
Results Math          (2023) 78:188 
Online First
c© 2023 The Author(s)

https://doi.org/10.1007/s00025-023-01966-8 Results in Mathematics

Values of Binary Partition Function
Represented by a Sum of Three Squares

Bartosz Sobolewski and Maciej Ulas

Abstract. Let m be a positive integer and bm(n) be the number of parti-
tions of a non-negative integer n with parts being powers of 2, where each
part can take m colors. We show that if m = 2k − 1, then the natural
density of n such that bm(n) cannot be represented as a sum of three
squares exists, and equals 1/12 for k = 1, 2 and 1/6 for k ≥ 3. In particu-
lar, for m = 1 the equation b1(n) = x2 +y2 + z2 has a solution in integers
if and only if n is not of the form 22k+2(8s + 2ts + 3) + i for i = 0, 1
and k, s are non-negative integers, and where tn is the nth term in the
Prouhet–Thue–Morse sequence. A similar characterization is obtained for
the solutions in n of the equation b2k−1(n) = x2 + y2 + z2.

Keywords. Binary partitions, recurrence sequences, automatic sequences,
sums of squares.

1. Introduction

Let N be the set of non-negative integers and N+ the set of positive integers.
Moreover, for a given n ∈ Z we define the 2-adic valuation of n as

ν2(n) = max{k ∈ N : 2k|n},

with the convention that ν2(0) = +∞.
The problem of representation of integers by quadratic forms or, more

generally, by forms or polynomials in many variables, is a classical one. As was
proved by Lagrange in 1770, each non-negative integer can be represented as
a sum of four squares. On the other hand, there are infinitely many positive
integers which cannot be represented by three squares. More precisely, in 1798
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Legendre proved that a non-negative integer N can be represented as

N = x2 + y2 + z2

for some x, y, z ∈ Z if and only if N is not of the form 4r(8s+7) for r, s ∈ N. In
particular, the natural density of the set of integers that cannot be represented
by a sum of three squares is equal to 1/6. This raises an interesting question
whether for a given sequence of integers (un)n∈N there exist infinitely many
solutions of the Diophantine equation

un = x2 + y2 + z2. (1)

To characterize the solutions of (1) it is necessary to have a good understanding
of the 2-adic behavior, or, to be more precise, the 2-adic valuation of the terms
of the sequence (un)n∈N.

Especially interesting is the case where un has a combinatorial meaning,
i.e., un counts some discrete objects or structures. Equation (1) with un =

(
2n
n

)

was investigated by Granville and Zhu in [9]. They characterized those n ∈ N

such that (1) has no solutions in x, y, z. In particular, the set of integers n,
for which

(
2n
n

)
can be represented as a sum of three squares, has asymptotic

density 7/8 in the set of all natural numbers (for an early study of this problem,
see also the paper of Robbins [20]). In the same paper they also obtained a
characterization of n ∈ N such that n! is not a sum of three squares, given
in terms of the existence of certain patterns in the binary expansion of n.
A different approach to this problem (via substitutions) was presented by
Deshouillers and Luca [8]. They showed that the natural density of n such
that n! = x2 + y2 + z2 exists and is equal to 7/8. More precisely, they proved
that

#{n ≤ x : n! is a sum of three squares} =
7
8
x + O(r(x)),

where r(x) = x2/3. The error term was improved by Hajdu and Papp [15] to
r(x) = x1/2 log2 x, and recently by Burns to r(x) = x1/2 (see the preprint
[6]). On the other hand, Robbins obtained a precise characterization of the
solutions in n of (1) in the case where un is the nth term of Fibonacci or
Lucas sequence [19].

In this paper, we follow the same line of research and consider, in particu-
lar, Eq. (1) with un being the binary partition function b(n) (sequence A018819
in the OEIS [18]). More precisely, b(n) counts the number of partitions of n ∈ N

into parts being powers of two. For example, b(4) = 4 because

4 = 22 = 2 + 2 = 1 + 1 + 2 = 1 + 1 + 1 + 1

are all possible representations of 4 as a sum of powers of 2. The sequence
(b(n))n∈N was already introduced by Euler. However, it seems that the first
serious study of its properties was performed by Churchhouse [7] in 1969,
who computed the 2-adic valuation of b(n). Further results, motivated by



Values of Binary Partition Function Page 3 of 32   188 

Churchhouse’s computations, were obtained independently by Gupta [11–13]
and Rødseth [21] (see also recent studies by Rødseth and Sellers [22]).

Besides being interesting in its own sake, the study of the equation

b(n) = x2 + y2 + z2

connects two different areas: Diophantine equations and partition theory. Ac-
cording to our best knowledge, there is no result in the literature providing a
characterization of the solutions of Eq. (1) with un being a partition function of
sub-exponential growth. Recall that b(n) is indeed of sub-exponential growth.
More precisely, Mahler [16] proved that log2 b(n) ∼ 1

2 (log2 n)2. Our study can
be seen as a continuation and extension of recent research concerning solvabil-
ity of Diophantine equations involving partitions, conducted by Tengely and
Ulas [25].

In the same context, we also study the m-colored binary partition func-
tion bm(n), which counts binary partitions of n, where each part can have one
of m ≥ 1 colors. In particular, we have b(n) = b1(n). The study of arithmetic
properties of this function was initiated in a paper of Gawron et al. [10], where
several useful results were obtained.

Let us describe the content of the paper in some more detail. In Sect. 2
we recall some basic properties and results concerning the function bm(n). The
main goal of the present investigation, pursued in Sects. 3–5, is to obtain an
explicit characterization of the set

Sm = {n ∈ N : bm(n) �= x2 + y2 + z2 for any x, y, z ∈ Z}.

The reason for considering terms not represented as a sum of three squares is
that the description turns out to be more concise (similarly as for non-negative
integers). We focus primarily on the case m = 2k − 1 for k ∈ N+ due to the
fact that the 2-adic valuation ν2(b2k−1(n)) is known to be bounded [7,10]. This
allows us to determine which terms b2k−1(n) are of the form 4r(8s+7) through
the reduction modulo a suitable power of 2. The analysis is divided into three
cases: k = 1, k = 2, and k ≥ 3, covered in Sects. 3, 4, and 5, respectively.
Based on these results, in Sect. 6 we give quite precise bounds for the counting
function of the set S2k−1, and determine its natural density in the process.
In the final section, we state some questions, problems, and conjectures which
may serve as a basis for further study. In particular, we discuss the equation
bm(n) = x2 + y2 + z2 when m �= 2k − 1 as well as some interesting findings
concerning the behavior of bm(n) modulo powers of 2. We also collect results
of numerical computations related to the equations b(n) = x2 + y2 + z4 and
b(n) = x2 + y2.

Remark 1.1. In this paper, we focus on the problem of representation of b2k−1(n)
as a sum of three squares. However, it is possible to use our findings to obtain
similar results for other ternary quadratic forms q such that the set of n ∈ N

represented by q is given in terms of the binary expansion of n. Such quadratic
forms include x2 + y2 + 2z2, x2 + 2y2 + 2z2, x2 + 2y2 + 4z2, etc.
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2. Preliminaries

In this section we collect known properties and results which will be used
throughout the paper. Recall that the ordinary generating function of the
sequence (b(n))n∈N has the form

B(x) =
∞∏

n=0

1
1 − x2n

=
∞∑

n=0

b(n)xn.

