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and magnetic moments for the baryonic states in śuch a model arecalculated and ćompared 
with the data.
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7. Introduction

The Skyrme model [1,2] describes baryons as solitons in an effective theory of Gold- 
stone bosons and is able to give predictions for many quantities like baryon masses [3-5], 
magnetic moments [6], nucleon-nucleon potentials [7], phase shifts in meson-nucleon 
channels [8] and others. However all quantities calculated in the model are not very 
accurate: 20% accuracy is considered to be satisfactory.

Morover the 3 flavor model [4, 5, 9] suffers from a serious theoretical drawback; 
although the effective lagrangian can be obtained from QCD by large Nc expansion [10, 
11], the baryon spectrum has no smooth limit for Nc → oo. The Hilbert space of the model 
is constrained by a requirement that SU(3)flavor representations describing physical states 
should contain states of hyρercharge Nc∕3, and therefore very large representations emerge 
in the limit Nc→ oo. The similar behaviour is exhibited by the quark model [12].

However as the authors of Ref. [12] argue, one is able to define a sensible'large Nc limit 
for baryon spectrum by a suitable generalization of the Octet representation. The explicit 
calculatión [12, 13] of generalized Octet magnetic moments was performed in Ref. [12] 
and ćompared with the data.

The purpose of this paper is twofold: first we investigate the large Nc limit of the 
Octet and Decuplet by the explicit calculatión of the magnetic moments as well as the mass 
splittings, and second, we examine the resulting phenomenology. Comparing the 
ratios of the different mass splittings with the data we get the mass spectrum which shows 
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a simple proportionality to the hypercharge. The electromagnetic splittings are even worse. 
This is rather exρected sińce the model cannot describe accurately such tiny effects like 
electromagnetic mass differences [14]. As far as the magnetic moments are concemed we 
find that in Nc → ∞ limit they are proportional to Z3(isospin) — this rule is not obeyed 
by the data. Also the SU(6) formula for Decuplet moments recovered in Nc = 3 case 
is broken for Nc → oo. Although the limit is well defined the phenomenology is rather 
poor indicating, as should be expected, that Nc = 3. Since the results for Nc = 3 and 
Nc = oo differ so much, the l∣Nc corrections seem to be important, as shown explicitly 
in Ref. [6a].

In the next Section we briefly introduce the model and indicate what quantities we 
calculate. Then we discuss our results. Notation and conventions concerning the SU(3) 
Clebsch-Gordan coefficients are presented in the Appendix.

2. The model

The Skyrme model has been described in many papers (for a review see Refs. [15]); 
here we only specify the most important points which we shall use afterwards. The link 
between QCD and the model is the chiral symmetry group G (in our case G = SU(3) 
× SU(3)) broken by the QCD vacuum to SU(3)v (diagonal subgroup of G). An object on 
which the symmetry acts in an effective theory is a matrix U(x, t) e SU(3) transforming 
as glUg⅛, parametrized by 8 fields associated with Goldstone bosons. Lagrangian symmetric 
under G can be constructed [1, 3], then G is broken to SU(3)v (gL = gR) by the vacuum 
σ(oo,t) = 1.

Now U as mapping from x-space to SU(3) can be characterized by an integer nw which 
counts how many times the x-space wraps the SU(3) manifold; if nw > 0 then we cali 
such U a soliton. The rew = 1 static soliton (Skyrmion) has been found in a form

where U0(χ) >s topologically nontrivial SU(2) matrix [1, 3].
The quantization of the model proceeds by rotating C70(x) by a time-dependent 

matrix A(t):
U(x, t) = A(t)U 0(x)A(t)+ (2)

introducing 8 collective coordinates (parametrizing A). The 8-th coordinate does not 
appear in the kinetic energy sińce λs commutes with Uo. Therefore the system is constrained 
[4]. Quantization procedurę allows us to construct a Hamiltonian which describes the 
baryon energy levels as well as the wave functions. The wave function for a baryon 
B = (Y,I,I3) of spin (∕,∕3) is given by [4]:

V⅛ = AT Dω(Λ) (3)

where q labels SU(3)flavor representations. Because of the constraint mentioned above
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the right hypercharge in Eq. (3) is jVc∕3. Therefore ρ has to include Y = Nc∕3:

β = (Ne, 0), (Nc-2,l) ... (1,
(4)

and higher. For Nc = 3 we ħave 8 and 10. For higher Nc we have to decide which represen­
tations from Eq. (4) are physical i.e. generalizations of 8 and 10, and which are unphysical. 
As in Ref. [12] we assume that the physical representations are those which have physical 
spin (1/2 and 3/2), namely:

Nc-1 Nγ-38 => “8” = (1, n); n = -≡- 10 => “10” = (3, k); k = —— . (5)
2 2

Other representations are spurious. Notę that according to Eq. (3) spin carried by the entire 
representation is equal to the isospin of the highest weight.

