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Physicochemical and pharmacokinetic compound profile has crucial impact on compound potency to
become a future drug. Ligands with desired activity profile cannot be used for treatment if they are char-
acterized by unfavourable physicochemical or ADMET properties. In the study, we consider metabolic
stability and focus on selected subtypes of cytochrome P450 – proteins, which take part in the first phase
of compound transformations in the organism. We develop a protocol for generation of new potential
inhibitors of selected cytochrome isoforms. Its subsequent stages are composed of generation and assess-
ment of new derivatives of known cytochrome inhibitors, docking and evaluation of the compound pos-
sible inhibition on the basis of the obtained ligand–protein complexes. Besides the library of new
potential agents inhibiting particular cytochrome subtypes, we also prepare a graph neural network that
predicts the change in activity for all modifications of the starting molecule. In addition, we perform a
systematic statistical study on the influence of particular substitutions on the potential inhibition prop-
erties of generated compounds (both mono- and di-substitutions are considered), provide explanations of
the inhibitory predictions and prepare an on-line visualization platform enabling manual inspection of
the results. The developed methodology can greatly support the design of new cytochrome P450 inhibi-
tors with the overarching goal of generation of new metabolically stable compounds. It enables instant
evaluation of possible compound-cytochrome interactions and selection of ligands with the highest
potential of possessing desired biological activity.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction tion about the target structure that is used to predict contacts
Various computational strategies are an indispensable part of
the drug design process [1,2]. They support the development of
new active compounds, as well as the optimization of their physic-
ochemical and pharmacokinetic properties [3–5]. In silico methods
used in the search for new active compounds can be divided into
the ligand- [6] and structure-based [7] approaches. In the first case,
the predictions are made based on the information of known
ligands, both in terms of their activity and properties. On the other
hand, in the case of the structure-based methods, it is the informa-
between the potential ligands and target proteins.
To design an effective drug one must guarantee that after enter-

ing an organism it will have enough time to trigger a desired bio-
logical response. However, at the same time, the drug is constantly
exposed to processes leading to its decomposition, which shorten
its time of action and might also result in the formation of toxic
products [8–10]. Unfortunately, biological processes occurring in
the living organisms are very complex, and most often they are
related to interactions with more than a single target. This makes
metabolic stability one of the most difficult properties to evaluate
using in silico methods. Nevertheless, both compound stability as
well as other ADMET properties are extremely important for the
potential compound success in drug design campaign, as even
the most active compound will not pass to the subsequent stages
of drug development pipeline if its ADMET properties are
unfavourable.

Metabolic processes related to the final removal of xenobiotics
from the organism can be divided into two main phases. In the first
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phase, which is the focal point of this study, the main role is played
by cytochrome P450 (CYP) – a group of haemoprotein enzymes
with monooxidase activity. There are almost 60 different CYP sub-
types occurring in the human organism; however, some subtypes
are involved to a much higher extent in the metabolic processes,
such as CYP3A4, which is responsible for transformations of over
50 % of drugs [11–13].

When a compound comes into interaction with a particular CYP
enzyme, it can slow down its transformation processes (inhibitors)
or induce them (inducers). In this study, we concentrate on inhibi-
tion of selected CYP subtypes (CYP3A4, CYP2D6, CYP2C8, CYP2C9)
and develop a methodology for generation of new inhibitors of
these CYP proteins. As a starting point, we use known CYP inhibi-
tors and modify their structure by adding selected chemical
groups. The inhibition potency of the generated compounds is
evaluated via docking and only the most potent compounds are
finally returned. We use this database to perform a systematic
analysis of the influence of particular substitutions on compound
inhibition potency and provide the knowledge base for the design
of new CYP inhibitors.

Furthermore, we use this database to develop a graph neural
network (GNN) [14] that predicts the change in the compound
CYP inhibition properties for all modifications of the starting mole-
cule. Moreover, for each newly generated structure, we provide an
explanation of the prediction of its inhibitory potency. It enables
the indication of the structural moieties, which are most important
for the particular prediction. Therefore, such explanations can be
used to guide the further optimization of the compound structure
in terms of its CYP inhibitory properties, especially when combined
with the prediction of the inhibitory power given by the GNN
model. In addition, baseline machine learning (ML) models for
the binary prediction of the docking score change (either decrease
or increase) upon particular substitution are developed (ML mod-
els for metabolic stability prediction expressed as half-lifetime
have already been constructed by several research groups [15–
18]). It is worth noting, that it is an innovative approach of GNN
Fig. 1. Summary of the main tasks
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application in computer-aided drug design, as it is the first time,
when a compound graph is not treated as a whole, but particular
graph vertices constitute basis for docking score predictions and
assist in compound optimization.

Finally, we prepared an on-line visualization platform, where
users can manually compare the compound poses in the respective
CYP binding site, examine interactions and propose their own
structural modifications (https://gmum.github.io/cyp-inhibitors/).
All experiments carried out in the study can be reproduced for
any target using the provided scripts (https://github.com/gmum/
cyp-inhibitors). The library of newly generated potential CYP inhi-
bitors is shared in the Supplementary Data. The visualization of the
main aspects of the presented study is presented in Fig. 1.

A series of approaches to quantitative structure–property rela-
tionship (QSPR) tasks has already been proposed [19–28], which
are continuously evolving together with the development of new
algorithms. GNNs used in the study have also already entered
the field of computer-aided drug design, and they have been uti-
lised for example in QSPR-related tasks due to their input being
suitable to represent molecules and because of their superior per-
formance [29–30]. Wang et al. [31] trained GNNs to predict pIC50
values of JAK inhibitors, while classification of molecules as inhibi-
tors or non-inhibitors of selected CYP450 isoforms was done by
Wu et al. [32] who used ML and deep learning (DL) models or Li
et al. [33] who utilised single- and multitask deep neural networks
(DNNs).