As a consequence, we see that B(x) satisfies a Mahler-type functional equation
(1 − x)B(x) = B(x2). Comparing the coefficients on both sides, we see that
the sequence (b(n))n∈N satisfies the recurrence: b(0) = b(1) = 1 and

b(2n) = b(2n − 1) + b(n), b(2n + 1) = b(2n).

Churchouse [7] obtained a characterization of the 2-adic valuation of the terms
b(n).

Theorem 2.1. For all n ≥ 2 we have

ν2(b(n)) =

{
2 if n = 4m(2k + 1) + i for some m ∈ N+, k ∈ N, i ∈ {0, 1},

1 otherwise.

Another useful result was obtained independently by Rødseth [21] and
Gupta [11], proving a conjecture of Churchhouse. More precisely, we have the
following theorem.

Theorem 2.2. For all s ∈ N and odd n ∈ N the following congruence holds:

b(2s+2n) ≡ b(2sn) (mod 2μ(s)),

where μ(s) =
⌊
3s+4
2

⌋
.

For m ∈ N+ we define the sequence (bm(n))n∈N as the convolution of m
copies of (b(n))n∈N. More precisely,

bm(n) =
∑

i1+...+im=n

b(i1) · · · b(im).

It is clear that the generating function Bm(x) of the sequence (bm(n))n∈N is
the mth power of B(x), and bm(n) also has a combinatorial interpretation.
Indeed, bm(n) is the number of binary partitions of n, where each part has one
of m possible colors. In a recent paper by Gawron et al. [10], it is proved that
for m = 2k − 1 and n ≥ 2k the 2-adic valuation of bm(n) belongs to the set
{1, 2}. More precisely, they gave the following characterization of the 2-adic
valuation of the terms b2k−1(n).
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Theorem 2.3 (Theorem 4.6 in [10]). Let k ∈ N+. For n, i ∈ N such that
i < 2k+2 we have

ν2(b2k−1(2
k+2n + i)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ν2(b(8n)) if 0 ≤ i < 2k,

1 if 2k ≤ i < 2k+1,

2 if 2k+1 ≤ i < 3 · 2k,

1 if 3 · 2k ≤ i < 2k+2.

In particular, ν2(b2k−1(n)) ∈ {0, 1, 2} and ν2(b2k−1(n)) = 0 if and only if
n < 2k.

The reciprocal of B(x), denoted by

T (x) =
1

B(x)
=

∞∏

n=0

(
1 − x2n

)
=

∞∑

n=0

tnxn,

is the ordinary generating function for the famous Prouhet–Thue–Morse se-
quence (tn)n∈N (PTM sequence for short). Recall that tn = (−1)s2(n), where
s2(n) is the number of 1’s in the unique expansion of n in base 2. Equivalently,
we have t0 = 1 and

t2n = tn, t2n+1 = −tn, n ≥ 0.

The formula in Theorem 2.1 can then be written as ν2(b(n)) = 1
2 |tn − 2tn−1 +

tn−2|. We also consider a variant of the PTM sequence, given by

Tn = s2(n) mod 2,

i.e., the sequence (Tn)n∈N is related to the PTM sequence by tn = 1 − 2Tn.
The PTM sequence is an example of an automatic sequence. More pre-

cisely, let k ≥ 2 be a fixed integer. A sequence a = (an)n∈N is called k-automatic
if its k-kernel, namely

Kk(a) = {(akjn+i)n∈N : j ∈ N, 0 ≤ i < kj},

is a finite set. Equivalently, a is k-automatic if there exists a deterministic finite
automaton with output (DFAO) that reads the canonical base-k representation
of n and the outputs an. In the case of the PTM sequence, it is clear that
Kk(t) = {t,−t}. Equivalently, the sequence is generated by the DFAO in
Fig. 1. To generate tn, one moves between the states (symbolized by nodes)
according to subsequent digits in the binary representation of n. After the
final digit has been read, the DFAO returns the output corresponding to the
current state. For a detailed treatment of automatic sequences, we refer the
reader to the monograph by Allouche and Shallit [3].

Finally, when a sequence a takes values in a Z-module R, it is called k-
regular if there exist finitely many sequences ai = (ai(n))n∈N with values in R
such that each sequence in Kk(a) is a Z-linear combination of the ai. In other
words, the Z-submodule generated by the k-kernel Kk(a) is finitely generated.
In particular, k-automatic sequences are precisely k-regular sequences taking
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Figure 1. A DFAO generating the PTM sequence

finitely many values. The class of k-regular sequences with values in a ring R
has a ring structure itself. A good introduction to the topic of regular sequences
are the papers of Allouche and Shallit [4,5].

3. The Equation b(n) = x2 + y2 + z2

We start with the characterization of the solutions (in variable n) of the equa-
tion

b(n) = x2 + y2 + z2.

Because the values b(2n) and b(2n + 1) are equal, we restrict our attention to
even indices and consider the set

S′
1 = {n ∈ N : b(2n) �= x2 + y2 + z2 for any x, y, z ∈ Z}.

The first few elements of S′
1 are the following:

10, 18, 34, 40, 58, 66, 72, 90, 106, 114, 130, 136, 154, 160, 170, 178, 202, 210, 226, . . . .

Using Theorem 2.1, we get the following characterization of ν2(b(2n)).

Proposition 3.1. For all n ∈ N+ we have

ν2(b(2n)) =

{
1 if ν2(n) ≡ 0 (mod 2),
2 if ν2(n) ≡ 1 (mod 2).

We can deduce that if ν2(n) ≡ 0 (mod 2), then b(2n) is a sum of three
squares. Hence, we only need to consider reduction modulo 32 of b(4k(8m+4)),
where k,m ∈ N. More precisely, b(4k(8m + 4)) is not a sum of three squares if
and only if

b(4k(8m + 4)) ≡ 28 (mod 32). (2)

From Theorem 2.2 (applied to s = 2) and the main result of Hirschhorn and
Loxton [14] one can extract suitable congruence relations, which reduce the
general case to k = 0 and describe the remaining terms b(8m + 4).
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Proposition 3.2. For all m ∈ N we have

b(16m) ≡ b(4m) (mod 32),

b(16m + 4) ≡ 4tm (mod 32),

b(16m + 12) ≡ 20tm (mod 32).

Using these relations, it is straightforward to describe the set consisting
of n ∈ N such that b(2n) is (not) a sum of three squares.

Corollary 3.3. The following conditions are equivalent:
(a) the number b(2n) is not a sum of three squares;
(b) n = 22k+1(4s + 1) for some k, s ∈ N such that ts = −1;
(c) n = 22k+1(8r + 2tr + 3) for some k, r ∈ N;
(d) χ(n) = 1, where χ is defined by χ(0) = 0 and

χ(2n + 1) = 0, χ(4n) = χ(n), χ(8n + 2) = Tn, χ(8n + 6) = 0.

