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1. Introduction

Theories defined by Lagrangians with higher order derivatives have already been consid- 
ered many times. Let us mention classicalmodels of spinning particles [1], some versions 
of the generał relativity [2], the regularized Yang-Mills theory [3], and some supersymmetric 
σ-models of Kahler type [4], Recently, a new theory of this kind has appeared — the smooth 
string [5], The Euclidean version of this string is relevant for the theory of random surfaces, 
while Minkowski space-time version is expected to find an application in the low-energy 
QCD. Also, it has been shown that the ordinary magnetic vortex linę can be regarded as 
the physical realization of the classical smooth string [6]. The Lagrangian for the smooth 
string contains a term with the second order derivatives which represents the extrinsic 
curvature of the world-sheet of the string.

The smooth string is a bosonic string. It has an extfemely complicated dynamics. 
Very little is known about it even on the classical level, due to the fact that equations of 
motion for the smooth string cannot be linearized by the appropriate choice of parametri- 
zation of the world-sheet, in contradistinction to the case of Nambu-Goto string. For this 
reason, a point-like analogue of the rigid string has been considered [7-12] with the hope 
that the study of this simpler model will help to understand the dynamics of the smooth 
string. The Lagrangian for the point-like analogue contains a power of the first curvature 
of the world-line óf the particie with respect to the time.
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In the present paper we investigate two such point models in Minkowski space-time 
with the Lagrangian linear or quadratic in the first curvature of the world-line. The former 
case has been considered in papers [9-11], We add to the results obtained in those papers 
the observation that in this model all trajectories have their first curvature ćonstant. Due 
to that fact, equations of motion are essentially linear, and we can explicitly find all trajecto­
ries of the particie.

The model with the Lagrangian quadratic in the first curvature is much mote difficult 
to analyze, because equations of motion cannot be linearized. In this case the first curvature 
is not a ćonstant of the motion, in generał. However, just this model is morę interesting, 
because its equations of motion can be obtained from the equations of motion of the smooth 
string by neglecting intemal degrees of freedom of the string [14], Thus, this model may 
be called the point-like analogue of the smooth string. In the present paper we analyze 
the mass spectrum of the point-like analogue, the mass squared defined as the square of the 
energy-momentum four-vector. We carry out a systematic analysis of possible types of 
trajectories of the point-like analogue, and we find explicit formulaeTor the trajectories 
with the first curvature ćonstant. We also find a rather interesting reformulation of the 
model in terms of the ordinary, relativistic point particie moving in an extemal electro- 
magnetic field. This reformulation enables us to find an example of the trajectory with 
the first curvature variable.

Our main finding is that the point-like analogue of the smooth string is tachyonic 
already on the classicał level. This result strongly suggests that the classical smooth string 
itself is also tachyonic. Let us recall that Nambu-Goto string is not tachyonic on the dassical 
level — it becomes tachyonic only when quantized in the standard manner. If the smooth 
string is tachyonic, it will probably mean that it cannot be accepted as a satisfactory model. 
Perhaps its Lagrangian should be changed by adding some new terms. Such terms will 
likely contain the third order derivatives. Suggestions of this kind have already been expres-. 
sed in papers [6, 15] with some other justification. Our investigation of the smooth string 
we will present in a forthcoming paper [14].

The present paper is organized as follows. In Section 2 we present the equations of 
motion and the integrals of motion for the point-like analogue of the smooth string. In 
Section 3 we study the model with the Lagrangian linear in the first curvature. In Section 
4 we find all trajectories with the first curvature ćonstant for the other model, i.e. the one 
with the Lagrangian quadratic in the first curvature. In Section 5 we use the angular mo­
mentem integral of motion in order to reduce the original equations of motion with the 
fourth order derivatives to the ordinary Newton equations for the relativistic particie in an 
external electromagnetic field. With the help of this reformulation of the problem we can 
find an explicit tachyonic solution with the first curvature variable. Section 6 contains 
conclusions and remarks. In particular, we point out that the reformulation presented in 
Section 5 suggests a new physical interpretation of the model with the higher order deriva- 
tives.
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2. The equations of motion

The first curvature κ1 of a curve r(s) in the Euclidean Rn space is defined as [13]

