INLET GAS CONCENTRATIONS                 |
| ;          | 02 = 12.25558 MG/L                       |
| •          | CO2 = T62.00000 MG/L                     |
|            | $N_2 = 19.55595 MG/L$                    |
| 10         | AR = •YODIDMG7L                          |
| •2         | VACUUM DEGASIFIER DESIGN                 |
| 13 .       |                                          |
| ••         | COLUMN DIAMETER = 6.000FT                |
| 15         | NUMBER OF STAGES = 2.                    |
| ·•         | PACKING TYPE = MASPAC FN200              |
| : 7        | PACKING DEPTH                            |
| 16 <u></u> | STAGE 1 = 10.000FT                       |
| •          | $STAGE \ 2 = 10.000FT$                   |
| 11         | VACUUM PUMP                              |
|            | STAGE 1 = NASH AIR EJECTOR CL2003        |
| 23         | STAGE $2 =$ NASH AIR EJECTOR LL2003      |
| 24         | STAGE 1 OPERATION                        |
| .5         |                                          |
| 26         | EVACUATION RATE = $703.905 \text{ ACFM}$ |
|            | STAGE PRESSURE = .66877IN. OF HG.        |
|            | OUTLET GAS CONCENTRATIONS                |
|            | 02 = .411611MG/L                         |
|            | CO2 = 23.094636 MG/L                     |
| 3.         | N2 = .567092MG/L                         |
| ÷.         | AR = .036794MG/L                         |
|            | STAGE 2 OPERATION                        |
| 14         |                                          |
|            | CTACE DRESSING = 70361TM OF MC           |
|            | OUTLET GAS CONCENTRATIONS                |
|            | $02 = 016026 \times 6/1$                 |
| 29         | CO2 = 7.992206MG/L                       |
| 4.         | N2 = .017967MG/L                         |
| • *        | AR = .001657MG/L                         |
| **         |                                          |
| - 3        | <b>GFIN</b>                              |
|            |                                          |
|            |                                          |
| 4.5        |                                          |
| •4         |                                          |
|            |                                          |
|            |                                          |
| •          |                                          |
| **         |                                          |
| 10         |                                          |
|            | 56                                       |
| :5         |                                          |
|            |                                          |

### NOMENCLATURE

| A <sub>1</sub> , A <sub>2</sub> , A <sub>3</sub>                                  | Constants used in gas solubility correla-<br>tions of Weiss (51, 52).                                                                                                                                                               |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В                                                                                 | Constants used in water vapor pressure correlation of Wexler and Greenspan (53).                                                                                                                                                    |
| <sup>B</sup> <sub>1</sub> , <sup>B</sup> <sub>2</sub> , <sup>B</sup> <sub>3</sub> | Constants used in gas solubility correla-<br>tions of Weiss (51, 52).                                                                                                                                                               |
| c <sub>0</sub> , c <sub>1</sub> , c <sub>2</sub> , c <sub>3</sub>                 | Constants used in packing height of a liquid<br>transfer unit correlation, eq. (III-17),<br>Constants used in water density correlation,<br>eq. (III-21), and Constants used in air<br>ejector performance correlation, eq. (IV-1). |
| D <sub>AB</sub>                                                                   | Liquid diffusion coefficient, (cm <sup>2</sup> /sec).                                                                                                                                                                               |
| E <sub>0</sub> , E <sub>1</sub> , E <sub>2</sub>                                  | Constants used inwater vapor pressure correlation of Wexler and Greenspan (53).                                                                                                                                                     |
| F                                                                                 | Entering liquid flow rate, (gpm or lb mole/<br>hr).                                                                                                                                                                                 |
| G <sub>M</sub>                                                                    | Gas molal mass velocity, (lb mole/hr-ft <sup>2</sup> ).                                                                                                                                                                             |
| <sup>H</sup> CO <sub>2</sub>                                                      | Henry's law constant for carbon dioxide, (atm/mole fraction).                                                                                                                                                                       |
| H <sub>i</sub>                                                                    | Henry's law constant for a gas,(atm/mole fraction).                                                                                                                                                                                 |
| н <sub>G</sub>                                                                    | Height of a gas mass transfer unit, (ft).                                                                                                                                                                                           |
| H <sub>L</sub>                                                                    | Height of a liquid mass transfer unit, (ft).                                                                                                                                                                                        |
| н <mark>о</mark>                                                                  | Height of a liquid mass transfer unit com-<br>puted by eq. (III-16), (ft).                                                                                                                                                          |
| H <sub>OL</sub>                                                                   | Height of an overall mass transfer unit, (ft).                                                                                                                                                                                      |
| κ                                                                                 | Stokes-Einstein equation constant                                                                                                                                                                                                   |

