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Abstract
A permutation graph can be defined as an intersection graph of segments whose end-
points lie on two parallel lines �1 and �2, one on each. A bipartite permutation graph
is a permutation graph which is bipartite. In this paper we study the parameterized
complexity of the bipartite permutation vertex deletion problem, which asks, for a
given n-vertex graph, whether we can remove at most k vertices to obtain a bipartite
permutation graph. This problem is NP-complete by the classical result of Lewis and
Yannakakis [20].We analyze the structure of the so-called almost bipartite permutation
graphs which may contain holes (large induced cycles) in contrast to bipartite permu-
tation graphs. We exploit the structural properties of the shortest hole in a such graph.
We use it to obtain an algorithm for the bipartite permutation vertex deletion prob-
lem with running time O(9k · n9), and also give a polynomial-time 9-approximation
algorithm.

Keywords Permutation graphs · Comparability graphs · Partially ordered set · Graph
modification problems

1 Introduction

Many standard computational problems, including maximum clique, maximum inde-
pendent set, orminimumcoloring,which areNP-hard in general, havepolynomial-time
exact or approximation algorithms in restricted classes of graphs. Due to the practical
and theoretical applications, some of such graph classes are particularly intensively
studied. Among them are:
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Fig. 1 Hierarchy of inclusions between graph classes considered in the introduction. An arrow from graph
class A to graph class B indicates thatA ⊂ B

– interval graphs: intersection graphs of intervals on a real line,
– proper interval graphs: intersection graphs of intervals none of which is contained
in another,

– chordal graphs: intersection graphs of subtrees of a tree,
– function and permutation graphs: intersection graphs of continuous and linear
functions, respectively, defined on the interval [0, 1],

– comparability graphs: graphs whose edges correspond to the pairs of vertices
comparable in some fixed partial order < on the vertex set (such an order is called
a transitive orientation of the graph),

– co-comparability graphs: the complements of comparability graphs.

It is well known that the class of function graphs corresponds to the class of co-
comparability graphs [13], and the class of permutation graphs corresponds to the
intersection of comparability and co-comparability graphs [24] (see Fig. 1 for the
hierarchy of inclusions). All these classes of graphs are hereditary, which means that
they are closed under vertex deletion.

Being hereditary is a very useful property in algorithmic design as every heredi-
tary class of graphs can also be uniquely characterized in terms of minimal forbidden
induced subgraphs: a graph belongs to a class G if and only if it does not contain any
graph from some family F as an induced subgraph. For every graph class introduced
above, a characterization by forbidden subgraphs is known, see [8] for perfect graphs,
[19] for interval graphs, [12] for comparability and permutation graphs. However, for
all of them, the family of forbidden subgraphs is infinite and it may also be quite com-
plex. Moreover, every graph G from any class introduced above is perfect. Grötschel,
Lovász, and Schrijver [14] showed that in the class of perfect graphs the maximum
clique, the maximum independent set, and the minimum coloring problems can be
solved in polynomial time.

Polynomial-time algorithms devised for the above-mentioned graph classes can
sometimes be adjusted to also work on graphs that are “close” to graphs from these
classes. Usually, the “closeness” of a graph G to a graph class G is measured by the
number of operations required to transform G into a graph from the class G, where a
single operation consists either on removing a vertex fromG or on adding or removing
an edge from G. Such an approach leads us to the following generic problem.

Depending on the kind of modifications allowed, we obtain four variants of this
problem: vertex deletion problem, edge deletion problem, edge completion problem,
and edge edition problem (the latter allowing both deletions and additions of edges).
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Problem: Graph modification problem into a class of graphs G
Input: A graph G (typically not from G) and a number k
Question: Can G be transformed into a graph of the class G

by performing ≤ k modifications of an appropriate kind?

For the class of graphs defined above, all four variants of the modification problem
are NP-hard—see [22] for references to NP-hardness proofs. In particular, Lewis and
Yannakakis [20] showed that the vertexdeletionproblem into anynon-trivial hereditary
class of graphs is NP-hard. This is not surprising, as many classical hard problems
can be formulated as vertex deletion problems into particular classes of graphs, for
example, Vertex Cover as vertex deletion to edgeless graphs, Feedback Vertex

Set as vertex deletion to forests, and Odd Cycle Transversal as vertex deletion
to bipartite graphs.

Graph modification problems are a popular research direction in the study of the
parameterized complexity of NP-complete problems. In general, for a problem Π , an
input of a parameterized problem consists of an instance I of Π and a parameter
k ∈ N. Then we say that Π is fixed parameter tractable (FPT) if there exists an
algorithm deciding whether I is a yes-instance of Π in time f (k) · |I |O(1), where f
is some computable function. For a graph modification problem, we often choose the
parameter k as a number of allowed modifications, so the instance of such a problem
is still a pair (G, k).

It turns out that characterizations by forbidden structures are sometimes useful to
design FPT algorithms for graphmodification problems. For example, Cai [4] proposed
an FPT algorithm for modification problems into classes of graphs characterized by a
finite family of forbidden induced subgraphs F . His algorithm identifies a forbidden
structure in the input graph (which can be done in polynomial time when F is finite)
and branches over all possible ways of modifying that structure. Since the families
of forbidden structures are infinite for graph classes introduced above, modification
algorithms for these classes have to be much more sophisticated. For several of them
modification problems have satisfactory solutions:

– chordal graphs: all four versions of the modification problem are FPT [7,23];
– interval graphs: edge completion and edge deletion are FPT [5,28], vertex deletion
is FPT [7], edge edition remains open;

– proper interval graphs: all four versions of the modification problem are FPT [6].

On the other hand, it is known that the vertex deletion to perfect graphs is W[2]-hard
[15]. It is worth mentioning that for a long time, it was unknown whether there are
classes of graphs recognizable in polynomial time forwhichmodification problems are
hard. The first such example was given by Lokshtanov [21], who proved that the vertex
deletion is W[2]-hard for graphs avoiding all wheels (i.e., cycles with an additional
vertex adjacent to all other vertices). It is unknown whether comparability graphs, co-
comparability graphs, and permutation graphs have FPTmodification algorithms. The
class of co-comparability graphs, which constitutes the superclass of interval graphs
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and an important subclass of perfect graphs, seems to be particularly interesting from
the parameterized point of view.

Our focus. Like the class of interval graphs, the class of permutation graphs
admits polynomial-time algorithms for rich family problems which are NP-complete
in general. Apart from the already mentioned classical hard problems which are
polynomial-time solvable for perfect graphs, there also exist polynomial algorithms
solving e.g., Hamiltonian Cycle, Feedback Vertex Set or Dominating Set

in the class of permutation graphs [3,9].
In light of the above considerations, since all themodificationproblems into the class

of permutation graphs—and the related classes of comparability and co-comparability
graphs—remain open, restricting our attention to the class of bipartite permutation
graphs appears to be a natural research direction. Bipartite permutation graphs form an
interesting graph class themselves, first investigated by Spinrad, Brandstädt, and Stew-
art [25], who characterized them by means of appropriately chosen linear orderings
of its bipartition classes. One of the most interesting results concerning the bipartite
permutation graphs is by Heggernes et al. [16], who showed that the NP-complete
problem of computing the cutwidth of a graph (i.e., finding a linear order of the ver-
tices of a graph that minimizes the maximum number of edges intersected by any line
inserted between two consecutive vertices) is polynomial for bipartite permutation
graphs.