Proof. As we have discussed earlier, b(2n) is not a sum of three squares if and
only if 2n = 4k(8m + 4) and (2) holds. By Proposition 3.2 this happens if
and only if m is even and tm = tm/2 = −1. Letting m = 2s, we obtain the
equivalence of (a) and (b).

To prove that (b) is equivalent to (c), we use the following description
from [1]:

{n ∈ N : Tn = 0} = {2m + Tm : m ∈ N},

{n ∈ N : Tn = 1} = {2m + 1 − Tm : m ∈ N}. (3)

Hence, ts = −1 if and only if s = 2r +1−Tr = 2r +(tr +1)/2 for some r ∈ N,
and our claim follows.

Finally, it is simple to check that the set on n of the form given in (b) is
precisely {n ∈ N : χ(n) = 1}. �

From the relation b(2n + 1) = b(2n) and part (c) of the corollary we get

S1 = 2S′
1 ∪ (2S′

1 + 1) = {22k+2(8r + 2tr + 3) + i : k, r ∈ N, i ∈ {0, 1}}.

Furthermore, part (d) of the corollary directly shows that S′
1 (and thus

S1) is a 2-automatic set; i.e., its characteristic sequence (χ(n))n∈N is 2-automatic.
A DFAO generating this sequence is shown in Fig. 2.

We now turn to the problem of gaps between consecutive n such that
b(2n) is a sum of three squares. More precisely, we define (fn)n∈N to be the in-
creasing sequence consisting of the elements of S′

1. Let (gn)n∈N be the sequence
of gaps, defined by

gn = fn+1 − fn.

In other words, gn is the distance between nth and (n+1)th 1 in the character-
istic sequence (χ(n))n∈N (counting from 0). The following proposition shows
that the gaps are bounded. Moreover, for each possible gap length g we provide
in the proof an infinite set of n ∈ N such that gn = g.
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Figure 2. A DFAO generating (χ(n))n∈N

Proposition 3.4. For all n ∈ N we have

gn ∈ {6, 8, 10, 16, 18, 24}
and all possible values are attained infinitely often.

Proof. Consider length 16 subsequences (χ(16n+ i))0≤i≤15. A simple case dis-
tinction together with the relations in Corollary 3.3(d) show that there are
only four possibilities, namely

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 if χ(n) = 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 if χ(n) = 0, Tn = 1,

0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 if χ(n) = 0, Tn = 0, 2 | n,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 if χ(n) = 0, Tn = 0, 2 � n.

By inspecting the gaps within these subsequences and all their possible con-
catenations, we can see that the gaps between subsequent 1’s in (χ(n))n∈N can
only have lengths 6, 8, 10, 16, 18, 24.

It remains to show that each of these values is indeed attained infinitely
often. In Table 1 for each g ∈ {6, 8, 10, 16, 18, 24} we provide an infinite set
Ig of indices n such that χ(n) = χ(n + g) = 1 and all the terms inbetween
are zero. We note that Ig does not necessarily contain all such indices n. The
verification of each case is straightforward and left to the reader. �

Remark 3.5. Let us note that Hajdu and Papp proved that the gap sequence
corresponding to those values of n such that n! is a sum of three squares
is bounded by 42 [15, Theorem 2.4]. Moreover, in a recent paper [6], Burns
provided the list of all possible lengths of gaps.
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Table 1. Gaps between 1’s in (χ(n))n∈N

g Ig

6 {32m + 2 : Tm = 1}
8 {32m + 10 : Tm = 0}
10 {16m : χ(m) = 1}
16 {64m + 18 : Tm = 0}
18 {32m + 8 : Tm = 1}
24 {256m + 178 : Tm = 0}

It is also interesting to ask whether the sequence (fn)n∈N itself is 2-regular
(equivalently, (gn)n∈N is 2 automatic), since its values form a 2-automatic set.
This question seems hard, and we have not been able to give a definitive answer
(see also Sect. 7). The problem comes from the fact that the description of
elements of S′

1 in Corollary 3.3 does not give enough information about their
ordering. Instead, we consider a simpler version of this question, where we
restrict our attention to indices n ∈ S′

1 with fixed 2-adic valuation. More
precisely, we let k = 0 in the description of Corollary 3.3, so that n is of
the form 4m + 2. Then b(2n) is not a sum of three squares if and only if
b(8m + 4) ≡ 28 (mod 32) (this is precisely (2) with k = 0). More generally,
put

β(m) =
b(8m + 4)

4
mod 8,

and for each a ∈ {1, 3, 5, 7} let ca = (ca(l))l∈N be the increasing sequence such
that

{m ∈ N : β(m) = a} = {ca(l) : l ∈ N}.

It turns out that these sequences are described by surprisingly simple formulas.

Theorem 3.6. For each a ∈ {1, 3, 5, 7} the sequence ca is 2-regular. More pre-
cisely, for m ∈ N we have

c1(l) = 4l − tl + 1,

c3(l) = 4l + tl + 2,

c5(l) = 4l − tl + 2,

c7(l) = 4l + tl + 1.

Proof. It is easy to see that each of the sequences from the statement is in-
creasing.
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To prove that β(m) = a if and only if m = ca(l) for some l ∈ N, we
restate the second and third relation of Proposition 3.2 in the following way:

β(m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if 2 | m and tm = 1,

3 if 2 � m and tm = 1,

5 if 2 � m and tm = −1,

7 if 2 | m and tm = −1.

We now use the relations (3). If β(m) = 1, then 2 | m and m = 2k + Tk for
some k ∈ N. This implies Tk = 0, and thus k = 2l + Tl for some l ∈ N. As a
result, we get m = 4l + 2Tl = 4l − tl + 1. Conversely, if m is of this form, then
also β(m) = 1, and so we get the claim for a = 1.

The proof for a = 3, 5, 7 is similar. �

To conclude this section, we point out that similar results can be obtained
for other quadratic forms given in Remark 1.1. More precisely, depending on
the chosen form, they can be derived from either Proposition 3.2 or the fol-
lowing set of congruence relations (which again follows from Hirschhorn and
Loxton’s results).

Proposition 3.7. For all n ∈ N we have

b(16n + 8) ≡ b(4n + 2) (mod 16),

b(8n + 2) ≡ 2tn (mod 16),

b(8n + 6) ≡ 6tn (mod 16).

4. The Equation b3(n) = x2 + y2 + z2

In this section we characterize the elements of the set S3 containing those
n such that b3(n) is not a sum of three squares. By virtue of Theorem 2.3,
to get the required characterization of S3, we need to understand of the be-
haviour of b3(16n + i) mod 32 for i = 0, 1, 2, 3, 8, 9, 10, 11. Let us recall that
the sequence (b3(n))n∈N satisfies the following recurrence relations: b3(0) =
1, b3(1) = 3, b3(2) = 9 and

b3(2n) = 3b3(2n − 1) − 3b3(2n − 2) + b3(2n − 3) + b3(n),

b3(2n + 1) = 3b3(2n) − 3b3(2n − 1) + b3(2n − 2).

