
DYNAMIC ACTIVITY PREDICTIONS USING GRAPH-BASED NEURAL

NETWORKS FOR TIME SERIES FORECASTING

A Thesis
in

Computer Science

Presented to the Faculty of the University
of Missouri–Kansas City in partial fulfillment of

the requirements for the degree

MASTER OF SCIENCE

by
BHUVAN KUMAR CHENNOJU

Kansas City, MO, USA

Kansas City, Missouri
2023

c© 2023

BHUVAN KUMAR CHENNOJU

ALL RIGHTS RESERVED

DYNAMIC ACTIVITY PREDICTIONS USING GRAPH-BASED NEURAL

NETWORKS FOR TIME SERIES FORECASTING

Bhuvan Kumar Chennoju, Candidate for the Master of Science Degree

University of Missouri–Kansas City, 2023

ABSTRACT

Time series forecasting is a vital task in numerous fields and traditional methods,

machine learning models, and neural graph networks have been employed to improve

prediction accuracy. However, these techniques need to be revised in understanding inter-

dependencies and establishing long-term dependencies when dealing with a network of

time series, such as predicting energy demand on interconnected grids. To tackle these

challenges, this thesis introduces a framework implementing Attention-based Temporal

Graph Convolutional Networks (ATGCNs) that enables holistic treatment of a group of

time series while learning inter-dependencies and facilitating message passing for en-

hanced model efficiency. The major contribution of this thesis lies in developing graph

embedding algorithms that convert Microbusiness density data into graph data, consid-

ering the spatial distance and time series for the proposed ATGCNs model, enabling dy-

namic activity predictions.

iii

The proposed framework is evaluated through experiments using a U.S. Microbusi-

ness density dataset from the GoDaddy Open Survey. The results reveal that ATGCNs

outperform traditional time series statistics and machine learning methods in various eval-

uation metrics, demonstrating comparable forecasting performance to conventional time

series forecasting while addressing network scalability and dynamic nature. Addition-

ally, real-time prediction visualizations based on Tableau were developed to showcase the

dynamic nature of predictions in the U.S. Microbusiness density domain.

In conclusion, this study’s findings highlight the potential advantages of employ-

ing graph-based neural networks for time series forecasting, suggesting that incorporating

additional data sources could improve prediction accuracy. As future work, transfer learn-

ing with ATGCNs will be applied to new domains such as climate prediction or energy

demand on interconnected grids. Furthermore, the graph-embedding algorithm and visu-

alization techniques developed in this project will be applied to new domains and datasets

across different domains.

iv

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Science and Engineering,

have examined a thesis titled ”Dynamic Activity Predictions using Graph-based Neural

Networks for Time Series Forecasting” presented by Bhuvan Kumar Chennoju, a candi-

date for the Master of Science degree, and hereby certify that in their opinion it is worthy

of acceptance.

Supervisory Committee

Yugyung Lee, Ph.D., Committee Chair
Department of Computer Science Electrical Engineering, UMKC

Reza Derakhshani, Ph.D.
Department of Computer Science Electrical Engineering, UMKC

Sejun Song, Ph.D.
Department of Computer Science Electrical Engineering, UMKC

v

CONTENTS

ABSTRACT . iii

ILLUSTRATIONS . viii

TABLES . xii

ACKNOWLEDGEMENTS . xiii

Chapter

1 Introduction . 1

1.1 Background . 2

1.2 Problem Statement . 4

1.3 Objectives . 4

1.4 Limitations . 5

1.5 Thesis Organization . 6

2 Related Work . 7

2.1 Time Series Data: . 7

2.2 Time Series Forecasting . 11

3 Methods and Methodologies . 26

3.1 Data Collection . 27

3.2 Data Analysis . 28

3.3 Experiment Setting . 34

4 Results and Discussion . 44

vi

4.1 Framework Validation . 45

4.2 Experiment - 1: Single Time Series Forecasting 50

4.3 Experiment - 2: Multiple Time Series Forecasting 55

4.4 Experiment - 3: Temporal Graph Neural Networks 57

5 CONCLUSION AND FUTURE WORK . 70

5.1 Conclusion . 70

5.2 Future Work . 72

REFERENCE LIST . 75

VITA . 81

vii

ILLUSTRATIONS

Figure Page

1 Time series from the Microbussinesses density data. 8

2 Trend, Seasonality, and Residuals Decomposition of one of the time se-

ries, from the US Microbusiness density data. 10

3 Schematic diagram of a perceptron, a simple neural network architecture

with one input layer, one output layer, and no hidden layers. The input

layer receives inputs from external sources or other nodes in the network,

and the output layer produces the final output of the perceptron. The

weights and bias of the perceptron are adjusted during training to improve

the accuracy of its predictions. [1] . 21

4 A distribution plot showing the density of microbusinesses of United States. 29

5 Comparison of Microbusiness Density in August 2019-2022 across the

United States. Each subplot displays the microbusiness density distri-

bution for the corresponding year, illustrating the variation in the spatial

distribution of micro businesses over time. 30

6 Network Graph of United States with Distance Threshold of 50mile be-

tween county to county. Nodes are the counties, and edges are the distance

between them. 33

viii

7 Comparison of prediction results between the T-GCN model and other

baseline methods on SZ-taxi and Los-loop datasets. 46

8 Comparison of forecasting results between A3T-GCN and T-GCN under

different time series lengths based on SZ-taxi and Los-loop. 46

9 The visualization results for a prediction horizon of 15,30,45,60 minutes(SZ-

taxi). 47

10 The visualization results for a prediction horizon of 15,30,45,60 minutes(Los-

loop). 48

11 Plot of training data and baseline predictions using naive, seasonal naive,

and month mean naive methods of microbusiness density a single time se-

ries. The red line represents the actual training data, while the green, pur-

ple, and blue lines represent the predictions of the naive, seasonal naive,

and month mean naive methods, respectively. It can be observed that the

baseline methods do not capture the seasonality and trends in the training

data quite well and, therefore, perform poorly in making accurate predic-

tions. 49

12 Plot of training data and the predictions made by the grid-searched Holt-

Winters, SARIMA, and Prophet models, for a single time series. All the

models have captured the seasonality and trends in the training data quite

well and have made accurate predictions. Holt-Winters performed the

best, while Prophet performed the worst. 51

ix

13 Plot of training data and the predictions made by linear regression, ran-

dom forest regressor, and support vector regressor for a single time series.

These models did not capture the seasonality and trends in the training data. 52

14 Plot of Ground Truth and the ensemble predictions with various baseline

models. All the ensembles captured the trend of the test data. 53

15 Comparison of Microbusiness Density of Missouri State for the Years

2019-2022 for every six months. Each subplot displays the microbusiness

density distribution for the corresponding year, illustrating the variation

in the spatial distribution of micro businesses over time. 56

16 Data visualization of the graph structure on 2019-08-01 59

17 Data visualization of the graph structure on 2019-09-01 60

18 Data visualization of the graph structure on 2019-10-01 62

19 Network Graph of Missouri State with Distance Threshold of 50mile be-

tween county to county. Nodes are the counties, and edges are the distance

between them. 63

20 Comparison of Microbusiness Density of Missouri State for 6 Months,

Each subplot displays the Graph representation of the data on a Graph

illustrating the variation in the spatial distribution of micro businesses

over time. 64

21 Temporal Graph Predictions with Static Graph for Missouri State Level

Counties. Each subplot displays the microbusiness density predictions,

illustrating the three-month variation. 68

x

22 Temporal Graph Predictions with Dynamic Graph for Missouri State Level

Counties. Each subplot displays the microbusiness density predictions, il-

lustrating the three-month variation. 69

xi

TABLES

Tables Page

1 Frequency of Different Series Types . 9

2 Comparison of Forecasting Models . 54

3 Comparison of Ensemble Forecasting Models 54

4 Comparison of Missouri State Level Forecasting Metrics with Baseline . . 55

5 Comparison of Missouri State Level Forecasting Metrics with Static Graph 66

6 Comparison of Missouri State Level Forecasting Metrics with Dynamic

Graph . 66

7 Comparison of Missouri State Level Forecasting of Temporal Graph and

Baseline models . 67

xii

ACKNOWLEDGEMENTS

This fruitful journey as a researcher would not have been possible without my

professors, mentors, family, and friend’s support. I am deeply indebted to my academic

advisor, and supervisor, Dr. Yugyung Lee, for her continuous guidance, support, and valu-

able insights throughout my research journey. Her expertise, patience, and encouragement

have been invaluable to me, and I am immensely grateful for her mentorship.

My deepest gratitude to my professor, and mentor, Dr. Reza Derakhshani, for his

wisdom and guidance in an influential way in shaping my mindset as a student, teacher,

and researcher. I also extend my heartfelt thanks to the School of Computing and Engi-

neering faculty members and staff at the University of Missouri-Kansas City for providing

a stimulating and supportive environment that enabled me to pursue my research goals. I

also thank committee member Dr. Sejun Song for his constructive advice and feedback.

My family, parents, and brother! Their unconditional love and support made this

journey possible. They have always been my biggest cheerleaders, motivating me to

pursue my dreams and helping me through the ups and downs of life, and I am forever

indebted to them. The support and encouragement of my dear friends have also been

invaluable to me.

Finally, I express my sincere appreciation to all those who have contributed to my

research project in one way or another. Your support, encouragement, and constructive

feedback have been instrumental in shaping my research and helped me to achieve my

goals. I am grateful to you all.

CHAPTER 1

INTRODUCTION

Over the past two decades, with the widespread of digital technologies such as

smartphones, social media platforms, and IoT devices, exponential growth in data gener-

ation has been witnessed in several industries [2–5]. With rapid digitalization and industry

4.0, the time-dependent data collection to make data-driven decisions has gained promi-

nence [4]. In recent years, many research articles have been published on time series

because of their applications [6, 7], such as stock market predictions, web, transporta-

tion traffic predictions, climate studies, wind pattern predictions, etc. Several techniques

have been employed in the field of time series forecasting, including Winters exponen-

tial smoothing [8], the Autoregressive Integrated Moving Average (ARIMA) model [9],

multiple regression, and artificial neural networks (ANNs) [10]. These approaches have

gained significant popularity due to their ability to capture the trend and seasonal varia-

tions often present in time series data [11]. But, past values, external factors outside the

survey, outliers, or hidden connections can impact the future of forecasting metrics. Fac-

tors such as hidden dependencies on external influences, outliers, and significant events

can influence forecasting accuracy. So, despite the extensive research on individual time

series forecasting with statistical methods and classical machine learning, there is a need

for more understanding of the relationship between different time series of a similar do-

main. Given the critical role played by time series data and underlying interdependencies

1

in numerous disciplines, the present dissertation is devoted to graph-based time series

modeling and forecasting, with extensive cross-comparison with statistical modeling, ma-

chine learning modeling, and deep learning modeling-based time series forecasting.

1.1 Background

The recent generation of spatiotemporal data has revolutionized how we study and

understand the world. With the proliferation of smartphones, Internet of Things (IoT) de-

vices, and sensors, vast amounts of spatiotemporal data are being generated at an unprece-

dented rate. This data includes information about the location, movement, and behavior

of people, vehicles, objects, and environmental conditions such as temperature, humidity,

and air quality [12].