Our algorithm exploits the absence of some forbidden structures in bipartite per-
mutation graphs. Since these structures cannot, in particular, occur in permutation
graphs, we believe that besides being a complete result itself, our research is a step
towards understanding the parameterized complexity of modification problems into
permutation graphs.

Our results.We focus mainly on the modification by vertex deletion.

Theorem 1 There is an O(9k · |V (G)|9)-time algorithm for instances (G, k) of the
vertex deletion into bipartite permutation graphs problem.

We prove Theorem 1 in Sect. 4. Our algorithm is based on the characterization of
bipartite permutation graphs by forbidden subgraphs. Using the characterization, at
first, we get rid of constant-size forbidden subgraphs by branching, which is a standard
technique inmodification problems on hereditary graph classes [27,28].We call graphs
without these forbidden subgraphs almost bipartite permutation graphs.

Our main contribution is in the structural analysis of almost bipartite permutation
graphs which may contain holes (on more than ten vertices) in contrast to bipartite
permutation graphs. This approach is partially inspired by the ideas of van ’t Hof and
Villanger [27] who used similar tools in their work on proper interval vertex deletion
problem. We use the result of Spinrad, Brandstädt, and Stewart [25], who showed that
the vertices of every connected bipartite permutation graph G = (U ,W , E) can be
embedded into a strip in such a way that the vertices fromU are on the bottom edge of
the strip, the vertices fromW are on the top edge of the strip, the neighbors N (u) of u
occur consecutively on the top edge of the strip for every u ∈ U (adjacency property),
the vertices from N (u) − N (u′) occur consecutively on the top edge of the strip for
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Fig. 2 Embedding of a bipartite permutation graph (U ,W , E) into a strip satysfying the adjacency and the
enclosure properties

Fig. 3 An embedding of a connected almost bipartite permutation graph in a cylinder or a Möbius strip that
locally satisfies the adjacency and enclosure properties

every u, u′ ∈ U (enclosure property), and the analogous properties are satisfied by the
vertices in W (see Fig. 2).

Our structural result (see the discussion after Lemma 1) asserts that, depending on
the parity of the length of the shortest hole, a connected almost bipartite permutation
graph may be naturally embedded in either a cylinder, or a Möbius strip, locally
satisfying adjacency and enclosure properties (see Fig. 3).

Once we obtain such structure, we show that every minimal vertex cut that destroys
all holes lies nearby a few consecutive vertices from the shortest hole. This allows
us to check all the possibilities where we can find a minimum cut. Finally, we use a
polynomial algorithm for finding maximum flow (and thus a minimum cut).

The approach used to prove Theorem 1 can be slightly modified to obtain a 9-
approximation algorithm for the bipartite permutation vertex deletion problem. We
show the following.

Theorem 2 There exists a polynomial-time 9-approximation algorithm for vertex dele-
tion into bipartite permutation graphs problem.

2 Preliminaries

Unless stated otherwise, all graphs considered in this work are simple, i.e., undirected,
with no loops and parallel edges. Let G = (V , E) be a graph. For a subset S ⊆ V ,
the subgraph of G induced by S is the graph G[S] = (S, {uv | uv ∈ E, u, v ∈ S}).
The neighborhood of a vertex u ∈ V is the set N (u) = {v ∈ V | uv ∈ E}. Similarly,
we write N (U ) = ⋃

u∈U N (u) \U for a set U ⊆ V . Let u, v ∈ V . We say that u and
v are at distance k (in G) if k is the length of a shortest path between u and v in G.
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We denote a complete graph and a cycle on n vertices by Kn and Cn , respectively. By
hole we mean an induced cycle on at least five vertices. We say that a hole is even (or
odd) if it contains even (odd) number of vertices, respectively.

For a graph G = (V , E), a pair (V ,<) is a transitive orientation of G if < is a
transitive and irreflexive relation on V that satisfies either u < v or v < u iff uv ∈ E
for every u, v ∈ V .

A partially ordered set (shortly partial order or poset) is a pair P = (X ,≤P ) that
consists of a set X and a reflexive, transitive, and antisymmetric relation ≤P on X .
For a poset (X ,≤P ), let the strict partial order <P be a binary relation defined on X
such that x <P y if and only if x ≤P y and x �= y. Equivalently, (X ,<P ) is a strict
partial order if<P is irreflexive and transitive. Two elements x, y ∈ X are comparable
in P if x ≤P y or y ≤P x ; otherwise, x, y are incomparable in P . A linear order
L = (X ,≤L) is a partial order in which every two vertices x, y ∈ X are comparable.
A strict linear order (X ,<L) is a binary relation defined in a way that x <L y if and
only if x ≤L y and x �= y.

Let P = (X ,≤P ) be a poset.A linear order L = (X ,≤L) is called a linear extension
of P if ≤P ⊆ ≤L . Given a family of posets P = {Pi = (X ,≤Pi ) : i ∈ I }, we say
that P is the intersection of P if for every x, y ∈ X we have x ≤P y if and only if
x ≤Pi y for every i ∈ I . The dimension of a poset P is the minimal number of linear
extensions of P that intersect to P . In particular, we say that P is two-dimensional if
it is the intersection of two linear extensions of P .

A comparability graph (incomparability graph) of a poset P = (X ,≤P ) has X
as the set of its vertices and the set including every two vertices comparable (incom-
parable, respectively) in P as the set of its edges. Note the following: if (X ,≤P ) is
a poset, then (X ,<P ) is a transitive orientation of the comparability graph of P . A
graph G = (V , E) is a comparability graph (co-comparability graph) if G is a com-
parability (incomparability, respectively) graph of some poset defined on V . So, G is
a comparability graph if and only if G admits a transitive orientation. A graph G is a
permutation graph if and only ifG and the complement ofG are comparability graphs
[24] (or equivalently,G and the complement ofG admit transitive orientations). Baker,
Fishburn, and Roberts [1] proved that G is a permutation graph if and only if G is the
incomparability graph of a two-dimensional poset.

We say that two sets X andY are comparable if X andY are comparablewith respect
to ⊆-relation (that is, X ⊆ Y or Y ⊆ X holds). We use the convenient (although non-
standard) notation [m] := {0, 1, . . . ,m}, for every m ∈ N. For every i, j ∈ Z such
that i ≤ j by [i, j] we mean the set {i, i + 1, . . . , j}.

3 The Structure of (Almost) Bipartite Permutation Graphs

The characterization of bipartite permutation graphs presented below was proposed
by Spinrad, Brandstädt, and Stewart [25].

Suppose G = (U ,W , E) is a connected bipartite graph. A linear order (W ,<W )

satisfies adjacency property if for each vertex u ∈ U the set N (u) consists of ver-
tices that are consecutive in (W ,<W ). A linear order (W ,<W ) satisfies enclosure
property if for every pair of vertices u, u′ ∈ U such that N (u) is a subset of N (u′),
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Fig. 4 Forbidden structures for bipartite permutation graphs

vertices in N (u′) − N (u) occur consecutively in (W ,<W ). A strong ordering of the
vertices ofU ∪W consists of linear orders (U ,<U ) and (W ,<W ) such that for every
(u, w′), (u′, w) ∈ E , where u, u′ ∈ U , and w,w′ ∈ W , it holds that u <U u′ and
w <W w′ imply (u, w) ∈ E and (u′, w′) ∈ E . Note that, whenever (U ,<U ) and
(W ,<W ) form a strong ordering of U ∪ W , then (U ,<U ) and (W ,<W ) satisfy the
adjacency and enclosure properties.