We start with the following lemma.
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Lemma 4.1. For all n ∈ N the following congruences hold:

b3(8n + i + 4) ≡ 2(2i + 1 + 4(−1)n)tn (mod 32),

b3(32n + i) ≡ b3(8n + i) (mod 64), i = 0, 1, 2, 3

b3(8(2n + 1) + i) ≡ 4(3 + 3i − i2 − 2(−1)n+i)tn (mod 32)

≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4(3 − 2(−1)n)tn (mod 32) if i = 0,

4(5 + 2(−1)n)tn (mod 32) if i = 1,

4(5 − 2(−1)n)tn (mod 32) if i = 2,

4(3 + 2(−1)n)tn (mod 32) if i = 3.

In particular, for each k ∈ N+ and i ∈ {0, 1, 2, 3}, we have

b3(22k(2n + 1) + i) ≡ 2 (mod 4),

b3(22k+1(2n + 1) + i) ≡ b3(8(2n + 1) + i) (mod 32),

Proof. The computation of the values of b3(8n+ i+4) mod 32 and b3(8(2n+
1)+ i) mod 32 for i = 0, 1, 2, 3 is based on a simple induction with the help of
recurrence relations satisfied by the PTM sequence (tn)n∈N and the sequence
(b3(n))n∈N. Because of this, we omit the simple details. Essentially, the same
approach can be used in the case of the congruence b3(32n + i) ≡ b3(8n + i)
(mod 32).

However, a more conceptual proof is the following. Invoking [10, Lemma
4.7] we know that for each a ∈ N+, b ∈ {0, 1, . . . , 2a − 1} there is a polynomial
Pa,b ∈ Z[x] such that

∞∑

n=0

b3(2an + b)xn =
Pa,b(x)

(1 − x)3a
B3(x).

In particular, in the case we are interested in, we have
∞∑

n=0

(b3(32n + i) − b3(8n + i))xn =
P5,i(x) − (1 − x)6P3,i(x)

(1 − x)15
B3(x).

A quick computation reveals that for each i = 0, 1, 2, 3, the polynomial P5,i(x)−
(1 − x)6P3,i(x) is divisible by 64 in the ring Z[x]. Thus, as the function
(1−x)−15B3(x) has power series expansion with integer coefficients, then each
number b3(32n + i) − b3(8n + i) is divisible by 64 and we are done.

To obtain the first congruence from the “in particular” part, we apply
induction on k and the congruence b3(8n + i + 4) ≡ 2(2i + 1 + 4(−1)n)tn
(mod 32). The second congruence again follows from induction on k and the
congruence b3(32n + i) ≡ b3(8n + i) (mod 64). �

We are ready to characterize the set S3.

Theorem 4.2. We have n ∈ S3 if and only if

n = 22k+1

(
8p + 2

⌊
i

2

⌋
+ 3 + 2(−1)itp

)
+ i
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for some i ∈ {0, 1, 2, 3} and k ∈ N+, p ∈ N.

Proof. From the characterization of the 2-adic valuation of b3(n) and Lemma 4.1
we know that if n ∈ S3, then we necessarily have n (mod 16) ∈ {0, 1, 2, 3, 8, 9, 10,
11}. We perform a case-by-case analysis.

Let i ∈ {0, 1, 2, 3}. If n ≡ i (mod 16) and n = 22k(2s + 1) + i, then
ν2(b3(n)) = 1 and hence n �∈ S3. If n = 22k+1(2s + 1) + i, then we have

b3(n) ≡ b3(8(2s + 1) + i) ≡ 4(3 + 3i − i2 − 2(−1)s+i)ts (mod 32),

and thus n ∈ S3 if and only if c(i, s) := (3+3i− i2 −2(−1)s+i)ts ≡ 7 (mod 8).
A case-by-case analysis using the characterization (3), reveals the following:

(1) If i = 0, then c(i, s) ≡ 7 (mod 8) if and only if s is even and ts = −1.
Thus, s = 4p + 1 + tp for some p ∈ N.

(2) If i = 1, then c(i, s) ≡ 7 (mod 8) if and only if s is even and ts = 1.
Thus, s = 4p + 1 − tp for some p ∈ N.

(3) If i = 2, then c(i, s) ≡ 7 (mod 8) if and only if s is odd, and ts = 1. Thus,
s = 4p + 2 + tp for some p ∈ N.

(4) If i = 3, then c(i, s) ≡ 7 (mod 8) if and only if s is odd and ts = −1.
Thus, s = 4p + 2 − tp for some p ∈ N.

Gathering all the obtained characterizations, we get the statement of our the-
orem. �

Remark 4.3. In a similar fashion as in the case of b(n), one can compute possi-
ble gaps between n such that b3(n) is not a sum of three squares. As pointed out
by the referee, one can do this using the software Walnut written by Hamoon
Mousavi [17]. For a broad range of examples and applications of Walnut see
the recent book by Shallit [24].

More precisely, if s3 is the DFAO generating the characteristic sequence
of S3 (obtained using the characterization of c(i, s)), then the Walnut command

eval s3gaps “?lsd 2 g>0 & En ($s3(n) & $s3(n+g) & (Aj (j<g-1) =>∼$s3(n+j+1)))”:

produces a deterministic finite automaton (DFA) s3gaps accepting precisely
those g ∈ N+ which are lengths of the gaps. By inspecting the result, one can
see that the gaps are g = 6, 7, 9, 14, 18. Using the results from Sect. 5, the same
can be done for b2k−1(n) with k ≥ 3.

5. The Equation b2k −1(n) = x2 + y2 + z2 with k ≥ 3

In this section, we study for k ≥ 3 representability of b2k−1(n) as a sum of
three squares. The main idea is to express (b2k−1(n))n∈N as the convolution
of (b2k(n))n∈N and the PTM sequence, and apply the following lemma [10,
Lemma 4.4(1)] to m = 2k.
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Lemma 5.1. Let m ∈ N+. Then for all n ∈ N we have

bm(n) ≡
(

m

n

)
+ 2ν2(m)+1

(
m − 2
n − 2

)
(mod 2ν2(m)+2).

We split our reasoning into two parts: n < 2k and n ≥ 2k. Starting with
the simpler case n < 2k, by Theorem 2.3, we have ν2(b2k−1(n)) = 0. Therefore,
it is sufficient for our purposes to describe b2k−1(n) modulo 8.

Proposition 5.2. Let k ≥ 3 and n < 2k. Then

b2k−1(n) ≡ tn ·

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 (mod 8) if 0 ≤ n < 2k−2,

5 (mod 8) if 2k−2 ≤ n < 2k−1,

7 (mod 8) if 2k−1 ≤ n < 3 · 2k−2,

3 (mod 8) if 3 · 2k−2 ≤ n < 2k.

Proof. By Lemma 5.1 we have

b2k−1(n) ≡
n∑

l=0

(
2k

l

)
tn−l (mod 8).