Representations (5) contain many morę states than needed. We select the Octet- and 
Decuplet-łike structures in ρ requiring that generalizations of the physical states have 
correct physical isospin. Ali other states are spurious.

The baryon mass formula reads:

MB = NcMcl+Λ1coll÷ tγ^MjJ(J + 1)-NcMbrcζb-NcMELMI3fB, (6)

where

(7)

(8)

To obtain Eq. (6) we enriched the SU(3) symmetric lagrangian by the breaking terms 
Tr (A8[i7+ f7+-2]) and Tr (Λ3[C7+ U+—2]), which after quantization lead to the operators:

NcMbrD^ = NcMbr<000∣Dw∣000>, (9)

NcMbrD^ = NcMbr<010∣Dw∣000>∙ (10)

Numbers ⅛ and fB in Eqs. (6)—(8) are just the matrix elements of the operators (9), (10) 
between the baiyon states (3) with spin “up”.

Similarly the magnetic moment operator takes a form [6]:

(H)

where

(12)
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As explaiπed in the Appendix in the direct product of the Octet (operator) and 
6 = (P> 9) (baryon state) reρresentation ρ appears twice (if p,q ≠ 0); the two different 
q are labeled q±. This is the source of the summation over “+” in Eqs. (7), (8), (12).

Our aim is to calculate ⅛, ∕b and ⅛b for representations (5) and then evahιate baryon 
masses and magnetic moments. The details of the calculations are presented in the 
Appendix, In the next Section we summarize our results.

3. Results

Mass splittings
Our results for mass splittings i.e. for ⅛ and ∕fl are given in Table I. For Nc = 3 

these numbers agree with the ones known from the literaturę [4, 14]. Disregarding for the 
moment the electromagnetic splittings one can fit 8 baryon masses with the help of the 
following formula (see Eq. (6)):

Mb = NcM q — 7VcMbr⅛ (13)

fitting three parameters Λf810, an<l AfBR (Nc = 3)∙ Then the predicted mass spectrum 
agrees with the data with an accuracy of 6% [4, 5]. In the limit of Nc → ∞ all masses

Mass splittings (see Eq. (6) in the text)
TABLE I

e B
⅛ /B

TVc = 2n+l Vc = 3 Nc= 2»+l Nc≈ 3

N
2n2 + 6n+i

3
√5 1

2(n+2)(n+4) 1 0 (n+2) (n+4) 5√3
(n⅛2)(2n-1)

τ⅛ 0/ 0
(1,«)

Λ 2(n+2)(n+4)

2n2÷3n-8 1
√J 1

Σ 2(λ+2)(λ+4) 1 0 («+2) V3

n—2 1 1 1
n+4 5 √3(λ+4) 5V3

Δ
2n2+6n-5

⅜ .
√3 1

2(n+l)(n+5) (λ+1) (λ + 5) 4√3

Σ*
(n-1)(2λ+5)

0
-√3(λ-5) 1

(3,n-l)
2(n+l) (n+5) 4(n+l) (λ+5) 4√3

2n2—5 1
— 2n÷5 1

2(n+l)(n+5) 8 √3(λ+1)(λ+5) 4√3

Ω
2n2—3h— 5 -1 0 042(n+l)(n+5)
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become infinite. However the ratios of mass differences are finite and can be compared 
with the data. As an input we take N—≡, ∑*  and N. Our results can be parametrized 
in a following way:

Mb = Mq— WbrIsuO) (14)

with mBR = 189 MeV, Ms = 1129 and JW"ι0 = 1385, FSU(3) = TB— ∑λ∙ Ali exρerimental 
values lie between the predictions for Nc = 3 and Nc = oo, however for Ac = oo there 
is no splitting between A and Σ. The serious drawback of formula (14) is that in fact 
M8 = Mlo for Nc = ∞ (as can be seen from Eq. (6)). So the mass splittings within the 
multiplets can be described in large Nc limit, however the multiplets themselves are 
degenerate.

Magnetic moments
Octet (i.e. (1, n)) magnetic moments were discussed in Ref. [12]. Here we only notę 

that (as can be seen from Tabl. II):

∑Z⅛ = 0 (15)
li

for each isospin multiplet. This rule is not obeyed by the data.
Łet us point that there is one Nc independent ratio:

μ√∕⅛÷ = 1 (= 1-17 exp.). (16)

The sign of μs- is changed with respect to Λrc = 3 case (and experiment).
For Decuplet (i.e. (3, k)) the SU(6) formula μβ ~ QB (electric charge) is badly broken 

(Eq. (15) remains valid). Drastic differences between Nc = 3 and Nc = oo can be observed 
for ∆o, Ξ* o and Ω. However the lack of the data prevents us from drawing any definite 
conclusion.