κ1 =
d2r

(1)

dr
Here s is the length ρarameter along the curve, i.e. — =1. Passing to a generał para- 

ds
metrization of the curve by the parameter τ, we obtain from (1)

r2r2-(fr)2κ =--- -----— ,
(r2)3

(2)

where the dots denote derivatives with respect to τ. As the Lorentz invariant counterpart 
of κ2 we shall take a generalization of κ2 to pseudo-Euclidean space-time, namely

Free relativistic point particie is described by the Lagrangian

= ~m↑Jx2, (5)

where the constant m > 0 is the mass of the particie. Motivated by the Lagrangian of the 
rigid string given in [5] we extend Lagrangian (5) by adding a term with k, [7],

Sf = — ∖∣x2 (m+aK(k)), (6)

where K(k) is a function of k. In the following we shall consider the cases K = y∕k and 
K= k.

Lagrangian (6) contains the second order derivatives x. The corresponding Euler- 
-Lagrange equations have the form [16]

(7)

(4)

(3)

∕<Zxμ∖
where x = (xμ), x = I I, x2 = x0x0-xlx,, etc. In the proper-time gaugę for time-like

curves we have

Then xx = 0 and
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Because Lagrangian (6) does not depend on x, the last term on the l.h.s. of Eq. (7) vanishes, 
and equation (7) can be written in the form

(8)

where

(9)

is the energy-momentum four-vector of the particie. Formula (9) can be obtained also 
from Noether theorem. Equation (8) expresses the conservation of the energy-momentum 
of the particie during the motioń.

From Lagrangian (6) in the gauge (5) we obtain

Pμ = (m +aK(k) - 4akK'(k))xμ+2aK"(k)kxμ+2<xK'(k)xμ, (10)

, dK
where K ≡ —— . 

dk

Let us multiply the both sides of formula (10) by xμ. Using the formula xx = -x2 = k, 
which follows from (4), we obtain the following useful relation

Pμxμ = m-2aK'(k)k + a.K(k'). (U)

Another useful formula is obtained by multiplying the both sides of formula (10) by Pμ and 
using formula (11) and its derivatives

, d2
PμPμ = (m+aK—⅛xkK') (m + xK-2xkK') - 2α2 —-i {kK,2). (12)

dτ

Thus, P2 ≡ PμPμ is a function of k, k and k only. By deflnition, P2 is the mass squared 
of the particie. For the ordinary particie K = 0 and P2 = m2.

Lagrangian (6) is invariant under Lorentz transformations. Noether theorem gives 
the following formula for the angular momentum of the particie, 

(13)

where Pμ is given by formula (9). Mμv is integral of the motion of the particie. For Lagran­
gian (6) in the gauge (4) we have

Mμy, = xμPv-xvPμ+2txK.'(k)(xμxv-xvxμ), (14)

where Pμ is given by formula (10).
Interesting information about the trajectory is provided by Pauli-Lubanski pseudo- 

vector

Wi = -lsλμvβMμvPll, 
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which is the integral of the motion because it is the function of Pβ and Λf''v. Using formulae 
(10), (14) we obtain

Wλ = 2α(K')‰ρx*x vxc. (15)

It is easy to check that the square of the four-vector Tf = ε2μvβxμχ,χβ is related to the 
second curvature κ2 of the world-line, [13],

TzTλ = k2κ22.

In the next Section we shall prove that for K = λ∕⅛, k is constant during the motion. There- 
fore, in this case all trajectories have the second curvature constant too. For K(k) = k 
k does not have to be constant during the motion, in generał.

3. Classical trajectories in the case K = yJk

In this case we can find all trajectories exρlicitly. For a < 0 we find the usual straight- 
-line trajectories and no other trajectories. For a > 0 we find several types of trajectories 
depending on initial data. In particular, there exist tachyonic trajectories, i.e. the ones 
with P2 < 0. The preśented below list of trajectories is complete, i.e. no other trajectories 
exist.

