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We discuss the minimal model for the forward-backward correlations in the hadron- 
and lepton-induced multiple production. In this model correlations are generated by averaging 
over the components corresponding to the independent emission of clusters with different 
average multiplicities. We show that the model corrected approximately for phase-space 
effects describes reasonably well the high energy hadronie data. On the other hand, the 
test of its applicability to the lh or e+e- data requires higher energies than presently available. 

PACS numbers: 13.85.-t

1. Introduction

By “forward-backward” (FB) correlations one means usually the correlations between 
the global numbers of particles observed in CM hemispheres in multiple production. With 
the advent of colliding beams experiments such correlations became particularly easy 
to measure, sińce they do not require particie identification and momentum measurements. 
Even for the fixed target experiments FB correlations are useful if the statistics is too Iow 
to investigate in detail the differential correlation function. On the other hand, measuring 
the FB correlations may allow already to discriminate between various models of multiple 
production and different hadronization mechanisms. Thus the experimental and theoretical 
investigations of FB correlations have been performed recently by many authors. In partic- 
ular, the UA5 collaboration at SPS collider has presented data and discussed them in 
terms of a very simple model [1, 2].

In this model, called further the Minimal Model (MM) the clusters of hadrons are 
randomly emitted according to the longitudinal phase space. The multiplicity of cluster 
decay is assumed in agreement with earlier short-range correlations analysis and the experi- 
mental multiplicity distribution determines the cluster multiplicity distribution. It is possible 
to derive the approximate predictions of MM for FB coirelations without performing the 
Monte Carlo generation of events and the results are good.
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In this paper we show the equivalence of MM of Ref. [1] with a similar model construc- 
ted earlier to desciibe the ISR data [3, 4, 5]. Then we propose a simple ansatz for phase- 
-space corrections allowing for approximate description of FB correlations in the ISR- 
-collider energy rangę. Further, we discuss the possible applicability of MM to the Ih or 
ere^ data, extending the former analysis of Ref. [6]. We conclude with remarks on the 
relation of MM to some morę elaborate existing models of multiple production and to the 
apparent universality observed recently in data by Wróblewski [7],

2. Approximate predictions of MM

Let us recall here first a simple derivation of a MM formula for the correlation 
parameter b piesented in Ref. [1]. Here b is defined by the linear relation

mf(⅝) = nF + b(nB-nB), (1)

where nF(B) denotes the number of particles in forward (backward) hemisphere, nF(nB) 
denotes the average for fixed nB and ńF(B) are averages over all events. This relation agrees 
quite welł with high-energy data and is exρected to work always when the multiplicity 
distribution in each hemisphere can be approximated reasonably well by a Gaussian curve. 
It is easy to check that

(2)

In the following we consider the symmetric case, for which

D2 = Df + Db + 2Dfb = 2D½(l + b). (3)

Thus we can separate the effects of global multiplicity fluctuations and the effects 
of fluctuations in one hemisphere for fixed global multiplicity. Denoting by <>π an average 
for fixed global multiplicity n, and by bar averaging over n we have

⅛ = + = <D2>n + l^-ih2 = <D∣>b + ⅜D2. (4)

Thus

D2 D2-4<Df>.b = -l =------- XX. (5)
2£>f D2 + 4<D2>π

In the MM of Ref. [1] one assumes random uniform distribution in rapidity for fixed 
n, i.e. the binomial distιibution of mf

p<'⅛>∣--∣.("f) ®

resulting in
<O2>n = ⅜ n. (7)
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Thus

(8)

In fact, the realistic model should take into account the existence of short-range 
correlations. It can be done by assuming random emission of clusters instead of single 
particles. If the cluster decay is independent of its formation, we obtain

(9)
where

— 4 ^ceffπ>

(10)

parametrizes the cluster decay distribution with average decay multiplicity li. Thus the 
finał formula of MM as presented in Ref. [1] is

In fact, a similar model has been considered earlier [3-5]. KNO scaling of multiplic
ity distributions have led many authors to describe the multiparticle production as the 
superposition of independent emission processes with various average multiplicities pro- 
portional to some physical parameter (related to inelasticity, impact parameter etc.). 
Then for the multiplicity distribution we obtain

