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A factorized subtraction formula for R-operation is discussed. The notion of T-diagrams 
as a special class of Feynman diagrams, is introduced. For T-diagrams the factorized 
renormalization formula is shown to be reducible to Zimmermann,s forest formula for 
R-operation.
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1. IntroductionThe formalism of the R-operation for removing the ultraviolet divergences and extrac- ting finite parts from divergent Feynman amplitudes was given and developed by Bogo- liubov, Parasiuk, Hepp, Zimmermann and Zavialov [1-4, 10], The renormalized integrand is obtained by performing all subtractions connected with divergent subdiagrams (i.e. renor­malization parts).Thus, the R-operation may be defined as the product of subtraction operators taken over all divergent subdiagrams. It is the factorized renormalization formula.However, by reason of difficulties connected with overlapping divergent subdiagrams this product is usually decomposed to the well-known sum over Zimmermann,s forests of divergent subdiagrams.In this paper, using the κ-representation for subtraction operators similar to that given by Bergere and Zuber [5], we show that the factorized formula has well defined meaning. In contradistinction to Bergere and Zuber [5, 6], we do not define the factorized R-operation as the product taken over all possible subdiagrams, but simply as the product connected only with divergent subdiagrams.In Sect. 3, we introduce the notion of T-diagrams. It is a very wide class of Feynman diagrams for which one can use a simplified form of κ-representation for subtraction operators. The factorized renormalization formula for T-diagrams is shown to reduce to Zimmermann,s forest formula of R-operation in the scalar theories case. The equivalence 
(13)



14of both renormalization formulas for any type of Feynman diagrams we hope to examine in futurę.The factorized formula for the R-operation is a very handy tool to deal with ultra- violet divergences. From a purely computational point of view, ir is much easier to calculate the product of subtraction operators without performing the tedious decomposition into forests.Moreover, the presented factorization may be considered also in the Smimov and Cheryrkin formalism of the R-operation [7, 8], which is an extension of the BPHZ sub­traction scheme for the case when both ultraviolet and infrared divergences are involved,
2. Factorized renormalization formula and Zimmermann's renormalization formulaLet us limit ourselves to the scalar theories case. In order to compare both renormaliza­tion methods we write the Feynman amplitudę, associated with the connected diagram Γ, in the standard parametric integral representation (omitting a numerical factor) [4, 9, 10]

(1)where L — the number of internal lines of Γ, N — the number of vertices k = (k1, ..., kN) denotes the set of external momenta, a = (α1, ....Sl), 4α = ^αι <⅛∙ The functions appearing in (1) are defined as [see 4, 10] (2)where the sum runs over all trees in Γ, O)where the sum runs over all two-trees in Γ (each two-tree T naturally separates the vertices into two disjoint non-empty sets Vi and V2)∙We use the standard definition of the index ω of the diagram (subdiagram)ω = D(L-N+∖)-2L, (4)where D denotes the number of dimensions, and the following definitions:A subdiagram is said to be fuli if any two vertices in this subdiagram are joined by all the lines which already joined them in the original diagram.A subdiagram is said to be one-particle irreducible (API) if it is connected and each of its internal linę belongs to at least one loop.A subdiagram is said to be divergent if it is fuli, one-particle irreducible and its index is non-negative.



15A family of all divergent subdiagrams included in the diagram Γ we denote by 3tr#r = {7ι,72, ∙∙∙,7λ}∙ (5)In particular, the original diagram Γ may belong to this family.Two subdiagrams γ1 and y2 are overlapping if y1 ∩ y2 ≠ 0 and neither y1 ⊂ y2 nor y2 ⊂ γ1.A forest is a subfamily of non-overlapping divergent subdiagrams.By the R-operation we mean a standard product of subtractions connected with all divergent subdiagrams y1, γ2, ..., yR. The subtraction operation Oγ amounts to the sub- traction from Ir of a Maclaurin polynomial with respect to external momenta of a degree equal to the index of y. To realize it, we take the usual κ-representation [4, 9, 10] modified by Bergere and Zuber [5].Let us denote ≠-D-'>'⅛)exp(l^≤). (6)
The parametrical function≠(κ) is obtained from≠ by dilatation of all α1 e yr by κr (for any 1 ≤ r ≤ R) and multiplication by the factor ∏ κr2

r=l

R«K) - JJ ⅛<**⅛∙>)  exp (l ⅛⅛≤), (7>
r=lwhere pr = lr-nr+l denotes the number of loops in the subdiagram yr. The subtraction operation O7r is now expressed in the standard way [9, 10]