Let us start from the observation that for K = y∕k formula (11) gives

Pμxμ = m. (16)

Thus, Pμxμ is constant during the motion. Formula (12) gives

PμPμ≈ m2-mxy∕k. (17)

Because Pμ is constant during the motion, the first curvature k is constant too.
Let us first consider the case k = 0. Then, k = — x2 = 0 means that x is a light-like 

vector or xμ = 0. However, in the gauge (4) xx = 0, where x is a time-like vector. This 
relation cannot be satisfied by a non-zero light-like vector x. Thus, xμ = 0, i.e.

x*(τ)  = — τ+xμ(0). (18)
m

This is the usual straight-line trajectory of a free particie.
Now we shall pass to the case k > 0. It is easy to prove that for a < 0 trajectories 

with k > 0 do not exist. From formula .(17) we see that for a < 0

P2 ≥ m2. (19)

On the other hand, cąlculating P2 directly, by taking square of the r.h.s. of formula (10), 
we obtain

P2 = m2+°⅛-α2k. 

k
(20)
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(21)

Here we have used the relation

xx =

which follows from the gauge condition (4). x has to be a space-like vector or zero. This 
follows from the condition

Px — 0,

which is a consequence of constraint (16), and from the fact that P is a time-like vector. 
Therefore, formula (20) implies that P2 ≤ m2. This is compatible with inequality (19) only 
when P2 = m2. Then, formula (17) implies that k = 0.

2 fm2-P2∖2
x == ~k = - --------- ) , x0 > 0.

\ am /

Thus, for k >0 the case α < 0 is excluded. For a > 0 we shall distinguish the following 
three subcases:

(a) P2 > 0,

(b) P2 = 0,
(c) P2 < 0.

Because k is constant during the motion, formula (10) can be integrated. This yields the 
following equation for xμ(τ)∙.

(22)

where (Cμ) is a constant four-vector. Here we have used formula (17). In the cases (a), (c) we 
can substitute in (22)

xμ(τ) =
m(Pμτ+Cμ)

P2
+ zμ(τ)∙ (23)

This leads to the harmonie oscillator-type equation for zμ

= 0.

In the case (a) the generał solution of Eq. (24) has the form

zμ(τ) = Aμ cos ωτ+Bμ sin ωτ,

where

P2Jk P2{m2-P2)
CO -^ ------------ = ----- jj---- > U.

αm a m

(24)

(25)

(26)

(It follows from formula (17) that for.a > 0 and k < 0 we have P2 < m2.) Solutions (23), 
(25) have to obey the following conditions for all t:

x2 = 1, (27)
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These conditions are satisfied if and only if

AμBμ ≡ 0, PμA,t = PμBμ = 0,

AμA*  = BμBμ ≈
(P2)2 ’ Po > 0. (28)

Thus, we have obtained the seven parameter family of solutions. For this solutions 
0 < P2 < m2.

In the case (c) we obtain from (24)

zμ(τ) = Dμ exp (ωτ)+Eμ exp (-ωτ), (29)

where

(30)

Again, we have to obey conditions (27). They are satisfied if and only if

D2 = E2 = 0,

EP = DP = 0, Do >0, Eo< 0. (31)

Conditions (31) define the seven-parameter family of tachyonic solutions (P2 < 0). There 
is no lower bound on the values of P2.

In the case (b) Eq. (22) gives

m , m ,
xμ(τ) = r^2 Pl,τ + -~2 Cμτ+Fμτ+Gμ.

oα 2α
(32)

Conditions (27) are satisfied if and only if

p2 = 0, PC = 0, CF = 0, C2 = —a2, F2 = 1, PF = m,

mC20 < 2a2P0F0. (33)

We obtain the six-parameter family of solutions.
This ends our discussion of trajectories for Lagrangian (6) with K = 5∕fc. The presented 

list of trajectories is complete.

4. The case K(k) = k — the trajectories with the first cunature constant

For K(k) = k the first curvature k is not constant in τ, in generał. In this Section 
we shall present the particular trajectories for which the first curvature is constant. Such 
trajectories are relatively easy to find. Trajectories with k variable will be studied in the 
next Section.
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For K(k) = k formulae (7), (10)—(12) in the gauge (4) give

(34)2α[xμ4,-(xxw)xμ]+(m+3αx2)xμ = 0,

where

<4)
Y' ' ≡≡ -------- Y ." rfτ4⅛

Pμ = (m + 3ax2)xμ+2axp. (35)

Pμxμ — zn + ax2≡ m — ak, (36)

and

PμPμ = m2-4amk+3a2k2-2a2⅛, (37)

where k ≡ — x2.
It follows from formula (37) that in genetal k is not constant during the motion. For­

mula (37) can be regarded as Newton-type equation:

2a2k = 3a2k2-4amk+m2-P2. (38)

The corresponding potential V(k) has the form

V(k) = —α2k3+2αmk2+.(P2-m2)k. (39)

For our purpose we need solutions of Eq. (38) such that k(τ) is non-negative for all τ. 
Let us examine the potential V(k). We shall distinguish the following three cases:

(i) P2 ≥ m2,

(ii) m2 >P2≥ -⅜w2,

(iii) -⅛m2>P2.