P(ń) = f dλψ(λ)e~λn —
1 n! (12)

where
∫ dλ∙ψ{λ) = ∫ λdλψ(λ) = 1 (13)

resulting in
D2 = n + [∫ λ2dλψ(λ)-l]2n2 ≡ n + δ2. (14)

Obviously, foι fixed λ there are no FB correlations and

<Dκ>A = 4<β2>Λ = ⅜^∙ (15)

Thus

⅛ = <⅛∖+Mp⅛-l] = ⅜n+l⅛2 (16)

and

(17)
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Assuming again independent emission of clusters and not single particles we obtain

and

D2 = keffH + <52,

— ^jketcn+^δ2,

∣j — $ _ D ~ kettn
δ2 + 2kettn D2 + keffn

(18)

(19)

(20)

Thus the two models are equivalent. However, now we see that the model can be 
justified by the idea of superposing components only for positive correlations, b > 0. 
Indeed, it is not reasonable to assume random emission of clusters for fixed global multi- 
plicity, if the negative correlations (resulting e.g. from energy-momentum conservation) 
make the global multiplicity distribution of clusters narrower than Poissonian. In fact, 
we expect that the model will work well only if D2 > ⅛eft∏, sińce one shall apply energy- 
-momentum conservation for each λ, which may modify significantly formulae (18) and 
(19) even at quite high energies. This suspicion is supported by data. Whereas at collider 
energy formula (20) agrees with data for kett — 2.5-3 (as used to describe short-range 
correlations), we obtain too Iow values even in ISR rangę, as shown in Fig. 1. On the other 
hand, the Monte Carlo calculations of MM with phase-space effects built in have described 
ISR data very well [5]. Thus in the following we consider a simple ansatz for such effects 
modifying formula (20). Nevertheless, we restrict ourselves to the ISR-collider energy 
rangę, as for lower energy our approximations are unreliable.

Fig. 1. Correlation parameter b in pp [5] and pp [1] collisions at high energies (black points). Brackets show 
the limits of MM predictions (11) for kett = 2.5-3

3. Phase-space corrections to MM

The modifications of random emission resulting from the energy-momentum conser- 
vation are in generał quite complicated [8] and it is customary to use Monte Carlo genera- 
tion of events according to the cylindrical phase-space instead of analytical apρroximations. 
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However, for our purposes it is enough to notę that for large ń the dispersion of multiplic- 
ity distribution is reduced (relative to Poisson distribution) by an approximately constant 
term

D2 = n-c+Oθθ. (21)

Now, in MM we have assumed for fixed λ the Po⅛son shape for the cluster multiplic- 
ity distributions both globally and in a single hemispheie, which reflects the absence of 
FB correlations. It seems reasonable to assume that energy-momentum conservation does 
not introduce FB correlations, as the energy in each hemisphere may be distributed inde- 
pendently between different numbers of particles. Thus we can replace (15) by

(22)

and averaging over λ we obtain analogous result

(23)

If this is assumed for cluster pioduction, we get for hadrons

(24)

and the correlation parameter is given by

where

(25)

(26)
We treat c as a free parameter. Nevertheless, one may estimate that for standard 

phase-space parametrization c is of the order of few units, and sińce k is about 2, c is of the 
order of ten.

Obviously, in analogy to formula (20) we can expect that formula (25) will work only 
for high energies when b is definitely positive. We do not perfoim a detailed lit to the ISR 
and collider data, as the two experiments differ significantly in event selection and contain 
certainly different admixture of diffractive events (obviously not described by MM). 
However, we show in Fig. 2 the belt of predictions resulting from formula (25) with 
kett — 2.5-3 and c = 10. Curves for e.g. kcti — 2.5, c = 6-10 and ketf = 3, c = 10-14 
lie also inside this belt. We use here the phenomenological relation of Wróblewski [9]

D (27)

As we see, for this rangę of parameteis MM describes the FB correlations quite well. 
As an example of a particular choice of parameters we show also points obtained for 
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ktff = 3, c = 13 using measured values of D2 and ń (and not Wróblewski’® relation), 
which agree with experimental values of b within errors. Let us notę here that we are 
using the values of D2 and n from Ref. [5] instead of morę recent one; [10] to ensurc the 
same choice of events used for determination of b and multiplicity distributions. We do not 
show the predictions of formula (25) for n < 8, where the results become very sensitive 
to the choice of c and kKi( and where our simple ansatz for phase-space corrections in 
MM is no longer reliable.