In our study, we use GNNs to predict the exact value of docking
score of a series of compound derivatives. The problem of docking
score prediction in the literature was reported e.g. by Jastrzębski
et al. [34] who concentrated on several GPCRs and selected CYPs
and utilised GNNs or Ton et al. [35] who focused on SARS-CoV-2
main protease (Mpro) and used DNNs. Here, we direct our atten-
tion to selected CYP450 isoforms and employ GNNs to predict
docking score change for all modifications of the input compound.
This is different from the discussed work by that we predict a
change in the docking score instead of the score itself, and, more
carried out within the study.
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importantly, because the prediction is made not for the input com-
pound itself but for all of its modifications. We believe that such a
construction of the predictive model is best suited for compound
optimisation task because there is no need for manual definition
of possible modifications and moreover, predictions for all of them
are calculated and returned all at once.
2. Methods

2.1. Datasets preparation and compounds enumeration

Compounds with known inhibition potency on the considered
CYP subtypes (CYP3A4, CYP2D6, CYP2C8, and CYP2C9) were
fetched from the ChEMBL database, version 27 [36] (the intersec-
tion between particular datasets is presented in Fig. 2). We filter
out all records which do not refer to the Standard Type: Inhibition
and Standard Units: % and the following number of data points
remain: CYP3A4: 1900; CYP2D6: 1326; CYP2C8: 101; CYP2C9:
1000.

Then, the set of new potential CYP inhibitors is formed by addi-
tion of a respective substituent to the initial compound structure.
The list of chemical fragments added is as follows: F, Cl, Br, I, C, C
(C)C, CC, C(=O)O, O, OC, COC, CO, C(=O)C, N, S.

2.2. Crystal structures characterization and docking

All compounds (both these initially downloaded from ChEMBL
database and the newly formed ones) are docked to the available
CYP crystal structures. In all cases, we use two types of crystal
structures: free and with inhibitor co-crystallized (Table 1).

The docking is carried out in Smina [44] using the default set-
tings and the Vina scoring function. We validate the docking via
examination of the docking poses obtained for the co-crystallized
inhibitors (Fig. S1). The proteins are cleaned by removing all
non-protein atoms, excluding heme (the cytochromes cofactor).
The information provided by docking (the docking score value) is
used to create a new dataset that describes the change in the dock-
ing score for modifications of the starting molecule. The dataset
obtained for considered CYP subtypes is available in Supplemen-
tary Data, and the code for generation of derivatives of ligands of
Fig. 2. Intersection between the considered datasets (Venn diagram generated with
the use of https://bioinformatics.psb.ugent.be/webtools/Venn/).

Table 1
Crystal structures of CYP subtypes used in the study (crystal resolution is provided in bra

CYP subtype CYP3A4 CYP2C8

With inhibitor 1W0G [37] (2.73 Å) 2NNI [38] (2.8
Free 1W0E [37] (2.80 Å) 1PQ2 [39] (2.7
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any target is available on the GitHub repository (https://github.co
m/gmum/cyp-inhibitors).
2.3. GNN model

We use the dataset consisting of the information from docking
(the docking score value) to train convolutional GNNs [14]. The
task is defined as node regression, and the models are intended
to predict an exact change in the docking score for each possible
modification of the input compound. It is worth emphasizing that
the change in the docking score for all possible modifications of the
original compound is computed in a single pass. Such an approach
is much more effective than making a separate calculation for each
possible modification.

In the node regression task, the label for each node is a vector of
changes in the docking score value for all substitutions used in this
atom (Fig. 3). If an atom cannot be substituted, the corresponding
position in the vector remains empty and is not used neither for
training nor for testing.

The GNNs consist of 3 or 5 convolutional layers with the hidden
representation size of 256. We use both classical convolutional lay-
ers proposed by Kipf et al. [14] and graph attention layers proposed
by Veličković et al. [45] The convolutional layers are followed by
one or two linear layers. All models use skip connections, Batch-
Norm [46] and dropout of 0.2 or 0.5. [47] All models are trained
for 200 epochs with Adam, a learning rate of 0.01 or 0.001, batch
size 256, and ReduceLROnPlateau scheduler with patience equal
to 10. All models use weight decay of 0.0005 or no weight decay
at all. As a training objective, we use masked MSE loss, that is
MSE loss which ignores errors for substitutions that are not present
in the training data. For each CYP subtype we train 64 different
architectures using fivefold cross-validation to choose the best
hyperparameters. The final model is evaluated using a held-out
test set.

The molecules are represented using a graph molecular repre-
sentation with the following atom features: atom type, the number
of implicit hydrogens, the number of heavy-atom neighbours, for-
mal charge, ring inclusion, and aromaticity. The resulting length of
atom representation is 42. The information about bond features is
not included.
2.4. ML reference models

As a reference, we develop models for the prediction of the
direction of docking score change (increase or decrease). To this
end, we use: a baseline approach, Random Forest (RF) [48], a
GNN [14] and a GNN with a dummy node [49]. The summary of
these models is presented in Table 2.

As a baseline approach we use a model that assigns the most
prevalent label in the dataset to each compound. This baseline
shows the ratio between positive and negative classes in the
dataset.

RF makes separate predictions of a docking score of the original
and the modified compound. These predictions are compared to
assign the change in the docking score. The molecules are repre-
sented with Morgan fingerprints (Morgan FP) [50,51] with radius
2 and 1024 bit-length.
ckets).