The potential V(k) has the shape presented in Fig. 1. We have pietured the cases a > 0, 
a < 0 separately, Trajectories with k constant correspond to the local extreme points of the 
potential F(k).

Let us begin front the case (i). For both signs of a we have one local maxiπtum of the 
potential in the region k > 0. It is located at

fc0
2m y∕m2+3P2
3α 3]oc∣

(40)

Inserting x2 = — k0 in formula (35) we obtain a linear equation for xμ(τ) which is easy 
to solve. The solution has to obey the conditions

x2 = 1, x0 > 0, x2 = — k0. (41)

It turns out that these conditions cannot be satisfied. Thtis, there is no trajectory cor- 
responding to k = kQ.
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Fig. 1. The dotted linę corresponds to the case (i), the dashed linę corresponds to the case (ii), the continuous 
linę corresponds to the case (iii)

For P2 = m2 we have another possibility:

k = 0. (42)

Similarly as in Section 3, k = 0 implies the straight-line trajectory given by formula (18). 
In the case (iii) no extreme points of V(k) are present.
In the case (ii) we do not have any extreme points of V(k) for a. < 0, and we have 

the maximum and the minimum of V(k) for a > 0. They are located at

2m± 7m2 + 3P2
fc12 — - . (43)

3ot

The plus sign corresponds to the maximum of V(k). Substituting x2 = - kt in relation 
(35) we obtain the following equation for xμ(τ)

2αxμ -(m + ∖∕m2 +3P2)xμ = Pμ, (44)

⅛om which it follows that

xμ -ω2xμ = (2a) ~1 (Pμτ+Cμ), (4 5)

where
ω2 ≈ (2a) 1(m + >∕m2+3P2).
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Solutions of Eq. (45) have the following form

p τ+C
xμ(τ) =-----τ—y- + A exp (ωτ)+Bμ exp ( - ωτ). (46)

2αω

This solution has to obey conditions (41) with k0 replaced by k1. This leads to the condi- 
iions

A2 = B2 = 0, AP = BP = 0, AB = -⅜ fc1ω-4,

√40 <0, Bo < 0. (47)

These conditions cannot be satisfied if P = (Pμ) is a time-like or light-like vector. For
P2 < 0 they can be satisfied. Therefore, solution (46) exists only for

0 > P2 ≥ -⅜ m2.

It is a tachyonic solution.
Now let us investigate the last possibility

2m- Jm2+3P2
k2 =--------- ----------- , a > 0.

3a

For k = k2 the potential V(k) has the local minimum, see Fig. 1. Substituting x2 = -kl 
in relation (35) we obtain the following equation for xμ(τ)

2αxμ+(%∕m2+3P2-m)xμ = Pμ,

from which it follows that

2axμ+{yjm2+3P2 - ni)xμ = Pμτ+Cμ. (48)

Solutions of Eq. (48) are listed below. For m2 > P2 >0:

P τ+C
⅞(τ) = —Γ*  +Aμcos(ωτ)+Bμsia(ωτ),

2αω

where

ω2 = (2α)-1(Vm2+3P2 — m),

and

A2 = B2 = -k2ω~*,  AB = PA = PB = 0, Po > 0. (49)

Conditions (49) follow from the requirements

x2 = 1, x0 >0, x2 = —k2.



931

For P2 = 0:

⅞W = τ' + c"τ2+°μτ+£"’ (50)

where

PC = DC = 0, D2 = 1, C2 = mα, DP = | ma,

Cq < 4aD0P0, Po > 0.

For —⅜m2≤P2<0ι

Pμτ + Cμ _ _
xμ(τ) =  ............   +Fexp(ωτ) + Gexp(-ωτ),

m — √m2+3P2

where

ω2 = (2a)-1(m- χ∕m2+3P2),

and

F2 = G2 = 0, PF = PG = 0, FG = -⅜ fc2ω-4,

Fo >0, Go < 0.

