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Abstract. The problem of robust extrapolation for discrete linear system with unknown input and uncertain interval
parameters in system and model of observations is considered. The probabilistic approach is used, which is based
on replacing uncertain parameters of interval type by independent random variables with uniform distribution in
recursive Kalman schemes. The LSM algorithms and nonparametric smoothing procedures are applied for estimating
unknown input. The proposed algorithms can be used in control systems with incomplete information. Simulation
results are presented and discussed.
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PoOacTHast 3xcTpanoasiuus 1 CHCTEM ¢ HEM3BECTHBIM BXOJ0M
U MHTEPBAJIbHOMH HEOIPeIeIeHHOCTHIO B 00beKTe U HAOII0AeHUAX
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AnHoTamus. PaccMoTrpena 3aada poOacTHOH AKCTPAIOISIUY TSI TUCKPETHOTO 00BEKTa ¢ HEM3BECTHBIM BXO-
JIOM U MHTEPBAJILHBIMH IIapaMeTpaMH B MoJIeIn o0bekTa U HabuoeHusX. Vicronap3yercst BepOsSTHOCTHBIN MOAXOJ,
B OCHOBE KOTOPOTO JIEXKAT 3aMEHa HEOINPEIEICHHBIX MAapaMEeTPOB HHTEPBAILHOTO THIIA HE3aBUCHMBIMH CITyJaltHBIMU
BEJINYMHAMHU C PABHOMEPHBIM PACIIpe/IeIeHIeM, alrOPUTMBI OIIEHHBAHUS HEN3BECTHOTO BXO/Ia, PEKypPPEHTHEIE CXe-
MBI DKCTPAIOJLIIUK Ha ONH TakT (dKcTpanoisitop KaiaMana), MeTo HAMMEHBIINX KBAJIPAaTOB M CIIIaXKUBAOIINE He-
nmapaMeTprudeckue mpoueaypsl. IIpeacraBiaeHs! pe3yabTaThl MOACIUPOBAHNS.

KnioueBble ciioBa: podacTHast SKCTPAIONALNS; HHTEPBAIbHBIC ITapaMeTpPhl; HEHM3BECTHBIN BXOJ; HEIapaMeTpH-
4eCKOE CIVIaXKUBaHUE.
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Introduction

The problem of synthesis of filters, extrapolators and observers for dynamical systems with uncertain
parameters, in particular, with interval parameters, was considered in [1-5]. These papers use methods
of robust data processing. The robust Kalman filter is obtained for time-varying discrete-time linear systems
by solving an optimization problem such that the upper bound on the variance of estimation error to be mini-
mized [1]. In [2], the problem of state estimation and determining at any moment the smallest set containing
all the possible values of the state vector, simultaneously compatible with the state equations and with a priori
known bounds of the uncertain parameters, is considered. In [3], a problem was considered in the case when
all the matrices of both the system and the observations model are subjected to norm-limited parametric
uncertainties. The robust regularization is implemented using the penalty function method. Robust Kalman
filter is proposed in [4], where the problem was solved by using a linear matrix inequality optimization prob-
lem. In [5], was proposed the robust Kalman filtering framework for systems with probabilistic uncertainty
in system parameters. The uncertainty is propagated using conditional expectations and polynomial chaos
expansion framework. Methods of data processing using estimates of unknown input are given in [6, 7].
In these papers Least Squares Method (LSM) was used to obtain estimates of unknown input. In [8-10]
it was proposed to use a compensatory approach to calculate estimates of unknown input. In [11, 12] there
were used additionally the algorithms of nonparametric smoothing to increase the accuracy of estimating
unknown input.

This paper considers the problem of robust extrapolation in discrete systems with additive perturba-
tions with unknown input and with interval parameters. It is based on a probabilistic approach to solving
problems for model with interval parameters, which consists in the fact that the interval parameter is replaced
by a uniformly distributed random variable [13].

The results of the work generalize results of the paper [14] to the case of the presence interval parame-
ters not in the systems model only but in the observations model also.

1. The problem statement

Consider the linear discrete system with interval parameters, described by the difference equation
x(k +1) = Ax(kK) + f (k) + Bg(k), x(0) = x,, 1)
where x(k) € R" is the state vector at time instant k, f(k) is the unknown input vector; X, is the random vector with
known mathematical expectation and covariance matrix N, = E[(x, —%,)(X, —%,)"]; A is the state transition
matrix with interval uncertainty (with the given lower and upper bounds of A and A, respectively), q(k) e R™
is the random perturbations with the following characteristics: E[q(k)]=0, E[q(k)q" (j)]=18,, B is the
perturbations transition matrix with interval uncertainty (with the given lower and upper bounds of B and B),
I is the identity matrix. Here §,; is the Kronecker symbol.
The observations model is determined by the formula
y(k) = Sx(k) + Fv(k), )
where y(k) eR' is the observations vector, S is the observations transition matrix with interval uncertainty
(with the given lower and upper bounds of S and S), v(k) eR" is the observations noise (E[v(k)]=0,