| K <sub>DI</sub>    | Ionization constant.                                               |
|--------------------|--------------------------------------------------------------------|
| κ <sub>o</sub>     | Solubility coefficient, (moles/liter-atm).                         |
| L                  | Exiting liquid flow rate, (gpm or lb mole/<br>hr).                 |
| L <sub>M</sub>     | Liquid molal mass velocity, (lb mole/hr-ft <sup>2</sup> ).         |
| N <sub>OL</sub>    | Number of overall transfer units.                                  |
| N <sub>ScL</sub>   | Liquid phase Schmidt number.                                       |
| Р                  | Stage pressure, (in. Hg.).                                         |
| R                  | Ideal gas constant.                                                |
| S <sup>O</sup> /oo | Salinity, (gm/Kg).                                                 |
| т                  | Temperature, ( <sup>o</sup> C, <sup>o</sup> K, or <sup>o</sup> F). |
| V                  | Vapor flow rate or evacuation rate,<br>(1b mole/hr or acfm).       |
| m                  | Slope of operating line.                                           |
| n                  | Packing characteristic exponent in eq. (III-16).                   |
| ni                 | Moles of gas.                                                      |
| ₽ <sub>CO2</sub>   | Partial pressure of carbon dioxide, (in.<br>Hg.).                  |
| <sup>p</sup> i     | Partial pressure of a gas, (in. Hg.).                              |
| PH20               | Vapor pressure of water, (in. Hg.).                                |
| p!                 | Component vapor pressure, (in. Hg.).                               |
| × <sub>CO2</sub>   | Liquid mole fraction of carbon dioxide.                            |
| ×i                 | Component liquid mole fraction.                                    |
| x*<br>i            | Component liquid mole fraction in equilibrium.                     |
| × <sub>fi</sub>    | Entering component liquid mole fraction.                           |
| y <sub>i</sub>     | Component vapor mole fraction.                                     |

Component vapor mole fraction in equilibrium.

Height of packing, (ft).

y<sup>\*</sup>i

z

β

μ

ρ

Bunsen solubility coefficient, and Packing characteristic coefficient in eq. (III-16).

Liquid viscosity, (cp).

Density, (gm/cm<sup>3</sup> or gm/ml).

#### REFERENCES

- Adams, Gene. "Vacuum Deaerates Injection Water at Low Cost for Pan Am." The Oil and Gas Journal (May 15, 1967), pp. 93-96.
- Applebaum, Samuel B. Demineralization by Ion Exchange. New York: Academic Press, 1968.
- Benson, Bruce and Krause, Daniel. "Empirical Laws for Dilute Aqueous Solutions of Nonpolar Gases." The Journal of Chemical Physics. 64 (1976), pp. 689-709.
- 4. Benson, Bruce and Parker, Peter. "Relations Among the Solubilities of Nitrogen, Argon and Oxygen in Distilled Water and Seawater." Journal of Physical Chemistry. 65 (1961), pp. 1489-1498.
- 5. Biggs, R. D. <u>Maspac Plastic Tower Packings Application</u> <u>Bulletin</u>. Midland, Michigan: Dow Chemical Company, 1965.
- 6. Carlson, Tor. "The Diffusion of Oxygen in Water." Journal of American Chemical Society. 33 (1911), pp. 1027-1032.
- Chilton, T. H. and Colburn, A. P. "Distillation and Absorption in Packed Columns." <u>Industrial and</u> Engineering Chemistry. (March, 1935), pp. 255-260.
- 8. Cornell, D.; Knapp, W. G.; and Fair, J. R. "Mass Transfer Efficiency - Packed Columns - Part I." <u>Chemical Engineering Progress</u>. 56 (July, 1960), pp. 68-74.
- 9. Davidson, J. F. and Cullen, E. J. "The Determination of Diffusion Coefficients for Sparingly Soluble Gases in Liquids." <u>Transactions of the Institution of</u> Chemical Engineers. 35 (1957), pp. 51-60.
- 10. Davis, R. E.; Horvath, G. L.; and Tobias, C. W. "The Solubility and Diffusion Coefficient of Oxygen in Potassium Hydroxide Solutions." <u>Electrochimica</u> Acta. 12 (1967), pp. 287-297.
- 11. Douglas, Everett. "Solubilities of Oxygen, Argon and Nitrogen in Distilled Water." <u>The Journal of Physi-</u> <u>cal Chemistry</u>. 68 (January, 1964), pp. 169-174.