~ ly>∙ (8)

l7r ≡ y(κr)∣κr= 1, (8a)

⅜Ct>r + flr

V's 1 δ"
m" ξ λ ⅞ v*bj

n = 0 -

(8b)

κr = 0y denotes φ or any expression of the form O7il ... Oγikφ. The number Ωr ≥ 0 is large enough to make γ and its derivatives singularity free for every point κt e [0, 1],The formula (8) is in fact independent of the auxiliary parametr Ωr, nevertheless, 
Ωr cannot be fixed because its smallest possible value is always determined by the actual structure of the argument ψ. For some diagrams we can simplify the expressions (7) and (8) by setting Ωr = 0. But, in generał, we need Ωr ≠ 0. This problem is discussed in Sect. 3.The finite part of the Feynman amplitudę is obtained by applying R-operation. As it was said before, by the R-operation we mean the product of the subtraction operations connected with the family of divergent subdiagrams

R = OγιOγ2 ... OyR = (1-Myι)(l-M72) ... (1-Mw). (9)



16For the sake of simplicity, we use somewhat simplified notation: lyr ≡ 1.The well-known difficulties connected with the definition of the products MytM1j 
for overlapping subdiagrams yi and yj give rise to replacing formula (9) by the Zimmer- mann,s forest formula (10)where the sum runs over the set of all non-empty forests. The mentioned products do not occur in (10).In this paper we prove that the formula (9) is correct if we use the modified κ-represen- tation (8) for subtractions.
3. Renormalization of Feynman diagrams with tree families of divergent subdiagrams

(T-diagrams)Let us limit ourselves to some special sort of Feynman diagrams.DEFINITION. A family of divergent subdiagrams = {γ1, ...,yR} is called a “tree family” if there exists a tree TL of the diagram Γ satisfying the following: for any r (1 ≤ r ≤ R) the intersection 7,1 n yr is a tree of the subdiagram yr.DEFINITION. A Feynman diagram F is called a T-diagram if its family of divergent subdiagrams is a tree family.The topological structure of a tree family is described by the following theorem THEOREM 1. The family = {Tχ, ■ yR} >s a tree family if and only if∀∕β⊂ {1,...,R} ∀k≤n,C( (J ytl n ... ny⅛) ≤n-k + l, (1)
il,∙∙∙,⅛elnwhere I„ denotes a w-element subset of natural numbers, C(...) denotes the number of connected components for the given diagram.Since we shall not make use of the foregoing theorem, we omit its complicated proof. It is interesting and useful for us to consider the particular cases of condition (1) 1°. k = 2. We obtain the following conditionsW,c{l,...,R}1C(∪yi∩yj.)≤n-l. (2)∙.ΛjnThe above implies that there is no “diagram loop”



172o. k = n. In this case the condition (1) leads to
∀{i1, ..., fπ} ⊂ {1,..., R}:C(yil n ... n yin) ≤ 1. (3)It means that all possible intersections of subdiagrams belonging to a tree family are empty of connected.The important analytic properties of Feynman amplitudes connected with T-diagrams are stated in the next theorems.THEOREM 2. The κ-parametrized integrand (2.7) and its derivatives with Ω assumed to be equal to zero (i.e. Ω1 = Ω2 = ... = Ωr = 0) have no singularities for every point κ∈[0. 1]r (i.e. (κ1, ...,κs)e[0, 1] × ... ×[0, 1]) if and only if the Feynman amplitudę is associated with a T-diagram.COROLLARY. One may set fi = 0 in κ-representation of subtraction operations (2.8) if and only if the Feynman amplitudę is associated with a T-diagram.THEOREM 3. If we work with the subtraction operators only within the framework of Zimmermann,s forest formula for the R-operation (2.10), then for any Feynman diagram we are allowed to set fi = 0 in the κ-representation.The proofs are given in Appendix I.As it was previously mentioned, the results do not depend on the particular choice of auxiliary parameters fi, but sometimes, for the sake of mathematical correctness, it is not possible to choose fi = 0. Moreover, for some products of subtraction operations, the choice of fi is dependent on the order of their factors.We now begin to investigate the product of subtraction operators MyιMy2 associated with two overlapping subdiagrams of some T-diagram Γ. The first step is to introduce the 