Fig. 2. Correlation parameter b in pp [5] and pp [1] collisions (black points) as a function of average multipli- 
city n. Broken lines show the limits of MM predictions corrected for phase space (25) with c = 10, 

kett = 2.5-3 and crossed points correspond to the values of c = 13, ken = 3

4. MM and lepton-induced multiple production

Kiihn and Schneider [6] have pointed out that FB correlations may help to answer 
the basie question conceming multiple production in the lh or e+e collisions: are the two 
jets related to the q-q or q-qq separation fragmenting independently, or is there a colour 
tubę or string connecting the original partons and fragmenting (uniformly?) into finał 
hadrons ?

The hadronization models currently used answer this question differently. In the Feyn- 
man-Field approach [11] independent fragmentation is assumed explicitly, and this idea 
persists in morę modern models based on perturbative QCD [12]. The non-perturbative 
models [13] assume uniform particie creation within colour tubę. The Lund model of 
hadronization [14], where string picture is assumed, seems closer to this approach. In 
generał, however, the model predictions depend on many details and it is difficult to check 
by comparison with data which assumption works better. FB correlations provide us in 
principle with a unique opportunity to test this directly. Indeed, if the two jets fragment 
independently, the correlation parameter b should vanish at large n. On the other hand, 
if we assume the “colour tubę” picture and take into account the experimentally observed 
approximate KNO scaling, we expect that in this limit b approaches the value of 1 and 
that MM should work.

Kiihn and Schneider [6] have elaborated such predictions basing on the non-perturba- 
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tive models [12] and using MM analogous to the one described earlier [3, 4], They do not 
present explicitly the obtained dependence of b vs n, but using their approximate formula 
for b with kclf = 2.5-3 and n/D = 2.6-3.2 (quoted value is 2.6, which seems rather Iow) 
we find 

where c = 33-60. Since at PETRA energies n (as measured recently by JADE collabora- 
tion [15]) varies from 8.4 to 13.6, we expect at highest energy b = 0.18-0.29, and in principle 
experiment should be able to distinguish such value easily from zero. Unfortunately, 
the multiplicity distribution used in [6] does not really correspond to the data; the value 
of parameter <A2>- 1 which they use corresponds to the quoted n/D ratio only asymptoti- 
cally, when

(29)

and at available energies this approximation is unreliable. In fact, using kelt = 2.5 we 
find within PETRA energy rangę [15]

<D2>λ = keffn D2. (30)

Extrapolating the existing data one can expect the reversion of inequality (30) at n around 
25. This means that formula (18) cannot describe data until much higher energies are achiev- 
ed. Cluster multiplicity distribution is presently narrower than Poissonian and cannot 
be described as a superposition of Poisson distributions. This inapplicability of MM may 
be again attributed to the phase-space effects, which make the assumption of random emis- 
sion at fixed λ unreliable, as in lower energy hadron data. Notę that for the e+e~ case we 
may expect from phase-space even stronger negative correlations than in hadron-hadron 
collisions at the same n, sińce there are no leading particles, and consequently no distribu
tion of inelasticity weakening the effect of energy conservation on the multiplicity distribu
tion. In any case, if we use the original formula (20) instead of approximation (28) we see 
that MM cannot be used to describe PETRA data.

Let us check if using the ansatz of Section 3 to describe the phase-space effects we will 
be able to extend the applicability rangę of MM down to available energies. Using 
keff = 2.5, c = 10 and n/D = 3.2 (as seen at highest PETRA energies) we find

(31)

Unfortunately, this expression is again negative, until h reaches the values about 20, 
expected at energies of the order of 100 GeV. Varying parameters within the limits compat- 
ible with other data we find the lower limit of ń for which b is positive changing between 
12 and 24. In any case, however, within the present energy rangę our ansatz is unreliable 
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and we can neither support, nor disprove MM. Consequently, it seems that we have to 
wait till LEP energies to distinguish definitely between the two pictures of multiple produc- 
tion using FB correlation data (obviously, for lh processes the energies will be also too 
Iow till HERA).