CYP2C9 CYP2D6

0 Å) 4NZ2 [40] (2.45 Å) 3QM4 [42] (2.85 Å)
0 Å) 1OG2 [41] (2.60 Å) 2F9Q [43] (3.00 Å)

https://bioinformatics.psb.ugent.be/webtools/Venn/


Fig. 3. The overview of the process of assigning labels to graph nodes. On the left, an exemplary compound is shown, and the substitutions are made in the position marked
with the question mark symbol. After substituting this atom, the modified compounds are docked, and the difference DDS between the docking score of the modified and
original compound is calculated. Next, the differences for each substitution are assigned to the vector label for the given node, as depicted on the right. The process is repeated
for all ring atoms in the original compound and for all the defined substitution groups. If any of the substitutions is not possible (e.g. due to valency constraints), a null value is
assigned in the label vector, and this value is omitted in the training.

Table 2
Summary of the reference models.

Model Representation Description

Baseline – Returns the majority label
RandomForest MorganFP Predicts docking scores separately

for each substitution
GNN Graph representation Node regression
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Both GNN models use graph molecular representation with the
same atom features as previously. Here, the problem is again for-
mulated as a node regression task – the docking score change is
predicted for each atom of the original compound and for each pos-
sible modification in a single pass.

GNN is a classical graph convolutional model introduced by Kipf
et al. [14], while GNN-dummy is an extension of the GNN model,
which includes additional nodes, called dummy nodes, in the
molecular graph [49]. These nodes are connected to all the other
nodes, and their purpose is the aggregation of the signal from the
whole molecular graph in each graph convolutional layer. This
way the perception field of the convolution is artificially extended
beyond the atom neighbours.

2.5. Explainability

Explainability is a quickly growing field of ML [52–54]. Its tech-
niques aim to elucidate inner workings of black box models. In this
work, we use an explainability technique, called saliency maps, in
order to provide information about the influence of particular
atoms on the predictions.

Saliency maps are a visualisation technique introduced by
Simonyan et al. [55] They explain the predictions of the model by
an analysis of its partial derivatives and can be seen as a sensitivity
analysis technique [56]. The main idea behind this approach is that
derivatives can be seen as a measure of how sensitive is the func-
tion’s output with respect to its input. Formally, a saliency map is
calculated by measuring a length of a vector of positive partial
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derivatives: kReLU dy
dx

� �k, where dy
dx is the derivative over the output

with respect to input, ReLU xð Þ :¼ max 0; xð Þ; and k � k is the Eucli-
dean norm.

In the classical approach, only the positive gradients contribute
to the final result. Apart from this, we also investigate the influence
of negative partial derivatives (kReLU �dy

dx

� �k). This allows us to com-
pare the influence of positive and negative partial derivatives
which we illustrate by calculating a difference between classical
and negative saliency maps and call this approach positive–nega-
tive saliency maps.
2.6. Visualization platform

In order to enable visual comparison of the obtained docking
poses, we prepared an on-line visualization platform (https://gm
um.github.io/cyp-inhibitors/). It enables manual confrontation of
the docking poses of original compound and its derivatives, consti-
tuting a great support during interpretation of the docking score
changes occurring upon substitution. In the platform, we incorpo-
rate results only for the top 100 compounds (in terms of their
docking score value), while the docking poses for all derivatives
obtained in the study are available at https://github.com/gmum/-
cyp-inhibitors/tree/main/data/poses.
3. Results and discussion

3.1. ChEMBL data

The distribution of data used in the study is presented in Fig. 4.
It shows that the distribution of the percentage of inhibition is sim-
ilar for all examined CYP subtypes. The highest number of com-
pounds fall in the range of subtle CYP inhibition (between 0 and
20 %), and the number of compounds from the subsequent inhibi-
tion ranges (20–40 % and 40–60 %) gradually decreases. In each
case, there is also a small number of compounds which appear
not to have the ability to inhibit CYPs (with inhibition percentage
between �20 – 0%) and for CYP3A4, CYP2C9, and CYP2D6, there

https://github.com/gmum/cyp-inhibitors/tree/main/data/poses
https://github.com/gmum/cyp-inhibitors/tree/main/data/poses


Fig. 4. Histogram of percentage of inhibition of CYP by a compound for datasets for a) CYP3A4, b) CYP2C8, c) CYP2C9, d) CYP2D6.
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also exist several compounds that appear to be inducers with the
reported CYP inhibition ability between �40 – �20 %.

Additionally, we examine the influence of particular substitu-
tions on the CYP inhibition present in the ChEMBL data. For this
particular analysis we do not use the docking results and narrow
Fig. 5. Examples of CYP inhibitors with different s
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down to only these modifications that are present in the ChEMBL
database. Selected examples are shown in Fig. 5.

In the case of compounds CHEMBL470118 and CHEMBL518629
(first row), where the carboxyl group is exchanged into the primary
amine, the significant change in the CYP3A4 inhibitory potency is
ubstituents present in the ChEMBL database.
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observed (62 % vs 4.5 %, respectively). On the other hand, replace-
ment of fluorine atom by the chlorine results in the preservation of
high inhibitory activity of CHEMBL2407331 and CHEMBL2407336
(first row). The series of CYP3A4 inhibitors varies in the position
of methoxy group (in one case, it is replaced by the fluorine atom)
and difluorophenyl attachment point; however, the variations in
the CYP3A4 inhibitory potency are not very high – from 17 % for
CHEMBL4209507 to 34 % of CHEMBL4214419 (middle and bottom
row).

3.2. Analysis of the influence of particular substituents on docking
score – monosubstitution

We dock all compounds (both original and the derivatives) to
the respective CYP crystal structures and determine the docking
scores of the obtained ligand–protein complexes. The differences
in the docking scores between the original compounds and their
derivatives are presented in Fig. 6.