E[v(k)V' (j)]= 13,;), F is the observations transition matrix with interval uncertainty (with the given lower

and upper bounds of F and F).
It is assumed that the sequences q(k), v(k) and xo are mutually independent, system (1), (2) is observa-
ble under parametric perturbations of the dynamics matrix A and observations matrix S . Using the infor-
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mation available to the timek <[0; T], it is required to construct the forecast X(k +1) by minimizing the fol-
lowing criterion

J(0;T) = B[ (x(k) — %(K)) " (x(k) = *(k))]. 3)
k=0

2. Robust Extrapolator

To solve the problem, we will use the recurrent extrapolator Kalman (EK), while using the probabilistic
approach to find its transition matrix. The essence of the method lies in the fact that the interval parameters
are replaced by independent random variables that are uniformly distributed over the uncertainty intervals.

Then, using the probabilistic approach, we will replace the uncertain interval matrices A, B,S,F by the

matrices whose elements depend on random variables

A)=(A+3 A0), BO)=(B+ 3. BO)
m+n‘11+rln:21 rlninr]r:i m, +m, (4)
S@=(5+ 3 S0) FO-(F+ > Fo).
i=m+m +1 i=m+mp+m,+1

where 6, are independent uniformly distributed random variables according on the interval [-1, +1]

(-1<6,<1(i =1, m+m +m,+m,)). We will assume that the random variables 6, are independent of x,,
q(k) and v(k). In (4), the matrices A=3(A+A), B=1(B+B), S=%(S+S) and F=%(F +F) are the me-
dians of the interval matrices A, B, S and F. The matrices A, B,, S, and F, can be set so that one element
corresponding to the uncertain element of the matrices A, B,S and F remains nonzero. Its value can be

determined by the width of the interval uncertainty of the elements of the matrices A, B, S and F .

In this case, the model of the system (1) and observations (2) takes the form
X(k +1) = A(O)x(k) + f (k) + B(0)q(k), X(0)=X,, )

y(k) =S(O)x(K) + F(O)v(k). (6)

However, we restrict ourselves to characterizing the first two moments of x(k) as defined below, since we
apply the EK. To obtain the estimate, we use the recurrent algorithm

R(k+1) = AR(K) + f (k) + K(k)(y(k) —Sx(k)), X(0)=X,, @)

where the matrix of the extrapolator transition coefficients K(k) is determined by the optimization of criteri-

on (3), taking into account the type of distribution of the parameter 6 and assuming that the vector f(k)

is known.
Using the property of the trace operation (y" Ay = trAyy" ) and the rules for differentiating the trace

function from the matrix multiplication [15]:

T T
otr AXB _ AT, otr A" XB _BA ()
oX oX
from the equation
2J(0;T) 0, ©)
oK
we obtain an analytical expression for the matrix K(k)
K(k) = AN(K)ST(FF™ + SN(k)S™ +V (k))*, (10)
where the matrix V(k) is determined by the formula
m-+my +m, m+m+m, M-+, +M, +Mg
V(k)=3 z SN(k)S/| +3 2 SR(K)R(K)'S! +3 Z FF, (11)
i=m+m+1 i=m+m +1 i=m+m+m,+1
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and N(K) satisfies the difference matrix equation

m m
N(k+1) = (A-K(K)S)N(K)(A-K(k)S)" +%ZA, N(k)A" +%ZA>2(k)>2(k)TAT +
- i=1 i=1 (12)
+BB" +1 z BB + K(K)(FF" +SN(k)S™ +V (K))K(K)", N(0)=N,.

i=m+1
In model (5) due to the fact that the median of the interval matrix A is used as the dynamics matrix EK,
the vector of the unknown input will change (this vector is denoted by r(k))

r(k)=f(k)+> ABx(k), -1<6,<1(i =1,m), (13)

i=1
where the second term is an additional unknown input arising from the uncertainty of the state transition matrix.
As an algorithm for estimating the unknown input r(k), we will use the LSM method, in this case, the

estimate can be constructed on the basis of minimizing the additional criterion [6, 7]

1= Iy - SARE-D + rt D)} +|r - | (14)

t=1
In (14) C, D are positive definite weight matrices. The LSM estimates of the unknown input, based on the
minimization of criterion (14), will take the form
P-M (k) =[S"CS + DI *S"C[y(k) — SA%(k —1)]. (15)
To increase the accuracy of estimating an unknown input, we will additionally use nonparametric
algorithms [11, 12] for smoothing the innovation process y(k) —SAR(k —1)
#™ (k) =[STCS + D]*STCO, (16)
where the j component of the vector Q(k) can be calculated by

k

[y(t)—S(Ak(t—mp{"‘f”}
O (k) == k
ZG[k —t+1J

17)

J
t=1 L
In formulas (17) G(-) is a kernel function, p; is a bandwidth parameters.