Theorem 3 (Spinrad, Brandstädt, Stewart [25]) The following three statements are
equivalent for a connected bipartite graph G = (U ,W , E):

(a) (U ,W , E) is a bipartite permutation graph.
(b) There exists a strong ordering of U ∪ W.
(c) There exists a linear order (W ,<W ) of W satisfying adjacency and enclosure

properties.

An example of a bipartite permutation graphG = (U ,W , E)with linear orderw1 <W

w2 <W . . . <W w8 <W w9 of the vertices of W which satisfies the adjacency and
the enclosure properties is shown in Fig. 2.

Another characterization of bipartite permutation graphs can be obtained by listing
all minimal forbidden induced subgraphs for this class of graphs. Such a list can be
compiled by taking all odd cycles of length ≥ 3 (forbidden structures for bipartite
graphs) and all bipartite graphs from the list of forbidden structures for permutation
graphs obtained by Gallai [12]. The whole list is shown in Fig. 4.

3.1 Almost Bipartite Permutation Graphs

The goal of this section is to characterize graphs which do not contain small forbidden
subgraphs for the class of bipartite permutation graphs. Following terminology of
van ’t Hof and Villanger [27] we call such graphs almost bipartite permutation graphs.

Definition 1 A graph G = (V , E) is an almost bipartite permutation graph if G does
not contain T2, X2, X3, K3, Ck for k ∈ [5, 9] as induced subgraphs.

Suppose G = (V , E) is a connected almost bipartite permutation graph.

Proposition 1 Every hole in G is a dominating set.
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Proof Let C = {c0, c1, . . . , cm−1} be a hole in G. Hence, m ≥ 10. Suppose, for
contradiction, that there exists a vertex in the set V \ (C ∪ N (C)). As G is connected,
there must exist v ∈ V at distance two from C . Let w ∈ N (v) ∩ N (C) and let c j
be a neighbor of w in C . We now look at the neighborhood of w. As G contains no
triangle, wc j−1 and wc j+1 are non-edges. Moreover, as G contains no copy of T2,
vertex w is adjacent to at least one of c j−2 and c j+2, say c j−2. Thus, w is nonadjacent
to c j−3. Therefore, the set {c j−3, c j−2, c j−1, c j , c j+1, w, v} induces a copy of X2 in
G, which leads to a contradiction. ��

Let C be a shortest hole in G, m be the size of C , and c0, c1, . . . , cm−1 be the
consecutive vertices of C , m ≥ 10. In the remaining part of the paper we use the
following notation with respect to C . For any integral number i by ci we denote the
unique vertex ci mod m from the cycle C . For any two different vertices ci , c j in C , by
the set of all vertices between ci and c j from C we mean the set {ci , ci+1, . . . , ci+k},
where k is the smallest natural number such that ci+k = c j . Note that this notion is
not symmetric, i.e., the set of all vertices between c j and ci from C contains ci , c j
and all the vertices from C that are not between ci and c j .

Proposition 2 For every vertex v ∈ V either:

(1) N (v) ∩ C = {ci } for some i ∈ [m − 1], or
(2) N (v) ∩ C = {ci , ci+2} for some i ∈ [m − 1].
Proof Since C is an induced cycle, (2) clearly holds for the vertices from C , so let v

be a vertex in V \ C . As C is a dominating set, by Proposition 1, vertex v has at least
one neighbor in C . If v has exactly one neighbor in C , then (1) holds and we are done.
So assume that it has more than one neighbor. We now distinguish two cases. First,
suppose that there exist two vertices c j , c� ∈ N (v) ∩ C at distance at least three in C
such that v has no neighbor in the set of vertices between c j and cl , except c j and cl .
Then, {c j , c j+1, . . . , c�, v} induces a cycle C ′ on at least five vertices in G. As c j and
c� are at distance at least three in C , C ′ is shorter than C . In particular, C ′ contradicts
either G containing no copy of C�, for � ∈ {5, . . . , 9}, or C being a shortest hole in
G. Therefore, this case never occurs.

Hence, v has either (i) exactly two neighbors in C and those are at distance two as
there is no triangle in G, so (2) holds, or (ii) C has an even number of vertices and v is
adjacent to every second vertex of C . It remains to show that the latter never occurs.
Indeed, if it does, then without loss of generality c0 ∈ N (v). But observe that since
C has at least ten vertices, the set {c0, c1, c2, c3, c4, c6, v} induces a copy of X3. This
concludes the proof. ��
Given Proposition 2, for every i ∈ [m − 1] we can set Ai = {

v ∈ V :
N (v) ∩ C = {ci−1, ci+1}

}
and Bi = {

v ∈ V : N (v) ∩ C = {ci }
}
. Note that sets

A0, B0, . . . , Am−1, Bm−1 form a partition of V . Moreover, for every i ∈ [m − 1] we
have ci ∈ Ai . Following our notation, for any integer i by Ai and Bi we denote the
sets Ai mod m and Bi mod m , respectively. Furthermore, for every i ≤ j we set:

AG[i, j] =
{
Ai ∪ Bi+1 ∪ Ai+2 ∪ Bi+3 ∪ . . . ∪ A j−1 ∪ Bj if j − i is odd,
Ai ∪ Bi+1 ∪ Ai+2 ∪ Bi+3 ∪ . . . ∪ Bj−1 ∪ A j if j − i is even,
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Fig. 5 A possible neighborhood of u in Ai and w in Bi

BG[i, j] =
{
Bi ∪ Ai+1 ∪ Bi+2 ∪ Ai+3 ∪ . . . ∪ Bj−1 ∪ A j if j − i is odd,
Bi ∪ Ai+1 ∪ Bi+2 ∪ Ai+3 ∪ . . . ∪ A j−1 ∪ Bj if j − i is even,

and VG[i, j] = AG [i, j] ∪ BG[i, j].

We write just A[i, j], B[i, j], and V [i, j], respectively, instead of AG[i, j],
BG[i, j], and VG [i, j], when there is no confusion.

We now characterize the neighborhoods of the vertices in sets Ai and Bi , see also
Fig. 5.

Proposition 3 Let i ∈ [m − 1]. Then:
(1) Ai and Bi are independent sets.
(2) For every u ∈ Ai and every w ∈ Bi we have uw ∈ E.
(3) For every u ∈ Ai we have Bi ⊆ N (u) ⊆ B[i − 2, i + 2].
(4) For every w ∈ Bi we have Ai ⊆ N (w) ⊆ A[i − 2, i + 2].
Proof Statement (1) follows trivially from the fact that G contains no triangle. To
show statement (2), assume for a contrary that uw /∈ E for some u ∈ Ai and some
w ∈ Bi . Since u ∈ Ai , we have N (u) ∩ C = {ci−1, ci+1}, and since w ∈ Bi we have
N (w) ∩ C = {ci }. Hence, the set {ci−2, u, ci , ci+2, ci−1, w, ci+1} induces an X2 in
G, which cannot be the case.

To prove statements (3) and (4), consider a graph G induced by the set U ∪ W ,
where

U = A[i − 2, i + 2] and W = B[i − 2, i + 2].