Moreover, [10, Lemma 4.5] says that

(
2k

l

)
≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 (mod 8) if l = 0, 2k,

4 (mod 8) if l = 2k−2, 3 · 2k−2,

6 (mod 8) if l = 2k−1,

0 (mod 8) otherwise.

From this description we immediately get the claim for the cases 0 ≤ n < 2k−2

and 2k−2 ≤ n < 2k−1. If 2k−1 ≤ n < 3 · 2k−2, we get

b2k−1(n) ≡ tn + 4tn−2k−2 + 6tn−2k−1 ≡ tn + 2tn−2k−1 (mod 8).

Since n has 2k−1 in its binary expansion, we get tn−2k−1 = −tn, and the
required congruence follows. Finally, if 3 · 2k−2 ≤ n < 2k, we again have
tn−2k−1 = −tn so

b2k−1(n) ≡ tn + 4tn−2k−2 + 6tn−2k−1 + 4tn−3·2k−2 ≡ −5tn (mod 8).

�

As an immediate corollary, we can describe n < 2k such that b2k−1(n) is
(not) a sum of three squares.

Corollary 5.3. Let k ≥ 3 and n < 2k. Then b2k−1(n) is not a sum of three
squares of integers if and only if one of the following cases holds:

(1) 0 ≤ n < 2k−2 and tn = −1;
(2) 2k−1 ≤ n < 3 · 2k−2 and tn = 1.
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We move on to the case n ≥ 2k. This time we have ν2(b2k−1(n)) ∈ {1, 2}
by Theorem 2.3, which means that it is sufficient to consider b2k−1(n) modulo
32. To this end, we need a standard lemma concerning the behavior of binomial
coefficients modulo powers of 2 (we provide a proof for completeness).

Lemma 5.4. The following statements hold:
(a) For all k, n ∈ N such that 1 ≤ n ≤ 2k, we have

ν2

((
2k

n

))
= k − ν2(n).

(b) For all m,n ∈ N we have
(

2m

2n

)
≡

(
m

n

)
(mod 2ν2(m)+1).

Proof. By Legendre’s formula we get

ν2

((2k

n

))
= 2k − 1 − (n − s2(n) + 2k − n − s2(2

k − n)) = s2(n) + s2(2
k − n) − 1.

We can express s2(2k − n) as

s2(2k − n) = s2((2k − 1) − (n − 1)) = k − s2(n − 1).

Now, write n = 2ν2(n)l, which yields

s2(n − 1) = s2(2ν2(n)(l − 1) + (2ν2(n) − 1)) = s2(l − 1) + ν2(n)

= s2(l) − 1 + ν2(n) = s2(n) − 1 + ν2(n).

Combining the above equalities, we get (a).
Moving on to (b), the claim clearly holds for n = 0 so we can assume

that n ≥ 1. We have the congruence
(

2m

2n

)
=

(
m

n

)
(2m − 1)!!

(2n − 1)!!(2m − 2n − 1)!!
≡ (−1)n

(
m

n

)
(mod 2ν2(m)+1).

If n is even, we immediately obtain (b). If n is odd, we use the inequality

ν2

((
m

n

))
= ν2

(
m

n

(
m − 1
n − 1

))
≥ ν2(m),

which again leads to the desired result. �

We are now ready to describe b2k−1(n) modulo 32 for n ≥ 2k. This time,
the characterization involves two consecutive terms of the PTM sequence.

Theorem 5.5. Fix k, i, j ∈ N such that k ≥ 3, i < 8, and j < 2k−3. Then for
all m ≥ 1 we have

b2k−1(2
km + 2k−3i + j) ≡ tj(citm + ditm−1) (mod 32),

where the coefficients ci, di do not depend on k and are given in Table 2.
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Table 2. The coefficients ci, di

i 0 1 2 3 4 5 6 7

ci 1 7 3 5 9 − 1 3 5
di − 5 − 3 1 − 9 − 5 − 3 − 7 − 1

Proof. Consider first the case k ≥ 4. By Lemma 5.1 we have

b2k−1(n) =
n∑

l=0

b2k(l)tn−l ≡
n∑

l=0

(
2k

l

)
tn−l (mod 32).

Now, by Lemma 5.4(a), the binomial coefficients with v2(l) < k − 4 vanish
modulo 32. Therefore, assuming that n ≥ 2k, the above sum simplifies to

b2k−1(n) ≡
16∑

l=0

(
2k

2k−4l

)
tn−2k−4l ≡

16∑

l=0

(
16
l

)
tn−2k−4l (mod 32),

where the second congruence follows from Lemma 5.4(b). Furthermore, we can
eliminate the terms with l odd, since there is an even number of them and they
are all congruent to 16 modulo 32. Therefore, we get the congruence

b2k−1(n) ≡
8∑

l=0

(
16
2l

)
tn−2k−3l (mod 32).

To simplify the right-hand side, consider b2k−1 at indices of the form given in
the statement, namely n = 2km + 2k−3i + j, where m ≥ 1, 0 ≤ i < 8, and
0 ≤ j < 2k−3. By the recurrences defining the PTM sequence, we get

t2km+2k−3i+j−2k−3l = tjt8m+i−l = tj ·
{

tmti−l if l ≤ i,

−tm−1tl−i if l > i.

Therefore, the claimed formula is valid with the coefficients

ci =
i∑

l=0

(
16
2l

)
ti−l, di = −

8∑

l=i+1

(
16
2l

)
tl−i,

and a direct calculation (modulo 32) gives their values as in Table 2.
In the case k = 3, the expression for b2k−1(n) modulo 32 obtained from

Lemma 5.1 also contains the sum

16
n∑

l=0

(
6

l − 2

)
tn−l.

If n ≥ 8, then the entire sum vanishes modulo 32, so we again arrive at the
formula

b7(n) ≡
8∑

l=0

(
8
l

)
t8−l (mod 32).



  188 Page 16 of 32 B. Sobolewski and M. Ulas Results Math

After a similar calculation as before, we get the result. �

Using this result, we can determine the indices n ≥ 2k such that b2k−1(n)
is not a sum of three squares. The description turns out to be surprisingly
simple.

Corollary 5.6. Let k ≥ 3 and n ≥ 2k. The following conditions are equivalent:
(a) b2k−1(n) is not a sum of three squares;
(b) tn = tn−2k = 1;
(c) n = 2km+ l, where l,m ∈ N are such that l < 2k, tm = tl, and ν2(m) ≡ 1

(mod 2).

Proof. Write n = 2km + 2k−3i + j as in Theorem 5.5. Observe that ci + di =
−4ti, while ci −di is not divisible by 4. Hence, the term b2k−1(2km+2k−3i+j)
is not a sum of three squares if and only if

tm = tm−1 = titj ,

which after multiplying both sides by titj gives precisely (b).
The equivalence with (c) is obtained by writing l = 2k−3i+ j and observ-

ing that tm = (−1)ν2(m)+1tm−1. �

6. Counting the Solutions

The aim of this section is to provide estimates for the counting functions of
the sets S2k−1. For real x ≥ 0 and m ∈ N+ let

Sm(x) = Sm ∩ [0, x] = #{n ≤ x : bm(n) is not a sum of three squares}.