Robust extrapolation estimates in discrete systems with interval parameters were determined from the
recurrent equation

X(k +1) = Ax(k) + £ (k) + K (K)(y(k) — Sk(k)), X(0) =%, (18)

where the matrix transition coefficients K(k) was calculated by formulas (10)—(12), and the estimates of F(k)

was determined by formulas (16), (17). Note that the medians of the matrices A, S are used to calculate the
estimates of f(k).

3. Simulation Results

The simulation was performed for the following data (m=2, m; =1, m, =2, m, =2):

0 1 10 0 O 0 O 0,05 0
A= s=[0 ] A= A= S, = ,
0,02 0,73 0 1 0 04 0,04 0 0 O
01 O 0,05 0 0 O
B: y B4: ;B5: ’
0 015 0 0 0 01
05 0 0,4 0 0 0
F= ’F6= ,F7: ’
0 0,6 0 O 0 04
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10 01 O
C = y D = ’
(o J [ 0 0,1]

)= 0,1+ 0, 25sin(0,1k)
~10,1+0,2sin(0,15k) )’
The initial conditions are:

x(0) :@ 2(0) :@, N (0) :(0(’)1 OOJ.

In (17), a Gaussian kernel function was used.
Fig. 1 shows the results of comparing the standard errors of the deviations of the estimates of the state
vector

Y-k
o, =4 (i=12)
N -1

for five algorithms (with different implementations of the components of a random vector 0):

e optimal EK for systems with median matrices A, B, S and F, when f(k) is known (OEK);

o optimal EK for systems with median matrices A, B, S and F, when f(k) is unknown, estimate f(k)
is not used (OEKUN);

e optimal EK for systems with median matrices A, B, S and F, LSM method (15) was used to
calculate estimates of an unknown input, nonparametric smoothing was not applied for estimate unknown
input (EK-LSM);

e optimal EK for systems with median matrices A, B, S and F, LSM method and nonparametric
smoothing (formulas (16), (17)) was applied (EK-LSM-NP);

e proposed robust EK (10)-(12) for systems with interval parameters, LSM method and
nonparametric smoothing were used (REK).

The table presents 10 realizations of the values of the components of the random vector 6 distributed
with uniform density. Simulation results are obtained for extrapolation algorithms (N = 200) and by averag-
ing 100 realizations.

Realizations of the values of the components of the random
vector 0 distributed with uniform density

n/n 01 02 03 04 0s 06 67
1 -0,97 0,99 -0,39 -0,73 -0,63 -0,24 0,35
2 -0,83 0,84 0,07 0,39 0,15 -0,18 -0,02
3 -0,82 0,30 0,57 -0,06 0,25 -0,48 0,18
4 -0,18 0,88 -0,56 -0,24 0,52 0,08 0,72
5 0,12 0,07 0,01 -0,73 -0,71 -0,04 0,38
6 -0,87 -0,06 0,25 0,19 -0,03 -0,73 0,92
7 -0,48 0,57 -0,15 -0,87 -0,98 -0,84 0,64
8 -0,80 0,38 -0,69 -0,94 0,08 -0,08 -0,94
9 0,56 0,72 0,08 -0,80 0,59 -0,13 0,92
10 0,13 -0,20 0,45 -0,85 -0,07 -0,77 -0,25

Fig. 1 shows that the procedures with robust extrapolation (REK) have the advantages in the accuracy
compared to the known algorithms using the LSM estimates and LSM estimates with nonparametric smoothing.
The advantage (REK) in accuracy compared to the (EK-LSM-NP) algorithm is from 3% to 15%.

The worst results were obtained using estimates of an unknown input using the LSM method without
smoothing (EK-LSM). The reason for this is the high level of intensity of measurements errors, which was
used in the example, which led to a low quality of the estimation of f(k) by the LSM method and, as a conse-
guence, to a low accuracy of the estimation of the state vector. Smoothing the innovation process and pro-
posed robust algorithm improve accuracy estimates of the state vector.
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Fig. 1. Standard errors for extrapolation algorithms for ten simulation results
a) first component, b) second component

The algorithm (OEK) determines the potential capabilities of the EK algorithm, but algorithm (OEK)
requires the exact values of the input vector f(k). In our problem, the input vector f(k) is not available for
observation.

Conclusions

Using the probabilistic approach, algorithm for the synthesis of the robust extrapolator for discrete
systems with unknown input and with interval parameters in the model and observations is proposed.

The problem is solved using recurrent algorithms, the LSM method and nonparametric smoothing
procedures. The proposed method implements a decrease in the influence of uncertainties in the model and
observations using replacing an interval uncertainty by the probabilistic uncertainty and taking into account
estimates of the unknown input with additional smoothing.

The numerical example shows that the joint use of smoothing algorithms and robust approach can
improve the estimation accuracy of the state vector.
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