The first observation is that the tendencies for each substituent
are similar for free and for inhibited crystal structures – blue and
orange parts of charts in Fig. 6 are similarly distributed. However,
there is a variation between different substituents. In general, the
Fig. 6. Changes in the docking score values for single substi

5644
addition of a halogen leads to an improvement of the docking score
– this refers mainly to the fluorine and chlorine substitutions,
which lead to more effective CYP inhibitors in comparison to the
starting compounds (when docking score-based evaluation is
taken into account). On the other hand, bromine and iodine substi-
tutions are much less effective in improving the CYP inhibitors
docking scores, and for CYP2C8 and CYP2D6 they even worsen
the docking score values. Likewise, the addition of sulphur, OC or
COC substituents always leads to the worsening of docking scores.

Despite similar distribution of general tendencies of docking
score differences observed for free and inhibited crystal structures,
examination of the results from the perspective of particular com-
pound reveals that the outcome is in fact influenced by the type of
the crystal structure (detailed analysis is present in Fig. S2).

In Fig. 7, we present histograms of changes in the docking
scores (detailed information is available in the Supplementary
Data). For a great majority of cases, changes in the docking score
are below 1, although higher values are also observed. The fraction
of compound poses with docking score difference between 1 and 2
is similar for all of the considered CYP subtypes. For CYP2C8, there
are no poses with docking score change higher than 4 upon substi-
tution. On the other hand, for all other CYP subtypes, there are vari-
tution for a) CYP3A4, b) CYP2C8, c) CYP2C9, d) CYP2D6.



Fig. 7. Histograms of the changes in the docking scores upon substitution in comparison to the original compound for a) CYP2C8, b) CYP2C9, c) CYP2D6, d) CYP3A4. For better
clarity, the logarithmic scale for the number of cases is applied. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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ations in the docking score up to over 10, although they refer to
less than 1 % of the total number of docking poses. To sum up, in
some cases even a single substitution can lead to a huge difference
in the docking score value; however, in most cases this difference
is negligible.
Fig. 8. Changes in the docking score values between sin
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3.3. Di-substitution experiments

To examine the possibilities offered by modifying an input
molecule in more than a single place, we carry out an analysis of
di-substituted compounds. A visualization of differences between
gle and double substitution for CYP3A4 inhibitors.
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the double and single substitutions is shown in Fig. 8. It is visible
that in each case, the single substitution is preferred over the dou-
ble one. The analysis is based on the averaged difference in docking
scores regardless of the position of substitution.
3.4. Predictive performance of GNNs and ML models

To put the predictive performance of GNNs in context, we
develop ML models with the aim of predicting the direction of
the docking score change, which is a simpler task then predicting
its exact value. The performance of the models is thoroughly exam-
ined using accuracy and mean squared error (MSE), which are cal-
culated on both validation and held-out test sets. The evaluation on
Table 3
Accuracy of the prediction of the docking score change (increase or decrease) after compou
and held-out test sets. The best predictions for the particular crystal are depicted in bold.

Accuracy on validation test set (random split)
Model CYP3A4 (1W0G) CYP2C8 (2N

Baseline 0.5725 ± 0.0095 0.5365 ± 0.0
GNN 0.6287 ± 0.0010 0.6115 ± 0.0
GNN-dummy 0.6289 ± 0.0010 0.6018 ± 0.0

Accuracy on validation test set (time split)
Model CYP3A4 (1W0G) CYP2C8 (2N

Baseline 0.5201 + 0.0112 0.5331 + 0.0
RF 0.5114 + 0.0063 0.5371 + 0.0
GNN 0.6487 + 0.0117 0.6285 + 0.0
GNN-dummy 0.6515 + 0.0102 0.6323 + 0.0

Accuracy on held-out test set (random split)
Model CYP3A4 (1W0G) CYP2C8 (2N

Baseline 0.5480 + 0.0000 0.5760 + 0.0
GNN 0.6248 + 0.0021 0.6111 + 0.0
GNN-dummy 0.6196 + 0.0023 0.6071 + 0.0

Accuracy on held-out test set (time split)
Model CYP3A4 (1W0G) CYP2C8 (2N

Baseline 0.5946 + 0.0000 0.5426 + 0.0
RF 0.5072 + 0.0098 0.5262 + 0.0
GNN 0.6246 + 0.0020 0.5859 + 0.0
GNN-dummy 0.6272 + 0.0037 0.5972 + 0.0

Table 4
Accuracy of the prediction of the docking score change (increase or decrease) after com
predictions for the particular crystal are depicted in bold.

Accuracy on validation test set (random split)
Model CYP3A4 (1W0E) CYP2C8 (1PQ

Baseline 0.4819 + 0.0417 0.5407 + 0.0
GNN 0.6147 + 0.0113 0.6275 + 0.0
GNN-dummy 0.6097 + 0.0203 0.6381 + 0.0

Accuracy on validation test set (time split)
Model CYP3A4 (1W0E) CYP2C8 (1PQ

Baseline 0.4423 + 0.0289 0.5012 + 0.0
RF 0.5117 + 0.0153 0.5271 + 0.0
GNN 0.6376 + 0.0152 0.6496 + 0.0
GNN-dummy 0.6408 + 0.0098 0.6565 + 0.0

Accuracy on held-out test set (random split)
Model CYP3A4 (1W0E) CYP2C8 (1PQ

Baseline 0.4766 + 0.0312 0.5150 + 0.0
GNN 0.6219 + 0.0126 0.5801 + 0.0
GNN-dummy 0.6067 + 0.0172 0.5647 + 0.0

Accuracy on held-out test set (time split)
Model CYP3A4 (1W0E) CYP2C8 (1PQ

Baseline 0.4454 + 0.0728 0.5176 + 0.0
RF 0.5034 + 0.0078 0.5647 + 0.0
GNN 0.6076 + 0.0107 0.6018 + 0.0
GNN-dummy 0.6120 + 0.0045 0.5843 + 0.0
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the held-out test set can be considered as a simulation of the real
application of the constructed protocol to evaluate novel com-
pounds (e.g. during the virtual screening procedure where com-
pounds covering broad chemical space undergo evaluation), as it
constitutes a fully external dataset. We use two approaches to
divide data into train and held-out test sets – random selection
and time-based selection (on the basis of the record list from the
ChEMBL database).