Let us summarize results presented in this Section. With the help of the auxiliary 
equation (38) we have found all trajectories with the first curvature constant. For a > 0 
these trajectories correspond either to the local minimum or to the local maximum of the 
curve (ii) on Fig. 1. In the former case P2 can be arbitrary in the rangę m2 > P2 ≥ — ⅜ m2. 
In the latter case — ⅜ m2 ≤ P2 < 0. Thus, the tachyonic trajectories are present. Of course, 
we also have the trivial straight-line trajectory (18) with P2 = m2. For a < 0 we do not 
find any trajectory with the first curvature constant, except for the trivial trajectory (18). 
Nevertheless, we shall prove in the next Section that for a < 0 tachyonic trajectories do 
exist. They have the first curvature variable.

5. The case K(k) = k — the trajectories with the first curvature variable

The main difficulty lies in the fact that equation (34) cannot be replaced by a linear 
one in this case. Nevertheless, we can have some insight into the set of trajectories with 
k variable. We shall exploit the fact that Pμ and Mμv are constant during the motion. We 
shall prove that each solution of Eq. (34) can be regarded as a trajectory of an ordinary 
point particie in a particular external electromagnetic field. This particie obeys the ordinary 
Newton equation with second order derivatives and Lorentz force. This is the main result 
of this Section. The extemal electromagnetic field is rather complicated. In spite of this 
we can find an exρlicit example of a tachyonic trajectory for a < 0.

We see from Fig. 1 that if we take sufficiently Iow value of the total energy α2⅛2 + V(k) 
córresponding to the equation (38), we can have a trajectory with τ-dependent ρositive 



932

⅛(τ). It is elear that for this type of trajectories ⅛(τ) → + oo when τ mereases. Therefore, 
for sufficiently large τ we can ignore the last two terms in the potential V(k), i.e.

f'(k) ≈ -α2fc3.

Then, it is easy to find the approximate solution of Eq. (38) valid for large

∕c(τ) =
4

Oo-O2 (51)

We see that k(τ), and therefore also xjl(τ) becomes infinite for some finite τ = τ0. However 
this does not imply that we should reject this kind of trajectories without further investiga- 
tion. The reason is that τ is not the time but only the proper time. The time variable is- 
t ≡ x0(τ). It may happen that x0(τ) → oo for τ → τ0 in such a fnanner that x(t) = (x'(t)) 
is finite for all finite t. Then we would have a perfectly regular trajectory x(r). In other 
words, the fact that xμ(τ) becomes infinite for finite τ = τ0 would only mean that the particie 
moves to the infinity with velocity so close to the velocity of light that the proper-time 
length of the trajectory is finite. We shall show that indeed, precisely this happens.

It is elear that Eq. (38) is not a good starting point for the study of trajectories in the 
present case. Even for the approximate form of Λ(τ) given by (51) it is rather difficult task 
to find solutions of Eq. (35) for xμ(τ) such that the condition x2 = 1 is satisfied. We have 
seen in Section 3 and 4 that it is not a trivial matter to obey that condition — some candi- 
dates for solutions have been eliminated because they are not compatible with it.

Much better approach is to exploit the fact that the angular momentum Mμv given 
by formula (14) is the integral of the motion. For K(k) ≈ k formula (14) gives

Mμv = Py,xμ-Pμxv+2x(xμxv-xμxvY (52)

Multiplying the both sides of formula (52) by xv and using the gauge condition x2 = 1 
we obtain the following equation

2αxμ = Mμvxv+Pμ(xx)-xμ(Px). (53)

Equation (53) can be interpreted as Newton equation of motion for ordinary relativistic 
point particie interacting with xμ-dependent external electromagnetic field. Namely, 
Eq. (53) can be written in the form

2αxμ = Fμvx*, (54)

where

Fμv = Mμy, + Pμxv-Pμx, (55)

is the electromagnetic field strength tensor. For Fμv one can find the corresponding gauge 
potential Aμ(x)∙.