(κ1, κ2)-parametrization.
where:

Λ,,k2(≈, k) = κp1lκp22 X At∣(α, k)κ∖κl2. 
k,l≥0The coefficients Dkl and Aki are given by

Dm(®) = Σ < ∏ «S)>
Ti:rwi(Ti) = * + pn s^Ti 

U2(Tι) = ∣ + p2XAw(α, k) = ∑ {( ∏ αs) ( ∑ ki)2},
T2' ∫wι(T2) ≈ k + pι∖ sφT2 ieV 1

tw2(T2) == I + P2J

(4)
(4a)
(4b)
(5a)
(5b)

where wi(Tu2j) denotes the number of lines belonging to γi but not to given T1 (T2), and the sums are taken over all trees (two-trees) satisfying our conditions.



18 Using the fact that the intersection (in the sense of common lines and vertices) of subdiagrams belonging to a tree family is connected, one can easily show thatL>00(α) ≠ 0. (6)From (4a, b) and (4) we have ∕ ∑ 4tι(‰ k^)κk1κl2∖φiκ'∙■ t,,ξ. "*wr''1 “p ∏ ‰ω⅛ ■ (7)
∖ ⅛,ι≥o ZThe product of subtraction operators MyιM72 is given by

×Asιti ...Asgtge×p (9)where Bljstfβ, Ctjstfg are some coefficients.Let us imagine that κ1 and κ2 are of dimension a, the coffici⅞nts Dkl and Akl are of dimension a~k~l, so that Z>κικ2 (α), Λκικ2(<x, k) and≠(κ1, κ2) are dimensionless. Comparing (8) and (9) one can establish the following inequality
∑ ⅛+ ∑ Jk+ Σ si+ ∑ h≤∙⅛(ω1+ω2)∙ (10)

*=1 k =1 i=l 1=1We now turn to carry out the “dimensional analysis” in another way. Let us assign dimen­sion a to each coefficient Dkl and Akl. In this case we obtain the following relation
f+ β∙ (U)The formula (9) can be rewritten as

where the sum runs over all indices fulfilling (10).For what follows, we need two other subdiagrams= Ti u 7z and γn = y1 ∩ γ2,

(12)



19where ‰ is the fuli subdiagram of Γ which contains all vertices belonging to y1 and γ2. We denote by lt2 the number of lines which belong to γu but neither to y1 nor to γ2. The subdiagram γu is also fuli. Moreover, γu is connected (because yL and γ2 overlap) and ‰ is connected as well (because Γ is a T-diagram). We also need two ρarameters κu and κn defined for γυ and yn in the natural way. Let us introduce them into Z>⅛i(α) and √4w(α, k) (5ab)LEMMA 1. The coefficients Akl and Dkl in (4ab) after the (κu, κn)-parametrization become of the form Dw(α, κu, κj = κpJκpnn ∑ κζκpAklkτ(<x), (13a)
Λ' k',Γ≥O

Au(a,k,κu,κn) = κpJjκpr^ ∑ κtJκ‰.⅛k), (13b)
v,r≥oand the following inequalities are valid⅛'+∕'≤* + ∕. (13c)Proof. Let us consider a term of (5a) connected with a tree T1∏ «s. (14)

*TtThis term after (κu, κn)-parametrization is multiplied by a factor wherewu(T1) = k,+pυ and wr,(T1) = l,+pn. (15)Notę the following relationswu(T1) = w1(T1)+w2(T1)-wn(T1)+w12(T1), (16)
Pu = P1+P2-Pn + I12, (17)where w1 2(T1) denotes the number of lines belonging to yυ, but not to y1, γ2, Tt.Using (15), (16), (17) and the foregoing definitions of w1 and w2 and taking into account that w12(T1) tζl12 we obtain (13c).The above lemma, together with inequality (10) (notę that Poo and Aoo are mono- mials with respect to (κu, κr,)-parametrization), implies that the (κυ, κr,)-parametrized product MyιMyιφ may be viewe<Kas the polynomial being of the form

{MyiMyiφ)κυ,κn = ∑cftlκpj^,
PAwhere

p + q ≤⅜(ω1+ω2). (18)To go further, we need the following relation (proof in Appendix II)
ωu+ωn-ωi-ω2 = (D-2)∕12. (19)