Using the descriptions of the sets S2k−1 obtained in the previous sections for
various k it is straightforward to check that

S2k−1(x) = δkx + O(log x),

where δ1 = δ2 = 1/12 and δk = 1/6 for k ≥ 3. In the following three results,
we provide more precise bounds for S2k−1(x) − δkx in the case k = 1, k = 2
and k ≥ 3, respectively. In particular, each lower and upper bound is of the
form C1 log2 x + C2, where the constant C1 is optimal.

Theorem 6.1. For every x ≥ 6 we have

−5
3

< S1(x) − x

12
<

1
2

log2 x − 19
12

.

In particular, the density of the set S1 in N exists and is equal to

lim
x→+∞

S1(x)
x

=
1
12

.

Moreover, there exists an increasing sequence (mk)k∈N ⊂ N such that

S1(ml) − ml

12
∼ 1

2
log2 ml.
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Proof. For real x ≥ 0 define

P (x) = #{s ∈ N : 8s + 2ts + 3 ≤ x},

Q(x) =
∞∑

k=0

P
( x

4k

)
.

By Corollary 3.3(c) and the relation b(2n + 1) = b(2n), we get

S1(x) = Q
(x

4

)
+ Q

(
x − 1

4

)
.

Hence, it is sufficient to focus on the function Q. For m ∈ N and i = 0, 1, 2, 3
we have the recurrence relations

Q(4m + i) = Q(m) + P (4m + i).

Also, for i < 8 we have

P (8m + i) = m +

⎧
⎪⎨

⎪⎩

0 if i = 0,

Tm if i = 1, 2, 3, 4,

1 if i = 5, 6, 7.

Put

R(x) = Q(x) − x

6
,

so that

S1(x) − x

12
= R

(⌊x

4

⌋)
+ R

(⌊
x − 1

4

⌋)
+

⌊
x
4

⌋
+

⌊
x−1
4

⌋

6
− x

12
.

It is readily checked that

−1
3

<

⌊
x
4

⌋
+

⌊
x−1
4

⌋

6
− x

12
≤ − 1

12
.

Therefore, to obtain the estimates for S1(x) − x/12, it remains to prove
that for each integer m ≥ 2 there holds

−2
3

≤ R(m) ≤ 1
4
�log2 m
 − 1

4
,

as then for x ≥ 9 we get

−4
3

≤ R
(⌊x

4

⌋)
+ R

(⌊
x − 1

4

⌋)
< 2 · 1

4

(
log2

x

4
− 1

)
=

1
2

log2 x − 3
2

(for x ∈ [6, 9) the statement of the theorem follows from direct computation).
This is done by induction on the length L(m) of the binary expansion

of m. Direct computation shows that our claim holds when 2 ≤ L(m) ≤ 6.
Hence, let L(m) ≥ 7. It is sufficient to prove that there exists an integer n ≥ 2
with L(n) ≤ L(m) − 2 such that

0 ≤ R(m) − R(n) ≤ 1
2
.
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This is indeed the case, as shown by the following set of identities (ordered
according to the residue class modulo 8):

R(8n) = R(2n),

R(16n + 1) = R(4n + 1),

R(16n + 9) = R(4n) +
1
2
,

R(16n + 2) = R(4n + 2),

R(16n + 10) = R(4n) +
1
3
,

R(16n + 3) = R(4n + 3),

R(16n + 11) = R(4n) +
1
6
,

R(8n + 4) = R(2n + 1) + Tn − 1
2
,

R(64n + 4) = R(16n + 4),

R(64n + 20) = R(16n + 2) + 1 − Tn,

R(64n + 36) = R(16n) + 1 − Tn,

R(64n + 52) = R(16n + 4),

R(16n + 12) = R(4n),

R(8n + 5) = R(2n + 1) +
1
3
,

R(8n + 6) = R(2n + 1) +
1
6
,

R(8n + 7) = R(2n + 1).

We move on to the second part of the statement. Define m0 = 0 and
ml+1 = 16ml + 36 for l ∈ N. First, we prove inductively that R(ml) = l. This
is clear for l = 0. In general, we have

R(ml+1) = R(16ml + 36) = R(4ml) + 1 − Tml
= R(ml) + 1,

where we have used 4 | ml, the recurrence relations above and Tml
= 0 (easily

shown by induction). We thus have S1(m0) = S1(m1) = 0 and for l ≥ 1 the
equality

S1(ml+1) − ml+1

12
= R

(⌊ml+1

4

⌋)
+ R

(⌊
ml+1 − 1

4

⌋)
− 1

6
= R(ml) + R(ml−1) + 1 = 2l.

The result follows. �

In Fig. 3 we show the graph of the function S1(x) − x/12 in the range
[1, 210] together with the bounds (as in the theorem).
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Figure 3. The function S1(x) − x/12

From the presented graph, it appears it should be possible to obtain an
even better additive constant in the upper bound. To do this, one would need
to investigate closer the location of the “spikes” on the graph (some of which
correspond to x = ml).

The following two results show that the function S1(x) is exceptional in
the sense that S1(x) − x/12 is bounded from below by a constant.

Theorem 6.2. For all x ≥ 1 we have

−1
6

log2 x − 7
12

< S3(x) − x

12
≤ 1

6
log2 x − 1

6
.

In particular, the density of the set S3 in N exists and is equal to

lim
x→+∞

S3(x)
x

=
1
12

.

Moreover, there exist increasing sequences (ml)l∈N, (nl)l∈N ⊂ N such that

S3(ml) − ml

12
∼ 1

6
log2 ml,

S3(nl) − nl

12
∼ −1

6
log2 nl.

Proof. For i = 0, 1, 2, 3 let

Pi(x) = #
{

n ∈ N : 8n + 2
⌊

i

2

⌋
+ 3 + 2(−1)itn ≤ x

}
,
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so that by Theorem 4.2 we have

S3(x) =
∞∑

k=1

3∑

i=0

Pi

(
x − i

2 · 4k

)
.

This time, put

P (x) =
3∑

i=0

Pi(x),

Q(x) =
∞∑

k=0

P
( x

4k

)
.

Then for any x we have

Q

(
x − 3

8

)
≤ S3(x) ≤ Q

(x

8

)
.

Therefore, we need to bound the function R(x) = Q(x)−2x/3. First, for n ∈ N

we have the easy to check equalities P (n) = �n/2� and

R(4n + i) = R(n) +

⎧
⎪⎨

⎪⎩

0 for i = 0, 3,
1
3 for i = 1,

− 1
3 for i = 2.

In a similar fashion as in the previous proof, one can then prove that for m ∈ N

there holds

−1
6
�log2 m
 − 1

6
≤ R(m) ≤ 1

6
�log2 m
 +

1
3

The inequalities for S3(x)−x/12 follow shortly by plugging in m = �x/8
 and
m = �(x − 3)/8
.