The importance of studying spatiotemporal data concerning time series forecast-

ing must be considered. Time series forecasting is critical in many fields, including fi-

nance, transportation, energy, and environmental science. Accurate forecasting of spa-

tiotemporal data can provide valuable insights into the behavior and trends of complex

systems, leading to better decision-making and resource allocation.

Two major categories of data-driven methods for time series analysis are classical

statistical models and machine learning models. Autoregressive integrated moving aver-

age (ARIMA) [13] and its variants are classic statistical models commonly used for time

series analysis [14]. However, these models are limited by their assumption that time se-

quences are stationary and do not consider spatiotemporal correlation. As a result, they

2

have a limited ability to represent highly nonlinear time series data. In recent years, ma-

chine learning methods such as the k-nearest neighbors algorithm (KNN), support vector

machine (SVM), and neural networks (NN) have gained popularity for such data due to

their higher prediction accuracy and ability to model complex data.

Although these algorithms gained popularity for there non-linear generalizations,

According to the research conducted by Zhang and Qi, [15], it was found that Neural Net-

works working alone are not effective in modeling the trend and seasonality accurately.

This suggests that the performance of forecasting with Neural Networks can be enhanced

by detrending or deseasonalizing the raw time series before modeling it. In other words,

it is necessary to preprocess the data to remove the trend and seasonality components be-

fore feeding it into the neural network to obtain better forecasting results. This highlights

the importance of accurate data preprocessing and feature engineering in improving the

accuracy of time series forecasting with Neural Networks.

To improve forecasting accuracy, researchers have introduced several strategies

to overcome the limitations of traditional RNN-based networks, including their difficulty

in training and computational heaviness. To address these issues, we adopted a novel

deep learning architecture called spatiotemporal graph convolutional networks [12]. This

architecture uses a general graph to model the general spatial-temporal network and em-

ploys a fully convolutional structure on the time axis. It comprises several spatiotemporal

convolutional blocks that combine graph convolutional layers and convolutional sequence

learning layers to model both spatial and temporal dependencies.

3

1.2 Problem Statement

The objective of this master’s thesis is to develop a framework that will enhance

our understanding of interdependent time series forecasting. The framework will en-

compass conventional naive methods, statistical methods, machine learning methods, and

graph-based deep learning to better understand time series forecasting as a whole cluster

rather than treating them as mutually exclusive independent time series.

To illustrate this concept, let’s consider the prediction of the energy demand of

each state in the United States or the stock market price of a company about its sub-

sidiaries. By treating each time series as an individual entry, the prediction will be biased

toward that entry. However, by treating this network of entries as a group with inter-

dependency relationships, the prediction accuracy can be improved by weighted messag-

ing within the group. Therefore, its worth looking in this direction to explore this hypoth-

esis, validate the results, and conclude the applicability of this framework to a general

time series forecasting framework.

1.3 Objectives

This thesis addresses the research question by considering the relevant aspects

discussed in the preceding section. To fully answer the research question, the following

objectives will be pursued:

• Build and analyze the future observations as individual entries.

• Create baseline models for comparison purposes.

4

• Develop a framework to cross-compare the traditional methods of time series fore-

casting, machine learning methods, and temporal graph networks.

• Convert the problem statement in hand to graph network.

• Create the benchmark for the spatial-temporal framework to check the validity of

the current problem.

• Analyze and evaluate the proposed framework’s performance compared to the base-

line model(s), assessing the effectiveness of the model and the performance of the

temporal graph networks.

• summarizes the observations with validation of the thesis hypothesis.

1.4 Limitations

Few limitations that are observed while researching as follows:

• The data set in considered is significantly reasonable in terms of spatial dimension,

whereas having only two and has cycles of seasonal data. This means we cannot an-

swer if the prediction perform ace could be improved with more data in proportion

to the spatial dimension.

• The critical factors for time series forecasting problems, like the holiday effect, will

not be our score in this thesis, as the data is once in month collected. Although

Facebook’s prophet uses this idea of the holiday effect, it can only be effective as

the data have only monthly observations.

5

• The speed and model optimization is not in the scope of the work, and the core

spatiotemporal network architecture is adopted from preexisting work [12]. So we

will not validate the efficiency of networks in the thesis but focus on the application

of the idea.

1.5 Thesis Organization

This thesis is divided into five chapters. The current introduction chapter is the

first chapter. The second chapter provides theoretical context, focusing on related work

in time series data and time series forecasting techniques, including naive methods, naive

statistical methods, machine learning methods, and Graph-based deep learning. The third

chapter introduces the suggested framework, which includes three distinct phases and a

summary of contributions. The fourth chapter examines the outcomes and judgments of

our work in a broader context. Finally, the fifth chapter finishes the thesis by summarizing

the findings in conclusion and making recommendations for further research.

6

CHAPTER 2

RELATED WORK

The present chapter serves as an introduction to the background of our research.

Our research pertains to Time Series Forecasting. Therefore, its relevant theory was dis-

cussed at a foundational level. The structure of this chapter is as follows: 1) We will

provide an overview of the time series forecasting problem and some recent advances

in this area. 2) We will discuss Artificial Neural Networks (ANNs), specifically Long

Short-Term Memory (LSTM) networks, which are utilized in our study. 3) We will intro-

duce Graph Convolutional Neural Networks, specifically Temporal graph convolutional

networks, which are crucial for the study.

2.1 Time Series Data:

Time series data is a type of data that represents a sequence of observations col-

lected at regular intervals over time. It is a set of data points indexed in time order, usually

with equal gaps between the time points.

Mathematically speaking, a time series is a sequence of Y comprising an ordered

sequence of data points Y = y1, y2,...yt, where each yi represents a data point at a specific

time i. Figure 1shows three different time series from our US counties data for periods

from 2019 to 2022 w.r.t temporal variable Y .

7

Figure 1: Time series from the Microbussinesses density data.

8

Every time series data can be decomposed into four primary components: trend,

cycle, seasonal variations, and outliers. Figure 2 shows these components. The trend com-

ponent represents the time series general upward or downward tendency over time. The

cycle component captures medium-term changes in the series, often driven by specific

circumstances. The seasonal variations represent regular high and low values patterns

within a year, including seasonal, quarterly, monthly, or daily cycles. The outlier compo-

nent identifies data points that deviate significantly from the overall patterns and are often

attributed to unpredictable factors. Details of trends and seasonality below.

Table 1: Frequency of Different Series Types

Series Types Frequency
Yearly 1

Quarterly 4
Monthly 12
Weekly 52

• Trend: Trend in time series refers to the long-term pattern or direction of the data.

It reflects the underlying behavior of the series and can help identify changes or

shifts in the overall pattern. Trends can be positive, negative, or flat, depending on

whether the data increases, decreases, or stays relatively constant. Figure 2 shows

the increasing trend for the given time series.

• Seasonality: Seasonality is a characteristic of time series data that refers to a pattern

of behavior that repeats itself regularly, usually within one year or less. Seasonality

9

Figure 2: Trend, Seasonality, and Residuals Decomposition of one of the time series, from
the US Microbusiness density data.

10

can be seen in several things, such as stocks, weather patterns, fashion, etc. For In-

stance, sales of winter coats tend to increase in the months leading up to winter and

decrease in the warmer months, while ice cream sales tend to grow in the summer

and fall in the colder months. In common practice, the seasonality was addressed

with the frequency of the time series, and well know the frequency of the time series

is [12] given in Table 1. Figure 2 shows the seasonality of frequency 12, which is

of monthly type seasonality.

• Residuals: Residuals are differences between original data, the sum of trend, and

seasonality components. Residuals are essential to time series modeling as they

provide information about the critical things missed by the movement, and season-

ality, such as holidays and events. Figure 2 shows the residuals of the time series.

2.2 Time Series Forecasting

Predicting future observations based on historical data is highly valued in numer-

ous applications, as it allows for proactive decision-making to mitigate risks and minimize

potential losses. Examples of time series data include sales figures, stock price predic-

tions, weather pattern predictions, earthquake occurrences, and foot traffic data. The main

goal of effective time series forecasting is to forecast future observations as accurately as

possible. Many methods and techniques exist to forecast a time series: time series de-

composition, statistical forecasting, exponential smoothing techniques, machine learning,

artificial neural networks, and temporal convolutional graph networks.

11

2.2.1 Time Series Decomposition

Time series data often exhibit complex patterns that can influence their forecasting

accuracy. Therefore, it is essential to decompose a time series into its underlying compo-

nents to understand these patterns better and improve the accuracy of the forecasts. By

breaking down the time series into several parts that represent distinct pattern categories,

such as trend, seasonality, and residual variation, it is possible to analyze and model each

component separately, which can lead to better insights into the behavior of the data.

Composing a time series can also help identify anomalies or outliers, impacting the fore-

casting models’ overall accuracy. Several methods exist for time series decomposition,

including classical and seasonal decomposition of time series (STL).

• Classical Decomposition In classical decomposition, the time series aims to de-

compose into four components: trend, seasonality, cycle, and residuals. Trend,

seasonality, and residuals are explained in Section 2.1. Two fundamental ways to

split a time series are additive and multiplicative [16].

Mathematically, the classical additive decomposition can be represented as:

Y (t) = T (t) + S(t) + C(t) + e(t)(2.1) (2.1)

Alternatively, the classical multiplicative decomposition can be represented as:

Y (t) = T (t) ∗ S(t) ∗ C(t) ∗ e(t)(2.2) (2.2)

• Seasonal Decomposition In seasonal decomposition, time series data is into its un-

derlying components, including the seasonal, trend, and irregular components [14].

12

Unlike classical decomposition, seasonal decomposition is specifically designed to

handle time series data with strong seasonal patterns. The seasonal component

represents the regular fluctuations within the data, while the trend component rep-

resents any long-term upward or downward movements. The irregular component

represents any random fluctuations or noise that the seasonal or trend components

cannot explain.

2.2.2 Statistical Forecasting Methods

Statistical forecasting methods are based on historical data and mathematical mod-

els to identify patterns and trends in time series data and predict future values [16]. These

methods have been widely used in various industries, including finance, manufacturing,

and transportation, to make informed decisions about future planning and resource allo-

cation. Generally, as a rule of thumb, these statistical forecasting methods are used as

the benchmark [17–20] for time series forecasting. In most time series forecasting, these

statistical methods effectively make benchmarks and cross-comparisons [20].

• Naive Method In the naive method, the past observation is assumed as the future

forecasting. Mathematically speaking, for a time series Y with observations yi at

i = 1, 2, 3, ...t, then predict for t+ h is defined as:

ŷ(t+ h|t) = y(t) (2.3)

where ŷ(t + h|t) represents the time series forecast at time t + h, based on the in-

formation available at time t, y(t) is the time series value at time t,m is the seasonal

13

period, and h is the forecast horizon. With this idea, this method acts as a suitable

base as ground zero to start the predictions; like null value accuracy in the clas-

sification, this method gives the initial frame of reference to improve the model’s

effectiveness.

