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Thermodynamical functions are determined for the bosonic gas distribution in the 
external gravitational field described by multidimensional cosmological models having 
the structure FRW ×Bd, where Bd is any D-dimensional compact space with the scalar 
curvature R<∙0λ Universal asymptotics of this function are found for the following situations: 
1) at high temperatures, with β2R < 1 and βm0 < 1, 2) at Iow temperatures, with β1R> 1 
and βm0 > 1, where R is the scalę factor of the physical space, and β is the reciprocal of 
temperaturę. It is shown that if R^∣R^d5 g> 1 (where and are curvature scalars 
of macro- and microspace, correspondingly), the Casimir energy is always negative. These 
results are applied to discuss the dimensional reduction generated by the classical Einstein 
equations with quantum corrections. The idea of the dynamical dimensional reduction is 
expressed, in terms of the dynamical system theory, as the problem of the existence of a single 
stable critical point representing a configuration with the static intemal space. It is demon- 
strated that, in the low-temperature approximation, there is no effective mechanism of the 
dimensional reduction to a static intemal space, if BD is a group manifold (with the same scalę 
factor in all intemal directions). On the other hand, the effective mechanism of the dimensional 
reduction to the zero size does exist. The existence of such mechanism for the fuli class of 
multidimensional homogeneous cosmologies with the hydrodynamic energy-momentum 
tensor is also discussed.

PACS numbers: 98.80. Cq

Introduction

Multidimensional theories of the Universe, such as Kaluza-Klein theories, super- 
gravity [1] or superstring theories [2], belong to the contemporary cosmological paradigm. 
It is a common feeling that they pave the way towards the unification of all physical forces, 
accompanied — as a necessary by-product — by the unification of physics and cosmology. 
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Although all these theories present quite different pictures of tħe world, they share certain 
common features which completely change everything we were accustomed to when studying 
the very early Universe (among many other things also the problem of the chaotic behav- 
iour in the asymptotic initial state, see for instance [4]). According to these theories, at 
the very early epochs of the world evolution the size of the physical space (macrospace) 
and that of the internal space (microspace) were comparable, and the internal space could 
substantially influence the dynamics of the Universe. The question of how the size of the 
microspace has been reduced to non-observable dimensions is known as the dimensional 
reduction problem. The idea of the purely dynamical dimensional reduction, i.e. the reduc- 
tion done entirely by the Einstein dynamical equations, has been proposed by Chodos and 
Detweiller [5]. Many solutions of these equations are known [6] for which such a reduction 
occurs.

Main objections against the above approach are connected with the fact that the ex- 
istence of solutions with the static microspace and expanding macrospace is a consequence 
of a special choice of the initial conditions, whereas a “correct” mechanism of the dimen­
sional reduction should be independent of such a choice. Indeed, in the present work it will 
be shown that, within the class of multidimensional homogeneous world models being 
solutions to the Einstein field equations with the cosmological constant and hydrodynamic 
energy-momentum tensor, the set of tħose solutions which admit the static microspace 
is a “zero-measure” set in the space of all initial conditions for these cosmological models 
(Section 2, 3). On the other hand, the dimensional reduction took place at Planck-length 
scalę and quantum effects were then important for cosmological evolution [7], Therefore, 
conclusions drawn from purely classical equations of motion can be illusive. Quantum 
effćcts should probably be computed at finite temperatures if they are to be used within 
the cosmological context [8].

Main objections against the above approach are also connected with the fact of the 
non-existence of asymptotically stable configurations with the static microspace (Section 4).

Our analysis is based on the fuli clasification of homogeneous arbitrarily-dimensional 
cosmological models.

1. Einstein"s equations for multidimensional homogeneous cosmological models

The assumption of homogeneity of the macrospace has an observational justification 
in cosmology. We assume, by analogy, that the Z)-dimensional internal space B is also 
a homogeneous but anisotropic space, i.e. it is a group manifold rather than only a coset 
manifold. In other words, the total space-time has (Z>+3)-dimensional spatial sections 
being orbits of simρly transitive isometry groups.

First, we classify all (Z>+3)-dimensional isometry groups. (In Ref. [9] the classifica- 
tion of 10-dimensional groups has been performed). In the spirit of the Bianchi classifica- 
tion we enumerate all the relevant (Z>+3)-dimensional Lie algebras. The total space-time 
is a trivial principal bundle P(M, Gd) with P = M × Gd, where M is external physical 
space-time (of the Bianchi type), GD = B is the structure group. The bundle space P is 
a metric product space in the sense that: gP = gM <g> gB. The isometry group for P = M3
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TABLE I

Simple compact Lie algebra

SL (N, C)
SO (2N, C) 
SO(2V+1,C) 
SP(V,C) 
special algebra G2

E4 
e6
E,

Dimensions

(ΛΓ+l)(Λr-l)
N(2N-↑)
N(2N+1)
N(2N+l)

14
52
78

133
248

M3 (the Bianchi type)
B7 {

TABLE II

1>7

s I II vι0 V∏o VIII | IX V 1 ιv Vih VIIh

A 0 3 5 5 6 6 3 j 5 6 6
B 6 9 1' 11 12 12 9 11 12 12
C 12 15 17 17 18 18 15 17 18 18

7 4

A = ® L,1. B = ® Lii ® B(IX), C = L, φ B(IX) ® B(IX), Z..,(IX) — 3 dim algebra B(IX), 
i= l i= 1

L3(IX) ~ SO(3) algebra, Ll — 1 dim abelian algebra.

×Gd is a direct product Gd+3 = G3® Gd of the standard Bianchi isometry group Gi 
and Gd. Therefore for its Lie algebra JZ,d+3, one has ^,d+3 = L3 © LD+3; the problem 
of classifying all the ⅛,d+3 is thereby reduced to enumerating all relevant Lie algebras JS?D.

We assume, for physical reasons, that GD is a compact Riemannian space, and con- 
sequently we classify all distinct real Z>-dimensional compact Lie algebras.