- 12. Duda, J. L. and Vrentas, J. S. "Laminar Liquid Jet Diffusion Studies." <u>A.I.Ch.E. Journal</u>. 14 (March, 1968), pp. 286-294.
- 13. Eckert, J. S. "Design Techniques for Sizing Packed Towers." <u>Chemical Engineering Progress</u>. 57 (September, 1961), pp. 54-58.
- 14. Ferrell, R. T. and Himmelblau, D. M. "Diffusion Coefficients of Nitrogen and Oxygen in Water." Journal of <u>Chemical and Engineering Data</u>. 12 (January, 1967), pp. 111-115.
- 15. Foust, Alan S. et al. Principles of Unit Operations. New York: John Wiley & Sons, Inc., 1960.
- 16. Glasstone, Samuel. Textbook of Physical Chemistry. New York: D. Van Nostrand Co., Inc., 1940.
- 17. Harned, H. S. and Davis, R., Jr. "The Ionization Constant of Carbonic Acid in Water and the Solubility of Carbon Dioxide in Water and Aqueous Salt Solution from 0-50° C." Journal of American Chemical Society. 65 (October, 1943), pp. 2030-2037.
- 18. Houghton, G.; McLean, A. M.; and Ritchie, P. D. "Compressibility, Fugacity and Water-Solubility of Carbon Dioxide in the Region 0-36 Atm. and 0-100° C." Chemical Engineering Science. 6 (1957), pp. 132-137.
- 19. Johnson, R. R. and Rogozinski, J. "Deaeration and Degasification." NACE Corrosion Course; Philadelphia, Pennsylvania (September, 1969).
- 20. Jordan, Joseph; Ackerman, Eugene; and Berger, Robert. "Polarographic Diffusion Coefficients of Oxygen Defined by Activity Gradients in Viscuous Media." Journal of American Chemical Society. 78 (July 5, 1956), pp. 2979-2983.
- 21. Jordan, Joseph and Bauer, William. "Correlations Between Solvent Structure, Viscosity and Polarographic Diffusion Coefficients of Oxygen." Journal of American Chemical Society. 81 (August 5, 1959), pp. 3915-3919.
- 22. King, M. B. Phase Equilibrium in Mixture. Oxford: Pergamon Press, 1969.
- 23. Kingsbury, A. W. and Phillips, E. L. "Vacuum Deaerator Design." Transactions of ASME, Journal of Engineering for Power (October, 1961), pp. 331-338.

- 24. Klots, Cornelius and Benson, Bruce. "Solubilities of Nitrogen, Oxygen and Argon in Distilled Water." Journal of Marine Research. 21 (1963), pp. 48-57.
- 25. Knoedler, Elmer and Bonilla, Charles. "Vacuum Degasification in a Packed Column." Chemical Engineering Progress. 50 (March, 1954), pp. 125-133.
- 26. Krieger, Irvin; Mulholland, George; and Dickey, Charles. "Diffusion Coefficients for Gases in Liquids from the Rates of Solution of Small Gas Bubbles." The Journal of Physical Chemistry. 71 (1967), pp. 1123-1129.
- 27. Leva, Max. Tower Packings and Packed Tower Design. Akron, Ohio: The United States Stoneware Co., 1951.
- 28. Li, Yuan-Hui and Tsui, Tien-Fung. "The Solubility of CO<sub>2</sub> in Water and Sea Water." <u>Journal of Geophysical</u> Research. 76 (1971), pp. 4203-4207.
- 29. McCabe, W. L. and Smith, J. Unit Operations of Chemical Engineering. New York: McGraw-Hill, 1956.
- 30. McGill, James. "How to Vacuum Deaerate Injection Water." <u>The Oil and Gas Journal</u> (October 1, 1973), pp. 81-84.
- 31. Malik, V. K. and Hayduk. "A Steady State Capillary Cell Method for Measuring Gas - Liquid Diffusion Coefficients." The Canadian Journal of Chemical Engineering. 46 (December, 1968), pp. 462-466.
- 32. Montgomery, H. A. C.; Thom, N. S.; and Cockburn, A. "Determination of Dissolved Oxygen by the Winkler Method and Solubility of Oxygen in Pure Water and Sea Water." Journal of Applied Chemistry. 14 (July, 1964), pp. 280-296.
- 33. Murray, C. N. and Riley, J. P. "The Solubility of Gases in Distilled Water and Sea Water - III. Argon." Deep-Sea Research. 17 (1970), pp. 203-209.
- 34. Murray, C. N. and Riley, J. P. "The Solubility of Gases in Distilled Water and Sea Water - II. Oxygen." Deep-Sea Research. 16 (1969), pp. 311-320.
- 35. Murray, C. N.; Riley, J. P.; and Wilson, T. R. S. "The Solubility of Gases in Distilled Water and Sea Water - I. Nitrogen." <u>Deep-Sea Research</u>. 16 (1969), pp. 297-310.
- 36. Nash Data Book. South Norwalk, Connecticut: Nash Engineering Company, n.d.