To test MM one can also go beyond the crude aρproximation of our ansatz (21) and 
to perform Monte Carlo analysis of phase-space effects. However, such an analysis at 
PETRA energies is seriously influenced also by effects of various flavours of quarks, 
three-jet events, experimental biases and inefficiences. The only measurement of FB correla- 
tions in eτe- collisions performed at 34 GeV by TASSO [16] yielded the results incompatible 
with linear relation (1) and suggesting for “nearly linear” rangę of nB the value of b around 
0.2. However, these data are compatible with b = 0 when corrected foi acceptance, trigger 
conditions, and referred to definite flavour two-jet events. This shows that details of analysis 
produce effects larger than deviations from b — 0 predicted by MM, and the two pictures 
are unfortunately indistinguishable at available energies within the experimental and 
theoretical uncertainties. At higher energies this distinction should be morę elear.

5. Discussion and summary

We have shown that MM allows for correct description of the FB correlations in the 
high energy hadron-hadron collisions even with very simple parametrization of phase- 
-space effects. This suggests that MM can be used as the reliable model to be contrasted 
with the assumption of independent fragmentation for eτe~ and lh collisions. Unfortu
nately, the energies available are too Iow to test MM there.

Nevertheless, we may wonder why such a primitive model works so well.
The answer is very simple: as far as we are investigating only FB correlation, MM 

is equivalent to many morę elaborate models of multiple production. Indeed, the only 
relevant assumption is here the possibility to decompose multiple production into compo- 
nents, for which there are no long-range correlations (i.e. the multiplicity distribution of 
clusters is close to Poissonian and FB correlations are asymptotically negligible). In fact, 
at high energies when D2 > kefen, even quite significant deviations from Poisson distribu
tion are irrelevant as long as their contributions to dispersion do not grow with energy. 
Such moderate assumption is present in the broad class of models, as the Lund model 
[14] or the dual parton model [17, 18], although the predictions of these models for morę 
sophisticated experiments may differ significantly [18]. In any case, we do not regard as 
justified claims that all the FB correlations results follow just from the KNO scaling of 
multiplicity distributions [1]. One can construct as well independent fragmentation models 
with b = 0 and KNO scaling. The success of MM for hadronie collisions shows that the 
fluctuations of average density of particles in rapidity between events are here much stronger 
than the relative fluctuations in various intervals of rapidity (e.g. hemispheres). In the e+e~ 
and lh collisions this effect may appear or not, and a test of this hypothesis is very inter- 
esting.

Finally, let us comment on the recently observed universality of the FB correlation 
data. Wróblewski [7] has compiled existing measurements of correlation parameter b for 
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hadron-hadron collisions supplementing them with estimate for e+e^^ collisions based on 
formula (3). The results, when plotted versus (h)_1/2 lie not far from a single straight linę, 
suggesting the universal behaviour

b = c ~ 2.4. (32)
√ n

As we can see from formulae (20) or (25), MM predicts different asymptotic behaviour 
for hadron-hadron collisions (only integer powers of n occur). Nevertheless, for the ISR 
and collider data, where our MM calculations are reliable, the results of formulae (25) 
and (32) are practicałly indistinguishable, as shown in Fig. 3. The discrepancies at higher

Fig. 3. Correlation parameter 1 — b in pp [5] and pp [1] collisions (black points) as a function of 1/77. Solid 
straight linę represents the universal fit [7] and broken lines show the limits of MM predictions corrected 

for phase space (25) with c = 10, keft = 2.5-3

energies will be also hard to find. It would be perhaps interesting to test if Monte Carlo 
estimates of phase-space effects at lower energy can be also approximated by formula (32). 
The Iow energy vN data are subject to biases and certainly not accurate enough to draw 
any serious conclusions from their rough agreement with this formula. One can hope that 
new data (e.g. from EMC) will show if the universality of formula (32) is the real fact, 
or just a numerical accident for the limited set of inaccurate data. From Section 4 we coułd 
see that MM, if applicable at all for lh data, would predict the b versus n dependence differ
ent from that in hadronie collisions, as the D vs n dependence is not the same. For inde
pendent fragmentation models obviously b is asymptotically zero. Thus the universality 
would contradict practicałly all the existing models for multiple production in e+e~ and lh 
collisions and it is an extremely interesting subject for further investigations.
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