By using the theorem on decomposing compact Lie algebras into the sum of simple 
Lie algebras and the centre, we are able to generalize the classification given by Demiański 
et al. (in Ref. [9]).

The classification of compact simple D-dimensional real Lie algebras is known (for 
example [10]). Table I contains all simple real forms of the Lie algebras which can be 
used as algebras of the isometry group of a D-dimensional compact intemal space. By 
forming direct sums of simple compact Lie algebras and of Abelian ones we obtain all 
possible algebras generating algebras of isometry groups of the internal space B° (the total 
dimension must be D because the group of isometry is acting simply transitively on BD [11]. 
Since these Lie algebras have the structure of direct sums, one can easily determine the set 
of equivalence classes of the structure constants [12]. The case D = 7 for example, is shown 
in Table II. The types: VIh, VIIh, VIII, and IX with the microspace of the form B(IX) 
× B(IX) × S1, have the highest dimensions, i.e. any open subset in the space of the initial 
data must have a non-empty intersection with the one of the above distinguished four types.
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From Table II, one can also see that the world models with the microspace of the torus 
type (which are most often analysed in the literaturę) form a “zero-measure” set (in the 
Collins-Hawking sense) within the class of all multidimensional homogeneous world mod­
els (for details see [12]).

One can make use of the tetrad formalism [13] and take into consideration the metric 
of the form

ds2 = dt2-gij(t)e'a(x)ei(x)dxadxl,, (1)

where gij are lunctions of the cosmological time t only, and ela(x), i,j =1,2, 
are the basis vectors. We will assume the Einstein equations in the form

3, ..., D + 3

r^~t^ d + 28^ D + 2λ, (2)

where

τμv = (e+p)ulluv-pgμv (3)

is the hydrodynamic energy-momentum tensor, ρ the energy density, p pressure, and 
Λ the (Z> + 3)-dimensional cosmological constant; α, β, μ, v = 0, 1, ..., D + 3. The compo- 
nents of the Ricci tensor for the metric (1) are

«0 — ~ 2 κxκβ> (4)

R? = ~i^Ckij-δkiCij), (5a)

i i 1 d ,
R/ = -Pi- ÷(vig!κ∕),2√∣gi dt

(5b)

κtk∖≈ gkigij, !gl = ∣det(gy)∣,

Pij = -ΓuΓljk-C,lkΓ* j, 

rltj = 4(ct-+c17gm√,+‰igi'), 

where Pij is the Ricci curvature tensor expressed in terms of the structure constans; the 
dot denotes differentiation with respect to the cosmological time t.

For a compact Lie algebra jS? the structure constants C,rs may be represented with 
the help of a third-order totally antisymmetric covariant tensor. Indeed, if we use the metric 
tensor gtl in for lowering indices of contravariant tensors, then the tensor Cr,t = C,ngt*,  
by virtue of equations gls = C'lkCk (Cartan metric tensor), may be written in the form:

__ f^>t l z-,t z-'∏ f~,m 
rsl - '-',sm'~'rt'-'ln ~∙ ni*

The last expresion is invariant under the cyclic permutation of the indices and is skew 
symmetric in r and s, hence the tensor Crsl is totally antisymmetric. On the other hand, for 
a compact Lie algebra the Cartan metric tensor may be assumed to be in the form 
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gll = dri; hence Crsl = Clrs, i.e. the structure constants Ctrs and the components Crsl of tensor 
* coincide [10].

The above properties enable us to construct the Ricci curvature tensor of a constant 
time-space. For the metric (1) we can write the components of the Ricci tensor as

Pii = ⅛ ∑ (Cijk)2 (AlAjAkΓ2 {A↑-(A2-A2)2}, (6)

where Cijk are the structure constants of the Lie algebra of the respective isometry group, 
and

gtj(O = diag(√4j, ..., Ao+3), (7)

where Ai (i = 1,D+3) are the scalę factors of the macro- (/ = 1, 2, 3) and micro- 
(i = 4, ...,Z>+3) space, respectively.

By generalizing the standard reduction procedurę of a metric to the diagonal form, 
for the classical Bianchi types expressed in terms of the group of inner automorphism 
preserving commutation relations (see e.g. [11]), one can show that for multidimensional 
homogeneous world models with the type A macrospace metrics (together with their first 
derivatives) can always be reduced to the diagonal form (7) at any time instant t0. The 
Einstein equations transfer this property to any other time instant. In such a case the 
components (0, i) of the Einstein equations are identically satisfied. For the considered 
world models, (having the macrospace of type B) the metric can be reduced to the form, 
having one non-diagonal component g12(Z), with the help of the group of inner automor- 
phisms. For such a case, the components (0, i) of the Einstein equations give the additional 
condition = 0. In the exceρtional case, when the macrospace is of B(V) type, the metric 
can be reduced to the diagonal form with the additional constraint Λ° = 0. In the follow- 
ing, we shall assume the diagonal form of the metric (7).

Dimension 11 is distinguished by a realistic supersymmetric version of Kaluza-Klein 
theories based on the gauge group SU(3)× SU(2)× U(l). In this case, N = 1 + 3 + 7 (N is 
space-time dimension) and the Einstein equations (2) assume the following form:
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where n1, n2 are eigenvalues of the symmetric matrix n°h such that we can write nab ≈ n(a> δab 
for the standard decomposition of the structure constants Cbc = εabcnad + δabaa +δbac (for 
details, see [12]), and they refer to the macrosρace. P'l, Qj, Rkk are the Ricci tensors of the 
macro- and microspace, resρectively, (Qjj, are either always nuli, for B(I) microspace 
sector or have the B(1X) form), Aj — aj (j = 4, ..., 10).

From equation (8), one can see that the solutions with the static microspace A4 ≈ ... 
= A10 = 0, in the case of (1 + 3 + 7) dimension are admissible only if Qjj ≈ J⅛ = 0 and 
A = 0, p = o (massless scalar field). If p = q = 0 a transition to the vacuum case takes 
place. We can formulate:

Conclusion 1. Within the class of homogeneous 11-dimensional world models the only 
generał solutions with the static microspace, are the following ones: (Bianchi tyρe)×T7. 
They form the “zero-measure” set within the considered class of models (Table II).