- 37. Ng, Wing Y. and Walkley, John. "Diffusion of Gases in Liquids: The Constant Size Bubble Method." <u>Canadian Journal of Chemistry</u>. 47 (1969), pp. 1075-1077.
- 38. Powell, Sheppard T. "Cold Water Vacuum Deaeration." Water and Sewage Works. 93 (March, 1946), pp. 93-97.
- 39. Powell, Sheppard and Burns, Homer. "Vacuum Deaeration Combats Cold-Water Corrosion." Chemical and <u>Metallurgical Engineering</u>. 43 (April, 1936), pp. 180-184.
- 40. Rasquin, Edgar; Lynn, Scott; and Hanson, Donald. "Vacuum Degassing of Carbon Dioxide and Oxygen from Water in Packed Columns." <u>Industrial Engineering Chemistry</u>, Fundamentals. 16 (1977), pp. 103-108.
- 41. St-Denis, C. E. and Fell, C. J. D. "Diffusivity of Oxygen in Water." Canadian Journal of Chemical Engineering. 49 (December, 1971), p. 885.
- 42. Sherwood, T. K. and Holloway, F. A. L. "Performance of Packed - Towers - Liquid Film Data for Several Packings." <u>Transactions of the American Institute</u> of Chemical Engineers. 36 (1940), pp. 39-71.
- 43. Smith, J. M. and Van Ness, H. C. Introduction to Chemical Engineering Thermodynamics. New York: McGraw-Hill, 1959.
- 44. Tang, Y. P. and Himmelblau, D. M. "Effect of Solute Concentration on the Diffusivity of Carbon Dioxide in Water." <u>Chemical Engineering Science</u>. 20 (1965), pp. 7-14.
- 45. Tham, M. J.; Bhatia, K. K.; and Gubbins, K. E. "Steadystate Method for Studying Diffusion of Gases in Liquids." <u>Chemical Engineering Science</u>. 22 (1967), pp. 309-311.
- 46. Treybal, Robert. Mass Transfer Operations. New York: McGraw-Hill Book Co., 1968.
- 47. Truesdale, G. A.; Downing, A. L.; and Lowden, G. F. "The Solubility of Oxygen in Pure Water and Sea-Water." Journal of Applied Chemistry. 5 (February, 1955), pp. 53-62.
- 48. Unver, A. A. and Himmelblau. "Diffusion Coefficients of CO<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>3</sub>H<sub>6</sub>, and C<sub>4</sub>H<sub>8</sub> in Water from 6° to 65° C." <u>Journal of Chemical and Engineering Data</u>. 9 (July, 1964), pp. 428-431.

- 49. Vivian, J. Edward and King, C. Judson. "Diffusivity of Slightly Soluble Gases in Water." <u>A.I.Ch.E. Journal</u>. 10 (March, 1964), pp. 220-221.
- 50. Weast, Robert C., ed. Handbook of Chemistry and Physics. Cleveland, Ohio: The Chemical Rubber Company, 1968.
- 51. Weiss, R. F. "The Solubility of Nitrogen, Oxygen and Argon in Water and Seawater." <u>Deep-Sea Research</u>. 17 (1970), pp. 721-735.
- 52. Weiss, R. F. "Carbon Dioxide in Water and Seawater: the Solubility of a Non-Ideal Gas." <u>Marine</u> Chemistry. 2 (1974), pp. 203-215.
- 53. Wexler, Arnold and Greenspan, Lewis. "Pressure Equation for Water in the Range 0 to 100° C." Journal of <u>Research of the National Bureau of Standards</u>. 75A (May-June, 1971), pp. 213-230.
- 54. Wise, D. L. and Houghton, G. "The Diffusion Coefficients of Ten Slightly Soluble Gases in Water at 10-60° C." <u>Chemical Engineering Science</u>. 21 (1966), pp. 999-1010.
- 55. Zenz, F. A. "What Every Engineer Should Know About Packed Tower Operations." <u>Chemical Engineering</u> (August, 1953), pp. 176-184.
University Libraries University of Missouri Digitization Information Page Local identifier Wilson1979 Source information Format Book Content type Text Source ID Gift copy from department; not added to MU collection. Notes Capture information Date captured July 2023 Scanner manufacturer Fujitsu fi-7460 Scanner model Scanning system software ScandAll Pro v. 2.1.5 Premium Optical resolution 600 dpi Color settings 8 bit grayscale tiff File types Notes Derivatives - Access copy Compression Tiff: LZW compression Editing software Adobe Photoshop Resolution 600 dpi grayscale Color pdf created from tiffs File types Images cropped, straightened, brightened Notes