The prediction accuracies and MSE values are gathered in Tables
3–6 (baseline assigns label of the majority class to all samples, RF
accuracies are determined only for time split). The values shown in
Table 3 and Table 4 indicate high variations in the prediction accu-
racy depending on the model. In almost all cases, GNN appears to
nd modification for crystal structures with CYP inhibitor co-crystallized for validation

NI) CYP2C9 (4NZ2) CYP2D6 (3QM4)

095 0.5185 ± 0.0327 0.6162 ± 0.0137
140 0.6344 ± 0.0030 0.6545 ± 0.0090
161 0.6324 ± 0.0041 0.6534 ± 0.0074

NI) CYP2C9 (4NZ2) CYP2D6 (3QM4)

188 0.4779 + 0.0183 0.5611 + 0.0190
090 0.5147 + 0.0142 0.5697 + 0.0155
223 0.6624 + 0.0055 0.6680 + 0.0117
225 0.6587 + 0.0091 0.6721 + 0.0152

NI) CYP2C9 (4NZ2) CYP2D6 (3QM4)

000 0.5048 + 0.0236 0.5952 + 0.0000
067 0.6351 + 0.0023 0.6395 + 0.0027
091 0.6308 + 0.0030 0.6415 + 0.0034

NI) CYP2C9 (4NZ2) CYP2D6 (3QM4)

568 0.5088 + 0.0432 0.6221 + 0.0000
264 0.5151 + 0.0114 0.5942 + 0.0058
109 0.6196 + 0.0057 0.6433 + 0.0056
208 0.6224 + 0.0126 0.6411 + 0.0068

pound modification for free enzymes for validation and held-out test set. The best

2) CYP2C9 (1OG2) CYP2D6 (2F9Q)

518 0.5263 + 0.0486 0.6038 + 0.0126
121 0.6199 + 0.0111 0.6496 + 0.0084
152 0.6198 + 0.0104 0.6502 + 0.0081

2) CYP2C9 (1OG2) CYP2D6 (2F9Q)

327 0.5067 + 0.0097 0.5546 + 0.0172
257 0.5021 + 0.0092 0.5784 + 0.0105
091 0.6451 + 0.0109 0.6766 + 0.0083
251 0.6476 + 0.0124 0.6781 + 0.0077

2) CYP2C9 (1OG2) CYP2D6 (2F9Q)

200 0.5214 + 0.1049 0.6148 + 0.0000
054 0.6193 + 0.0073 0.6538 + 0.0031
103 0.6067 + 0.0108 0.6551 + 0.0033

2) CYP2C9 (1OG2) CYP2D6 (2F9Q)

235 0.5962 + 0.0000 0.5930 + 0.0000
171 0.4940 + 0.0093 0.5799 + 0.0081
045 0.6233 + 0.0047 0.6496 + 0.0040
153 0.6280 + 0.0064 0.6458 + 0.0067



Table 5
MSE values obtained for compound ranking on the basis of the docking score change for crystal structures with CYP inhibitor co-crystallized for validation and held-out test sets.
The lowest MSE values (referring to the lowest error and highest prediction accuracy) are depicted in bold.

MSE ranking on validation test set (random split)
Model CYP3A4 (1W0G) CYP2C8 (2NNI) CYP2C9 (4NZ2) CYP2D6 (3QM4)

Baseline 0.6874 + 0.0805 0.4716 + 0.0580 0.5244 + 0.0533 2.0553 + 0.1301
GNN 0.6335 + 0.0778 0.4349 + 0.0629 0.4607 + 0.0531 1.8214 + 0.1069
GNN-dummy 0.6309 + 0.0880 0.4457 + 0.0602 0.4612 + 0.0526 1.8059 + 0.1245

MSE ranking on validation test set (time split)
Model CYP3A4 (1W0G) CYP2C8 (2NNI) CYP2C9 (4NZ2) CYP2D6 (3QM4)

Baseline 0.7208 + 0.2266 0.4335 + 0.0720 0.5152 + 0.1331 1.9662 + 0.4721
GNN 0.6814 + 0.2320 0.4134 + 0.0896 0.4651 + 0.1277 1.8110 + 0.4353
GNN-dummy 0.6817 + 0.2311 0.4173 + 0.0823 0.4660 + 0.1282 1.8023 + 0.4301

MSE ranking on held-out test set (random split)
Model CYP3A4 (1W0G) CYP2C8 (2NNI) CYP2C9 (4NZ2) CYP2D6 (3QM4)

Baseline 1.1960 + 0.0008 0.4728 + 0.0037 0.7681 + 0.0018 1.9295 + 0.0077
GNN 1.1310 + 0.0139 0.4382 + 0.0084 0.6925 + 0.0051 1.7523 + 0.0148
GNN-dummy 1.1756 + 0.0413 0.4439 + 0.0068 0.6956 + 0.0071 1.7417 + 0.0294

MSE ranking on held-out test set (time split)
Model CYP3A4 (1W0G) CYP2C8 (2NNI) CYP2C9 (4NZ2) CYP2D6 (3QM4)

Baseline 0.4041 + 0.0026 0.4641 + 0.0363 0.4321 + 0.0011 1.2772 + 0.0076
GNN 0.3645 + 0.0011 0.4336 + 0.0070 0.3908 + 0.0037 1.1668 + 0.0123
GNN-dummy 0.3625 + 0.0027 0.4238 + 0.0120 0.3875 + 0.0054 1.1704 + 0.0183

Table 6
MSE values obtained for compound ranking on the basis of the docking score change for free enzymes for validation and held-out test sets. The lowest MSE values (referring to the
lowest error and highest prediction accuracy) are depicted in bold.