The conditions stated above are, of course, the necessary but not sufficient ones for 
the existence of solutions with a static microspace. In the work by Demiański et al. [13], 
the case B(V) × T7, admitting asymptotic solutions with the static microspace, was investi- 
gated. It will be demonstrated that, within the class of B(V) × TD type solutions, the set 
of models, which admit the static microspace is of a non-zero measure.

Conclusion 1 is also valid in the case when the dimension of space-time is: 5, 6, 8, or 9 
(from Table II, we can see that the S‘ sector is present in this case). In this case, the only 
solutions having static microspace are the following ones: (Bianchi type)xTD.

If space-time dimension is 7 or 10 we can formulate the following conclusion:
Conclusion 2. Within the class of homogeneous 7 or 10-dimensional world models, 

the only solutions having the static microspace are the solutions: (Bianchi type)×S3, 
(Bianchi type) x S3 x S3, where S3 is a maximally symmetric space. These models are either 
sourceless or with an energy-momentum tensor describing a massless scalar field (p = g).

From Eq. (8), one can see that, in generał, solutions with the static microspace, d4 = ds 
= d6 = a-, = d8 = ag — 0, are admisible (for the case 1+3 + 6 dimension only if Qij ≡ Rk

= δk[ Rk = ------ <)£ | and p = g). In the next Section it will be demonstrated that,
D+2 \ a2 /

within the class of (Bianchi type) × S3 x Ś3 solutions, those models which admit an asymptot- 
ically static microspace form a “zero-measure” set in the fuli class of solutions.

Now, we shall investigate the existence of solutions with a static microspace in the 
generał case: (Bianchi type) × BD. In this case, the dynamics is described by equations (4) 
and (5) with curvature tensor (6). Although system of Eqs (4) and (5), with the curvature 
tensor (6), does not behave chaotically near the singularity [11, 14], the type of solutions 
in generał depends on the space symmetry and it is hard to give a generał solution. However 
for our purposes, it is sufficient to investigate the system in the physically motivated appro-

(8)
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ximation ,. a4, ...,¾+3 = a∙ ⅛ such a case t^e solutions with the static misrospace are 
admitted if p = ρ, and one has

∑ (C0t)2 = β for all i = 4, .... D + 3.

2. Asymptotic stability of classical solutions with the static microspace

2.1. The method of the dynamical system stability

First of all, equations describing a cosmological model should be reduced to the form 
of a dynamical system: xi = ∕l(x1, ..., x„) in such a way that solutions with a static micro­
space (with some other property of interest) should be ćritical points of the system, i.e. all 
∕i(x1, ..., x„) = 0, (i = 1, ..., w), and (x1, ..., x„) = P should be a critical point. As it is well 
known, such points represent asymptotic states of system [16]. If a critical point 
x — (*ι,> ∙∙∙,⅞) is nθn degenerate, i.e. if at this point all real parts of the eigenvalues 

¾z
(Re λi) of the linearization matrix Ail = —- do not vanish, then there exists a one-

βχjx=i

-to-one continuous mapping of a neighbourhood of this point which transforms trajecto­
ries of the original system into a linearized one. In this sense, the qualitaiive behaviour 
of the original system is equivalent to the behaviour of its linearized part. If (ξl), ..., (ξ") 
are eigenvectors of the linearization matrix Aj, the solution of the linearized system has,

(i,Λ*)
no sum over i

The radius of the static microspace is equal to a =
'β(D+2)

2Λ
System of equations

(4) and (5) with curvature tensor (6) is then reduced to the following form

ΣAi a 2A 
- + D- = ——, 
√4l∙ a D + 2 

i=l

2/1
D + 2’

3

i= 1

2A
D + 2

(9)

Although equations (9) have been, for simplicity, written for the vacuum case (p = o 
— 0), our conclusions remain valid that only a “zero-measure” set of trajectories, being 
solutions to the system (9) with a hydrodynamical energy-momentum tensor, leads to 
a static intemal sρace. If β = D— 1, we obtain the ρreviously discussed case.
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in generał, the following form:

xl(t)-xl - Re ∑ Ckξfe2kl,
k = 1

where Ck are constants. A non-degenerate critical point is called the attracting point if, for 
all eigenvalues, Re λi < 0. In this case, all trajectories from the neighbourhood of this 
point go to this point if t → ∞. A non-degenerate critical point is said to be repulsing point 
if, for all eigenvalues, Re λi >0.

In this case, all trajectories from the neighbourhood of the point x go to it if t → — oo. 
A non-degenerate critical point is said to be non-stable saddle point if the dynamical 
system has, at x, negative eigenvalues αl ≤ ... ≤ a,i < 0, Re λl = αj and n—d eigenvalues 
with positive real parts.

When investigating stability of solutions with a static microspace, the following theorem 
ρroves to be of special interest.

If x is a non-degenerate critical point and if the dynamical system has, at x, d eigen- 
values λγ, ...,λi with negative real parts ≈1≤ ... ≤ αd < 0, then there exist (locally) an 
invariant d-dimensional manifold Hzadtr, on which all trajectories of the system go to x as 
t → oo. A manifold M is said to be an invariant manifold of the system if every trajectory 
passing through a non-degenerated point of M lies entirely in M (for — oo < t < + oo). 
For every such solution there exists the asymptotic

lim Γ1 ln [( ∑ (xj(t)-xj∙)2),z2] = αi (10)
t→∞ y=i

for a certain ż. Analogously, if at certain point x the system has k eigenvalues with ρositive 
real parts, then there exists an invariant A-dimensional manifold Wzrkep, on which all trajecto­
ries emanate from x [16],

From the last theorem it follows that, for a saddle point, there are two invariant 
manifolds PFad,r and W"~pd containing this point and filled with trajectories (separatrices) 
going to, and emanating from this point. These manifolds are said to be stable and non- 
-stable manifolds, resρectively. All other trajectories (not contained in Wz^tr or in Wz"epd) 
do not meet the critical point in ąuestion.