(56)Fμv - δμAv-ovAμ,
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where

ΛW = ^ ⅜ Mμ,,x-÷^Pβχβ)xμ- (57)

Equation (54) can be obtained from the fo!Iowing Lagrangian

⅛'f,ζ = 2α√x2 + Aμxμ. (58)

Fμv given by (55) is invariant under space-time translations parallel to Pμ

x'l = xμ + <∣Pμ, (59)

where α is a parameter. The gaugc ρotential Aμ is invariant under this transformation up to 
the gauge transformation

Aμ(x) ≈ Aμ(x)+∂μχ, (60)

where

Z = ⅜ a(Px)2+(a2P2Pμ-⅛ aMμβPβ)xμ+⅜ aP2x2. (61)

Lagrangian changes by the proper-time derivative of χ, i.e.

JZ,∞(x') = ^<υ(x)+ ~ . (62)
aτ

Noether theorem gives the following integral of the motion corresponding to the sym- 
metry (59):

Il = 2<xxμPμ+⅛ (Px)2-PμMμvxv-⅛ P2x2. (63)

Il will play important role in our considerations. Equation (54) has the very nice feature 
that it automatically guarantees that

xx — 0, i.e. x2 = constant ≡ c0. (64)

Therefore, if we can prove that the original equation of motion (34) is equivalent to Eq. (54), 
we may forget about the troublesome step of checking whether candidates for the solution 
obey the gauge condition x2 = 1. The constant c0 in (64) does not matter because it can 
always be set to 1 just by assuming that x2 = 1 for the initial data for equation (54).

Let us consider the problem of equivalence of Eq. (34) to Eq. (54). Equation (34) is 
equivalent to Eq. (35) just by trivial integration. The fact that Λfμv given by formula (52) 
is constant during the motion of the particie follows from formula (35) for Pμ — the τ-deriva- 
tive of the r.h.s. of formula (52) vanishes if formula (35) holds. Because Eq. (54) has been 
deduced from formula (52), we conclude that Eq. (54) follows from formula (35). Thus in 
order to establish the equivalence it is sufficient to prove vice versa, i.e. that formula (35) 
can be derived from Eq. (54). Differentiation of Eq. (54) with respect to τ gives 

2αxμ = Fl,vx',+ Pμ-(Px)xμ, (65)
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where Fμv is given by formula (55). Eliminating Mμv with the help of formula (52) we obtain

2αxμ = -2<xx2xμ-(Pvxv)xμ + Pμ. (66)

In this step we have assumed that formula (52) holds independently of Eq. (54). We wi∏ 
return to this problem later. Equation (66) will become Eq. (35) if we additionaly require 
that

Pvxv = m+txx2. (67)

This formula coincides with formula (36). However, formula (67) has to be regarded as an 
additional assumption, because formula (36) was derived from Eq. (35) which we are 
trying to obtain from Eq. (35).

Thus, we can obtain Eq. (35) if relations (52), (67) are valid. Let us recall that equation 
(54) follows from relation (52).

Instead of relation (67) we will use another equivalent relation. In order to obtąin 
it, we write formula (52) in the form

and we take square of it. This gives the following formula

8αx2 = M μvMμv+4M μvPμxv+2P2x2—2(Px)2. (68)

This formula is used to eliminate x2 from formula (67). We obtain

2aPx = 2αm+⅜ MμvMμv + MμvPμxv+⅛ P2x2-⅛ (Px)2. (69)

Relation (69) has rather conjplicated form — the fact that it has to be satisfied in 
addition to Eq. (54) would render Eq. (54) practically useless. Luckily, this is not the case. 
Let us compare relation (69) with the integral of motion (63). We see that they coincide 
if we take

I1 = 2αm+⅜ MμvMμv.

Thus, it is sufficient to assume relation (69) only for the initial data for Eq. (54):
It is elear from considerations presented above that relations (52), (69) are equivalent 

to Eq. (35). Part of the content of relation (52) has the form of Eq. (54). Let us now analyse 
the fuli content of relation (52). Taking μ = i, v = 0 or μ = i, v = k (i, k = 1, 2, 3), 
we obtain from (52) the following relations

2axix0 = 2<xx0xi+Mt0+Pix0-P0xi, (70)

2a(xixk-xkxi) = Mik+Pixk-Pkxi. (71)

Relation (70) can be used to eliminate xi, xk from formula (71). The result has the form

Mik + Pixk-Pkxt- 4- {XkMio-XiMko+Xo(Pi×k-Pk×i) + Po(XiXk-XkXi)} = 0. (72) 
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Formulae (72), (70) imply formula (71). Formula (72) does not contain second derivatives. 
Recalling our exρerience with relation (69) we may hope that it is sufficient to satisfy relation 
(72) only for the initial data. Indeed, tbis is tłie case. It is easy to check that the τ-derivative 
of the l.h.s. of relation (72) vanishes identically if Eq. (70) is satisfied. Thus, relation (52) 
is equivalent to relations (70), (72), and it is sufficient that relation (72) is fulfilled at a single 
instant of the proper-time τ, e.g. at the instant at which the initial data are specified.