If we define m0 = 0 and ml+1 = 4ml + 8, we can inductively compute
R(ml/8) = l/3, and therefore

S(ml) − 1
12

ml ∼ Q
(ml

8

)
− 1

12
ml =

l

3
∼ 1

6
log2 ml.

Similarly, for n0 = 0 and nl+1 = 4nl + 16, we get R(nl/8) = −l/3 so

S(nl) − 1
12

nl ∼ −1
6

log2 nl,

and the proof is finished. �

Figure 4 shows the graph of the function S1(x)−x/12 in the range [1, 210]
together with the proved bounds (in red). Again, the bounds are quite accurate,
though the additive constants can probably be improved further.

The final result of this section concerns the function S2k−1(x). For the
sake of clarity, in the proof we make some rough estimates concerning the
additive constant (although the constant near log2 x remains optimal).
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Figure 4. The function S3(x) − x/12

Theorem 6.3. If k ≥ 3, then for all x ≥ 2k we have

∣
∣
∣S2k−1(x) − x

6

∣
∣
∣ ≤ 2k−2

3
(log2 x − k + 26).

In particular, the density of the set S2k−1 in N exists and is equal to

lim
x→+∞

S2k−1(x)
x

=
1
6
.

Moreover, there exist increasing sequences (ml)l∈N, (nl)l∈N ⊂ N such that

S2k−1(ml) − ml

6
∼ 2k−2

3
log2 ml,

S2k−1(nl) − nl

6
∼ −2k−2

3
log2 nl.

Proof. For ε ∈ {1,−1} and non-negative x ∈ R we put

Pε(x) = #{1 ≤ m ≤ x : tm = ε},

Qε(x) =

∞∑

s=0

(−1)sPε

( x

2s

)
= # {1 ≤ m ≤ x : tm = ε and ν2(m) ≡ 0 (mod 2)} .
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Then by Corollary 5.6 we get

S2k−1(x) = S2k−1(2
k − 1) +

2k−1∑

l=0

#{1 ≤ m ≤ x − l

2k
: tm = tl and ν2(m) ≡ 1 (mod 2)}

= 2k−2 +

2k−1∑

l=0

Qtl

(
x − l

2k+1

)
,

where S2k−1(2k − 1) = 2k−2 follows from Corollary 5.3. Furthermore, we have
the obvious inequality

0 ≤
2k−1∑

l=0

Qtl

( x

2k+1

)
−

2k−1∑

l=0

Qtl

(
x − l

2k+1

)
≤ 2k.

Since for each ε = ±1 we have tl = ε for precisely 2k−1 indices l, we obtain
∣
∣
∣S2k−1(x) − 2k−1

(
Q1

( x

2k+1

)
+ Q−1

( x

2k+1

))∣
∣
∣ ≤ 5 · 2k−2. (4)

Therefore, to bound S2k−1(x) − x/6 it remains to estimate for ε = ±1 the
functions

Rε(x) = Qε(x) − x

3
.

First, note that for n ∈ N we have

Pε(n) =
n − ε

2
+

{
ε
2 tn if 2 | n,

0 if 2 � n.

It follows that

Rε(4n + i) = Rε(n) +

⎧
⎪⎨

⎪⎩

0 if i = 0, 3,
1
2 (1 − εtn) − 1

3 if i = 1,
1
2 (1 − εtn) − 2

3 if i = 2.

This leads to the relations

Rε(4n) = Rε(n),

Rε(8n + 1) = Rε(2n + 1),

Rε(16n + 5) = Rε(n) +
1
3
,

Rε(16n + 13) = Rε(4n + 1),

Rε(16n + 2) = Rε(4n + 2),

Rε(8n + 6) = Rε(2n),

Rε(16n + 10) = Rε(n) − 1
3
,

Rε(4n + 3) = Rε(n).
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By induction we obtain for ε = ±1 and all n ∈ N+ the inequality

|Rε(n)| ≤ 1
12

�log2 n
 +
2
3
,

which implies
∣
∣
∣Qε(x) − x

3

∣
∣
∣ ≤ 1

12
log2 x + 1

for all x ≥ 1. The main part of the result follows shortly.
Finally, put m0 = 0 and ml+1 = 16ml + 5 · 2k+1. Also, let α = (k +

1) mod 2. Using the fact that 2k+1 | ml, from the recurrence relations for Rε

we get

Rε(2αml+1) = Rε(24+αml + 5 · 2k+1+α) = Rε(23−kml + 5)

= Rε(2−1−kml) +
1
3

= Rε(2αml) +
1
3
.

It follows that

Qε

( ml

2k+1

)
− ml

3 · 2k+1
= Rε(2αml) =

l

3
∼ 1

12
log2 ml,

and it remains to use (4).
Similarly, we can take n0 = 0 and nl+1 = 16nl + 10 · 2k+1. �

7. Computational Results, Questions, Problems and
Conjectures

In this section, we discuss possible directions for further research and present
some conjectures and computational results.

To begin, recall that in Sect. 3 we have defined (fn)n∈N to be the increas-
ing sequence such that S′

1 = {fn : n ∈ N}, and asked whether it is regular.
We have performed some experimental computations in Mathematica 13 with
the help of the IntegerSequences package by Eric Rowland [23], available at
https://ericrowland.github.io/packages.html. More precisely, for each m ≤ 30
we have used the FindRegularSequenceRecurrence function, which did not
find a finite set of (plausible) Z-linear relations between the elements of the
m-kernel Km((fn)n∈N). Hence, we expect that following conjecture holds.

Conjecture 7.1. The sequence (fn)n∈N+ is not m-regular for any m ≥ 2.

On the other hand, note that we if we consider the decomposition

S′
1 =

∞⋃

k=0

Uk

into pairwise disjoint sets Uk = {22k+1(8s + 2ts + 3) : s ∈ N}, then for each
k ∈ N the sequence (22k+1(8s + 2ts + 3))s∈N is 2-regular.

Next, it is natural to ask whether it is possible to obtain results on the
representation of bm(n) as a sum of three squares for any m ∈ N+.

https://ericrowland.github.io/packages.html
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Problem 7.2. Characterize the set Sm for m ∈ N+.

If the valuations ν2(bm(n)) are bounded, then the direct approach used
in this paper, namely reduction modulo a fixed power of 2, is sufficient to give
a complete description of Sm. The following proposition implies that in this
case Sm is a 2-automatic set (its characteristic sequence is 2-automatic).

Proposition 7.3. For each m ∈ N+ and p ∈ N the sequence (bm(n) mod 2p)n≥0

is 2-automatic.

Proof. Take any k ≥ p − 1 such that 2k ≥ m. Note that (bm(n))n≥0 is the
convolution of the sequence (b2k(n))n≥0 with 2k − m copies of the PTM se-
quence (tn)n≥0. They are both 2-regular when treated as sequences over the
ring Z/2p

Z (for (b2k(n))n≥0 this follows from Lemma 5.1). Hence, (bm(n) mod
2p)n≥0 is 2-regular as the convolution of 2-regular sequences. The result fol-
lows from the fact that a 2-regular sequence attaining finitely many values is
necessarily 2-automatic. �

Unfortunately, we do not know even for a single value m �= 2k−1, whether
or not the valuations ν2(bm(n)) are bounded. It is conjectured that they are
unbounded for all m �= 2k −1 (see [10, Conjecture 5.3]). Nevertheless, this does
not rule out 2-automaticity of the set Sm. Surprisingly, numerical results for
m ≤ 30 (obtained with help of the IntegerSequences package) suggest that
the sets Sm are 2-automatic for odd m, except for m = 17, 21.