2.2. The stability of solutions with the static microspace

2.2.1. Stability of solutions with the static microspace within the dass of B(V)×Td motfeis

By using the last equatjon of (8), one obtains: A1(t) = A(ty, A2(t) = A(t) ∙S(t)∙, 
A3(t) = a • A(t) ■ S~1(t) (for the B(V) model all ni are zero), where S(t) is an unknown 
function of t.

Equations (8), for sourceless case or for a massless scalar field, can be reduced to the 
form of the dynamical system:

H = -3H2-H(h4 + ... +⅛d+3)+ ⅛,
K.

Φ = -φ(3H+h4 + ... +hn+3),



679

λ4 = — h4(3H + h4 + ... +ho+3),

hβ+3 ~ -ho+3(3H + h4+ ... + ∕ιj9+3), (11)

where H = A∣A, φ = Ś/S, hj = aj∣aj, j = 4,..., Z>+3.
By introducing the new variables U = H • R, V = φ ∙ R, yj = hj ∙ R, the above set 

of equations can be given the form of the autonomous dynamical system:

[/' ≡ -2U2-Uy4-Uy5- ... -UyB+3+2,

V = -2UV-Vy4-Vy5- ... -VyB+3,

},4 — -2},4L∕-y4-y4y5- ... — y4yo+3,

>,d+3 — — 2yD+3U-yo+3j'4 ∙∙∙ },d+3, (12)

where prime denotes differentiation with respect to the new time variable τ, dτ = dt∣R.
System (9) has, in a finite region, the only critical point (?) = {y4 = ... = yB+3 = 0, 

ii = 0, u = +1). It represents the solution with the static microspace and the isotropic 
Friedman (k = —1) macrospace. System (12) is determined on a region given by the 
(0,0) component of the Einstein eąuations:

2qA2 = 6Ł/2—2k’2 —6 + ( £ y,∙)2 - ∑ y2j ≥ 0. (13)
j=4 7=4

If p = & = o (sourceless case), one can easily verify that the critical point, represent- 
ing solutions with a static microspace and an isotropic macrospace with the Milne-like 
evolution: R oc t, is situated on the boundary of “constraint condition” (13). The phase 
portrait, for the case of {FRW with k = — 1} × Tη with the identical scalę factors, is shown 
in Fig. 1. Now, we will demonstrate the stability of the critical point P. At this point, 
system (9) has real negative eigenvalues of the linearization matrix, i.e.

2] = —4w, λ2 = — 2w, ..., zD+2 = — 2u. (14)

This means that P is an attractive point (for u > 0). One can see that, in our case, 
there exists (Z> + 2)-dimensional i∏variant manifold in the (Z>+2)-dimensional phase space. 
In other words, there exists a non-zero measure set of trajectories for which the solution 
with the static microspace is an attractor. It can be also shown that this property is 
characteristic for the macrospace with Ellis-Mac Callum metric [15, 16] and with naa = 0.

Cosmologies resulting from the bosonic sector of the N = L, D = 10 suρergravity 
theory, or equivalently from the theory with the Chapline-Manton action and vanishing 
Yang-Mills field, have been studied in the literaturę [17]. If one assumes that fields Fnpq 
vanisħ and dilaton field is homogeneous: φ = φ(t) (see Gleiser, Stein-Schabes [17]) one 
obtains solutions with the static microspace, for {B(V)×T6} models. This solution is 
asymptotically stable in the fuli class of solutions. Fig. 2 shows the phase portrait for the 
FRW space-time (with k = — .1) × T6 (identical microspace scalę factors) with the dilaton
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Fig. 1. The phase portrait for space-time FRW (with k = — 1) × T7 with the identical scalę factors of the 
microspace in the vacuum (a) and with radiation (b); H = A/A, h = a∣a, x = HA, y = hA are Hubble,s 
functions in the macro- and microspace, respectively. The shadowed region is excluded by the constraint 
condition. The critical point Pj(l, 0) representing the asymptotic state of vacuum solutions is an atracting 
point. The behaviour of trajectories of the dynamical system FRW (with k = — 1) × T7 with radiation, 
in neighbourhood of the singularity, is represented in (c). To investigate the system at infinity, the projective 
coordinates tum out to be useful (z = l∣x, u = y∣x). Typical behaviour of the system near the singularity 

is represented by the repulsing point Pi

field. Critical point P1 represents the asymptotic state of the classical (sourceless) solutions. 
It is an attracting point because the macrospace is expanding∙ If the system is initialy in the 
neighbourhood of this critical point there is a non-zero measure set of trajectories for which 
it is an attractor (dim Wz'a'γ = D—2).

2.2.2. Stabllity of solutions with the static microspace within the class of (Bianchi type) × BD models

For simplicity, we assume that Al, A2, √43 > a so that the curvature of physical space 
can be neglected. However, the conclusion remains valid for the case when the physical 
space is a generalization of Bianchi V model to the model of Bianchi VIh with the Ellis-Mac 
Callum metric and = 0 [15]. In this case equation (9) can be reduced to the form of the 
autonomous dynamical system

, 3D , -Dt+5D+2 D(Z> —1) - D
X =-^2x+xy-F^ + ~^Γy+^

, 6 2 3(D-2)xy 2
y ~ D+2* D+2^y + D+2 D+2, (15)
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Fig. 2. The phase portrait for FRW space-time (with k = — 1) ×T6 (scalę factors of the microspace are 
identical) with the dilaton field in N = 1, d = 10 theory of supergravity. The critical point Pi(l, 0) represents 
the asymptotic state of the classical (sourceless) solutions. It is an atracting point x = HA, y = hA, where 
H and h are Hubble,s functions of the macro- and microspace, respectiyely; A represents the scalę factors 

factors of the macrospace

with the constraint condition

, , D(D-l) , D
Λaz = 3x2 + 3Dxy + -—- ---- y2 + — > 0, (16)

A
where x = ~ a, y = a, and prime denotes the differentiation with respect to the parameter 

A
Id-i

τ: ch = dt/a; if it is assumed that the radius of the microspace is now equal to a-

. / / 2A \
Dynamical system (15) has the critical point P: x0 - ±√3∕3 I Ho ± yj ^(0+2)) ’

∕ ∕(O-l)(Z>+2)∖
70 = 0 I a = —-1 , which represents the solution with the static microspace

and inflationary phase on the macrospace. This critical point is a saddle point, i.e. if the 
system is in the neighbourhood of this point then only a zero-measure set of trajectories 
leads to P (dim W∙,a'γ = 1), see Fig. 3a.