• Seasonal Naive Method The naive seasonal method uses the observation from the

same season in the previous year as the forecast for the upcoming season without

considering any trend or seasonal components [21]. This approach can be expressed

mathematically as follows:

ŷ(t+ h|t) = y(t+ h−m(k + 1)) where k =

⌊
h− 1

m

⌋
(2.4)

where ŷ(t+ h|t) represents the forecast of the time series at time t+h, based on the

information available at time t, y(t) is the value of the time series at time t,m is the

seasonal period, h is the forecast horizon, and k is an integer that determines how

many seasonal periods need to be subtracted from t + h to find the corresponding

observation from the previous year.

• Autoregressive Integrated Moving Average Autoregressive integrated moving av-

erage (ARIMA) is a famous [22–24] generalization of a simpler Autoregressive

Moving Average (ARMA) model, which can handle the non-stationary time series

data by including the integration component. ARIMA model is primarily designed

to handle stationary time series data [21]. However, non-stationary data can be

transformed into stationary data by taking the first, or second-order differences.

14

This process is called differencing, and itâs a popular technique to convert non-

stationary to stationary data. ARIMA model can be defined by three parameters,

namely p,d, and q. The parameter p represents the order of the autoregressive (AR)

component, d represents the degree of difference needed to make the time series

stationary, and q represents the order of the moving average (MA) component.

• Prophet Facebook Prophet is a forecasting system developed by Facebook’s data

science team based on a decomposable time series model. The model has three main

components: growth, seasonality, and holidays. The growth function captures the

trend in the time series, seasonality models periodic changes due to weekly or yearly

seasonality, and holidays and special events are considered as another component.

These three components are combined using a generalized additive model (GAM)

framework. Prophet relies on linear/non-linear growth, Fourier series, and dummy

variables to model the growth, seasonality, and holiday components. The system

is mainly used for daily frequency time series with at least one year of historical

data, but it can also be applied to time series with other frequencies. The Prophet

package is implemented in R and Python. Although Prophet is easy to use, it has

some limitations. For example, it is not designed for multivariate time series data

and does not consider features other than seasonality or special events.

15

2.2.3 Exponential Smoothing Methods

Exponential smoothing, first introduced by Brown in 1959 [25] and later devel-

oped by Holt [26] and Winters [27], has been widely recognized as one of the most suc-

cessful and practical forecasting methods. This method involves computing weighted

averages of historical observations to generate future forecasts. The weights assigned to

the observations decay exponentially over time, giving more weight to recent observations

and less weight to older observations. This feature allows the method to adapt to changes

in the time series pattern and efficiently generate reliable forecasts for a broad range

of time series. Consequently, various industries commonly adopt exponential smooth-

ing[19].

The Holt-Winters method for forecasting time series data with seasonality can be

expressed mathematically as follows:

s0 = y0 (2.5)

ŷt = α(yt − st−m) + (1− α)(lt−1 + bt−1) (2.6)

bt = β(ŷt − ŷt−1) + (1− β)bt−1 (2.7)

st = γ(yt − ŷt) + (1− γ)st−m (2.8)

For the additive method:

ŷt+1 = lt + bt + st+ 1 (2.9)

16

For the multiplicative method:

ŷt+1 = lt ∗ bt ∗ st+ 1 (2.10)

Where s0 is the initial seasonality estimate, ŷt is the level estimate at time t, bt is

the trend estimate at time t, st is the seasonality estimate at time t, α, β, and γ are the

smoothing parameters for level, trend, and seasonality, respectively, m is the frequency of

the seasonality, yt is the actual observation at time t, yt+1 is the forecast for the next time

period.

2.2.4 Machine Learning Methods

Machine learning methods have gained significant attention [20] in time series

forecasting due to their capability to model complex patterns in data. These methods

include traditional techniques such as regression, decision trees, and neural networks,

as well as more advanced procedures like support vector machines, random forests, and

deep learning [22,28–31] One of the significant advantages of machine learning methods

is their ability to handle high-dimensional and non-linear data, a common characteristic of

many time series datasets. Additionally, machine learning algorithms can automatically

identify relevant features and learn from historical data to improve forecasting accuracy.

Different regression algorithms, such as Linear Regression, Support Vector Regression,

and decision trees, are applied in the various application of time series forecasting [22,

28–31].

• Linear Regression Linear regression is a method used to identify a linear rela-

tionship between the dependent and independent variables. The dependent variable

17

is the variable we want to predict, while the independent variable(s) are used to

make predictions. Simple and multivariable regression are the two main types of

linear regression, with the former useful for finding the relationship between one

independent variable and the dependent variable and the latter involving multiple

independent variables. To optimize a cost function, linear regression uses gradient

descent. Linear regression is also used in time series forecasting, as seen in previous

studies [32].

Mathematically speaking, if X is a dependent variable, Y is an independent vari-

able; the model assumes that the relationship between X and Y is linear, i.e., Y is

a linear function of X plus an error term ε.

Y = β0 + β1X1 + β2X2 + . . .+ βnXn + ε (2.11)

Where β0, β1, β2, . . . ,βn are the regression coefficients or parameters to be es-

timated, and ε is the error term, representing the random variability in the data that

the model does not explain. The goal of linear regression is to estimate the values

of β0, β1, β2, . . . ,βn that best fit the data by minimizing the sum of the squared

errors between the predicted values of Y and the actual values of Y . This is often

done using the method of least squares. This thesis used the root mean square error

as a metric for this model.

18

• Support Vector Regression Support Vector Regression (SVR) is a machine learn-

ing algorithm like Support Vector Machines (SVM) used to predict continuous val-

ues. The algorithm constructs a hyperplane to maximize the margin and minimize

the error. The hyperplane is then used to create a decision boundary so the support

vectors are within the boundary lines. SVR can be formulated as a constrained op-

timization problem, where the objective is to minimize the prediction error subject

to a tolerance margin. The solution is obtained by finding the Lagrange multipli-

ers that satisfy the Karush-Kuhn-Tucker conditions. The support vectors are those

data points that are closest to the boundary. The best-fit line is the hyperplane with

the maximum number of points in the decision boundary. SVR has been widely

used in time series prediction and analysis, such as financial and stock time series

forecasting [33, 34].

The mathematical Formulation of SVR is as follows:

Given a set of training data {(x1, y1), (x2, y2), . . . , (xn, yn)} where x is the input

feature vector, and y is the corresponding target value, SVR seeks to find a function

f(x) that predicts the target value y for a new input x. The function f(x) is defined

as:

f(x) = w · x+ b (2.12)

where w is a weight vector, and b is a bias term. SVR aims to find the optimal

values of w and b such that the distance between the predicted value f(x) and the

19

true target value y is minimized, subject to a tolerance margin ε.

This can be expressed as the following optimization problem:

1

2
|w|2 + C

n∑
i=1

(ξi + ξ∗i) (2.13)

yi − f(xi) ≤ ε+ ξi (2.14)

yi − f(xi) ≤ ε+ ξif(xi)− yi ≤ ε+ ξ∗i , where ξi, ξ
∗
i ≥ 0 (2.15)

Where ξi and ξ∗i are slack variables, and C is a hyperparameter that controls the

trade-off between achieving a smaller margin and allowing more violations to the

margin. The optimization problem can be solved using various methods, such as

quadratic programming or gradient descent.

• Random Forest Regression

Random Forest Regression is a popular ensemble learning algorithm for classifica-

tion and regression tasks. The algorithm uses multiple decision trees to improve

predictive accuracy, where each tree is trained on a random subset of features and

samples selected with replacement using bagging. This approach prevents overfit-

ting and provides a reliable and accurate prediction. The Random Forest model

is computationally efficient, simple to use, and requires only a few parameters to

tune. It is a powerful tool widely used in applied machine learning and time series

prediction [35, 36].

20

Figure 3: Schematic diagram of a perceptron, a simple neural network architecture with
one input layer, one output layer, and no hidden layers. The input layer receives inputs
from external sources or other nodes in the network, and the output layer produces the
final output of the perceptron. The weights and bias of the perceptron are adjusted during
training to improve the accuracy of its predictions. [1]

2.2.5 Artificial Neural Networks

Artificial Neural Networks, or ANNs for short, are sophisticated computational

tools designed to extract patterns, unknown structures, and insights from data. They are

modeled on the structure and function of biological neural networks, employing intercon-

nected processing units known as artificial neurons to process input signals and produce

a weighted sum of outputs. These outputs are then passed through a non-linear activation

function to generate the result. The Perceptron is a classic example of an artificial neuron,

and it is widely used as a supervised learning algorithm for binary classification problems.

Figure ?? shows the popular Rosenblatt perceptron.

21

The ability of ANNs to analyze complex data patterns attracted the scientific com-

munity to its applicability the time series forecasting. Predominantly, time series forecast-

ing is dominated by Recurrent neural networks, Gated recurrent neural networks, and long

short-term memory (LSTM). RNNs [37] and LSTMs [38] have become popular with time

series forecasting. RNN is a Neural network that takes the input of sequence and output

sequence based on the lags in the future. Similarly, LSTM is a special RNN with skip

connections and works on memory-based output.

The most basic ANN type of ANNs is a feedforward neural network (FFNN) or a

multi-layer perceptron (MLP). It consists of multiple perceptions, which aim to approxi-

mate a function f from the known data x and the target data y. This mapping can be defined

as y = f(x,w), where the main objective of learning is to obtain the optimal weights w

for the best function approximation. In a neural network, the layers represent the mapping

functions, and the number of stacked layers determines the depth of the model. The term

”Deep Learning” refers to models with many hidden layers.

When training a machine learning model, the goal is to ensure that the model’s

output, represented as f(x), is as close as possible to the real target values. This process

involves utilizing both the training data and test data. To achieve this, we define a set

of input-output pairs (x; y), a blueprint for the model to generate the corresponding y

value based on the given x value. Optimizing the model’s parameters during training can

reduce the difference between the predicted output and target values, allowing the model

to generalize accurately to new, unseen data.

22

To ensure that a machine learning model is accurate in its predictions, a mecha-

nism is required to help the model determine the quality of its calculations. This mecha-

nism measures the difference between the calculated output ŷ and the actual output y. In

other words, we need to use a loss function to quantify this difference during the train-

ing process and provide feedback to the model on its performance. The loss function is

a mathematical function that takes the difference between predicted and actual outputs

as input and outputs a single value representing the model’s error. The goal of training

the model is to minimize the loss function, which means minimizing the difference be-

tween the predicted and actual outputs. The loss function is usually optimized with a

gradient-based algorithm; Stochastic Gradient Descent is a commonly used optimization

algorithm.

• Recurrent Neural Network RNNs (Recurrent Neural Networks) are a type of neu-

ral network that address the issue of dependency between input sequences. Unlike

traditional neural networks, which assume all inputs are independent, RNNs utilize

sequential information to compute the output. This is particularly useful for appli-

cations such as language modeling, where the sequence of words is important for

predicting the next word in a sentence. RNNs use a hidden state updated at each

time step, allowing the network to maintain a memory of previous inputs. The out-

put at each time step is generated based on the current input and the previous hidden

state.