To summarize: the magnetic moments and the mass splittings seem to be phenomeno- 
logically better described by the Nc ≈ 3 quantization. Still the real Nc = 3 world requires 
morę care; l∣Nc corrections to the magnetic moments [6a] provide goθd example of sub- 
stantial improvement of theoretical result.

We think however that it is not trivial that the large Nc limit can be defined for the 
baryon spectrum. The fact that the phenomenology of the model fails in this limit is merely 
the reflection of the very fact that QCD has only 3 colors. It seems that both the Skyrme 
model and the naive quark model give the same results in this limit [16].

It should be observed that other choices of the generalization of the Octet and Decuplet 
are possible. For example one could take (n, n) as a generalized Octet. In that case the 
phenomenology of the different choices may be considered as an additional criterion for 
defining the large 7Vc-limit of the Skyrme model [18],

One of us (M. P.) acknowledges the hospitality of DESY Theory Group where this 
work was begun. M. P. thanks also J. Bijnens for useful discussions and G. Karl for bringing 
his attention to the large Nc quantization of the Skyrme Model.
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TABLE II

Magnetic moments (see Eq. (11) in the text)

e B Nc = 2n+ 1 
or Λ⅛ “ 2*+3 Nc≈3 Nc ≈ <x>

P
t «+3 
τ n+4 ~τr -⅛

n
1 n2 + 5n+3
* (n+2)(n+4) ł

Σ+
n+3 . 

-⅜∙3 n+4 —⅛

∑o ..i . b+8 t 0(i,*) β (n+2)(n+4) 1 0

Σ-
1 n2+4n-2
τ (»4-2) (n+4) ⅛ ł

Λo ⅜ 1
≡ n+4

1⅛ 0

s°
- n+8
’ n+4 T ⅜

s-
1 n-4
9 n+4

1
15 -⅜

Δ÷÷ , k+5

Δ+
1 ⅛2+7⅛+15

1 -⅜τ (fc+2)(⅛+6) -■*

∆o
i Kk+7)
5 (fc + 2)(fc+6) 0. ł

Δ-
3 ⅛2 + 7fc+5
5 (⅛+2)(⅛+6) ł ⅜

Σ∙+
t (A+4)(2⅛+3)
* (fc+2)(⅛+6)

πιι. 1 — i T

(3,fc) Σ*o &
0 0

(⅛+4)(⅛+6)

Σ∙-
2⅛3+23⅛2+72⅛+48
4(⅛+2)(fc+4)(fc+6) i ⅜

s* β . ⅛(⅛+3)
0i (⅛+2)(⅛+6)

s*~
1 ⅛2+9fc+9 
’ (⅛+2)(⅛+6)

1 ⅜

Ω i 0
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APPENDIX

In this Aρpendix we collect our conventions for calculating Clebsch-Gordan coefficients 
used in the text. Tensorial methods of calculating OG coefficients are described in Ref. 
[13], Representation (p, qj of SU(3) acts on a space of symmetric and traceless tensórs 
T{9p∖ labeled by q upper and p lower indices. Tensor 7∖¾ ħas q upper (antiquark) andp lowęr 
(quark) indices. In what follows we omit labels {p} and {q}. In the direct product of the 
Octet T[8] '=≈ T$, a, β = 1,2,3 and (p, q) representation (p, q) appears twice:-

(A.l)

(A.2)

where the sum in (A.l), (A.2) extends over all permutations {n,i1,i2, •••}• We define

e± = ez±o‰ (AJ)

where α is chosen in such a way that q± are orthogonal:

2 _ q(6 + 3p + 8q + 2pq+2q2) 
p(6 + 3q + 8p + 2qp + 2p2)

(A.4)

The Clebsch-Gordan senes for the highest weight of (p, q) called “p” (with obvious nota- 
tion in quotation marks for other states in (p, q)) reads:

“p” = N± ∑o × “p”+ _2q±«P λ χ lφ,>.(iα) yjp ς+ χ «n» 
√6

where
tf2________________ 3(1 +p+g)______________

i _ 2g[6 + 3p+⅛ + 2p<7+2g2±(-a)p(4+p+√)] '
(A.6)

Our phase conventions are such that the C-G coefficients for 8 × 8 (p = q = 1) agree 
with the standard ones [17].

8s,a = (1.1)±∙ <a∙7)

The limiting procedurę for 10 requires morę care sińce for q = 0 we have only one 
representation (p,0) in (1, l)×(p,0) (see Eq. (A.2)). Therefore we have:

10 = -y= [(3,0)_ -(3,0)+]. (A.8)

Fortunately all formulae for magnetic moments and mass splittings for (3, k) have smooth 
limit to 10 as k => 0.
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