Fig. 3. The phase portrait of FRW space-time (with k = 0) ×Bd (scalę factors of the microspace are identi- 
cal). The critical point Pl (representing a solution with the static microspace) is a nonstable saddle point 
(a), (b) shows the behaviour of the system near the singularity in projective coordinates z = l∣x, u = y/x.

The typical behaviour near the singularity is represented by the repulsing critical point P2
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In Fig. 3b the behaviour of the system near the singularity is shown. For this purpose, 

we introduce, as previously (Fig. lc), the following projective coordinates (z, u): (z = -, 
∖ x 

u = -), ( w = -, v = -) . In these coordinates, the spħere S1 is covered by two straight
*) \ y y)

lines which correspond to points (x,y) at infinity; z = 0, -∞<u<∞jh, = 0, —∞ 
< v < ∞ [16]. In the coordinates (z, u) system (15) takes the form

dz 3D 5D+2-D2 D(D-1) , D 3
— =------ z — uz —————-------------- u z---------- z ,
dτ1 D+2 D+2 D+2 D+2

du 6 D(D-7) 2 6(D-1) 2 2 D(D-1) ,  =----------------,  M -| U Z U 
dτ1----D+2 D+2----------- D+2------ D+2---------- D+2

in the region 3 + 3Z)w+
D

u2+ — zz ≥ 0, and where <⅛1 = z~1dτ. From Fig. 3b

we see, that the typical behaviour near the singularity (represented by the repulsing point P2) 
corresponds to the situation in which the dimensions of the micro- and macrospace are not 
compatible (as Fig. lc).

3. Quantum effects in homogeneous multidimensional cosmological models

Quantum vacuum energy can essentially influence both the cosmological evolution 
or the stability of compactified solutions [18]. Let us now consider the thermal bosonic 
gas in external gravitational field of multidimensional cosmological models.

For simplicity we shall assume one-loop quantum effects arsing from scalar particles 
contained in multidimensional cosmological models. We shall determine quantum distribu- 
tion function in case when scalę factors are slowly variable in time (quasistatic approxima- 
tion). Let the background space have the M3 ×Bd structure, where M3 is a maximally 
symmetric space, whereas B° is an arbitrary D-dimensional compact space with the curva- 
ture scalar °R.

The action for the system under considefation is

S = S,+⅜∫ dtlx 4≡~g (gμ',δμφ∂yφ+m20+ζRφ2), (18)

where R is curvature scalar of the total space, ζ the coupling parameter, m0 the effective 
mass. We shall quantize the scalar field only, whereas the gravitational field remains classical 
(for the review of problems connected with quantum field theory in a curved space-time 
see Birrel-Davies [19]).

We shall determine quantum distribution function by using the ζ-function regulariza- 
tion method

ln Zo(^) - -⅜ f(s)Uo+ln Λ(0) (19)

g(D-l)
2
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where
oo

ζ(s) = dtt'~1 tfexp [→4J.
o

The operator Δ for the metric gMs ® gBo, after the Wick rotation t → — ń assumes the 
form

Δ = — ÷ ^l.b. + 4j. + m2< (20)

where ∆fy is the Laplace-Beltrami operator on the sphere (pseudosphere) S3 of a unit 
radius, m2 = m⅛+ζR is the effective mass, d[¾. is the Laplace-Beltrami operator on 
D-dimensional compact manifold

(21)

where mg = det mgAB.
We shall discuss cases when M3 is a sphere S3 or a pseudosphere PS3, or R3 or T3 = S1 

x S1 ×S1 whereas BD is D-dimensional compact space with the curvature scalar <D)R (not 
necessary homogeneous).

In order to determine the function ζ(s, β) we must know the spectrum and degeneracies 
of the operators d⅛- and √⅛¾. Iq the case when the physical space is a sphere S3, the 
spectrum and degeneracy of operators d[¾- and d[¾, are equal to /(/+2) and (/+1)2 
respectively, where / = 0,1, 2,... (the respective eigenfunctions are spherical harmonice 
on S3). In this case the function ζ(s, β) has the following form

where

If the physical space is a fiat R3 one, the spectrum of the operator d[¾. is (kf+k⅛+fc2) 
with the degeneracy equal to 1; ke(-<x>,∞) (respective eigenfunctions are piane waves 
in R3). The function ζ(s, β) takes the form

(23)
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where V3 is the volume of R3, (k)2 = kl + k2+kj, m2 = ζwR+m⅛. By using the fact 
π3∣2

that ∫ d3ke ,k2 = we can write (23) in the form

(24a)

In the case when the physical space is a thi-ee-torus T3 = S1 ×S1 x S1, the spectrum of the 
operator *s t^e following:

where ni = 0, ± 1, Ri (i = 1, 2, 3) are radii of resρective spheres S1. In this case the 
degeneracy is equal to 1 (the resρective eigenfunctions are the product of three eigenfunc- 

d2
tions of the operator-------- on the sphere S1). The function ζ(s, β) is equal to

dx2

(24b)

When the physical space is a pseudosphere PS3, we can use the identity

β

lnZδ(0) = -⅜trln J dτ d3x j dDy
o PS3 Mu

(25)

(
27t∖2

—J n2, modes (k, J, M) 

corresponding to Laplace-Beltrami operators on PS3 and modę;, λo corresponding to L.-B. 
operators on MD.