• Long Short-Term Memory Network LSTM stands for Long Short-Term Memory,

a Recurrent Neural Network (RNN) architecture designed to solve the vanishing

23

gradient problem in standard RNNs. In an LSTM network, each neuron, also called

a memory cell, has three gates: the input gate, the forget gate, and the output gate.

The input gate regulates the flow of new information into the memory cell, the

forget gate controls the retention or deletion of old information, and the output

gate decides how much information to output from the memory cell to the next

neuron in the sequence. By controlling the flow of information, the LSTM can

selectively remember or forget information from the past, making it effective in

modeling sequential data with long-term dependencies.

2.2.6 Temporal Graph Neural Networks

Temporal Graph Neural Networks (TGNs) [39–42] are architecture that operates

on time-evolving graph data. These networks extend the traditional Graph Neural Net-

works (GNNs) by incorporating the temporal dimension, allowing them to model how

graph structures and node attributes change over time.

TGNs operate on a sequence of graphs, where each graph represents the system’s

state at a particular point in time. In this sequence, each node has a set of attributes that

can change over time, and edges can also appear or disappear over time. TGNs aim to

learn a function that can predict future states of the graph, given the current state and his-

torical information. TGNs use a combination of convolutional graph layers and temporal

convolutional layers to process the input data. Graph convolutional layers operate on each

graph individually, allowing the model to learn how node features and graph structure af-

fect each other. Temporal convolutional layers work on the sequence of graphs, allowing

24

the model to learn how the graph evolves. One popular variant of TGNs is the Temporal

Graph Convolutional Network (TGCN), which uses a shared graph convolutional layer for

each time step and a temporal convolutional layer to capture temporal dependencies. An-

other variant is the Evolving Graph Convolutional Network (E-GCN). It adds an attention

mechanism to weigh the contributions of different time steps based on their relevance to

the current prediction task. TGNs have shown promising results in various applications,

including predicting social interactions, traffic flow, and financial markets. However, they

can be computationally expensive due to the need to process a sequence of graphs, and

there is ongoing research to improve their scalability and efficiency.

25

CHAPTER 3

METHODS AND METHODOLOGIES

In this chapter, we will formulate the methodologies to validate the thesis hypoth-

esis and ways to answer the research question from Chapter 1.3. To achieve this goal,

we will first review the literature on the current state-of-the-art in time series forecasting

and temporal graph networks in chapter 2. This literature review will help us identify

the strengths and weaknesses of existing models and highlight the gaps in the current

research.

Now, we’ll be able to propose a framework for a model that combines the strengths

of conventional neural networks and temporal graphs. The proposed model will address

the challenges in time series forecasting, such as handling long-term dependencies and

predicting uncertain events. To work with such model, the main hurdle is the data, and

graph conversions, to explore the effectiveness of the model.

So In this chapter, detailed information about the data, data analysis, structured

data processing to graph data, model, evaluation metrics, and training paradigm. Later,

we will evaluate the proposed model’s performance by conducting experiments on real-

world time series datasets. The experiments will compare the performance of the pro-

posed model against the conventional neural network and other state-of-the-art time series

forecasting models.

Finally, we will analyze the experiments’ results to conclude the proposed model’s

26

effectiveness and the potential benefits of temporal graphs for time series forecasting. This

analysis will provide insights into the practical applications of the proposed model and its

potential to improve the accuracy and reliability of time series forecasting.

3.1 Data Collection

3.1.1 U.S. Microbussiness Density Data

In this research, the data used is the microbusiness density of the united states,

where Microbusiness density is the number of microbusinesses per 100 adults in a ge-

ographic area. This data was collected by Go Daddy surveys for this study in 2018 to

analyze the economic impact of micro-businesses in the United States. Go Daddy worked

with economists and data scientists from various institutions to analyze data from over

30,000 zip codes, 3,000 counties, and 900 city regions. The microbusiness density was

measured by counting the active Go Daddy-registered domains in a geographic area, in-

cluding commercial ventures, nonprofits, cause-oriented, and other sites. The data was

further divided to identify highly active microbusinesses in each region. The study com-

bined data from various sources, including the U.S. Census Bureau, Bureau of Labor

Statistics, and Economic Innovation Group, to model the effects of online microbusi-

nesses on different economic outcomes, such as regional prosperity scores, median house-

hold income, and unemployment rates. The regression models controlled for additional

variables like broadband access, education levels, age, demographics, population, and

occupational data. The dataset provides aggregated results at the Core-Based Statistical

27

Area (CBSA), County, and State levels, including monthly microbusiness density mea-

surements. The data needs to catch up by one calendar quarter due to business reasons,

and the current dataset began in August 2019 [43].

3.2 Data Analysis

It is essential to conduct a thorough analysis to ensure that the data collected is

suitable for the intended research purposes. This analysis will help determine whether

the data is complete and accurate and identify potential outliers or anomalies. Once the

data has been verified, appropriate analysis metrics must be chosen to evaluate the data

generated from the experiment effectively. The selected metrics should be able to provide

meaningful insights into the data and help answer the research questions or hypotheses.

This section of the research process is crucial in ensuring the data analysis is accurate and

reliable, enhancing the credibility and validity of the research findings.

3.2.1 Data Analysis of U.S. Microbussiness Density Data

This data focuses on microbusiness density values at various levels from state to

county and the data available from 08/2019 to 10/2022. So 39 monthly data are collected

for all the states to the county level. There are 52 states and 3135 counties with 39 months

of time series data in the collected data. So in terms of individual entities, there are 3135

unique time series overall. Overall, there is all the information. For each state, census data

was collected from the open-census data hub. This data was later used together to give

additional information about each state. The distribution of the microbusiness density

values is shown in Figure 4, where the mean value falls around 2.5 and the maximum

28

Figure 4: A distribution plot showing the density of microbusinesses of United States.

value a little above 220.

Figure 5 shows the annual changes in the microbusiness density all over the United

States, to the county level. It is clear that with the change of time, there are precise

interactions between and have a significant increase in the number of businesses. The

data have such temporal snapshots of data for 39 months, with 3135 individual time series.

This explains why it is essential to bring relationship-based time series forecasting.

29

(a) Microbusiness Density Distribution on
2019-08-01

(b) Microbusiness Density Distribution on
2020-08-01

(c) Microbusiness Density Distribution on
2021-08-01

(d) Microbusiness Density Distribution on
2022-08-01

Figure 5: Comparison of Microbusiness Density in August 2019-2022 across the United
States. Each subplot displays the microbusiness density distribution for the corresponding
year, illustrating the variation in the spatial distribution of micro businesses over time.

30

3.2.2 Data Preprocessing

Data preprocessing is crucial for time series forecasting, as the predictions are

highly sensitive to outliers, data scales, and null values. In addition to that, features engi-

neering is one of the most important things to pay attention. In this study, two different

approaches are compared, one is the traditional time series forecasting, and the other is

the temporal graph network based time series forecasting. Therefore, the data processing

has to be different for both approaches.

3.2.2.1 Data Cleaning and Standardizing

This step aims to transform raw data into a form easily fed into a forecasting

model by cleaning, changing, and preparing it for analysis while minimizing the impact

of noise, outliers, and missing values. One of the first steps is to check for and handle

missing values, outliers, and anomalies. Missing values can be filled using interpolation

methods, such as a forward or backward filling or more sophisticated imputation methods.

Outliers and monsters can be detected using statistical methods, such as Z-score, IQR,

and boxplot. They can be handled by removing or replacing them with more reasonable

values.

Another vital aspect is feature engineering, which involves creating new features

from the existing ones to capture more information and patterns in the data. This can

include computing rolling statistics, such as moving averages, exponential smoothing,

lagged variables, or creating dummy variables for categorical variables. Normalization is

also a critical step in data preprocessing, as it helps to standardize the scale of the data so

31

that different variables are comparable and have equal weight in the forecasting model.

This is particularly important when the variables in the time series data have different

ranges or units of measurement. Popular normalization methods include min-max scaling,

z-score normalization, and decimal scaling.

3.2.2.2 Temporal Data Preparation

This study prepared the temporal data in a specific format for traditional time

series forecasting. The data was divided into time windows for each time step, which

allowed the model to be trained on a sliding window basis. This method of preparing the

data is important because it considers the temporal nature of the data, ensuring that the

model can learn the patterns and trends that occur over time. The time windows also allow

the model to be trained on a rolling basis, which means the model is constantly updated

as new data becomes available. This ensures the model remains accurate and up-to-date,

even as the underlying data changes. Overall, the temporal data preparation process is an

essential step in traditional time series forecasting. It plays a crucial role in ensuring the

accuracy and reliability of the model’s predictions.

3.2.2.3 Graph Data Preparation

Graph data preparation is a critical step in machine learning tasks involving graph

structures, such as graph classification, node classification, and link prediction. In this

step, the graph data is typically transformed into a numerical representation that can be

fed into machine learning models. One common approach for graph data preparation is

to use graph embedding methods, which map nodes or subgraphs into low-dimensional

32

Figure 6: Network Graph of United States with Distance Threshold of 50mile between
county to county. Nodes are the counties, and edges are the distance between them.

vector representations. Another approach is to use graph kernels, which measure the

similarity between pairs of graphs by comparing their structures. Additionally, various

preprocessing techniques, such as node feature normalization, feature selection, and data

augmentation, can be applied to improve the quality and efficiency of the input graph

data. Figure 6 shows the geospatial representation of the network graph of the united

states with counties as nodes, distances as edges, and micro business density values as the

node size. An interactive graph visualization dashboard for the processed data is deployed

to the Tableau public server [44].

33

3.3 Experiment Setting

In this section, the experiment setting of the study was discussed, including data

partition into training, validation, and test data. The training set is used to train the model;

the validation set is used to tune the model’s hyperparameters and evaluate its performance

during the training. Also, model architectures and hyperparameters for temporal graph

neural networks were discussed.

3.3.1 Software and Hardware Stack

3.3.1.1 Software Stack

This study employed a specific software stack to conduct the research and imple-

ment the proposed methodology. The software stack consisted of the following tools and

libraries:

• Python Programming Language: Python was chosen as the primary program-

ming language for its versatility and extensive ecosystem of libraries. Python pro-

vided a robust foundation for implementing the various components of the research

project.

• PyTorch Deep Learning Framework:PyTorch, a widely used deep learning frame-

work, was utilized for developing and training the neural network models. PyTorch

offers a flexible and intuitive interface for designing and implementing deep learn-

ing architectures, making it suitable for the research objectives.

34

• PyTorch Geometric Temporal: PyTorch Geometric Temporal is a specialized li-

brary that extends PyTorch Geometric for temporal graph operations and network

training. It provides tools and utilities to handle temporal graph data and train graph

neural networks specifically designed for temporal data analysis.

• NetworkX:The NetworkX library was employed for graph construction and ma-

nipulation. NetworkX offers a comprehensive set of functionalities for creating,

analyzing, and modifying graphs, enabling the construction and preprocessing of

complex network structures in the research project.