Relation (70) has the form of an equat∣ion of motion. We would like to clarify its rela­
tion to Eq. (54). Because relations (70) and (72) are equivalent to relation (52), and equation 
(54) follows from relation (52), we conclude that relation (70) together with condition (72) 
imposed on the initial data imply Eq. (54). One can also obtain this result by a direct 
calculation. The first step is to eliminate x0 from Eq. (70) with the help of formula xx = x0x0 

x^x •
-xixi = 0. Next, we extract from (70) xl using the fact that the matrix δ∙H----- ~ has

x0
as the inverse matrix δpk-xpxk. Finally, we eliminate some terms using relation (72). As the 
result we obtain the spatial part (i.e. μ — 1,2, 3) of Eq. (54). The μ = 0 component follows 
from the spatial part because x0 = xθ1(xixi).

Let us summarize our considerations. We have found that the fourth-order equation 
(34) can be integrated twice with the help of momentum and angular momentum integrals 
of motion. The resulting second-order equation has the form (54). It is equivalent to Eq. 
(34) provided that the initial data obey the two constraints (69), (72).

We find it rather enlightening to write Eq. (54) in the old-fashioned way, with the ordi- 
nary time t = x0(τ) as the independent variable and x(t) ≡ (x,(r)) as th⅛ trajectory. The 
ordinary velocity is

(74)

(75)

where, as usual, the dot denotes derivatives with respect to τ. It is easy *o check that x0 = y, 
where y = (1 — u2)-1/2 is the Lorentz factor. Equation (54) is equivalent to the following 
equation

where

and the cross denotes the vector product. Let us recall that we use the metric with the 
signature (+, —, —, —), thus Ek = —Ek, etc.

We obtain from formula (55) that
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where

N = (M0t), M = (Mj), M3 = ⅜ εatoMit.

Conditions (69), (72) can be written as, respectively,

2αm+⅛ {Mz - Ń2) = 2aγ(P0 - Pv)+PŃt - P0xN

+(x× P)M+⅛ (P0t-Px)2-⅜ P2(t2-x2), (76)

M = x×P-tυ×P-v× N-P0x×v. (77)

The expressions on the r.h.s. of formulae (76), (77) are the first integrals for the equation 
of motion (73). Therefore, it is sufficient to assume that these conditions are satisfied at 
a single instant of time.

It is easy to check that at the points lying on the trajectory of the particie B = x×E 
Let us also notę that one can use formula (77) in order to eliminate M from formula (76) — 
then we obtain

2αm = ⅜(l-u2)E2+⅜(υE)2 + 2αy(P0-P^. (78)

Equation (73) and condition (78) are relatively simple. We can find an explicit tachyonic 
solution of them. For such solution P2 < 0. Therefore, using a Lorentz transformation 
one can have Po = 0. Let us also assume that N = 0. Then E = tP, and condition (78) 
gives for t = 0

m = -7(t = 0)Pv(t = 0). (79)

Equation (73) takes the form

d(yv) → _ «
2α = tP( 1 - v2)+t(Pυ)v. (80)

dt

This form of the equation of motion suggests the following Ansatz:

P
u(t) — v(t) — ,

∣P∣
(81)

where ]P∣ = ∖∣P2, and -1 < v{t) < 1 in order that 0 ≤ v2 < 1. 
Condition (79) gives

(82)

Equation (80) reduces to

(83)
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This equation is easily solved by the substitution v = sin φ. The result is

(84)

where

(85).

From formulae (81), (84) one can recover xμ, xμ, xμ∙.