Since any edge with two endpoints in U (or two endpoints in W ) could be extended
by some vertices from {ci−2, ci−1, ci , ci+1, ci+2} to an odd cycle of size≤ 7 in G, the
graph G[U ∪ W ] is bipartite with bipartition classes U and W .

To see that (3) holds, first note that Bi ⊆ N (u) by statement (2). Therefore, suppose
that u has a neighbor v in the set V \ (U ∪ W ).

Consider the case when v ∈ A j for some j /∈ [i − 2, i + 2]. Since N (u) ∩ C =
{ci−1, ci+1} and N (v) ∩ C = {c j−1, c j+1}, u, v and the vertices between c j+1 and
ci−1 in C as well as u, v and the vertices between ci+1 and c j−1 in C induce cycles in
G of size ≤ m − 2. Since |C | ≥ 10, at least one from these cycles has size ≥ 6, and
as such it cannot occur in G.
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So suppose v ∈ Bj for some j /∈ [i − 2, i + 2]. Since N (v) ∩ C = {c j }, u, v and
the vertices between ci+1 and c j in C as well as u, v and the vertices between c j and
ci−1 in C induce holes in G of size ≤ m − 2, and as such they cannot occur in G. So,
N (u) ⊆ W , which completes the proof of statement (3).

Statement (4) is proved by similar arguments. ��
Proposition 3 asserts that all the neighbors of the vertices from Ai and from Bi

are contained in the set B[i − 2, i + 2] and A[i − 2, i + 2], respectively. The next
proposition describes the relations that hold between the neighborhoods of the vertices
from B[i − 2, i + 2] restricted to the set Ai and between the neighborhoods of the
vertices from A[i − 2, i + 2] restricted to the set Bi .
Proposition 4 Let i ∈ [m − 1]. For (i ± 2, i ± 1) ∈ {(i − 2, i − 1), (i + 2, i + 1)}, the
following hold:

(1) For everyw,w′ ∈ Bi±2∪Ai±1 the sets N (w)∩Ai and N (w′)∩Ai are comparable.
Moreover, if w ∈ Bi±2 and w′ ∈ Ai±1, then N (w) ∩ Ai ⊆ N (w′) ∩ Ai .

(2) For every u, u′ ∈ Ai±2 ∪ Bi±1 the sets N (u)∩ Bi and N (u′)∩ Bi are comparable.
Moreover, if u ∈ Ai±2 and u′ ∈ Bi±1, then N (u) ∩ Bi ⊆ N (u′) ∩ Bi .

Proof To prove (1), we consider the case (i ± 2, i ± 1) = (i − 2, i − 1), as the other
one follows by symmetry. Suppose that w,w′ ∈ Bi−2 ∪ Ai−1 are such that neither
N (w) ∩ Ai ⊆ N (w′) ∩ Ai nor N (w′) ∩ Ai ⊆ N (w) ∩ Ai holds. It means that there
are u, u′ ∈ Ai such that wu ∈ E , w′u′ ∈ E , wu′ /∈ E , and w′u /∈ E . Since w,w′ ∈
Bi−2 ∪ Ai−1, we have ci−2w, ci−2w

′ ∈ E and ci−4w, ci−3w, ci−4w
′, ci−3w

′ /∈ E .
Furthermore, ww′ /∈ E and uu′ /∈ E as G contains no triangle. Consequently, the set
{ci−3, w,w′, ci−4, ci−2, u, u′} induces a copy of T2 in G, which cannot be the case.
Moreover, if w ∈ Bi−2, w′ ∈ Ai−1, then since ci ∈ (N (w′) ∩ Ai ) \ (N (w) ∩ Ai ), the
latter statement holds.

To show (2), we again only consider the case (i ± 2, i ± 1) = (i − 2, i − 1).
Suppose that u, u′ ∈ Ai−2 ∪ Bi−1 are such that neither N (u′) ∩ Bi ⊆ N (u) ∩ Bi nor
N (u)∩Bi ⊆ N (u′)∩Bi holds. It means that there arew,w′ ∈ Bi such that uw, u′w′ ∈
E and u′w, uw′ /∈ E . Since u, u′ ∈ Ai−2 ∪ Bi−1, we have uci−1, u′ci−1 ∈ E and
uci+1, u′ci+1 /∈ E . Furthermore, uu′ /∈ E and ww′ /∈ E as G contains no triangle.
Hence, the set {ci−1, w,w′, ci+1, u, ci , u′} induces a copy of X3 in G, which cannot
be the case.

To see the second part of the statement, assume that N (u) ∩ Bi � N (u′) ∩ Bi for
some u ∈ Ai−2, u′ ∈ Bi−1. That is, there is w ∈ Bi such that uw ∈ E and u′w /∈ E .
In particular, it means that u �= ci−2. Note that uci−1, u′ci−1 ∈ E . Consequently, the
set {ci−3, ci−2, ci−1, ci , u, u′, w} induces a copy of X3 in G, which is a contradiction.

��
Proposition 4 allows us to order vertices of Ai based on two properties. We now

define relation <Ai which combines them and we show that <Ai is a partial order (see
Fig. 6 for an illustration). We define for every u, u′ ∈ Ai :

u <Ai u
′ iff there is w ∈ Bi−2 ∪ Ai−1 such that u ∈ N (w) and u′ /∈ N (w), or

there is w ∈ Ai+1 ∪ Bi+2 such that u′ ∈ N (w) and u /∈ N (w),
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Fig. 6 The neighborhoods of the vertices from Bi−2 ∪ Ai−1 ∪ Ai+1 ∪ Bi+2 restricted to Ai . We have
u1 <Ai {u2, u3} <Ai u4 <Ai u5 <Ai u6 <Ai u7

Similarly, we define a relation <Bi for every w,w′ ∈ Bi :

w <Bi w′ iff there is u ∈ Ai−2 ∪ Bi−1 such that w ∈ N (u) and w′ /∈ N (u), or
there is u ∈ Bi+1 ∪ Ai+2 such that w′ ∈ N (u) and w /∈ N (u).

Proposition 5 The following statements hold for every i ∈ [m − 1]:
(1) (Ai ,<Ai ) is a strict partial order. Moreover, u, u′ ∈ Ai are incomparable in

(Ai ,<Ai ) if and only if N (u) = N (u′).
(2) (Bi ,<Bi ) is a strict partial order. Moreover, w,w′ ∈ Bi are incomparable in

(Bi ,<Bi ) if and only if N (w) = N (w′).

Proof Let i ∈ [m − 1] be fixed. To prove that (Ai ,<Ai ) is a strict partial order,
we need to show that <Ai is irreflexive and transitive. The irreflexivity follows from
the definition, in aim to show transitivity, we first prove that <Ai is antisymmetric.
Suppose for a contrary that there are u, u′ ∈ Ai such that u <Ai u′, and u′ <Ai u.
Suppose u <Ai u

′ is witnessed by a vertex w ∈ Bi−2 ∪ Ai−1 such that u ∈ N (w) and
u′ /∈ N (w); the other case w ∈ Ai+1 ∪ Bi+2 is analogous. By Proposition 4.(1), there
is no w′ ∈ Bi−2 ∪ Ai−1 such that u′ ∈ N (w′) and u /∈ N (w′). Hence, since u′ <Ai u,
theremust be a vertexw′ ∈ Ai+1∪Bi+2 such that u ∈ N (w′) and u′ /∈ N (w′).We have
uci+1, u′ci+1 ∈ E and uci+2, u′ci+2, uci+3, u′ci+3 /∈ E as {u, u′} ⊆ Ai . We have
also wci+1, wci+2, wci+3, w

′ci+1, w
′ci+3 /∈ E and w′ci+2 ∈ E as w ∈ Bi−2 ∪ Ai−1

and w′ ∈ Ai+1 ∪ Bi+2. Moreover, uu′, ww′ /∈ E , by Proposition 3. Consequently,
the set {w,w′, ci+1, ci+3, u, u′, ci+2} induces a copy of X2 in G, which cannot be the
case.