• Tableau Public Software: Tableau Public Software was used for creating interac-

tive dashboards and generating reports. It allows for visually appealing and intuitive

data visualization, facilitating the effective communication of research findings and

insights to stakeholders and readers.

• Pandas and NumPy: Pandas and NumPy were utilized for data manipulation and

processing. These libraries offer efficient data structures and functions for handling

large datasets, enabling data cleaning, transformation, and aggregation operations.

By leveraging this software stack, the research project benefited from the strengths

and capabilities of each tool, facilitating the development, training, and evaluation of the

proposed methodology for temporal graph analysis.

35

3.3.1.2 Hardware Stack

The hardware stack employed for this project showcased a formidable configu-

ration capable of handling demanding computational tasks. It consisted of dual AMD

EPYC 7H12 CPUs, providing 128 cores. This substantial processing power enabled the

efficient execution of computationally intensive operations, such as deep learning train-

ing and large-scale data processing. Accompanying the powerful CPUs was an impressive

512GB of RAM, ensuring ample memory capacity to handle large datasets and complex

computations. Including eight Nvidia RTX A6000 GPUs, each equipped with 48GB of

RAM, further bolstered the system’s capabilities. These high-end GPUs offered excep-

tional parallel processing capabilities, specifically accelerating deep learning tasks and

training neural network models. The hardware stack was also equipped with 3.5TB of

local scratch space, specifically designated for storing temporary files and intermediate

results. This extensive storage capacity contributed to efficiently managing and process-

ing transient data throughout the project’s execution.

3.3.2 Framework Design and Comparison Models

In this section, the model design for this study is discussed. This whole study

used two different approaches to design the experiment of time series forecasting. The

first approach uses statistical and machine learning models; the second is temporal graph

neural networks. The idea is to show the performance of both techniques, compare the

results with both design pipelines, and validate the hypothesis.

36

3.3.2.1 Statistical and Machine Learning Models

For statistical methods, SARIMA and Holts Winters Exponential seasoning are

used. For SARIMA, the order of (0,1,1) and seasonal order of (1,1,0,2) are the optimized

values, whereas, for the Holt winters exponential seasoning, a grid search-based hyper-

parameter search was conducted; for machine learning models, linear regression, random

forest, and support vector machine-based regressors are used. Data was unshuffled to

keep the temporal and lag information with the lagging technique.

3.3.2.2 Temporal Graph Neural Networks

For the Temporal graph neural networks, attention temporal graph convolutional

network (A3T-GCN) [39] architecture is used for the core layer, which is passed through

the final linear layer. In this study, only a single layer of an A3T-GCN block is used to

avoid the efficiency issues with higher information condensation and bottlenecking with

increased TGCN blocks.

The T-GCN model combines Graph Convolutional Networks (GCN) and Gated

Recurrent Units (GRU) to capture spatiotemporal characteristics of temporal graph data.

Given n historical time series traffic data, the T-GCN model produces n hidden states (h)

that cover spatiotemporal features: h(t-n), ..., h(t-1), h(t). The GCN layer first processes

the input data to capture the spatial dependencies of the data. The output of the GCN

layer is then fed into the GRU layer to model the temporal dependencies. The update gate

(ut), reset gate (rt), and candidate memory cell (ct) are calculated as follows:

37

ut = σ(Wu ∗ (GC(A,Xt), ht−1)) (3.1)

rt = σ(Wr ∗ (GC(A,Xt), ht−1)) (3.2)

ct = tanh(Wc ∗ (GC(A,Xt), (rt ∗ ht−1))) (3.3)

ht = ut ∗ ht−1 + (1− ut) ∗ ct (3.4)

The hidden states are then fed into an attention model to determine the context

vector covering global traffic variation information. The weight of each hidden state is

calculated by Softmax using a multilayer perception: a(t-n), ..., a(t-1), a(t). The weighted

sum calculates the context vector that covers the global traffic variation information:

c =
t∑

i=t−n

aihi (3.5)

where ai is the weight of the ith hidden state.

The A3TGCN is an extension of the TGCN model by adding an attention mecha-

nism. Over time, the attention mechanism computes the attention weights α(t−n), ..., α(t−

1), α(t) for each hidden historical state h(t−n), ..., h(t−1), h(t) obtained from the TGCN

model, based on its relevance to the current time step t. The context vector c(t) that cap-

tures the global traffic variation at time t is then obtained by taking the weighted sum

of the hidden historical states, where the attention weights serve as the weights for the

38

weighted sum. The attention weights α(t − n), ..., α(t − 1), α(t) are computed using a

two-layer feedforward neural network that takes the current hidden state h(t) as input.

The output of the neural network is then passed through a Softmax function to obtain the

attention weights:

α(t− i) =
exp(f(h(t), h(t− i)))∑t−1
j=n exp(f(h(t), h(t− j)))

(3.6)

Where f(h(t), h(t− i)) is the score function that measures the similarity between

the current hidden state h(t) and the hidden historical state h(t − i). The context vector

c(t) is then computed as follows:

c(t) =
t∑

i=n

α(t− i) ∗ h(t− i) (3.7)

The context vector c(t) is then concatenated with the current hidden state h(t) and

fed into the output layer to produce the final output of the A3TGCN model.

3.3.3 Framework Validation

The current Attention-based Temporal Graph Convolutional Network was vali-

dated with the benchmark datasets, which are very similar in structure and problem defi-

nition. Two data sets, SZ - Taxi Dataset and Los - Loop Dataset [39], are used to validate

the framework.

39

3.3.3.1 Data Description

The study utilized two real-world traffic datasets: the SZtaxi dataset, which con-

sists of taxi trajectory data in Shenzhen City, and the Losloop detector dataset, which

contains traffic speed data collected from loop detectors on highways in Los Angeles

County. The experiments focused on analyzing traffic speed as the primary traffic infor-

mation. The SZtaxi dataset covers the taxi trajectory data in Shenzhen from January 1 to

January 31, 2015, specifically focusing on 156 significant roads in the Luohu District. On

the other hand, the Losloop dataset comprises real-time traffic speed data collected from

207 sensors along the highway in Los Angeles County from March 1 to March 7, 2012.

3.3.3.2 Evaluation Metrics and Validation Approach

To evaluate the prediction performance of the model, the error between the actual

traffic speed and predicted results is assessed based on the following metrics:

Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1

MN

N∑
j=1

M∑
i=1

(yji − ŷji)2 (3.8)

Mean Absolute Error (MAE):

MAE =
1

MN

N∑
j=1

M∑
i=1

|yji − ŷji| (3.9)

Accuracy:

Accuracy = 1− Y − Y F
Y F

(3.10)

Coefficient of Determination (R2):

R2 = 1−
∑N

j=1

∑M
i=1(yji − ŷji)2∑

j = 1N
∑M

i=1(yji − Ȳ)2
(3.11)

40

Explained Variance Score (var):

var = 1− V ar(Y − Ŷ)

V ar(Y)
(3.12)

In these formulas, yji and ŷji represent the real and predicted traffic information

of temporal sample j on the road i, respectively. N is the number of nodes on the road,

and M is the number of temporal samples. Y and Y F are the sets of yji and ŷji, respec-

tively, and Ȳ is the mean of Y . Various models with the historical average model(HA),

auto-regressive integrated moving average model(ARIMA), SVR, GCN model, and GRU

model are trained and compared with the AT3TGCN model to validate the framework.

3.3.4 Data Partition

The data collection and a few necessary details about the data set are discussed in

the sections above. The main focus of this study is to work with the US micro business

density distribution data set, which is available for 39 months from 2019-08 to 2022-10,

with one data point for each month and per county. This data have 3135 unique time

series for the given time. The training and validation data came from the first 32 months,

while the testing data is from the last seven months.

3.3.5 Baselines

Evaluating the performance of time series forecasting models is crucial for deter-

mining their effectiveness, and this can be achieved by comparing the model’s predictions

to the baseline models. In this study, the main baseline models used are naive baseline,

seasonal naive, and statistical methods. A more detailed theory was given in Chapter 2.

41

Naive baseline forecasting involves using the most recent observation as the fore-

cast for the next time step. This simple and easy-to-implement baselin can serve as a

benchmark for more complex models. The equation for the model is as follows:

ŷt+1 = yt (3.13)

where hatyt+1 is the predicted value for the next time step and yt is the most recent

observation.

The naive seasonal model uses the observation from the same season in the previ-

ous year as the forecast for the current time step. This baseline is useful for datasets that

exhibit seasonality. The equation for the naive seasonal model is as follows:

ŷt+1 = yt+1−m (3.14)

where hatyt+1 is the predicted value for the next time step and m is the number of time

steps in a season.

The statistical method is discussed in chapter 2. These baseline models provide a

reference point for evaluating the performance of more complex models. Metrics such as

SMAPE, MAPE, and RMSE can be used to compare the accuracy of the baseline models

to the more sophisticated forecasting models.

3.3.6 Evaluation Metrics

When evaluating the performance of a time series forecasting model, it is crucial to

use appropriate evaluation metrics. In this study, metrics used for measuring the accuracy

42

of a forecast are Symmetric Mean Absolute Percentage Error (SMAPE), Mean Absolute

Percentage Error (MAPE), and Root Mean Squared Error (RMSE).

• SMAPE is a symmetric metric that measures the percentage difference between the

actual and predicted values. It is defined as:

SMAPE =
100%

n

n∑
t=1

|Ft − At|
(|Ft|+ |At|)/2

(3.15)

where n is the number of observations in the test set, Ft is the forecast value for

time t, At is the actual value for time t.

• MAPE is another commonly used metric that measures the percentage difference

between the actual and predicted values, but unlike SMAPE, it is not symmetric.

MAPE is defined as:

MAPE =
100%

n

n∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (3.16)

where At is the actual value at time t, Ft is the forecasted value at time t, and n is

the total number of observations.

• RMSE is a metric that measures the root of the mean squared difference between

the actual and predicted values. It is defined as:

RMSE =

√√√√ 1

n

n∑
t=1

(Ft − At)2 (3.17)

where n is the number of observations in the dataset, Ft is the forecasted value at

time t, At is the actual (observed) value at time t

43

CHAPTER 4

RESULTS AND DISCUSSION

This section presents the results of framework validation with different metrics

and benchmark datasets. Later the graph data preparation of U.S. Microbusiness density

data was discussed, and a temporal graph neural network model called A3TGCN was

used to perform time series forecasting.

In the second experiment, the results of proposed experiments on time series fore-

casting using traditional methods, machine learning models, and neural graph networks.

The first experiment involved building a pipeline for assessing the baseline time series

forecasting models with single time series. The model’s performance is evaluated with

Naive, Seasonal Naive, SARIMA, and Prophet.

In the last experiment, time series forecasting of multiple time series using the

baseline models and added the sum of losses to compare the performance of the models

to the advanced temporal graph-based model. This experiment showed that the Naive

model is inefficient, while Holt winters smoothing method outperformed the other base-

line models.