MSE ranking on validation test set (random split)
Model CYP3A4 (1W0E) CYP2C8 (1PQ2) CYP2C9 (1OG2) CYP2D6 (2F9Q)

Baseline 0.9428 + 0.1226 0.3618 + 0.0227 0.5409 + 0.0703 1.1949 + 0.2464
GNN 0.8814 + 0.1311 0.3218 + 0.0225 0.4856 + 0.0711 1.0591 + 0.2759
GNN-dummy 0.8699 + 0.1492 0.3184 + 0.0189 0.4457 + 0.0602 1.0521 + 0.2697

MSE ranking on validation test set (time split)
Model CYP3A4 (1W0E) CYP2C8 (1PQ2) CYP2C9 (1OG2) CYP2D6 (2F9Q)

Baseline 0.9488 + 0.3099 0.3374 + 0.0613 0.5361 + 0.2050 1.1274 + 0.7151
GNN 0.9005 + 0.3110 0.3006 + 0.0571 0.5019 + 0.2000 1.0438 + 0.7279
GNN-dummy 0.8878 + 0.3147 0.2914 + 0.0411 0.5024 + 0.2039 1.0389 + 0.7252

MSE ranking on held-out test set (random split)
Model CYP3A4 (1W0E) CYP2C8 (1PQ2) CYP2C9 (1OG2) CYP2D6 (2F9Q)

Baseline 1.2448 + 0.0016 0.4075 + 0.0144 0.7097 + 0.0108 0.7586 + 0.0010
GNN 1.1546 + 0.0255 0.3940 + 0.0071 0.6964 + 0.0136 0.6513 + 0.0102
GNN-dummy 1.1685 + 0.0226 0.4116 + 0.0122 0.7172 + 0.0211 0.6476 + 0.0057

MSE ranking on held-out test set (time split)
Model CYP3A4 (1W0E) CYP2C8 (1PQ2) CYP2C9 (1OG2) CYP2D6 (2F9Q)

Baseline 0.5363 + 0.0054 0.4055 + 0.0028 0.3251 + 0.0029 0.6065 + 0.0037
GNN 0.4912 + 0.0046 0.3794 + 0.0030 0.2829 + 0.0045 0.5200 + 0.0054
GNN-dummy 0.4935 + 0.0075 0.4289 + 0.0629 0.2790 + 0.0042 0.5308 + 0.0084
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be the most effective model with prediction accuracy between
�0.58 to 0.67. The performance of both GNN and GNN-dummy
models in the prediction of correct direction of change in the dock-
ing score upon substitution is better than the baseline by up to
�0.15, which justifies the application of the developed approach.
The performance of RF is close to the baseline, indicating its inabil-
ity to correctly learn the patterns in the data and justifying the
necessity of developing more sophisticated models, such as GNNs.
In addition, we observe no significant improvement in the perfor-
mance of the GNN-dummy model over its classical GNN counter-
part, which may indicate either ineffective aggregation of the
molecular graph by the dummy node or a strong correlation
between the docking score change and local features of the chem-
ical structures in the GNN model. The performance dependencies
are similar for both types of crystal structures – free (Table 3)
and co-crystallized with inhibitor (Table 4). GNNs and GNN-
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dummy models are also the most effective methods when the
compounds are ranked on the basis of the predicted docking score
values, which is indicated by the lowest MSE out of all of the com-
pared approaches (Table 5, Table 6).

In addition, we compare the GNNmodels using the sum of rank-
ing differences (SRD) [57–59] – GNN and GNN-dummy achieve
comparable performance in compound ranking.

As an additional evaluation, we determine the prediction accu-
racy of GNN models when cases with very small changes in the
docking score (defined as margin) are neglected. We calculate
accuracy on held-out test sets with several different values of the
margin and present the results in Fig. 9 (the complete data for val-
idation and held-out test sets is present in the Supplementary
Data, Fig. S3).

The data presented in Fig. 9 indicates, that negligence of com-
pounds with very small changes in the docking score leads to