To show transitivity, suppose for a contrary that there are vertices u, u′, u′′ ∈ Ai

such that u <Ai u
′ and u′ <Ai u

′′, but u <Ai u
′′ does not hold. Suppose u <Ai u

′ is
witnessed by a vertex w ∈ Bi−2 ∪ Ai−1 such that u ∈ N (w) and u′ /∈ N (w); the other
case w ∈ Ai+1 ∪ Bi+2 is symmetric. We have u′′ ∈ N (w) as otherwise u <Ai u

′′, by
definition. Supposeu′ <Ai u

′′ iswitnessed by a vertexw′ ∈ Bi−2∪Ai−1∪Ai+1∪Bi+2.
Note that if w′ ∈ Bi−2 ∪ Ai−1, then u′′ /∈ N (w′) and u′ ∈ N (w′), which enforces
also u ∈ N (w′) as u <Ai u′ and we already proved that <Ai is antisymmetric.
Thus, u ∈ N (w′) and u′′ /∈ N (w′), which shows u <Ai u′′. Hence, we must have
w′ ∈ Ai+1 ∪ Bi+2, and so u′ /∈ N (w′) and u′′ ∈ N (w′). Moreover, u ∈ N (w′) as
otherwise u <Ai u

′′. As {u′, u′′} ⊆ Ai , w ∈ Bi−2 ∪ Ai−1, and w′ ∈ Ai+1 ∪ Bi+2, we
have u′u′′, ww′ /∈ E , by Proposition 3. Consequently, {w,w′, ci+1, ci+3, u′, u′′, ci+2}
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induces a copy of X2 in G, which is not possible. We conclude that (Ai ,<Ai ) is a
strict partial order.

By definition, if N (u) = N (u′), then u and u′ are incomparable in (Ai ,<Ai ).
Hence, for the second statement of (1), it is enough to show that N (u) �= N (u′)
implies that u and u′ are comparable in (Ai ,<Ai ). Letw be a vertex such thatwu ∈ E
andwu′ /∈ E . By Proposition 3.(2) and (3),w ∈ Bi−2∪ Ai−1∪ Ai+1∪Bi+2. However,
ifw ∈ Bi−2∪Ai−1 then u <Ai u

′ and ifw ∈ Ai+1∪Bi+2 then u′ <Ai u, by definition.
Hence, u and u′ are comparable in <Ai .

The proof of (2) is similar. For antisymmetry, suppose that we have w,w′ ∈ Bi
such that w <Bi w′ and w′ <Bi w. Let w <Bi w′ and w′ <Bi w be witnessed
by u and u′ from Ai−2 ∪ Bi−1 ∪ Bi+1 ∪ Ai+2, respectively. Analogously to (1),
by Proposition 4.(2), we can assume that u ∈ Ai−2 ∪ Bi−1 and u′ ∈ Bi+1 ∪ Ai+2
and uw, u′w ∈ E , uw′, u′w′ /∈ E . Observe that the set {ci−1, w,w′, ci+1, u, ci , u′}
induces a copy of X3 in G, a contradiction.

For transitivity of<Bi , suppose that for somew,w′, andw′′ ∈ Bi wehavew <Bi w′
and w′ <Bi w′′, but w <Bi w′′ does not hold. By symmetry of the proof of (1), we
reach the case u ∈ Ai−2 ∪ Bi−1 and u′ ∈ Bi+1 ∪ Ai+2, uw, uw′′, u′w, u′w′′ ∈ E and
uw′, u′w′ /∈ E . Then, one can easily check that the set {w′, w′′, ci+1, u, ci , u′, ci+2}
induces a copy of X2 in G, a contradiction.

Now, assume that N (w) �= N (w′). Without loss of generality assume that there
exists u ∈ Ai−2 ∪ Bi−1 ∪ Bi+1 ∪ Ai+2 such that u ∈ N (w) \ N (w′). Analogously as
before, observe that if u ∈ Ai−2 ∪ Bi−1 then w <Bi w′ and if u ∈ Bi+1 ∪ Ai+2 then
w′ <Bi w. Therefore, w and w′ are comparable, which finishes the proof. ��

Finally, for every i ∈ [m−1]weorder arbitrarily the elements inside every antichain
of (Ai ,<Ai ) and of (Bi ,<Bi ), obtaining strict linear orders (Ai ,<Ai ) and (Bi ,<Bi ).
We introduce a binary relation ≺ defined on the set V , such that v ≺ v′ for v, v′ ∈ V
if one of the following conditions holds for some i ∈ [m − 1]:
– v, v′ ∈ Ai , v <Ai v′, and v, v′ are consecutive in (Ai ,<Ai ),
– v, v′ ∈ Bi , v <Bi v′, and v, v′ are consecutive in (Bi ,<Bi ),
– v is the maximum of (Ai ,<Ai ) and v′ is the minimum of (Bi+1,<Bi+1),
– v is the maximum of (Bi ,<Bi ) and v′ is the minimum of (Ai+1,<Ai+1).

Informally, to get an embedding of G into a cylinder (the shortest hole is even) or into
a Möbius strip (the shortest hole is odd) which locally satisfies the adjacency and the
enclosure properties, we place the vertices v, v′ satisfying v ≺ v′ next to each other,
v before v′ assuming that the border of the cylinder or the Möbius strip are oriented
as shown in Fig. 3. In what follows we extend ≺ relation as follows:

– For every V ′
� V by <V ′ we denote the transitive closure of ≺ restricted to V ′,

– For v, v′ ∈ V we set v <cl v′ if v, v′ ∈ A[i − 2, i + 2] and v <A[i−2,i+2] v′
for some i ∈ [m − 1] or v, v′ ∈ B[i − 2, i + 2] and v <B[i−2,i+2] v′ for some
i ∈ [m − 1].
Finally, the following lemma characterizes the global structure of an almost bipartite

permutation graph.
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Lemma 1 Let i, j be such that i ≤ j , | j − i | = m − 3. Let U = A[i, j] and
W = B[i, j]. Then G[U ∪ W ] is a bipartite permutation graph with bipartition
classes U and W.

Moreover, (U ,<U ) and (W ,<W ) are strict linear orders that satisfy the adjacency
and enclosure properties in G[U ∪ W ].
Proof Proposition 3 asserts there is no edge between a vertex in V [ j − 1, j] and a
vertex in V [i, i + 1]. In particular, G[U ∪ W ] is a bipartite graph and (U ,<U ) and
(W ,<W ) are strict linear orders. Given Theorem 3.(c), to prove the lemma we need
to show that (W ,<W ) satisfies the adjacency and enclosure properties in G[U ∪ W ].