Finally, the results of the A3TGCN model have been compared its results with

the traditional methods and machine learning models for all the counties in Missouri

State. Our results showed that the A3TGCN model outperformed all the other models

regarding MAPE, SMAPE, and root mean square error (RSME) of individual time series

44

predictions.

4.1 Framework Validation

The AT-GCN model’s hyperparameters include the learning rate, epoch, and a

number of hidden units. The learning rate and epoch were manually set for both datasets

based on previous experiences, with values of 0.001 and 5000, respectively. The number

of hidden units was 64 for SZtaxi and 100 for Losloop. In this study, 80% of the traf-

fic data was utilized as the training set, while the remaining 20% served as the test set.

The model’s predictive performance was evaluated by comparing the predicted results

for the next 15, 30, 45, and 60 minutes with those generated by the historical average

model (HA), auto-regressive integrated moving average model (ARIMA), support vector

regression (SVR), GCN model, and GRU model. The AT-GCN model was analyzed from

several perspectives: precision, spatiotemporal prediction capabilities, long-term predic-

tion capability, and global feature capturing capability.

Figure 7 [39] shows the performance of the TGCN model with traditional models,

and it is clear that TGCN performed the conventional models, whereas figure 8 shows

that Attention-based TGCN is over performing the conventional TGCN. This Validated

the framework with metrics evaluation. Figure 9, and Figure 10 show the visualization

results for a prediction horizon of 15,30,45,60mins for both the SZ-taxi and LOS-loop

datasets. These results validate the Framework and its use for similar applications.

45

Figure 7: Comparison of prediction results between the T-GCN model and other baseline
methods on SZ-taxi and Los-loop datasets.

Figure 8: Comparison of forecasting results between A3T-GCN and T-GCN under differ-
ent time series lengths based on SZ-taxi and Los-loop.

46

Figure 9: The visualization results for a prediction horizon of 15,30,45,60 minutes(SZ-
taxi).

47

Figure 10: The visualization results for a prediction horizon of 15,30,45,60 minutes(Los-
loop).

48

Figure 11: Plot of training data and baseline predictions using naive, seasonal naive, and
month mean naive methods of microbusiness density a single time series. The red line
represents the actual training data, while the green, purple, and blue lines represent the
predictions of the naive, seasonal naive, and month mean naive methods, respectively. It
can be observed that the baseline methods do not capture the seasonality and trends in the
training data quite well and, therefore, perform poorly in making accurate predictions.

49

4.2 Experiment - 1: Single Time Series Forecasting

This experiment developed single time series forecasting models using various

baseline models such as Last Value Naive, Seasonal Naive, Month Mean Naive, Holt-

Winters Exponential Smoothing, SARIMA, Prophet, Random Forest, Linear Regression,

and Support Vector Machine. The detailed theory was discussed in Chapter 3; the initial

baseline is the last naive, seasonal naive, and month mean naive methods. Figure 11 shows

the baseline predictions of naive baseline methods, including naive, seasonal naive, and

month mean naive methods. It is evident from the plot that the naive, seasonal naive, and

month mean naive baseline methods do not effectively capture the patterns of seasonality

and trends present in the training data. Hence, their performance in generating accurate

predictions is poor. Therefore it is reasonable to train the model with other machine

learning models and statistical learning methods.

Figure 12 shows the predictions of microbusiness density of a single time series

with SARIMA, Holt-Winters smoothing, Prophet for the last 7 months of data, and the

training data. With visual observation, it is clear that statistical methods are following

the trend pattern compared to Figure 11. Through this experiment, it is evident that Holt-

Winters performed the best, while Prophet performed the worst. The poor performance of

the Prophet model may be because the data analyzed in this experiment was at a monthly

level. In contrast, Prophet is typically designed to work with data daily and considers

holiday effects.

Figure 13 shows the predictions of microbusiness density of a single time series

50

Figure 12: Plot of training data and the predictions made by the grid-searched Holt-
Winters, SARIMA, and Prophet models, for a single time series. All the models have
captured the seasonality and trends in the training data quite well and have made accurate
predictions. Holt-Winters performed the best, while Prophet performed the worst.

51

Figure 13: Plot of training data and the predictions made by linear regression, random
forest regressor, and support vector regressor for a single time series. These models did
not capture the seasonality and trends in the training data.

52

Figure 14: Plot of Ground Truth and the ensemble predictions with various baseline mod-
els. All the ensembles captured the trend of the test data.

with machine learning models, including linear regression, random forest, support vec-

tor regression for the last 7 months of data, and the training data. These models did not

capture the trend and seasonality well compared to the statistical methods. The over-

all performance of these baselines is compared with Root Mean Square Error (RMSE),

Mean Absolute Percentage Error (MAPE), and Symmetric Mean Absolute Percentage Er-

ror (SMAPE) in Table 2, from this linear table regression, performed exceptionally well

compared to the other models. With the predictions of these models, ensembles of all pos-

sible combinations are created to improve the performance of the time series forecasting;

the ensemble performed here is the mean average of the predictions.

Figure 14 shows the top 10 ensemble combinations, and most of the predictions

53

Table 2: Comparison of Forecasting Models

Forecast RMSE MAPE SMAPE
Linear Regression 0.04 1.16 1.17

Holt-Winters 0.06 1.32 1.30
SARIMA 0.07 1.71 1.69
Last Naive 0.08 2.04 2.07

Random Forest 0.12 3.19 3.26
Prophet 0.23 5.60 5.45

Season Naive 0.20 5.46 5.63
SVM 0.27 7.71 8.03

Month Mean Naive 0.28 8.07 8.42

Table 3: Comparison of Ensemble Forecasting Models

Ensemble RMSE MAPE SMAPE
Holts-Winters, Linear Regression 0.03 0.68 0.34

SARIMA, Linear Regression 0.03 0.70 0.35
Naive Last, SARIMA, Holts-Winters, Linear Regression 0.03 0.73 0.36

Naive Last, SARIMA, Holts-Winters 0.03 0.78 0.39
SARIMA, Holts-Winters, Linear Regression 0.03 0.82 0.41

SARIMA, Holts-Winters, Random Forest 0.03 0.83 0.42
Naive Last, SARIMA 0.03 0.85 0.42

SARIMA, Holts-Winters, Linear Regression + Random Forest 0.03 0.88 0.44
Naive Last, SARIMA, Linear Regression 0.03 0.90 0.45

Naive Last, Holts-Winters, Linear Regression 0.04 1.03 0.52

capture the trend o the ground truth value. Table 3 shows the top ten ensemble com-

binations out of 200 plus varieties with the forecasts in hand. From this, holts-winters

smoothing and linear regression combination outperformed all others. From this experi-

ment, it is clear that statistical methods are still best for time series forecasting, but what

if multiple time series are related somehow? This question needs further experimentation

and is covered in the following experiments.

54

4.3 Experiment - 2: Multiple Time Series Forecasting

In this section, a group of individual time series is trained with all the baseline

models from experiment -1, and the performance of the unique time series is evaluated

with the SMAPE, MAPE, and RMSE metrics. The idea is to select a group of time series

data that belong to the U.S. microbusiness density dataset and implement the proposed

methodology to validate the individual time series. For this experimentation, county-

level time series of Missouri are selected, and there are 115 counties in this state, which

means there are 115 individual time series present in the group for 39 months. Figure 15

shows the microbusiness density at six months intervals throughout 2019-2022; from this

figure, one key observation made is that counties near the cities have the highest business

density in that area. The training of each county-wise time-series is performed in the first

32 months, and the last seven months are hold of the testing, and a rolling validation is

performed with the train data.

Table 4: Comparison of Missouri State Level Forecasting Metrics with Baseline

Forecast RMSE MAPE SMAPE
holt winters 0.10 2.59 2.66
last naive 0.10 2.68 2.80

random forest 0.14 4.33 4.28
season naive 0.17 5.56 5.77

sarima 0.18 5.83 6.01
linear regression 0.19 6.49 6.70

svm 0.21 6.68 7.08
month mean naive 0.25 8.12 8.10

prophet 0.43 15.56 14.36

Table 4 shows the testing results of the cumulative sum of errors for each county

55

(a) Microbusiness Density Distribu-
tion on 2019-08-01

(b) Microbusiness Density Distribu-
tion on 2020-02-01

(c) Microbusiness Density Distribu-
tion on 2020-08-01

(d) Microbusiness Density Distribu-
tion on 2021-02-01

(e) Microbusiness Density Distribu-
tion on 2021-08-01

(f) Microbusiness Density Distribu-
tion on 2022-02-01

Figure 15: Comparison of Microbusiness Density of Missouri State for the Years 2019-
2022 for every six months. Each subplot displays the microbusiness density distribution
for the corresponding year, illustrating the variation in the spatial distribution of micro
businesses over time.

56

in the Missouri state business density forecasting. Overall, the Holt winters total errors

are lesser than the other models, and Facebook’s prophet performed poorly due to the

reasoning given in experiment 1. The ensemble creation of this level of forecasting is

quite impractical due to the significantly massive number of possible combinations, so

only these forecast metrics are considered as the baseline for experiment 3, where the

same forecast problem is aimed to tackle by taking advantage of the relationships between

the counties, like distance, population density, or something similar.

4.4 Experiment - 3: Temporal Graph Neural Networks

In this section, the most crucial part of this research was discussed. The formu-

lation of the graph problem is unique due to the assumptions that need to make at every

stage. Unlike experiment -2, here, all the time series are treated as one whole spatial net-

work that changes with time in a temporal dimension, i.e., a group’s time series data is

somehow interdependent and has hidden relations.

4.4.1 Creation of the Temporal Snapshots of Graph States

In spatial-temporal graph neural networks, the first and most important task is to

convert the given problem into a graph problem with the temporal steps. i.e., all the struc-

tured or non-structured information needs to convert into vertices and edge mapping for

each time step. In this step, we define the graph variables and the relations based on the

type of prediction we are trying to solve. The graph-based networks are usually helpful

in node-level and edge-level predictions, and the features of the two-level predictions can

57

be any relevant features. The node and edge could be anything of interest with some con-

nectivity or tangible relation [45–47], and the features could be any averages or moving

parameters.

In this study, the U.S. Microbusineess density data have geographical location-

based connectivity as these are the time series of the counties in the united states, or else

the clustering of the counties together based on the population could be another way of

establishing a relationship. Therefore it is possible to treat this data as graph data with

few assumptions. These assumptions are as follows.

• Nodes: In this study, time series forecasting of county-level microbusiness density

is the desired task. Therefore, this individual county can be treated as a node, and

node features could be the data related to the county. The data considered here are

of two types,

1. Temporal Features: It is only the temporal information based on the lags to

the future.

2. Temporal + County Information: It is the county-level past census data, in-

cluding statistics of families and economic and social open information avail-

able on the government census database.