20As a simple consequence of (19) we have ωu+<ou ≥ 0. We now consider the three possible casesa. ωu ≥ 0, ωn < 0b. ωu < 0, ωr, ≥ 0c. ωu ≥ 0, ωrι ≥ 0Case aSince ‰ is fuli, connected, one-particle irreducible and its index is non-negative, then γu is a divergent subdiagram of Γ. It can be easily seen from (19) that⅛ωu ≥⅛(ω1+ω2). (20)It means that the highest power with respect to κu in the polynomial (14) is not greater than the rangę of the subtraction operation connected with It leads to the identity
O7uMyιM72φ = 0 (21)Case bIn this case relation (19) implies⅜ωn ≥⅜(ω1+ω2). (22)The subdiagram yn is connected. It follows from the fact that γ1 and γ2 belong to the tree family. If yn is one-particle irreducible, then it is a divergent subdiagram of Γ and the same reasoning as in the case a leads to the identity
QynMyιM72φ = 0. (23)Suppose now that the subdiagram yr, is not one-particle irreducible, i.e. it contains lines which do not belong to any loops. Let us remove each such linę. The remaining diagram is composed of r one-particle irreducible, fuli and mutually disjoint subdiagrams ε1, ε2, ..., εr Moreover, because the removed lines were not associated with loops

ωc1+ωβ2+ +ωe, ≥ ωn ≥ 0- (24)We can number the subdiagrams with non-negative indices as ε1, ..., εs (s ≤ r). They are divergent subdiagrams of F. Considering subtractions associated with subdiagrams ε1, ...,εj, in a quite analogous manner as before, we obtain the following expression(MnMw≠)κ,1,...,κs = ∑ cβl,..,,,<1 ... (25)where 9i+ +9s ≤4(ωι+ω2)∙Relations (22) and (24) lead to conclusion that at least one operation Ot, cancels the poly­nomial (25)
O£1 ... OtaM1lM72φ = 0. (26)



21
Case cFrom (19) we have 4 (ωu+ωn) ≥ ⅜ (ω1 +ω2). (27)The situation is similar as it was in Case b. If the subdiagram yfl is one-particle irreducible, we may prove that

OyυOy^MnMγ2φ = 0. (28)Morę generally, if the subdiagram contains mutually disjoint and divergent subdiagrams 
εl we obtain O,u°n1 - OyJΛyιMnφ = 0. (29)The above considerations lead to a common conclusion. If a Feynman diagram Γ is a T-dia- gram, then for any two overlapping subdiagrams γa, yb e ^r, there exist a set of divergent subdiagrams γil, ...,γirε-t%r for which

Oyι ... OyιMyMybφ = 0, (30)where ∀1 ≤ k ≤ r: γifc ⊂ γ1 r> y2 or γu = y1 u γ2. (30a)It should be emphasized here that the relations (30), valid for each pair of divergent subdiagrams, do not directly ensure the reduction of the factorized formula (2.9) into the Zimmermann,s one (2.10). If there is only one pair of overlaρping subdiagrams, the reduc­tion is trivially verified. But if we have morę than one such pair, the reduction cannot be obtained by means of succesive application of the suitable relations (30), because we are not allowed to make use of them separately. However, both renormalization formulae (2.9) and (2.10) are equivalent, as the following Theorem proves.THEOREM 4. For any Feynman T-diagram we are allowed to make use of the κ-represen- tation of subtraction operations with fixed Ω = 0 and, in this case, factorized renormaliza­tion formula (2.9) is equivalent to Zimmermann,s forest formula (2.10).
Oγι. .O1rΦ = [1+ ∑ ∏(-Myr)] (31)

Proof. Let us exρand the left-hand side of (31)
Oyt ... Oyκφ = [1- ∑My,+ ∑MyMy- ∑ MγrMy,Myt+ ...]≠. (32)

r r,s r,s,tFirst, we consider two-element overlapping products of the expansion (32). We have to group together several terms of (32) in order to form expressions like (30), and remove them. It is important that we always construct a relation (30) taking into account all sub­diagrams satisfying (30a). Then we turn to three-element products of (32) and repeat the above procedurę, and so on. It is possible to meet a number of products My.aMyb of over- lapping subdiagrams in a given many-element product of the oρerators My, so we need



22
some rule to choose the correct product, for which the construction (30) is to be built. Let us define the following partial ordering relation(7i, γ2) < (y3, ‰) ≡