Hence
D‘

<x|k, J, My <y|żD>



where ke [0, ∞], J = O, 1, Me [— J, J].
As a result of summation over J, M of the squared modulus of the function (25), 

we have:

and
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Σ, i i 
∣<x∣k, J, M>∣2 = —d- -2 

2π \aj a

∑i<≡2-i⅛∙

Ad

and

where Vol Md is a volume of MD ; Vol Md = ∫ y∣wgdoy. Therefore we, obtain

(26)

(27)

CO

Because ln A =-----------, dxx2e~'lχ = - , we obtain the following formula
Ss s=o J 4r3

for ‰ β)

where

By companng formulae (24) and (27) we see that formulae for the physical spaces 
R3 and PS3 are similar. The negativness of the curvature of PS3 is taken into account in 
ζ(s, β) through the effective mass m2.

3.1. Universal high-temρerature apρroximation
Our task will be to show the universal high-temperature (β → 0) behaviour for cases 

of S3×5d, PS3×Bd and B3×Bd, respectively.
The function ζ(s, β) for the thermal scalar bosonic gas in the sρace S3 × BD has the 

form

(28)
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where a = m2 = nto+ζ(wR+wR). Using the fact that 
2π

and if the quantity

(3)R+WR → oo), one can see the major contribution to the integral over t comes from 
a neighbourhood of t = 0.

For smali values of t, the following asymptotic expansion are valid:

tends to infinity, i.e. if a → 0 (β → 0) or if m2 → oo (i.e.

(29)

(30)

where A⅛3∖ Aψ* are DeWitt-Schwinger coefficients [21, 22]. For the spaces considered 
by us, these coefficients do not depend on coordinates; they are constants dependent on 
scalę factors. By using equations (29), (30) we obtain

(31)

where Vol M3 = ∫ d3x √<3>g, Vol Bd = ∫ dDy
After some transformation of (31) we obtain the following formula 

(32)

where Kv is the third order Bessel function and prime means that we omit the term n = 0 
in the sum.

D+3
The terms, for which l+j < —-—, give the leading contribution to the quantum 

distribution function for β → 0. If D+4 is an odd number then Γ ^s+l+J- ^is
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(33)

(34)

non-singular at s = 0, for any l and j. Therefore ζ(0, β) = 0, and

If β2m2 → 0, then

r, /n _ VolM3 ∙Vol⅜∕^ V÷ γ , (3) 
σ ,w-Γ(5)(4π)tβ+3>V+3 2u 2u iβ 1 }

n = — co J,j = O
D+3 ,+J<"-

∕ d + 3∖rls+ι+j- \ 
x(β2jA^)^-7—h+4, 

(2π√0+'+y--)

where we have omitted the contribution of the zero modę n = 0 to the sum. By using the 
identity: π-^Γ θθζκ(x) = π~i~ Γ ^-y^ζκ(l-x) we obtain the following high- 

-temperature asymptotics of the function ζ(s, β) ∙.

(35)

(36)

.~.⅛⅛⅛K∙ ∑ ((4R((!)"-")
Jj=o

D÷3
i+J<-

xr(^F_(/+∙°) wD+4-2</+•/■»•

τr, . p+3If∕+7<-

and we can go to the limit s → 0. Hence we obtain ζ(s, β) 0, and

the Riemann function ξκ(x) does not pass through the pole x = 1
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From formula (36) we see that tbe leading term in the exρansion of the function is

ln Za(β)
Vo1M3Vo1Bd ∕Z>+4∖~~π(O+4)l2βD+3~ r \~~2~ j ^D+^-

(37)

As it is known, the distribution function for a scalar thermal radiation in a three- 
-dimensional box of the volume V3 is equal to In Za(β) = π2 K3∕(90∕l3). Because

Cr(4) = — and Γ(2) = 1, we see, from formula (37), that the high-temperature asymptot- 

ics of quantum distribution function of a thermal gas contained in the (Z)+3)-dimensional 
compact space, corresponding to an arbitrary cosmological model, is the same as the distri­
bution function for a scalar thermal radiation contained in a (Z> + 3)-dimensional box. 
This fact can be exρlained as follows: at very high temperatures particles do not “perceive” 
the geometry of the space in which they are placed, they behave as particles in a flat multi- 
dimensional box. It can also be shown that when D+4 is an even number (then ς(0, β) ≠ 0), 
asymptotics (37) remains valid, i.e. the anomaly effects are negligible in high-temperature 
approximation, as compared with term (37).

In the case when the physical space is a pseudosphere PS3, the function ζ(s, β), for 
the thermal gas of scalar bosons in the space PS3×Bd, is the following:

‰ β)
VoI(PS3) V fj -ł -⅛2÷"sl

= --ξ73—, > Idtt 2e l-f2 J(4π)3z2Γ(s) Z,j J
n== — oo 0 ŻD

(38)

where M2 = ∕no+ζ* β*Λ+(l  -6ζ)∣A2 and A is the scalę factor on the pseudosphere. For 
the minimal couρling ς = 0, for massless particles, we analogously obtain the distribution 
function in the form

(39a)

If (βM)2 → 0 (M = 1/A) then (39) takes the universal form (37). We can obtain quantum 
distribution function for the case M3 - R3 from the one for PS3 by substituting M2 → Jl2 
= m^+ζwR and Vol(PS3) → V3, where V3 is the volume of R3.
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3.2. Universal low-temperature approximation

We shall find the low-temperature (β → αo) approximation of quantum distribution 
function for massless scalar bosons contained in spaces S3 × B(D} and PS3 × B)D\ respectively. 
After simple transformation the following formula is obtained for the function ζ(s, β) 
in the case of S3×B,0y

(39b)

where A is the radius of S3. If we now change the variables: t∣A1 = z, we obtain, from 
(39b), the following formula:

βA2s 5
2πll2Γ(s)A BA ∕(A)U= 1» (40)

where

Let us consider, for simplicity, the case of massless particles (m0 = 0). In such a case, 
A2μ2 = ζA2wR + (6ζ-1) and if A2μ2 → ∞ (which takes place when i°yRA2 → oo, i.e. when 
the scalę factor on the macrospace is much greater then the scalę factors on microspace), 
the major contribution to the integral over z comes from the neighbourhood of z ≈ 0.