Fig. 9. Analysis of changes in the accuracy values for GNN when cases with small changes in the docking score (margin) are neglected, a) crystal structures with inhibitor co-
crystallized, b) free crystal structure.
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higher values of accuracy. It is an intuitive outcome, as occurrence
of small docking score changes might be to some extent a result of
randomness in the docking process and therefore the assignment
of a substitution as leading to increase or decrease in the docking
score might be biased. For CYP3A4, CYP2C8, and CYP2C9, for crystal
structures co-crystallized with respective inhibitors, the accuracy
values continuously increase as the margin is getting higher, up
to approximately 1, and then, the accuracy drops again. However,
it is worth noticing, that at the margin of 2, the accuracy still
adopts higher values than when no data is neglected. On the other
hand, for 3QM4 (CYP2D6 crystal structure), the accuracy values are
constantly rising with the margin increase, reaching a plateau
when the margin is equal to approximately 1.7. For free crystal
structures, the situation is similar for CYP3A4, CYP2C9 and CYP2D6
(in comparison to inhibited proteins); however, when it comes to
the CYP2C8, the accuracy adopts values between 0.60 and 0.62
until the margin of 1.0, whereas further margin increase leads to
significant accuracy rise (with values approaching 0.85). It has to
be however pointed out that the accuracy values on CYP2C8 might
vary more than in the case of other targets, as there is a relatively
Fig. 10. Outcome of the explainability analysis for the selected compounds, a) indication o
b) saliency map for CHEMBL2407331, c) positive – negative saliency map for CHEMBL2
calculated on the negative partial derivatives), d) indication of the atom in the CHEM
CHEMBL2407336, f) positive – negative saliency map for CHEMBL2407336.
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low number of records in the dataset referring to this cytochrome
subtype. This further entails the relatively small held-out test for
CYP2C8, which therefore can be biased and can lead to higher vari-
ation in the results. Overall, this results suggest, that GNN models
more often predict the docking score change correctly if its value is
high enough. This indicates that, in some cases, incorrect predic-
tion of the docking score change can be attributed to randomness
of the docking score acquisition.

3.5. Saliency maps help designing new CYP inhibitors

In this section, we show how saliency maps can be used to
enable guidance for the process of designing new CYP inhibitors.
Saliency maps show which structural features of the input com-
pound influence the obtained predictions to the highest extent.

In Fig. 10, we present saliency maps obtained for
CHEMBL2407331 (top row) and CHEMBL2407336 (bottom row).
In both cases the explanations are given for prediction of a docking
score change of compounds modified by attaching fluorine to the
atom marked with a red dot in leftmost pictures. The presented
f the atom in the CHEMBL2407331 structure for which the predictions are analyzed,
407331 (difference between the classical saliency map and ‘‘inverse” saliency map
BL2407336 structure for which the predictions are analyzed, e) saliency map for



Fig. 11. Visualization of the docking poses obtained for known CYP3A4 inhibitor (CHEMBL10, CYP3A4 inhibition: 61%, depicted in green) and its derivative (chlorine
substitution, depicted in gray). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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molecules differ by only one atom (fluorine in CHEMBL2407331 is
substituted with chlorine in CHEMBL2407336) and their explana-
tions are similar. However, a few differences can be spotted. In
the presented saliency maps saturation represents the value, with
lighter shades marking values closer to zero, and color represents
the sign – red for positive and blue for negative values.

At the first glance, one can observe that the only atoms identi-
fied as important are these in the close proximity of the atom for
which the prediction is made. This stems directly from the defini-
tion of saliency maps and the fact that the model being explained
has 5 convolutional layers. The number of convolutional layers
restricts the neighbourhood from which information can be uti-
lised to make a prediction. As a result, the outcome is insensitive
to information from outside of this neighbourhood, and thus the
respective partial derivatives are equal to zero.

Another similarity is the relative importance of the atoms,
which can be partly attributed to the fact that the closer an atom
is to the one for which a prediction is made, the more times its
information is used to calculate this prediction. Furthermore, in
case of positive–negative saliency maps the sign of the calculated
importance is an another similarity as blue dots and red dots are
similarly distributed.

For both molecules classical saliency maps indicate that the
halogen atom that is closer to the substituted atom is more
important than the other one. On the other side, positive–nega-
tive saliency map for CHEMBL2407331 (Fig. 10c) assigns higher
importance to the halogen further away. This indicates that the
negative saliency map assigns a higher value to this atom then
the classical saliency map, whereas the values for the other halo-
gen are similar for both classical and negative saliency maps.
Intuitively, this means that the value of the prediction is sensitive
to information encoded in both halogens; however, in the case of
chlorine negative partial derivatives dominate while in the case of
fluorine the positive and negative partial derivatives cancel each
other out. In the case of CHEMBL2407336 the situation is
reversed. These findings might suggest that the modified mole-
cules take slightly different poses in the binding pocket, and thus
different atoms are more important for the ligand-CYP
interactions.
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3.6. Visualization tool

We developed a visualization platform in order to enable a
manual inspection of the docking poses obtained for the generated
compounds and their comparison with the ligand–protein com-
plexes for the existing inhibitors. The platform is available at
https://gmum.github.io/cyp-inhibitors/. It enables instant con-
frontation of the obtained changes in the docking scores (original
compound vs derivative) with the actual compound docking poses
(Fig. 11).
4. Conclusions

In the study, we develop a protocol for generation of new inhi-
bitors of selected CYPs. Although, the procedure is optimized for
this particular target, it can be applied to any protein in a similar
manner, as the code is available and includes all scripts required
to reproduce the results (https://github.com/gmum/cyp-
inhibitors).

The subsequent stages of the proposed methodology are com-
posed of generation of new derivatives of known CYP inhibitors,
docking and evaluation of the compound possible inhibition on
the basis of the obtained ligand–protein complexes. Moreover, an
innovative GNN model for prediction of the docking score change
upon particular substitution is proposed. This model makes predic-
tions for particular graph vertices, not a compound graph as a
whole. The activity predictions obtained for the generated com-
pounds can be analyzed in detail using saliency maps to detect
structural features, which influence to the highest extent the pre-
dictions of the inhibitory potency of the newly formed molecules.
Our data suggests that even a single substitution can lead to a huge
difference in the docking score value; however, in most cases this
difference is negligible. Furthermore, using more than a single sub-
stitution does not seem to further improve the docking score.