(86)

Substituting these derivatives in Eq. (35) we check that indeed, we have obtained the solu- 
tion. In order to find the trajectory x(f) we integrate the equation

It follows that

(87)

where

For large t the function ∕(t) behaves like sign (a)?. Therefore, for t → ∞

P
x(t) ≈ sign (a)t . (88)

For a < 0 the velocity v(t) is antiparallel to the momentum P.
Solution (87) is characterized by the following values of the momentum and of the 

angular momentum

Po = 0, Pi ≠ 0, Mμv = 0. (89)
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Let us reca!l that the momentum is given by formula (35) — it is not proportional to x. Tra- 
jectory (87) is a straight linę in the ordinary 3-space. The four-dimensional world-line is not 
a straight-line, of course. The particie self-accelerates because ∣v∣ → 1 as t → +oo. From 
(89) we see that P2 < 0, i.e. the solution is tachyonic. It has the first curvature variable, 

k = — x2 = I —) . The proper-time length of the trajectory is finite,

τoc = ∫ y ldt = ∫ (l + a2) ii2dt < <x>,

in accordance with the remark following formula (51).

6. Conclusions and remarks

a) We have shown that Lagrangians (6) with K(k) = y∕k and a. > 0, or K(k) = k, 
with the both signs of a, lead to tachyonic trajectories. These trajectories lie inside the-upper 
light-cone (x2 ≡ 1, x0 > 0). Thus, the particie moves with velocity smaller than the velocity 
of light. However, the momentum of the particie does not have to be parallel to the veloc- 
ity — it can point at a space-like direction. For K(k) = y∕k and a < 0 we notice rather 
interesting fact that there do not exist any non-trivial solutions, apart from the straight 
world-lines in space-time. In this case the particie behaves like the usual free particie, in 
spite of the presence of higher derivatives in its Lagrangian.

b) The presented in Section 5 reformulation of Eq. (34) in terms of ordinary particie 
moving in the extemal electromagnetic field suggests the following new physical interpreta- 
tion of the theory with higher order derivatives. In order to uniquely specify a solution 
of Eq. (34) we have to fix xi(0), xf(0), xi(0), x,(0), i = 1, 2, 3, as the initial data. We oinit 
the μ = 0 components because in order to satisfy the μ = 0 component of Eq. (34) it is 
sufficient to satisfy the μ = i components of that equation and the constraint x2 = 1 
for all τ. Ali τ-derivatives of x0(τ) can be computed from that constraint and its τ-deriva- 
tives:xx =,0,x2+xx = 0, etc. We have also to specify the initial value of x0, i.e. xo(0) — 
this corresponds to the choice of the initial instant of time. Equivalently, we may fix Λfμv, 
Pρ, *0o),  v(t0) at the time t0 = xo(0). According to formula (55), fixing Λfμv, Pβ is equivalent 
to fixing of the external electromagnetic field. Thus, those degrees of freedom of the object 
described by Eq. (34) which are non-standard, i.e. xi, x,, can be interpreted as belonging 
to the electromagnetic field. Thus, Eq. (34) with the higher order derivatives can be inter­
preted as describing the system ćomposed of an ordinary point particie and of the 10-param- 
eter family of extemal electromagnetic fields of the form (74), (75). This ordinary point 
particie is described by Newton equation (73) and its initial data are restricted by the four 
constraints (77), (78).

We have found this interpretation in the case of Lagrangian (6) with K(k) = k. We 
do not know whether a similar interpretation is possible for other models with higher order 
derivatives. The problem of physical interpretation of theories with higher order derivatives 
is rather important one. For examρle, a sensible physical interpretation might help to find 
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the rigłit approach to quantization of such theories. It iś a well-known fact that theories 
with higher order derivatiyes quantized in the standard manner are fuli of severe problems. 
In our opinion, the primary reason for these problems is just the lack of the proper physical 
interpretation of such theories.

c) The above presented idea of the new physical interpretation of theories with higher 
order derivatives is a by-product of our considerations. Our main goal is to gain some 
knowledge about dynamics of the point-like limit of the smooth string. Therefore, we inter- 
pret the additional degrees of freedom of objects described by Eq. (34) as some remnant& 
of inteιinal dynamics of the smooth string. The fact that the model K(k) — k is tachyonic 
suggests that the rigid string is tachyonic already on the classical level, in contradistinction 
to Nambu-Goto string. Derivation of the point-like limit and an analysis of the mass 
spectrum of the classical smooth string will be presented in the forthcoming paper [14]..

One of the authors (H.A.) thanks Dr V. V. Nesterenko for valuable remarks.
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