In this case, we can make use of the following asymptotic expansion:
+ oo

∑
ffl∕2 1

∑^∙^∑4'w'-

½D √ = 0

Then we obtain

(41)

(42)
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In the case of PS3 × Bd, the function ζ(s, β) has the form

| —. fiζ
where M 2 ≡ ml + ζi°yR+ ---- — , A is the radius of pseudosphere.

A2
By introducing the variable z = t∣A2, we obtain

(43)

In analogy to the previous case, if A2M2 → oo, i.e. if A2{D}R → ∞ (for m0 = 0), the major 
contribution to the integral in (43) comes from the neighbourhood of z = 0, and by using 
the asymptotic expansion

we obtain

(44)

If Z>+4 is an odd number we ħave ζ(0, β) = 0 (the terms from anomaly are, in the 
generał case of the low-temperature approximation, of a lower order as compared with 
the term 7 = 0 — for details see [23]). Finally, we obtain

(45)

Formulae (42) and (45) are of generał character and are valid when the scalę factors 
on the macrospace are much larger then scalę factors on the microspace. By assuming 

that particłes are massless, and that coupling is conformal ∣ ζ = / —, we obtain
∖ 4(0+3)/

μ 4(D + 3) +A2VD+3 7’ (46)
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If the scalę factor A → ∞, we can neglect the second term in (46); in such a case, 
| 2 \i/2

---------- {D)R i , and the quantum distribution function takes the form 
4(0+3) /

Analogously, quantum distribution function (45) is

(47)

(48)

The first term of the expansion (A{0D) =1) is the leading one in (47) and (48), for the low- 
-temperature approximation A a4,, aD+3. In this approximation terms from anomaly
(if 0+4 is even) are of a lower order.

4. Metric back-reaction on low-temperature quantum corrections

The assumption of the quasi-static approximation enables us to determine thermo- 
dynamical characteristics of a bosonic gas in extemal gravitational fields multidimension- 
al cosmological models. The internal energy can be computed from the formula

E≈-^-lnZa(β) (49)
op

and the energy-density is

5 = VolM3-VolBD‘ (50)

Free energy and pressures on the macro- and microspace are given by the following 
formulae

(51)

(52)

(53)
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By using the generał high-temperature asymptotic (37), from (49)—(53), one obtains

(54)

The above relations show that high-temperature quantum effects are dynamically 
equivalent to effects of radiative matter, i.e. to a hydrodynamic energy-momentum tensor

The problem of the existence of solutions with the static microspace and their stability 
has been discussed in Sections 1 and 2,

Now let us investigate the existence and the stability of solutions in the low-tempera- 
ture approximation of quantum effects. For simplicity let us assume that we investigate 
the system in a physically justified approximation a4,,..., ao+3→ a. From the universal 
asymptotics (47) and (48) and for relations (49)—(53) we obtain

p(M3) = p = -ρ - JF54? P(Bd) = p' = a = const > 0. (55)

From the above, it follows that low-temperature quantum effects are dynamically equivalent 
to effects of the anisotropic energy-momentum tensor

Tvμ = diag(ρ, -p, -p, -p, -p,, -p).

The Einstein equations, with quantum corrections on M3 × BD, take the form

(56)

where p,p' and ρ are given by (55), K ≈ 0, ±1.
System of equations (56) can be reduced to the form of the autonomous dynamical 

system
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where u = l∕β2, ρ = eo/a(B+4)» 6o .= ŚoD+4), H = A/A, h = d/a. 
System (57) is defined in the region

(57)

(58)

We are interested in the stability of the solution with static microspace, i.e. in the 
behaviour of the system in the neighbourhood of the critical point h0 = 0, u = u0, H = Ho. 
In order to investigate the character of this critical point it is convenient to use the Routh- 
-Hurwitz criterion [24] wħich gives us the necessary and sufficient condition for the existence 
of negative real parts of eigenvalues of the linearization matrix.

This criterion, when applied to our case, gives us the following stability condition 
for a solution with the static microspace and an inflationary phase in the macrospace:

(59)

Condition (59) should be understood in the following way: if system (57) admits the 
solution H = Ho, h0 = 0, u = u0, this solution is represented by an attractive critical 
point, provided condition (59) is satisfied. If, for example, β = 0 (the microspace is a hyper- 
torus) condition (59) requires that Casimir energy be positive. Because it is not satisfied 
in the low-temperature approximation, dim < 3 and only a zero-measure set of trajec- 
tories leads to the solution which is interesting for us. Condition (59) is not satisfied in the 
generał case of Iow temperatures which proves the asymptotic non-stability of solutions 
with a static microspace. If K = 0 and /? = 0, i.e. for the case of FRW (with K = 0) × T7 
model, the behaviour of the system in the neighbourhood of the saddle point h0 = 0,

/ Z>+4
Ho = ± ∖∣6(j)~^2)λ is *1*ustrate^ in Fig. 4c.

If A = 0, the solutions, for which quantum effects are negligible, are asymptotically 
admissible (for example FRW (with K= — 1) × Td), but they are nonstable (Fig. 4a). 
The solutions, for which curvature terms are proportional to the terms arising from quantum 
fluctuations are stable (Fig. 4b).

From first integral (58) one sees that qua∏tum effects do not provide effective 
mechanism of dimensional reduction which could lead to a static microspace, but they can 
provide an effective reduction mechanism leading to the zero size.

