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It is shown that the Ising model in two dimensions reveals the intermittent behaviour 
at the critical temperaturę. We conjecture that intermittency exists generally at the second 
order phase transition points.
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Until recently intermittency was studied in a variety of phenomena described by the 
classical physics [1]. Some time ago it was suggested that the spectra of particles produced 
in the high energy collisions may also show intermittent beħaviour [2-4], Several models 
of the multiparticle production with the intermittency were proposed and the specific experi- 
mental tests suggested [5, 3, 6]. Very interestingly, the Kraków-Louisiana-Minnesota 
grouρ has found an evidence for the intermittency in the high energy proton-nucleus and 
nucleus-nucleus collisions [7].

In generał intermittency is defined as the occurrence of the large fluctuations which 
may dominate the average characteristics of the system [1]. In the case of the multiparticle 
production the good averages to look at are the factorial moments [2] 

(1)

where km is the number of particles emitted in the m-th bin of rapidity in a given event, 
and <>ev denotes averaging over all events in the sample; n is the multiplicity of the event.

ΔY
Mdetermines the size of the rapidity bin δY = —into which the relevant phase space 
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Δ Y has bcen divided. Tlιe working definition of the intermittency employed in Refs [2-4] 
is that thc factorial moments, Eq. (1), grow with M, i.e. with thc decreasing bin size δY. 
It was argucd that this can happen only if the system undcr coπs'deration revcals the strong 
fluctuations appearing over all rapidily rangcs. If below certain scalę <5F*  say, the system 
is “smooth”, then the moments, Eq. (1), would flatten for δY < δY*.

In this letter we point out that the intermittent behaviour is naturally exρected in 
a varicty of statistical systems at the phase transition point of the second order tyρe. The 
reason for the requirement of the second order phase transition is simple. Only in this 
case the fluctuations of arbitrary sizes appear in the system [9] (the correlation length 
diverges), and consequently the factorial momenty Eq. (1), would grow with the decreasing 
scalę. We illustrate this conjecture by the well known examρle of the Ising system in two 
dimensions. The model is defined by thc action

(2)

with β being the inverse temperaturę, and the summation extends over all pairs of nearest 
neighbouring spins.

We shall work in the framework of the Lattice Gauge Theories. It is well known that 
in the Ising 2 system, close to the critical temperaturę, the domains of the ordered spins 
of arbitrary sizes appear [10]. Thcrefore, the natural definition of the factorial moments 
rcmains as in Eq. (1) with km denoting now the number of spins oriented in the positive 
direction in the m-th “celi”, and the whole lattice is divided into the M(M ≡ 22(!-1)) cells 
(m = (m1, m2)', mi = 1, 2, ..., 2i_1; z = 1,2). The average over the events becomes the 
usual LGT average over the configurations. Monte Carlo s⅛ulations were performed in 
a standard fashion [11,12], Thc configurations wcre generated with the aid of the Metropolis 
algorithm [13]. After the first 2000 thermalizing sweeps we ħave measured the moments, 
Eq. (1) at every 30-th sweep in order to reduce the sweep-to-sweep correlations. Altogether 
we ħave run 10000 sweeps for each β value. All computations were done on the IBM 
Personal Computer.

Fig. 1 summarizes our results for the factorial moments as a function of the celi s’ze 
(the whole 32x32 lattice has been divided into 22(!_1) cells). The smallest (Z = 5) celi 
contains 4 spins while the largest one (/ = 1) constitutes the whole lattice. By definition 
all moments are normalized to unity at Z = 1. The highest computed moment (z = 5) 
is necessarily equal to zero for Z = 5. Statistical errors are of the order of the size of thc 
displayed symbols. The solid lines are hand drawn just to guide the eye.

It is seen from Fig. 1 that close to the Curie temperaturę (βc ≈ 0.44 for the infinite 
system) the moments grow rapidly with Z. That is the system reveals its intermittent behav- 
iour. This is in agreement with the physical picture of the phase transition being accompa- 
nied by the creation of the scalę invariant domains of ordered spins [9], The fluctuations, 
though weaker, persist also in the high temperaturę region while in the ordered phase they 
vanish rather abruptly.

It is unclear, at present, if the rapid change in the behaviour of F,s between β = 0.45 
and β = 0.46 is the genuine property of the factorial moments, or if it results from some
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Fig. 1. Monte Carlo results for the factorial moments: F(1), i = 2(+), 3(Δ), 4(*), 5(0); as the function 
of the celi size, and for various temperatures T = -j-

kind of the numerical instability. The former case would be very intriguing, it implies 
that we have found a new family of the order parameters which is very effective in locating 
the critical points of the system. Morę extensive calculations on bigger machines must 
be done in order to verify∕reject the latter possibility.

The lower value of all moments for l = 5 results from the finite multiplicity effect 
[2]. At Z = 5 we have km ≤ 4, and consequently all moments, especially the higher ones, 
are “kinematically suppressed” for large l. Due to the finite size of our lattice the available 
l rangę is rather smali, hence the asymptotic form of the dependence of the moments on 
the celi size did not develop yet. However, Fig. 1 suggests that, in the vicinity of the phase 
transition, the dependence is power like — typical to the intermittent phenomena.

Our calculations may be improved in many details. One should go for larger lattice, 
sweep-to-sweep correlations should be treated morę carefully etc. However, the relation 
between the growth of the factorial moments and the existence of the fluctuations occurring 
over all scales is undoubtedly demonstrated.

Many interesting questions arise. For example, we predict that the growth of F(,)’s 
is closely related to the order of the phase transition. In the systems with the first order 
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phase transition, factorial moments should not rise indefinitely sińce the correlation length 
there is finite, and hence the size of the fluctuations is also limited by this scalę.

The Ising model is the prototype of the Quantum Field Theory, hence it is interesting 
to extend our study also to the Yang-Mills Lattice Gauge Theories. Since the factorial 
moments appear to be rather efficient probe of the fluctuations occurring in the system, 
they may ofier a good approach to study the structure of the Yang-Mills vacuum in both: 
the high temperaturę and confining phases.

I would like to thank A. Białas for the continuous interest in this work.
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