To prove the adjacency property, consider u ∈ Ak ⊆ U for some suitable k. Recall
that by Proposition 3.(3), Bk ⊆ N (u) ⊆ B[k − 2, k + 2]. To show that N (u) consists
of consecutive vertices in W it suffices to note that:

– if w ∈ Ak+1, w′ ∈ Bk+2 and uw′ ∈ E then uw ∈ E , by Proposition 4,
– if w,w′ ∈ Ak+1 (resp. w,w′ ∈ Bk+2) are such that w <Ak+1 w′ (resp. w <Bk+2

w′) and uw′ ∈ E , then uw ∈ E , by Proposition 5,

and that analogous statements hold by symmetry for the part of N (u) contained in
Ak−1 ∪ Bk−2. If u ∈ Bk ⊆ U , the case analysis is similar (one needs to swap letters
A and B in the reasoning above). Therefore, the adjacency property is proved.

To show that (W ,<W ) satisfies the enclosure property assume for a contradiction
that there are w,w′, w′′ ∈ W and u, u′ ∈ U such that N (u′) ⊆ N (u), w <W w′ <W

w′′ and uw, uw′, uw′′ ∈ E , u′w′ ∈ E , and u′w, u′w′′ /∈ E .

Claim There is k ∈ [i, j] such that either u, u′ ∈ Ak , or u, u′ ∈ Bk .

Proof of Claim If u ∈ Bk , then since N (u′)∩C ⊆ N (u)∩C = {ck}, we have u′ ∈ Bk ,
so the claim holds. Therefore, assume that u ∈ Ak , and suppose that u′ /∈ Ak . Then
N (u′) ∩ C ⊆ N (u) ∩ C = {ck−1, ck+1}. Assuming u <U u′ (the other case is
symmetric), we have that u′ ∈ Bk+1. Due to Proposition 3 and w′ <W w′′ we have
w′, w′′ ∈ A[k−1, k+2]. Moreover, as we already proved that N (u′) is consecutive in
(W ,<W ) (adjacency property), and ck+1 ∈ N (u′), we have ck+1 <W w′′. Therefore
w′′ ∈ Ak+1 ∪ Bk+2. Note that:

– if w′′ ∈ Bk+2, then, since uw′′ ∈ E , we have that w′′ ∈ N (u) ∩ Bk+2. However,
by Proposition 4.(2), we have N (u) ∩ Bk+2 ⊆ N (u′) ∩ Bk+2, so it implies that
u′w′′ ∈ E , a contradiction,

– ifw′′ ∈ Ak+1, then by Proposition 3.(2) wewould have u′w′′ ∈ E , a contradiction.

This concludes the proof of claim. ��
Suppose u, u′ ∈ Ak . Since u′w, u′w′′ /∈ E and u′ck−1, u′ck+1 ∈ E , we have by

adjacency property of (W ,<W ) that w <W ck−1 <W ck+1 <W w′′. Therefore, we
must have w ∈ Bk−2 ∪ Ak−1 and w′′ ∈ Ak+1 ∪ Bk+2. Observe that w′′ witnesses that
u′ <Ak u by definition, however, w witnesses the opposite, that is u <Ak u

′. We have
a contradiction by Proposition 5.

Suppose u, u′ ∈ Bk . An analysis, which is analogous to the one in the previous
case (again, it is enough to swap letters A and B in that reasoning above), gives us
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that we must have w ∈ Ak−2 ∪ Bk−1 and w′′ ∈ Bk+1 ∪ Ak+2. Again, we obtain a
contradiction by the definition of <Bk and Proposition 5. ��

Lemma 1 provides an interesting view on classification of almost bipartite per-
mutation graphs. Specifically, if m is even, then the graph may be drawn on
a cylinder, whose boundary consists of two closed curves, one of which tra-
verses the vertices of A0, B1, . . . Am−2, Bm−1, and the second one—the vertices of
B0, A1, . . . , Bm−2, Am−1. If in turn m is odd, then the graph can be represented on
a Möbius strip, whose boundary traverses the vertices of A0, B1, . . . , Bm−2, Am−1
and then B0, A1, . . . Am−2, Bm−1. In both cases we draw the vertices of Ai and of Bi
on the opposite side of the strip according to the orders given by <Ai and <Bi , for
i ∈ [m − 1] (recall Fig. 3).

The following definitions are taken from [27]. A hole cut of G is a vertex set
X ⊆ V such that G − X is a bipartite permutation graph. Lemma 1 asserts that for
every i ∈ [m − 1] the set V [i, i + 1] is a hole cut in G. A hole cut X of G is minimum
if G does not have a hole cut whose size is strictly smaller than the size of X . A hole
cut X of G is minimal if any proper subset of X is not a hole cut in G.

The next proposition describes the structure of every hole in G.

Proposition 6 SupposeC ′ is a hole of size t in G for some t ≥ m. Then, the consecutive
vertices of C ′ can be labeled by c′

0, c
′
1, . . . , c

′
t−1 so as the following conditions hold

(the indices are taken modulo k):

– c′
i c

′
i+1 ∈ E for every i ∈ [t − 1],

– c′
i <cl c′

i+2 for every i ∈ [t − 1],
– {c′′ ∈ C ′ : c′

i <cl c′′ <cl c′
i+2} = ∅ for every i ∈ [t − 1].

Proof Let c′
0, c

′
1, c

′
2, . . . , c

′
t−1 be consecutive vertices of C

′ denoted in such a way that
c′
0 <cl c′

2. We can assume it, since c′
0, c

′
2 ∈ N (c′

1), thus, by Proposition 3.(3) and (4),
both c′

0, c
′
2 belong to A[� − 2, � + 2] or both belong to B[� − 2, � + 2] for some

� ∈ [m − 1].
Now, we show that if there exists j ∈ [t − 1] such that c′

j <cl c′
j+2, then

c′
j+1 <cl c′

j+3. Suppose, for contradiction that c′
j <cl c′

j+2 and c′
j+1 ≮cl c′

j+3.
Let i ∈ [m − 1] be such that c′

j+2 ∈ (Ai ∪ Bi ). Similarly, as c′
j+1, c

′
j+3 ∈ N (c′

j+2),
either c′

j+1, c
′
j+3 ∈ B[i − 2, i + 2] if c′

j+2 ∈ Ai or c′
j+1, c

′
j+3 ∈ A[i − 2, i + 2] if

c′
j+2 ∈ Bi . In both casesLemma1 implies that<cl restricted toV [i−4, i+2] is a strong

ordering ofG[V [i−4, i+2]]. Moreover, c′
j+1, c

′
j+3 are comparable in<cl , by Propo-

sition 3.(3) or (4), and the definition of <cl . Since we assumed that c′
j+1 ≮cl c′

j+3,
we must have c′

j+3 <cl c′
j+1, and from Theorem 3.(b) we get that c′

j c
′
j+3 ∈ E , so C ′

has a chord—contradiction. Therefore c′
j <cl c′

j+2 implies c′
j+1 <cl c′

j+3 for every
integer j . Applying the above observation repeatedly for j = 0, 1, 2, . . ., we get that
c′
0 <cl c′

2 <cl c′
4 <cl . . . and c′

1 <cl c′
3 <cl c′

5 <cl . . .