For example, if K = +1 and A ≈ 0, one sees, from (58), that the physical space 
exρands if and only if the microspace contracts.
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5. A simple mechanizm of dimensional reduction with the help of low-temperature corrections 
for FRW× {smali world of Ellis}

So far our conclusions have shown the noneffectiveness of mechanisms of dimensional 
reduction. Finally, we shall show the existence of a certain theoretical possibility of internat 
space compactification with the help of low-temperature quantum effects for the case when 
the intemal space is a compact form of negative curvature. As it is well known, the Einstein 
theory of gravity determines the local structure of space-time, i.e. the metric, whereas the 
compactness of the intemal space is its topological property [25]. The problem of topologi- 
cal classification of three-dimensional maximally symmetric spaces was investigated by Wolf 
[26], and in cosmological context by Ellis [27]. In the case of negative curvature the classifi­
cation is not known, but for compact spaces one can use their volume for classification 
purposes (see Thurston [28]). The number of such spaces is infinite. We shall assume that 
the intemal space is compact D-dimensional space of negative curvature PSo∕Γ 
(Γ is a discrete subgroup of the isometry group) whereas the physical space is an FRW 
model. If Γ ≠ I {I is the identity), its action lowers the dimension of the isometry group, 

zχz>+i)
and the space does not admit the fuli —- ------ dimensional isometry group any longer.

In this case, Einstein equations with quantum effects can be reduced to the form of the 
following three-dimensional dynamical system

4. + D

4 4+0
A= — 3H ■ h —Dh2+(D-l)u+ — ρ0u 2 ,

u * — 2uh

in the region

(60)

K = 0, +1 
K= -1,

where H ≡ Aj A, h≈ i∣a are Hubble functions on the macro- and microspace, respectively; 
u = l∕α2, q = ρ0∕αt°+*, is the density of Casimir energy, ρ0 < θ∙

System (60) has the critical point i4b+2v2 = ——, Ho = ⅛D(D-l)u0, h0 = 0
4∣ρ0∣

which represents the stale of the system with a static microspace and an inflationary phase 
on macrospace. Eigenvalues of linearization matrix (60) are negative at this point

Al «= —2H0 < 0 when > 0, Aa, λ3 < 0

where λ2, λ3 satisfy the equation
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if the following condition is satisfied:

det Λ =f (D-1) +
2(4+B)

D

2 + D

ρ0u0 2 ≥ 0 <* «0 <

Tr A < 0-≠>Hu > 0, (61)

If condition (61) is satisfied, dimJPA,r = 3, then a non-empty set of trajectories ofthe 
system leads to the critical point (Ho, 0, Λo)∙ This proves the asymptotic stability of solu- 
tions with a static microspace when the ρhysical sρace expands.

6. Conchtsions

In this paper we have investigated the effectiveness of the mechanism of the dimensional 
reduction Ieading to the static size of the internal space. We have discussed the cłassical 
Einstein equations and Einstein,s equatio∏s with quantum corrections arising from massless 
scalar fields. The universal low-temperature asymptotic has been determined by using the 
additional assumption that the scalę factors on the physical space are much larger than the 
scalę factors on the microspace. The fact that the Casimir energy is negative turns out to be 
a basie property of this approximation∙ Consequehtly, there are no asymptotically stable 
configurations with the static microspace. The negative character of the Casimir energy 
has not been taken into account in many papers [29], The asymptotically stable configura­
tions with the static microspace are admissible by the cłassical Einstein equations only for 
the torus as a model of the internal space. However, such models form the zero-measure 
set in the space of all initial data for homogeneous multidimensional cosmological models. 
When investigating the stability of configurations with the static microspace, we have used 
the dynamical system methods and we have based our considerations on the fuli classifica- 
tion of arbitrarily dimensional cosmological models.

A criterion of the existence of an effective dimensional reduction mechanism can be 
formulated in terms of the dynamical system theory: there must exist exactly one critical 
point in the phase-space (in the physical region), for which. dim WĄtt = n («is the dimension 
of the phase-space) and which represents the solution with a static microspace.

Finally, we have constructęd a tpympdeLFRW × {smali world of Ellis) for which the 
mechanism of the dimensional reduction by low-temperature quantum effects leads to the 
configuration with the static microspace and the inflation phase on the macrospace (the 
problem of cosmological constant is herc solved in a naturat way).

.The obtained results, concerning the existence of the eflective dimensional reduction 
mechanism, are based on the assumption that the internal space is a group manifold (óf 
Bianchi types generalized to higher dimensions). The assumptiohs of homógeneity and 
anisotropy seem to be reasonable from the cosmological point of view. Some cłassical 
3-dimensional Bianchi types (e.g. B(IX) and B(VIII)) tum out to be, in a sense, “closę” 
to “generał” non-homógeneous world models. However the vanishing of the cłiaótic 
behaviour in higher dimensional generalized Bianchi types [11] sμggests that these models 
are not generic. In siich a case the Einstein equatio∏s for the multidimensional homoge- 
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neous cosmology would be not rich enough to describe the early cosmic evolution [11]. 
The problem of the generic character of the Einstein field equations for such a cosmology 
has been discussed in [30].

In the present work, we have investigated the influence of quantum effects, in the low- 
-temperature approximation, on the existence of assymptotically stable configurations 
with the static intemal space. If one takes into account field effects with the Freund-Rubin 
Ansatz, the effective reduction mechanism exists, provided that the intemal space is non- 
isotropic and the cosmological constant different from zero. The existence of such a mechan­
ism has been also demonstrated for the case of non-isotropic physical space of the type 
(Kantowski-Sachs) × TD (see [31]).

One should also notice that, although quantum effects do not lead to asymptotically 
stable configuration with the static intemal space, they do provide an efiective mechanism 
of the reduction to the zero dimension. When the intemal space is sufficiently smali, one- 
-loop approximation breaks down.

In investigating the back reaction we have used approximations of thermodynamical 
distribution functions. The assumption that the size of the physical space is much larger 
than that of the interna! space leads to a negative Casimir energy. To solve the problem 
of the existence of the effective reduction mechanism one should first solve the problem 
of the back reaction on fully determined distribution functions. Tbis could be done with the 
help of numerical methods, Let us stress this out that exact formulae of quantum distribu­
tion functions, found in the present work, are independent of the assumption that the inter- 
nal space is a group manifold BD (it is an arbitrary compact Riemann with the curvature 
scalar t°,Λ).

The author would like to thank J. Szczęsny for reading the manuscript and for many 
valuable suggestions.
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