• Edges: Edges are the connections between the nodes, and intuitively they give the

existence of a relationship between nodes and pass the information in the training

phase to learn about the neighbor as a whole network. This study determines these

58

Figure 16: Data visualization of the graph structure on 2019-08-01

59

Figure 17: Data visualization of the graph structure on 2019-09-01

60

edges based on the distance between the nodes. As per the literature on city plan-

ning, the impactful growth space between two towns is 50 miles, i.e., when two

cities within reach of 50 miles significantly impact each other’s growth and dy-

namic changes within these towns. Hence edge connections were established with

a threshold of 50 miles between all the counties. Edge features are called edge

weights, and in this study, the connecting distance between the counties is consid-

ered the edge feature for the edge. This feature could be anything; for instance, the

average travel time could be one potential feature.

As these are temporal graphs, graphs could be dynamic or static. In dynamic graphs,

the graph structure changes with each time snapshot; however, in static graphs, this

graph structure remains unchanged.

1. Static Graphs: In the static graphs, all the possible edges within connection

to other counties and under a 50-mile radius are considered.

2. Dynamic Graphs: To mimic the dynamic graph structures, a random number

of edges are dropped with an edge connection threshold. This creates a robust

graph with less overfitting, and the threshold used is 25% of the total number

of edges.

Figure 16,17,18 showing the Graph structures of all the counties in the united

states at three different months, and these graphs are induced dynamic graphs with other

edge connections, dropped out random edges, with different active and inactive nodes.

Each node in this graph visually represents the county, and the size of the node shows the

61

Figure 18: Data visualization of the graph structure on 2019-10-01

62

Figure 19: Network Graph of Missouri State with Distance Threshold of 50mile between
county to county. Nodes are the counties, and edges are the distance between them.

microbusiness density value at that county at that given time. The edge connection shows

how far they are from each other, and all the connected nodes are the counties within a

radius of 50 miles of other counties. The nodes outside the rim of a disconnected node

are far-way nodes with no connections.

In this experiment, the area of interest is Missouri state-level counties and the

temporal graphs within these counties; the reason for this is to compare the results with

experiment 2 to validate the efficiency of the proposed framework. Figure 19 shows the

geo-spatial distribution of Missouri state graph representation with counties as nodes and

edges as the distance between each county.

Figure 20 shows the county-level graphs’ temporal snapshots of the first six months.

Each node in this graph visually represents the county at the Missouri state level, counties

63

including all the dots shown in Figure 20. The node size offers the microbusiness density

value at that given time. Like the nationwide graphs, edge connection shows how far

they are from each other, and all the connected nodes are the counties within a radius of

50 miles of other counties. One key observation of these graphs is that highly populated

cities have higher business densities.

(a) Microbusiness Density of
Missouri State as a graph 2019-
08-01

(b) Microbusiness Density of
Missouri State as a graph 2019-
09-01

(c) Microbusiness Density of
Missouri State as a graph 2019-
10-01

(d) Microbusiness Density of
Missouri State as a graph 2019-
11-01

(e) Microbusiness Density of
Missouri State as a graph 2019-
12-01

(f) Microbusiness Density of
Missouri State as a graph 2020-
01-01

Figure 20: Comparison of Microbusiness Density of Missouri State for 6 Months, Each
subplot displays the Graph representation of the data on a Graph illustrating the variation
in the spatial distribution of micro businesses over time.

64

These experiments in this section are of different combinations with Attention-

based Temporal Graph Convolutional Network architecture called A3TGCN [39], and

these combinations are as follows:

1. Static Graphs: Experiments with static graph setting

• Temporal Features

• Temporal Features + Census Data

2. Dynamic Graphs: Experiments with dynamic graph setting

• Temporal Features

• Temporal Features + Census Data

4.4.2 Model Parameters

In this study, an Adam optimizer is used with an adaptive learning rate of 0.001

with early patience of 10 epochs. The data partition training dataset has 27 temporal

graphs, the validation dataset have 3 temporal graphs, and the test dataset has 3 temporal

graphs. The total epochs for each experiment are 250 epochs.

4.4.3 Static Graphs

This experiment used a static graph structure to forecast each Missouri county.

Table 5 presents the results of the static graph experiments, displaying the data metrics

of SMAPE, MAPE, and RMSE for the Missouri state-level forecasting. Additionally,

Figure 21 demonstrates the three-month predictions vs. the ground truth values with

65

temporal and census data node feature graph settings. Based on the metrics, when the

node features are included with census data models, the SMAPE values are comparatively

lesser than the other methods. These results suggest that incorporating additional data

sources can help to improve the accuracy of time series forecasting, as demonstrated by

the benefits of using census data in the model.

Table 5: Comparison of Missouri State Level Forecasting Metrics with Static Graph

Node Features SMAPE MAPE RMSE
Temporal Features 0.26124 0.42934 0.0952

Temporal Features + Census Data 0.13147 0.29429 0.092

4.4.4 Dynamic Graphs

In these Experiments, a dynamic graph structure was utilized to forecast each

Missouri county’s time series. Table 6 displays the dynamic graph experiments results,

showing the testing data metrics of SMAPE, MAPE, and RMSE for Missouri state-level

forecasting. The SAMPE values of node features, including temporal features and census

data, perform better than the others. Figure 22 illustrates the three-month predictions vs.

the ground truth values with temporal data node feature graph settings. The dynamic

graph can capture most of the trends of the counties and predict well overall.

Table 6: Comparison of Missouri State Level Forecasting Metrics with Dynamic Graph

Node Features SMAPE MAPE RMSE
Temporal Features 0.26163 0.43081 0.09452

Temporal Features + Census Data 0.13113 0.29401 0.09010

66

4.4.5 Comparisons between the Baselines and the Temporal Graph Networks

The dynamic graph neural network model, A3TGCN, outperforms all other meth-

ods in terms of all three evaluation metrics. Table 7 results suggest that the A3TGCN

model can better capture the complex interdependencies and temporal dynamics between

the county’s time series data. The error metrics show a significant performance improve-

ment. Thus, it can provide more accurate forecasts than traditional baseline and machine

learning models used in Experiments 1 and 2.

Table 7: Comparison of Missouri State Level Forecasting of Temporal Graph and Baseline
models

Forecast RMSE MAPE SMAPE
A3TGCN(dynamic, all features) 0.09010 0.29401 0.13113

A3TGCN(static, all features) 0.092 0.29429 0.13147
holt winters 0.10 2.59 2.66
last naive 0.10 2.68 2.80

random forest 0.14 4.33 4.28
season naive 0.17 5.56 5.77

67

(a) Static Graph Predictions at 2022-08-01

(b) Static Graph Predictions at 2022-09-01

(c) Static Graph Predictions at 2022-10-01

Figure 21: Temporal Graph Predictions with Static Graph for Missouri State Level Coun-
ties. Each subplot displays the microbusiness density predictions, illustrating the three-
month variation.

68

(a) Dynamic Graph Predictions at 2022-08-01

(b) Dynamic Graph Predictions at 2022-09-01

(c) Dynamic Graph Predictions at 2022-10-01

Figure 22: Temporal Graph Predictions with Dynamic Graph for Missouri State Level
Counties. Each subplot displays the microbusiness density predictions, illustrating the
three-month variation.

69

CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis discusses various time series forecasting methods in chapter 2 of the

related work. These are powerful yet simple mathematical and statistical models, where

they have limitations. The interdependency capture within a time series network is impos-

sible with existing statistical and machine learning models. Meanwhile, this application is

growing daily in the current internet era. This application includes traffic predictions [39],

stock predictions [35], disease spread patterns [47], etc. Recently, a new concept of deep

learning emerged to take such network scenarios. One such idea is the temporal graph

convolutional networks [39], which can capture both spatial information and material

aspects of the given network. This is a new promising approach to several modern appli-

cations. So, a novel framework to tackle these limitations is needed.

5.1 Conclusion

In this thesis, we addressed the limitations of existing time series forecasting meth-

ods, which cannot capture interdependencies within a time series network. We discussed

how the emergence of deep learning approaches, such as temporal graph convolutional

networks, provides a promising solution to this problem by capturing both spatial and

temporal dimensions of a given network. To validate the performance of the proposed

70

attention-based temporal graph convolutional network framework, we conducted experi-

ments on time series forecasting using traditional methods, machine learning models, and

neural graph networks.

1. The first experiment assessed the baseline time series forecasting models with a

single time series. We evaluated the performance of the Naive, Seasonal Naive,

SARIMA, and Prophet models.

2. In the second experiment, we used the baseline models to forecast multiple time se-

ries. We added the sum of losses to compare their performance with the advanced

temporal graph-based model. This experiment revealed that the Naive model was

inefficient, while the Holt-Winters smoothing method outperformed the other base-

line models.

3. Finally, we used a temporal graph neural network model called A3TGCN to per-

form time series forecasting and compare its results with the traditional meth-

ods and machine learning models for all the counties in Missouri State. Our re-

sults showed that the A3TGCN model outperformed all the other models regarding

MAPE, SMAPE, and root mean square error (RMSE) of individual time series pre-

dictions.

In conclusion, this thesis proposed a new framework for implementing and vali-

dating attention-based temporal graph convolutional networks for time series forecasting.

Our experiments demonstrate that the A3TGCN model can effectively capture the inter-

dependencies within a time series network and provide more accurate predictions than

71

traditional methods and machine learning models. This study contributes to the growing

field of deep learning approaches for time series forecasting and provides a promising

direction for future research.

5.2 Future Work

In terms of future work, this study opens up several research directions.

5.2.1 Bottleneck Issues and A3TGCN Complexity Analysis

• Study of Under-Reaching and Over-Squashing as challenging Graph Networks bot-

tlenecks [48], which also apply to the A3TGCN model.

• Under-reaching refers to the issue where certain nodes in the graph fail to receive

sufficient information from their neighboring nodes, leading to an incomplete un-

derstanding of the traffic patterns.

• Over-squashing occurs when nodes overly compress or summarize the received in-

formation, losing important details.

• A thorough analysis of these bottlenecks is crucial for fine-tuning the message pars-

ing ability of the A3TGCN model. This analysis could investigate different ar-

chitectures, activation functions, or attention mechanisms to overcome these chal-

lenges and improve the model’s performance.

72

5.2.2 Dynamic Graph Conversion Experimentations

• In the current study, a random drop of edges was implemented to reduce the graph’s

complexity. However, exploring alternative methods, such as weighted drop and

adding edges, could be beneficial.

• Weighted drop and addition of edges would involve assigning different weights

to the edges based on their importance or relevance to the traffic patterns. This

approach could improve prediction accuracy by selectively retaining or introducing

edges that carry important information for the model’s predictions.

5.2.3 Level of Detail Studies in Model Training

• The A3TGCN model offers the ability to choose the level of detail in the graph

based on physical boundaries. This means that different regions or areas within the

overall network can be represented with varying levels of granularity.

• Conducting studies to determine the optimal level of detail for model training is

essential. It would involve evaluating the impact of different granularity on the

model’s accuracy, computational efficiency, and generalizability.

• Finding the right level of detail will ensure that the model captures the basic pat-

terns while maintaining a manageable computational complexity, leading to more

accurate predictions.