For the last property, suppose for the sake of contradiction that there exists j /∈
{i, i + 2} such that c′

i <cl c′
j <cl c′

i+2. Then, by Lemma 1, c′
j c

′
i+1 ∈ E due to the

adjacency property. But then the edge c′
j c

′
i+1 is a chord in C ′. This completes the

proof. ��

123



Algorithmica (2022) 84:2271–2291 2285

Fig. 7 Illustration of the proof: the cycle C ′ is marked with a dashed line. The set X ′ is shaded

The structure of holes described above asserts that for every i ∈ [m − 1] the sets
A[i − 2, i + 2] and B[i − 2, i + 2] are hole cuts. We use this observation to prove the
following statement about minimal hole cuts in G.

Proposition 7 Everyminimal hole cut X in G is fully contained in the set V [i−2, i+2]
for some i ∈ [m − 1].
Proof Let X be a minimal hole cut. Since X is minimal, we can choose elements
z1, x1, x2, z2 in V such that the following conditions hold:

– we have z1 ≺ x1 ≤cl x2 ≺ z2, the set X ′ = {x : x1 ≤cl x ≤cl x2} is non-empty
and is contained in X , and the elements z1, z2 are not in X .

Note that either {z1, z2} ∪ X ′ ⊆ B[i − 2, i + 2] or {z1, z2} ∪ X ′ ⊆ A[i − 2, i + 2] for
some i ∈ [m−1]. Otherwise, we have B[ j, j +3] ⊆ X ′ or A[ j, j +3] ⊆ X ′ for some
j ∈ [m − 2]. However, Proposition 6 and Proposition 3.(3) and (4) imply that the sets
A[ j, j + 3] and B[ j, j + 3] are hole cuts for every j ∈ [m − 1]. Otherwise, the set
A[ j, j + 3] (B[ j, j + 3]) is contained in the neighbourhood of some vertex of a hole
avoiding A[ j, j + 3] (B[ j, j + 3], respectively) in G and the neighborhood of this
vertex intersects also Bj−1 and A j+4 (A j−1 and Bj+4, respectively), which cannot be
the case due to Proposition 3.(3) and (4). So, we have either B[ j, j + 3] = X ′ = X or
A[ j, j+3] = X ′ = X as X is a minimal hole cut. But then, we have X ⊆ V [ j, j+3],
which completes the proof of our claim.

Therefore, for the rest of the proof we assume {z1, z2} ∪ X ′ ⊆ B[i − 2, i + 2]; the
other case is proved similarly. Moreover, we may assume that i is picked such that:

– z1 ∈ B[i − 2, i], z2 ∈ B[i, i + 2], and X ′ ⊂ B[i − 2, i + 2].
See Fig. 7 for an illustration.

Suppose Y ′ is the set consisting of all the neighbors of both z1 and z2; that is,
Y ′ = N (z1) ∩ N (z2). Clearly, we have Y ′ ⊂ A[i − 2, i + 2]. To complete the proof
of the proposition we show that:

– every element of Y ′ is a member of X ,
– X ′ ∪ Y ′ is a hole cut in G.

Then, since X ′ ⊆ X , we have X ′ ∪ Y ′ = X by minimality of X and consequently
X ⊂ V [i − 2, i + 2]. So, it remains to prove the claims about the set Y ′.

Suppose we have y ∈ Y ′ such that y /∈ X . We fix some x ∈ X ′, clearly, since X is
a minimal hole cut, there is a hole C ′ in G − (X \ {x}). Note that C ′ must contain x .
Suppose c′

0, . . . , c
′
�−1 for some � ≥ 9 are consecutive vertices in C ′ chosen such
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that c′
j <cl c′

j+2 for every j ∈ [� − 1] (indices are taken modulo �). Now we pick
p, q ∈ [� − 1] such that c′

p <cl z1 ≤cl c′
p+2 and c′

q ≤cl z2 <cl c′
q+2. Since x ∈ C ′,

we have c′
p+2 ≤cl x and x ≤cl c′

q . Note that c
′
p+1 is adjacent to z1 and c

′
q+1 is adjacent

to z2 due to the adjacency property. Next we replace in C ′ all the vertices between
c′
p+2 and c′

q (this set includes x) with the vertices z1, y, z2 and we obtain a cycle C ′′
containing no elements from X . Clearly, we can easily find a hole among the elements
from C ′′ that avoids all the elements from X . This yields a contradiction as X is a hole
cut.

To prove the second claim, suppose there is a hole C ′ in G − (X ′ ∪ Y ′). By Propo-
sition 6 there are c′

1, c
′
2, c

′
3 ∈ C ′ such that c′

1 <cl X ′ <cl c′
3 and c′

1, c
′
3 ∈ N (c′

2).
However, since c′

1 ≤cl z1 <cl z2 ≤cl c′
3 and c

′
1, c

′
3 ∈ N (c′

2), we have z1 ∈ N (c′
2) and

z2 ∈ N (c′
2). So, we have c

′
2 ∈ Y ′, which is a contradiction. ��

4 Proof of Theorem 1

The aim of this section is to provide a complete proof of Theorem 1 using structural
results from the previous section. Let us start by showing that the Bipartite Permu-

tation Vertex Deletion problem can be decided in polynomial time on almost
bipartite permutation graphs.

Lemma 2 Let (G, k) be an instance of Bipartite Permutation Vertex Dele-

tion where G is an n-vertex almost bipartite permutation graph. Then Bipartite

Permutation Vertex Deletion can be decided in time O(n6).

Proof If G is a bipartite permutation graph, (G, k) is a yes-instance, thus, we are
done in this case. If G is not connected, we can consider each connected component
independently and, at the end, we compare k with the total number of deleted vertices
over all components. Let G ′ be a connected r -vertex component of G such that G ′ is
not a bipartite permutation graph (otherwise, clearly, no vertex needs to be deleted).
Let C = {c0, . . . , cm−1} be a shortest hole in G ′ (it exists as G ′ is not a bipartite
permutation graph). It can be found in time O(r6) as follows. We iterate over all
possible four-element subsets S = {v1, v2, v3, v4} of V (G ′). For these S for which
G ′[S] is an induced P4, with consecutive vertices v1, v2, v3, v4, we construct a graph
G̃ ′ by removing the vertices from (N (v2)∪ N (v3)) \ {v1, v4} (note that v2 and v3 also
get removed). Then we find a shortest v1-v4-path in G̃ ′ in time O(r2).

By Proposition 7, every minimal hole cut X in G ′ is contained in the set V ′ =
VG ′ [i − 2, i + 2] for some i ∈ [m − 1]. Therefore, we may check all the possibilities
where a minimal cut is contained. For every i , we run an algorithm for finding a
maximum flow in the following digraph Hi .

Digraph Hi has the vertex set V ′ × {in, out} ∪ {s, t} and arc set consisting of:

– all arcs of the form (u, out)(v, in), where uv is an edge of G ′[V ′],
– s(v, in) if there exists u ∈ VG ′ [i − 4, i − 3] such that uv is an edge of G ′,
– (u, out)t if there exists v ∈ VG ′ [i + 3, i + 4] such that uv is an edge of G ′,
– (u, in)(u, out) for all u ∈ V ′.
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Set capacities of arcs of the form (u, in)(u, out) to 1 and capacities of all the remain-
ing arcs to ∞ (practically |VG ′ |). It is readily seen that minimum (s, t)-cut in the
defined network Hi corresponds to minimum hole cut in G ′[V ′] (arc of unit capacity
(u, in)(u, out) naturally corresponds to the vertex u of G ′).