It should be possible to get some partial results if we restrict our attention
to arithmetic progressions along which ν2(bm(n)) is bounded. For example, [10,
Theorem 5.4] provides a collection of suitable arithmetic progressions (2rn +
s)n∈N such that ν2(b2(2rn + s)) is constant. By Proposition 7.3, the set of n
such that b2(2rn + s) is a sum of three squares, is 2-automatic.

A related interesting problem concerns the behavior of bm(n) modulo a
fixed power of 2.

Problem 7.4. For m ∈ N+ and p ∈ N characterize bm(n) mod 2p.

We already know that this sequence is 2-automatic and may ask whether
it can be characterized in terms of simpler 2-automatic sequences. The congru-
ences obtained in the previous sections for subsequences of the form b2k−1(2rn+
s) are all “admissible” in the sense of [14], that is, only involve tn and (−1)ν2(n).
In the case k ≥ 3 Theorem 5.5 provides a congruence in terms of tn, tn−1

that can be transformed into an admissible one due to the relation tn−1 =
(−1)ν2(n)+1tn.

It turns out that other interesting 2-automatic sequences already appear
if we consider bm(n) modulo suitable powers of 2. By inspecting modulo 32
the subsequences described in Proposition 3.7, we have found (without proof)
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the following set of congruence relations:

b(8n + 2) ≡ 2tn + 16σn (mod 32),

b(8n + 6) ≡ 6tn + 16σn + 16n (mod 32),

b(16n + 8) ≡ (10 + 8n2)tn + 16σn (mod 32),

where σn counts modulo 2 the number of blocks of contiguous 1’s in the binary
expansion of n. We have later learned that Alkauskas [2, Theorem 2] obtained
a set of relations that describe the same sequences and involve the Rudin–
Shapiro sequence instead of (σn)n∈N. It can be checked that both descriptions
are equivalent.

Another sequence that arises in this way is the regular paperfolding se-
quence (pn)n∈N+ defined by p2n = pn and p2n+1 = (−1)n (see for example [3,
Example 5.1.6]). If we let P (x) =

∑
n≥1 pnxn, then through manipulation of

power series, for m even one can obtain the congruence relation

Bm(x) ≡ (1 − x)m(1 + 2mP (x)) (mod 2ν2(m)+3).

This is essentially a generalization of Lemma 5.1.
We now consider some natural modifications of the original equation

bm(n) = x2 + y2 + y2. We have obtained precise characterization of those
n ∈ N such that b(2n) is a sum of three squares. In particular, the set of
such numbers has natural density equal to 11/12. For a given n not of the
form 22k+1(8s+2ts +3), by analyzing the solution set (x, y, z) of the equation
b(2n) = x2 + y2 + z2, we found that in many cases one of the values x, y, z is
a square itself, i.e., the Diophantine equation

b(2n) = x2 + y2 + z4

has a solution in non-negative integers. More precisely, for n ≤ 103 we know
that there are exactly 916 values of n such that b(2n) is a sum of three squares.
Among them, there are exactly 831 values of n such that b(2n) is a sum of
two squares and a fourth power. This large number of solutions suggest the
following conjecture.

Conjecture 7.5. Let Q1 := {n ∈ N : b(2n) = x2+y2+z4 for some x, y, z ∈ N}.
The set Q1 is infinite. Moreover, the set Q1 has positive natural density in N.

On the other hand, there are exactly seven values of n ≤ 1000 such that
b(2n) is a sum of a square and two fourth powers. This may suggest that the
number of solutions of the equation b(2n) = x2 + y4 + z4 is finite. However,
due to limited range of our computations we instead formulate the following:

Question 7.6. Is the set of n such that b(2n) = x2 + y4 + z4 has a solution in
integers x, y, z infinite?

An even more interesting and difficult question is whether the set

T = {n ∈ N : b(2n) = x2 + y2}
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is infinite or not. Because we know the behaviour of b(n) mod 16 we can easily
prove that the complement of T , i.e., N \ T is infinite. Indeed, from Proposi-
tion 3.2 we have b(16n + 4) ≡ 4tn (mod 16). If tn = −1, then b(16n + 4) ≡ 12
(mod 16) and thus b(16n + 4) is not a sum of two squares.

To get a clue what can be expected in the case of the set T , we computed
the values of b(2n) for n ≤ 220 and checked whether b(2n) is a sum of two
squares. We put

T (x) = #{n ≤ x : n ∈ T }
and in Table 3 we present the values of T (2n) for n ≤ 20.

We also define

S = {r2(b(2n)) : n ∈ N},

where r2(m) is the number of representations of m as a sum of two squares.
Let us recall that

r2(m) =
∑

d|m,d≡1 (mod 2)

(−1)
d−1
2 .

In the considered range, i.e., n ≤ 220 the set S contains 0 and 35 positive
values s1 ≤ · · · ≤ s35. In Table 4 below, we present the following values: si,
li—the number of times si is attained, and ni—the smallest value of n such
that r2(b(2n)) = si.

Our numerical computations suggest the following.

Conjecture 7.7. The set T is infinite.

The following heuristic reasoning provides further evidence towards our
conjecture. More precisely, recall that the counting function of the sums of
two squares up to x is O(x/

√
log x). Thus, one can say that the probability

that a random positive integer n can be written as a sum of two squares of
integers is c/

√
log n. Since, log2 b(n) ≈ 1

2 (log2 n)2 one could conjecture that
the expectation that b(n) is a sum of two squares is c′/ log n for some positive
constant c′, provided that b(n) behaves like a random integer of its size. As a
consequence, up to x, we would have at least

∑

n≤x

1
log n

=
x

log x
+ O(x/ log2 x)

values of n such that b(n) is a sum of two squares. We dare to formulate the
following statement.

Conjecture 7.8. There exists a positive real number c such that

T (x) = c
x

log x
+ O(x/ log2 x)

as x → +∞.

Although limited, our computations confirm such an expectation. In Ta-
ble 5 we give the values T (2m) m

2m for m = 10, . . . , 20.
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Remark 7.9. The expectation that b(n) behaves like a random integer of its
size is very likely. Indeed, numerical computations suggest that for any odd
integer m the sequence (b(n) (mod m))n∈N is uniformly distributed; i.e., for
any r ∈ {0, 1, . . . ,m − 1} we have

lim
N→+∞

#{n ≤ N : b(n) ≡ r (mod m)}
N

=
1
m

.

However, according to the best knowledge of the authors, it is not even known
whether the set of prime numbers p such that p|b(n) for some n, is infinite.
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