Moreover, we prepared a visualization platform (https://gmum.
github.io/cyp-inhibitors/), where the docking poses of the newly
formed inhibitors can be manually inspected and confronted with
the docking outcome of the original compounds. The results not
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only provide a library of new potential CYP inhibitors (all gener-
ated compounds are shared in the Supplementary Data), but can
also guide the process of designing new compounds with CYP inhi-
bitory properties. Availability of all scripts used in the study (at
https://github.com/gmum/cyp-inhibitors) makes the developed
tools general and enable their application for any target.
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structure of human cytochrome P450 2C9 with bound warfarin. Nature
2003;424:464–8.

[42] Wang A, Savas U, Hsu MH, Stout CD, Johnson EF. Crystal structure of human
cytochrome P450 2D6 with prinomastat bound. J Biol Chem
2012;287:10834–43.

[43] Rowland P, Blaney FE, Smyth MG, Jones JJ, Leydon VR, Oxbrow AK, et al.
Crystal structure of human cytochrome P450 2D6. J Biol Chem
2006;281:7614–22.

[44] Koes DR, Baumgartner MP, Camacho CJ. Lessons learned in empirical scoring
with smina from the CSAR 2011 benchmarking exercise. J Chem Inf Model
2013;53:1893–904.

[45] Velickovic P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. Graph
attention networks. 2017, arXiV:1710.10903

[46] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. 2015, International conference on machine
learning (pp. 448-456). PMLR.

https://doi.org/10.1016/j.csbj.2022.10.005
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0005
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0005
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0010
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0010
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0015
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0015
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0020
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0020
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0025
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0025
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0030
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0030
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0030
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0035
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0035
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0040
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0040
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0045
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0045
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0045
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0050
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0050
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0055
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0055
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0060
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0060
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0060
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0065
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0065
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0065
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0075
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0075
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0075
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0075
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0080
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0080
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0080
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0085
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0085
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0090
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0090
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0095
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0095
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0095
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0100
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0100
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0105
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0105
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0110
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0110
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0110
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0115
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0115
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0115
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0120
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0120
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0120
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0125
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0125
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0130
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0130
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0130
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0135
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0135
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0140
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0140
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0150
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0150
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0150
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0155
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0155
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0155
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0160
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0160
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0160
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0165
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0165
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0165
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0170
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0170
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0170
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0175
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0175
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0175
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0180
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0180
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0180
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0185
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0185
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0185
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0190
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0190
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0190
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0190
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0195
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0195
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0195
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0200
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0200
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0200
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0205
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0205
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0205
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0210
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0210
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0210
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0215
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0215
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0215
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0220
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0220
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0220


T. Danel, A. Wojtuch and S. Podlewska Computational and Structural Biotechnology Journal 20 (2022) 5639–5651
[47] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a
simple way to prevent neural networks from overfitting. J Machine Learning
Res. 2014;15(1):1929–58.

[48] Breiman L. Random forests. Mach Learn 2001;45:5–32.
[49] Li Y, Tarlow D, Brockschmidt, M.; Zemel, R. Gated graph sequence neural

networks. 2015, arXiv preprint arXiv:1511.05493.
[50] Morgan HL. The generation of a unique machine description for chemical

structures – a technique developed at chemical abstracts service. J Chem Doc
1965;5:107–13.

[51] Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model
2010;50:742–54.

[52] Pope PE, Kolouri S, Rostami M, Martin CE, Hoffman H. Explainability
Methods for Graph Convolutional Neural Networks. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
10764-10773.

[53] Baldassarre F, Azizpour H. Explainability Techniques for Graph Convolutional
Network. arXiv. 2019, https://arxiv.org/abs/1905.13686.
5651
[54] Yuan H, Yu H, Gui S, Ji S. Explainability in Graph Neural Networks: A
Taxonomic Survey. arXiv, 2012, https://arxiv.org/abs/2012.15445.

[55] Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks:
Visualising image classification models and saliency map. 2014,
arXiv:1312.6034.

[56] Iooss B, Saltelli A. Introduction to Sensitivity Analysis. In: Handbook of
Uncertainty Quantification. Ghanem, R.; Higdon, D.; Owhadi, H. (eds), 2017,
Springer, Cham.

[57] Héberger K. Sum of ranking differences compares methods or models fairly.
Trends Anal Chem 2010;29:101–9.

[58] Héberger K, Kollár-Hunek K. Sum of ranking differences for method
discrimination and its validation: comparison of ranks with random
numbers. J Chemom 2011;25:151–8.

[59] Kalivas JH, Héberger K, Andries E. Sum of ranking differences (SRD) to
ensemble multivariate calibration model merits for tuning parameter
selection and comparing calibration methods. Anal Chim Acta
2015;869:21–33.

http://refhub.elsevier.com/S2001-0370(22)00453-6/h0235
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0235
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0235
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0240
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0250
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0250
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0250
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0255
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0255
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0285
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0285
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0290
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0290
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0290
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0295
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0295
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0295
http://refhub.elsevier.com/S2001-0370(22)00453-6/h0295

	Generation of new inhibitors of selected cytochrome P450 subtypes– In silico study
	1 Introduction
	2 Methods
	2.1 Datasets preparation and compounds enumeration
	2.2 Crystal structures characterization and docking
	2.3 GNN model
	2.4 ML reference models
	2.5 Explainability
	2.6 Visualization platform

	3 Results and discussion
	3.1 ChEMBL data
	3.2 Analysis of the influence of particular substituents on docking score – monosubstitution
	3.3 Di-substitution experiments
	3.4 Predictive performance of GNNs and ML models
	3.5 Saliency maps help designing new CYP inhibitors
	3.6 Visualization tool

	4 Conclusions
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Appendix A Supplementary data
	References