Therefore it remains to apply classicalmax-flowalgorithm to each Hi for i ∈ [m−1]
and remember the smallest size kG ′ of minimal (s, t)-cuts. This can be performed in
time O(m · (|V ′| + 2) · (|EG ′[V ′]| + 2|V ′|)2) = O(r6) [11]. Finally, (G, k) is a
yes-instance if and only if the sum of remembered sizes kG ′ over the all considered
connected components G ′ is at most k. Clearly, the total running time is O(n6). ��

We now propose the algorithm. Given an n-vertex graph G = (V , E) and number
k, we want to answer the Bipartite Permutation Vertex Deletion problem.
We say that (G, k) is the initial instance. We split our algorithm into two parts. The
first part consists of a branching algorithm for deletion to almost bipartite permutation
graphs. The output of the first part is a set of instances (G ′, k′) where G ′ is an almost
bipartite permutation graph and 0 ≤ k′ ≤ k (or no-answer is no such instance exists)
such that the initial instance (G, k) is a yes-instance if and only if at least one of
these instances is a yes-instance. In the second part, the algorithm runs an O(n6)-
time algorithm for Bipartite Permutation Vertex Deletion for each instance
(G ′, k′) output by the first phase.

Let us start with the first part. We say that X ⊆ V is a forbidden set if G[X ] is
isomorphic to one of the graphs: K3, T2, X2, X3,C5,C6,C7,C8,C9. We define the
following rule.

Rule : Given an instance (G, k), k ≥ 1, and a minimal forbidden set X , branch into |X |
instances, (G − v, k − 1) for each v ∈ X .

Starting with the initial instance, the algorithm applies the rule exhaustively. In other
words, the algorithm forms a branching tree with leaves corresponding to instances
(G ′, k′) where k′ = 0 or G ′ is an almost bipartite permutation graph. Clearly, as at
least one vertex from each forbidden set must be removed from G, the initial instance
is a yes-instance if and only if at least one of the leaves is a yes-instance.

The algorithm continues to the second part only with such leaves (G ′, k′) that G ′
is an almost bipartite permutation graph (as otherwise, the leaf is no-instance). It runs
the algorithm described in Lemma 2 to find if G ′ can be transformed into a bipartite
permutation graph by using at most k′ vertex deletions. It either finds a yes-instance
or concludes after checking all the instances that there is no solution; that is, the initial
instance is a no-instance.

We note that such a branching into a bounded number of smaller instances is a
standard technique, see e.g., [27] for more details.

We now analyze the running time of the whole algorithm. In the first part, observe
that the branching tree has depth at most k and has at most 9k leaves, as k decreases
by one whenever the algorithm branches and each of the listed forbidden subgraphs
has at most nine vertices. Therefore the total number of nodes in the branching tree
is O(9k). Moreover, in each node (G ′′, k′′) the algorithm works in time O(n9) as it
checks if G ′′ contains a forbidden set of size at most 9. So, the first part works in time
O(9k · n9). In the second part, the algorithm does a work O(n6) in each of at most
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9k leaves, by Lemma 2. Thus, the second part works in timeO(9k · n6). We conclude
that the total running time of our algorithm for Bipartite Permutation Vertex

Deletion is O(9k · n9).

5 Proof of Theorem 2

In this section, we provide a proof of Theorem 2. The idea of the algorithm is very
similar to the FPT algorithm described in Sect. 4.

Let G = (V , E) be a graph and let Y ⊆ V be a subset of vertices of G such
that G − Y is a bipartite permutation graph. We want to construct a set Z ⊆ V in
polynomial time such that G − Z is a bipartite permutation graph and |Z | ≤ 9|Y |. We
construct Z as follows. We start with Z = ∅. Then, as long as G − Z contains a set X
isomorphic to one of K3, T2, X2, X3,C5,C6,C7,C8,C9 we add all vertices of X to
Z . Observe that Y ∩ X �= ∅ and |X | ≤ 9.

After this step G − Z is an almost bipartite permutation graph. Note that |Z | ≤
9|Z ∩ Y |. We find a shortest hole C = {c0, . . . , cm−1} in G − Z and find a minimum
hole cut X as described in Sect. 4. Since (Y − Z) is a hole cut in G − Z we have
|X | ≤ |Y − Z |. We add X to Z . Observe that G − Z is a bipartite permutation graph.

Since K3, T2, X2, X3,C5,C6,C7,C8,C9 have at most 9 vertices, we have that
|Z | ≤ 9|Y |. This implies that the above algorithm is a 9-approximation algorithm. It
runs in polynomial time because finding small forbidden subgraphs can be done in
polynomial time and finding a minimum hole cut in an almost bipartite permutation
graph can be done in polynomial time.

6 Conclusion

In this paper we investigate for the first time the modification problems in graph
classes related to partial orders. Our main result says that the bipartite permutation
vertex deletion problem is fixed parameter tractable. We leave open the following two
questions that inspired our research.

Problem 1 What is the parameterized status of the vertex deletion problems to the
class of permutation graphs and to the class of co-comparability graphs?

We recall that, due to the result of Lewis and Yannakakis [20], both of these problems
areNP-complete. Problem 1 appears to be difficult; in particular, in contrast to bipartite
permutation graphs, in which sufficiently large forbidden structures are just cycles,
arbitrarily large forbidden structures for permutation graphs and co-comparability
graphs may belong to several different infinite families of graphs. One of the most
important results of our work is the description of the structure of almost bipartite
permutation graphs, which are defined as graphs which do not induce small graphs
from the list of forbidden structures for bipartite permutation graphs. In a similar
fashion we can define the class of almost permutation and almost co-comparability
graphs. Although the families of forbidden structures for permutation graphs and co-
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comparability graphs are quite complex, the next two questions seem very natural in
order to solve Problem 1.

Problem 2 What is the structure of almost permutation and almost co-comparability
graphs?

We are aware that the two problems mentioned above can be quite difficult. Therefore,
it is worth considering intermediate problems that may be easier to attack. One of the
proposed simplifications relies on the transition from the world of graphs to the world
of posets. The following vertex deletion into two-dimensional posets problem seems
very natural in the context of our research: we are given in the input a poset P and
a number k and we ask whether we can delete at most k points from P so that the
remaining points induce a two-dimensional poset in P .

Problem 3 What is the parameterized status of the vertex deletion into two-
dimensional poset problem?

Since permutation graphs are co-comparability graphs of two-dimensional posets and
since permutation graphs are both comparability and co-comparability graphs, the
vertex deletion into two-dimensional poset problem is equivalent to the vertex deletion
into co-comparability graph (or into permutation graph) problem if we assume that
only comparability graphs can be given in the input. The class of two-dimensional
posets is very well understood; in particular, the list of minimal forbidden structures
for this class of posets, which is still infinite, is known (obtained independently by
Trotter and Moore [26] and by Kelly [18]). Of course, it is natural to ask the following
question:

Problem 4 What is the structure of almost two-dimensional posets?

Since the comparability graphs of posets do not contain odd holes of size ≥ 5, we
know the structure of almost two-dimensional posets that are bipartite. Indeed, these
are the posets whose comparability graphs are almost bipartite permutation graphs
embeddable into cylinder stripes. The last problem we want to ask is as follows:

Problem 5 Is there a polynomial kernel for the bipartite permutation vertex deletion
problem?

A positive answer to this question obtained by indicating so-called irrelevant vertices
may give some hope to solve Problem 1 with the use of irrelevant vertex technique.
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