7ι u y2 £ y3 u γ47i u 7i = 7s u 7* orand 7i 72 73 74-We extend the foregoing relation to the linear order relation (in any way). Let the product we choose be the maximal one with respect to the linear order relation. Now we should prove that a systematic procedurę based upon the above algorithm will actually enable us to remove from (32) all “overlapping” products, i.e. all products associated with families of subdiagrams not being forests.First we introduce the notions and the terminology which will be used (all following notions are connected with divergent subdiagrams).7ι ÷-*  72 means that the subdiagrams γ1 and y2 overlap.{7ι <→ 72} designates the set of all divergent subdiagrams y satisfying 7 = 7i u y2 or 7 ⊂ 71 ∩ y2.(7i, 72) → 73 means that y1 <→ y2 and γ3 ∈ {γ1 <→ y2}.(7∣∙> 7j) = max(γl, y2, ..., yN) means that the pair (γi, yj) is the maximal one among all pairs included in the set {γ1, ...,7n} with respect to the linear order relation.Letj√, Si,cS, ... denote products of the operators M.A product 3/ is said to be a base product if it has been chosen to built the construc­tion (30).A product 3i is said to be an adjoint product if it has been used to built the construc­tion (30) for some base product sć.A product cH> is said to be an original product if it does not contain operator M.j for which y e {yA <→ yB}, where (yA, ^∕fl) is the maximal pair in this product.Of course, looking at the given product we cannot say whether it is a base one or an adjoint one. It depends on some “organization” of the process of removing overlapping products.
sć → Si means that the product s4 is an original one and furthermore if it is a base product then the product Si is an adjoint one used to built the construction (30) for s>S.A chain for the product si is the sequence of the products Siγ, ..., SiN for which

Siff > ... —♦ Si2 -÷ ^ι ^^* , &Sand there exist no product cβ satisfying: → SiN.The following lemma is a first step to prove that the provided algorithm for removing overlapping products is consistent.LEMMA 2. If 7j4<→7b, 7i*→72, 7ι <= 7a <~> 7b, 7a == 7x, u u7⅛ and there exist 
7 a, such that yAi <→ yB, then(7i, γ2) ≠ max (y1, γ2, yAt,..., yAN, yB). (33)Proof. There are two cases to consider1∙ 72<→7b,2. γ2 <= yB.



23Case iWe notę that in virtue of the assumptions of the Lemma it is evident that7i u 7ι ⊂ yB u 72, (33a)71 ∏ 72 c yB n 72∙ (33b)In order to prove the validity of (33) we need only to show that (33a) and (33b) cannot hołd simultaneously. If they were then
yB = yB (y1 u γ2) = (7b ∏ y1) u (yB ∩ γ2)= 7ι u (7i n y2) <= 7ι ⊂ Vaand this would contradict overlapping yA and yB. Thus the above reasoning essentially gives a relation (7u 7a) < (yB, 7a)∙Case 2Consider such that 7λ1<→7b∙Because we have y1 u γ2 ⊂ yB it guarantees that7ι υ 72 £ 7b u 7λ1and accordingly (y1,γ2') < (yB, yAl).Remark. It is easy to see that the statement remain valid in the special cases1° N = 1,2° 7ι = 7xi θr 72 = 7xk∙COROLLARY. If (yA, 7b) = max (yx, yB, 7i, 72) and (7i,72)→7λ then yA = 7x uy2. Proof. By utilizing the contradiction of the Lemma, we can exclude the case yA ⊂ γ1 n γ2. LEMMA 3. For any product <j∕ there exist at most two different products S%i satisfying 

⅞i → j/.LEMMA 4. For any original product j/ there exist at most one product satisfying 
& .Proof. Let (yA, yB) be the maximal pair in the product >s∕. If is not an original product, it contains operators My for which y e {yA <→ γs}∙ We remove all such operators and using remaining operators we create the product Clearly SS → sź and it is one of the products mentioned in Lemma 3. To establish both Lemmas it is sufficient to show that there exists at most one product different from SS, such that SH1 → «s/. Assume, to the contrary, that there exist two products and SS2 satisfying S9i → sć. Let (y1, γ2) and (γ3, γ4) be the maximal pairs in the and l⅞2 respectively. There is no essential loss of generality in assuming that(7ι, 72) < (73, 7J < (7x> 7b)∙ 