By addressing these future areas, this work can further refine and improve the

A3TGCN model’s predictive capabilities. The in-depth analysis of bottleneck issues,

73

exploration of dynamic graph conversion techniques, and understanding of the impact of

the level of detail in model training will contribute to advancing the field of spatiotemporal

network prediction and enable more accurate and efficient variable forecasting. Exploring

the application of A3TGCN for time series forecasting in other areas, such as finance,

healthcare, and transportation, can lead to new insights and improvements in forecasting

accuracy. Investigating the impact of incorporating additional data sources, such as social

media and weather data, can provide a more comprehensive understanding of the factors

influencing time series behavior. Exploring the interpretability of the proposed model can

help understand the underlying factors and patterns affecting time series forecasting and

provide more transparent decision-making in real-world applications. Lastly, exploring

the scalability of the proposed model for more extensive networks can be an exciting area

of research.

74

REFERENCE LIST

[1] Mitchell, “Machine learning,” Wikimedia Commons, p. 87, 1997. [Online]. Avail-

able: https://upload.wikimedia.org/wikipedia/commons/f/ff/Rosenblattperceptron.

png?20121024111529

[2] A. McAfee, E. Brynjolfsson, T. H. Davenport, D. Patil, and D. Barton, “Big data:

the management revolution,” Harvard Business Review, vol. 90, no. 10, pp. 60–68,

2012.

[3] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, A. Hung Byers

et al., Big Data: The Next Frontier for Innovation, Competition, and Productivity.

McKinsey Global Institute, 2011.

[4] J. Gantz, D. Reinsel et al., “Extracting value from chaos,” IDC iview, vol. 1142, no.

2011, pp. 1–12, 2011.

[5] M. Hilbert and P. López, “The worldâs technological capacity to store, communi-

cate, and compute information,” Science, vol. 332, no. 6025, pp. 60–65, 2011.

[6] J. G. De Gooijer and R. J. Hyndman, “25 years of time series forecasting,” Interna-

tional Journal of Forecasting, vol. 22, no. 3, pp. 443–473, 2006.

[7] L. Li, B. A. Prakash, and C. Faloutsos, “Parsimonious linear fingerprinting for time

series,” Carnegie Mellon University Pittsburgh PA School of Computer Science,

Tech. Rep., 2010.

75

[8] E. S. Gardner Jr, “Exponential smoothing: The state of the art,” Journal of Forecast-

ing, vol. 4, no. 1, pp. 1–28, 1985.

[9] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis:

Forecasting and Control. John Wiley & Sons, 2015.

[10] M. Qi and G. P. Zhang, “Trend time–series modeling and forecasting with neural

networks,” IEEE Transactions on Neural Networks, vol. 19, no. 5, pp. 808–816,

2008.

[11] R. Adhikari and R. K. Agrawal, “An introductory study on time series modeling and

forecasting,” ArXiv Preprint arXiv:1302.6613, 2013.

[12] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks: A deep

learning framework for traffic forecasting,” ArXiv Preprint arXiv:1709.04875, 2017.

[13] M. S. Ahmed and A. R. Cook, Analysis of Freeway Traffic Time-series Data by

Using Box-Jenkins Techniques, 1979, no. 722.

[14] B. M. Williams and L. A. Hoel, “Modeling and forecasting vehicular traffic flow

as a seasonal arima process: Theoretical basis and empirical results,” Journal of

Transportation Engineering, vol. 129, no. 6, pp. 664–672, 2003.

[15] J. Zhang, Y. Yao, and Z. X. Feng, “Ming,” Development and Evaluation of a Patient-

reported Outcome (PRO) Scale for Breast Cancer, vol. 16, no. 18, pp. 8573–8578,

2015.

76

[16] G. E. Box, “Gm jenkins time series analysis: Forecasting and control,” San Fran-

cisco, Holdan-Day, 1970.

[17] S. Makridakis and M. Hibon, “The m3-competition: Results, conclusions and im-

plications,” International Journal of Forecasting, vol. 16, no. 4, pp. 451–476, 2000.

[18] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical and machine learn-

ing forecasting methods: Concerns and ways forward,” PloS one, vol. 13, no. 3, p.

e0194889, 2018.

[19] S. Makridakis and E. a. Spiliotis, “The m4 competition: Results, findings, conclu-

sion and way forward,” International Journal of Forecasting, vol. 34, no. 4, pp.

802–808, 2018.

[20] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The accuracy of machine

learning (ml) forecasting methods versus statistical ones: Extending the results of

the m3-competition,” in Working Paper, University of Nicosia. Institute for the

Future, 2017.

[21] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice.

OTexts, 2018.

[22] M. Xie, C. Sandels, K. Zhu, and L. Nordström, “A seasonal arima model with ex-

ogenous variables for elspot electricity prices in sweden,” in 2013 10th International

Conference on the European Energy Market (EEM). IEEE, 2013, pp. 1–4.

77

[23] C. Wu, J. Wang, and Y. Hao, “Deterministic and uncertainty crude oil price forecast-

ing based on outlier detection and modified multi-objective optimization algorithm,”

Resources Policy, vol. 77, p. 102780, 2022.

[24] E. D. Spyrou, I. Tsoulos, and C. Stylios, “Applying and comparing lstm and arima

to predict co levels for a time-series measurements in a port area,” Signals, vol. 3,

no. 2, pp. 235–248, 2022.

[25] R. G. Brown, “Statistical forecasting for inventory control,” 1959.

[26] C. C. Holt, “Forecasting seasonals and trends by exponentially weighted moving

averages,” International journal of forecasting, vol. 20, no. 1, pp. 5–10, 2004.

[27] P. R. Winters, “Forecasting sales by exponentially weighted moving averages,” Man-

agement science, vol. 6, no. 3, pp. 324–342, 1960.

[28] T. Mureş and N. Iorga, “Neural networks versus box-jenkins method for turnover

forecasting: A case study on the romanian organisation,” Transformations in Busi-

ness & Economics, vol. 16, no. 1, p. 40, 2017.

[29] S. A. Hamid and A. Habib, “Financial forecasting with neural networks,” Academy

of Accounting and Financial Studies Journal, vol. 18, no. 4, p. 37, 2014.

[30] A. Bredahl Kock and T. Teräsvirta, “Forecasting macroeconomic variables using

neural network models and three automated model selection techniques,” Econo-

metric Reviews, vol. 35, no. 8-10, pp. 1753–1779, 2016.

78

[31] J. Wang and J. Wang, “Forecasting stochastic neural network based on financial

empirical mode decomposition,” Neural Networks, vol. 90, pp. 8–20, 2017.

[32] G. Ristanoski, W. Liu, and J. Bailey, “Time series forecasting using distribution

enhanced linear regression,” in Advances in Knowledge Discovery and Data Mining:

17th Pacific-Asia Conference, PAKDD 2013, Gold Coast, Australia, April 14-17,

2013, Proceedings, Part I 17. Springer, 2013, pp. 484–495.

[33] C.-J. Lu, T.-S. Lee, and C.-C. Chiu, “Financial time series forecasting using indepen-

dent component analysis and support vector regression,” Decision Support Systems,

vol. 47, no. 2, pp. 115–125, 2009.

[34] N. I. Sapankevych and R. Sankar, “Time series prediction using support vector ma-

chines: A survey,” IEEE Computational Intelligence Magazine, vol. 4, no. 2, pp.

24–38, 2009.

[35] L. Khaidem, S. Saha, and S. R. Dey, “Predicting the direction of stock market prices

using random forest,” ArXiv Preprint arXiv:1605.00003, 2016.

[36] H. Tyralis and G. Papacharalampous, “Variable selection in time series forecasting

using random forests,” Algorithms, vol. 10, no. 4, p. 114, 2017.

[37] C. L. Giles, S. Lawrence, and A. C. Tsoi, “Noisy time series prediction using re-

current neural networks and grammatical inference,” Machine Learning, vol. 44, no.

1-2, p. 161, 2001.

79

[38] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

[39] J. Zhu, Y. Song, L. Zhao, and H. Li, “A3t-gcn: Attention temporal graph convolu-

tional network for traffic forecasting,” 2020.

[40] G. Jin, Y. Liang, Y. Fang, J. Huang, J. Zhang, and Y. Zheng, “Spatio-temporal graph

neural networks for predictive learning in urban computing: A survey,” 2023.

[41] Y. Li, F. Zhao, Z. Chen, Y. Fu, and L. Ma, “Multi-behavior enhanced

heterogeneous graph convolutional networks recommendation algorithm based on

feature-interaction,” Applied Artificial Intelligence, vol. 37, no. 1, p. 2201144,

2023. [Online]. Available: https://doi.org/10.1080/08839514.2023.2201144

[42] H. Zhou, D. Ren, H. Xia, M. Fan, X. Yang, and H. Huang, “Ast-gnn: An attention-

based spatio-temporal graph neural network for interaction-aware pedestrian

trajectory prediction,” Neurocomputing, vol. 445, pp. 298–308, 2021. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S092523122100388X

[43] Godaddy.com, “Microbusiness density data hub,” Available at: https://www.

godaddy.com/ventureforward/microbusiness-datahub/, 2022, accessed Day Month

Year.

[44] B. Chennoju, “Microbusiness density dynamic graph network visualization,” 2023.

[Online]. Available: https://public.tableau.com/app/profile/bhuvan.kumar.chennoju/

viz/network plot/Dashboard1

80

[45] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li, “T-GCN:

A temporal graph convolutional network for traffic prediction,” IEEE Transactions

on Intelligent Transportation Systems, vol. 21, no. 9, pp. 3848–3858, sep 2020.

[Online]. Available: https://doi.org/10.1109\%2Ftits.2019.2935152

[46] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks: A deep

learning framework for traffic forecasting,” in Proceedings of the Twenty-Seventh

International Joint Conference on Artificial Intelligence. International Joint

Conferences on Artificial Intelligence Organization, jul 2018. [Online]. Available:

https://doi.org/10.24963\%2Fijcai.2018\%2F505

[47] G. Panagopoulos, G. Nikolentzos, and M. Vazirgiannis, “Transfer graph neural net-

works for pandemic forecasting,” 2021.

[48] U. Alon and E. Yahav, “On the bottleneck of graph neural networks and its practical

implications,” 2021.

VITA

Bhuvan Kumar Chennoju earned his Bachelor of Technology in Mechanical Engi-

neering in 2018 from the National Institute of Technology in Hamirpur, India. Afterward,

he worked as an engineer and research assistant, focusing on manufacturing operations

research, fundamental combustion research, and data analysis. In 2021, he joined the

Computer Science master’s program at the School of Computing and Engineering, Uni-

versity of Missouri-Kansas City. Bhuvan participated in a hackathon centered around

Augmented Reality and Artificial Intelligence in 2022 and a research-a-thon for tempo-

ral predictive models using GNN in 2023. He also contributed to the NSF Smart Con-

nected Community project, collecting neighborhood data and visualizing the information

gathered from mobile applications. In 2022, Bhuvan interned as a Software Developer

at T-Mobile USA. Additionally, he worked as a graduate teaching assistant for several

courses, including Introduction to statistical learning and Deep Learning. For his MS the-

sis project, he is developing a temporal graph network-based model for predicting finance

business density across various counties and has shared multiple projects on GitHub.

82