24We can limit ourselves to examine two following situations (the other can be obtained by reversing the roles of the subdiagrams)lo 73,7χ∈ {71÷÷72} and yAe{y3^y^},2° 73, yA e {?i <→ 7a} and yB e {γ3 *→ 7J.Ad 1°. Applying the Corollary to Lemma 2 we obtain73 = 71 u 72 = yA = 73 <■> 7<-Accordingly γ4 ⊂ γ3 and it contradicts overlapping of y3 and γ4.Ad 2°. From the Corollary to Lemma 2 we have73 = 7i 72 = 7x and yB = γ3 u γ4.Thus yA ⊂ 7b, but this contradicts overlapping of yA and yB.This completes the proof.LEMMA 5. For any product sd there are no morę than two non-equivalent chains
> SSp∣-ι —* ... → →4∕,‰→‰-1→∙∙∙→^1→^, (34a)where the products ‰ ..., 38 n, ‰..., ‰ are original ones and the lengths of the chains are related by the condition

N = M+1 (Λr ≥ 2). (34b)Moreover, the products and ¾ have the same maximal pair <7βk, 7⅛fc)-The foregoing construction will be termed the ladder for the product sd. There are some exceptions to the generał statement of this Lemma which will be termed as degenerate 
ladders, namely1. sd,2. Si# → ... -*  38 —> sd.

For a given product sd there exists only one chain in the latter case and nonę in the former case. Moreover, if the product sd is not an original one, then there is only one form of degenerate ladder
38 → sd.Proof. From Lemma 2 and Lemma 3 it follows that there exist at most two non-equivalent chains for the given product sd. Therefore, excluding the possibility of the existence of a degenerate ladder, the lemma just formulated above will be proved if we succeed in estab- lishing the assertion (34b). We will prove it by induction. Let (yA, γβ) be the maximal pair in the product sd. Let us assume that for some n there exist the following ladder

∙%n+l -* ■■■ ^1 -+ ∙s^ι

tSn → ⅛,b-i → ... → cSl → sd, 



25where for any fc≤n the products ⅞k+l and ¾ have the same maximal pair (γ1,k, γbk). Moreover <⅛k ≡ 0t+1¾ (35)where 2k is the product of all operators present in ⅛,t which are associated with subdia- grams belonging to the set {yA <→ yB). Obviously, if ¾ contains no such operators then 
0i = 1 and ⅞ft = ‰1.We will establish the following equivalence. There exists product #B+1 such that 
<#„+ i ~+ if ond only if there exists the product Skn +2 such that ^b+2 → &„+1. Moreover, the products ^b+2 and ⅛,b+1 have the same maximal pair and ^,b+j = φ,+20β+1. (=>). Suppose that there exist the product #„+] such that ¾+1→‰ and let (yftl+,,ytl,+1) be the maximal pair in ⅛,b+1. From the Corollary to Lemma 2 up to a change of the roles between yβk and ‰k we obtain

Ta = Tai υ 7»,.
Tak = 7αk+1 u 7⅛+ι, for any k ≤ n.Thus
Ta = nt u Tbt u - u 7⅛+1 u yβn+l. (36)We notę that all operators associated with the subdiagrams which appear in the right- -hand side of (36) are involved in the product ⅛,π+1. Then the following statement is true(‰b÷,> 7¼,+1) = max (yfln+,, yil,..., ‰tl, γfl). (37)First we prove that U1J⅛*l Φ{Ta*→Tb}- (38)Assume, to the contrary, that yβπ+1 e {yx <→ γβ}. Because (γβn+1, γfcr,+1) < (yA, yB) it implies that y„nłl <= yA n yB. Referring to relation (36) and applying Lemma 2 we would contradict relation (37). With this contradiction the condition (38) is established. Keeping in mind the conditions (38) and (35), we define +2 : = ⅛,b + l∣3∣π+1 and conclude that ⅞n+2 → &„+1 • (<=). Now suppose that there exists the product ^π+2 with the maximal pair (yβntl, yhn+1) satisfying ^b+2 → ^b+1. We construct the product 5?„ + 1 from the product by the removal of all operators associated with subdiagrams belonging to the set {yfln+1 <→⅛tl}. Then we define ^,b+1 := ^n+2≤^n+1. To prove that ⅛b+1 →¾ we should only show that the ρair(yfln+1, γhn+1)isthemaximal one in⅛7π+1. Let us suppose that there exists a pair (y1, γ2) in the product ⅛,b+1 such that γ1 e {yA <→∙⅛}. Clearly y1 ⊂ yA n yB and, because the rela- tions (36) and (37) hołd, under Lemma 2 we obtain(71.72) < (7ob÷1.7i-b÷1)∙This completes the proof. In a similar way we prove the additional statement of Lemma 5 referring to degenerate ladders for non-original product.



26LEMMA 6. Let us consider any product sć with the non-degenerate ladder
—» ... —* i —♦ jaf,

‰ —> ... —* ⅛* ∖ —* 3$.The products and ‰ are not simultaneously base ones nor simultaneously adjoint ones.Proof: Because the products 0w+1, ‰ are base ones, then the products ‰~1 are adjoint ones, the products ^w-ι, ‰-2 are base ones and so on.Now, we are in a position to complete the proof of Theorem 4. We will establish by induction that the provided algorithm of the removal of overlaρping products is con- sistent. Let us assume that the process of removing overlapping products has been accom- plished in N stages, without fail. Now we deal with (Λr+ l)-element products. Consider any (Λr+ l)-element overlapρing product sć.Γ. Is an original product?If is not an original product and it has not been removed so far, then it has got an non- -degenerate ladder. But from Lemma 6 we conlude that it should be removed. This leads to a contradiction.2°. Do we still have all adjoint products necessary to built the construction (30) for s£ 1Let us consider any adjoint product such that → j/. If has been removed previously, then & has an non-degenerate ladder. Considering Lemma 6 we establish a contradiction by concluding that the product d should be removed previously.3°. Let ∙af1 and j∕2 be (Λr+ l)-element original products which have not been removed so far. Is there any product being adjoint simultaneously to √1 and →and 1s∕2 → -^ ?Because the product 38 has got an non-degenerate ladder, the assumption that ∙s∕ 1 and <s∕2 have not been removed leads to a contradiction.This work was started in collaboration with Dr. S. Brzezowski to whom I am much indebted for remarks, comments and for helpful discussions.
APPENDIX IThis Appendix is devoted to prove the theorems from Sect. 3 which show the analytic properties of Feynman amplitudes associated with T-diagrams. We intend to give only the proof of Theorem 2. The Corollary is a straightforward application of this theorem, the Theorem 3, in tum, can be proved analogously.Suppose that there exists a tree T*  satisfying the assertion that for any r (1 ≤ r ≤ R) the intersection Tl ∩yr is a tree of the subdiagram γr Denoting by wr(T1) the number of lines belonging to γr but not to T1, we havep,(α) = ∑(κT,σo - κr<τ∙> ∏ αl)

Tl WTl= κf ... κ∣a [ ∏ aj+D*(a)],⅛T1* (1)
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where
»?(«)= Σ (∏<σo'M14

Tl≠Tι*  r=t lφTlBecause wr(T1) ≥ pr, D*(ιx)  is a polynomial with respect to k. Similarly, it is possible to write
Aκ(<xf k) = ∑ { ∏ ( ∏ α1) ( ∑ ki)2} = Kι1 • ■ ∙ kprrA*(< x, k), (2)

T2 r=l HT1 ieVlwhere A*(a,  k) is a polynomial of κ as well.Substituting (1) and (2) to (2.7) we obtain1 ∕ A⅛x,k) \

~ [ ∏ αi+^(α)]°z2 eXP V ∏ αi+DκW'
leTi∙ HT↑*It is apparent that φ(κ) and its derivatives have no singularities.To prove necessity, suppose that the Feynman diagram is not a T-diagram. It implies that for any tree T1 there is a subdiagram γr such that w,(Tt) > pr. Thus,

⅜>
li,Pι vPκ 
K1 ... K.Rand φ has got a singularity at the point κ = 0.This completes the proof.

APPENDIX IIWe use the same notation as in Sect. 3. We intend to prove the generał relationωu+ωrι-ω1-ω2 = (D-2)∕12 + D(s-l),where s is the number of connected components of the subdiagram yn. To obtain the above statement it suffices to combine the following relations
ωi = D(∕i-ni+l)-2Zi,where i stands for 1, 2 or u, ω∩ = D(ln-nn+s)-2lr,,

= li + h — ln + li2> 
nu = n1+n2-∏n.

and φ has got a singularity at the point κ = 0. This completes the proof.
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