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IntroductionDuring the last several years quantum chromodynamics (QCD) has become the most promising candidate for the theory of strong interactions. In favour of it one could cite, e.g. the fact that it puts the phenomenologically correct old quark model in a consistent dynamical context, or experimental confirmation of the perturbative calculations of cross sections for deep inelastic scattering.Nevertheless, QCD is not fully understood yet. There are fundamental problems within it for which no satisfactory solutions are known, e.g., the problem of explaining the spec­trum of hadrons and related problem of quark confinement. There are good reasons to believe that these and other difficult problems can be madę easier after gaining a detailed knowledge about properties of the corresρonding unquantized theory, i.e. about classical chromodynamics (CCD). This is the main motivation for the widespread studying of CCD.That unquantized theory is obtained by replacing the quantum fields of QCD by classical ones. In this way we obtain an extremely complicated set of intercoupled Dirac and Yang-Mills equations. Even in the much simpler Abelian case (intercoupled Maxwell and Dirac equations) it is difficult to extract information from such a set of equations. Therefore, it is natural to simplify the problem further, namely to consider color charged matter in extemal Nonabelian gauge fields, and vice versa, Nonabelian gauge fields gener- ated by external color currents. Thus, in this way we would like to imitate the traditional scheme of electrodynamics.The main stream of investigations of CCD has always been devoted to pure Yang- -Mills sector, i.e. the quark fields have been put to zero, for references see [l]1. Actually, we are aware only of a single paper on CCD with quarks published before 1978: the paper by Mandula [2] on Yang-Mills fields generated by a fixed ρoint-like quark source. The fact that very little was known about classical Yang-Mills fields generated by a fixed distri- bution of quarks was realized independently by several authors [3-6], Since then the in- terest in the subject has been constantly growing, see e.g. [7-28]. Nevertheless, the problem is still far from being explored.

1 The vast literaturę on monopoles and vortices deals with Higgs fields which are regarded as dynamical 
variables — they are not externally fixed. Coupling of the scalar Higgs fields to Yang-Mills fields is different 
from that of fermions because of spin of fermions and because of the fact that the color current of the Higgs 
fields contains the term Λ°∣φ∣2 mixing Yang-Mills field and the Higgs,s. This term is absent in the color 
cunent of fermions. Moreover, it is well-known [1] that in most problems the Higgs,s in the Prasad- 
-Sommerfield limit can be reinterpreted as the zeroth component of Euclidean Yang-Mills field, i.e. the 
problem is then essentially the pure Yang-Mills problem. Ali these facts cause that the numerous results 
obtained for Yang-Mills theory in the presence of Higgs fields are not relevant for Yang-Mills fields in the 
presence of spin ⅛ quarks.

Much morę extensively was investigated the complementary problem of motion of colored particles placed in an external Yang-Mills fields, see e.g. [29-46].We would like to cover these two subjects, i.e. classical Yang-Mills fields generated by extemal sources and classical motion of color charged matter in external Yang-Mills field with the term classical chromodynamics of extemal charges and fields.



827This paper is a review of our work on classical chromodynamics of extemal charges and fields. The content of the paper is divided into two parts.In the first part we consider color charged matter in the external SU(2) gauge field. Specifically, we investigate the particle-like classical limit of the Dirac equation with the external Yang-Mills field. We find that such a limit does not exist in generał. When this limit exists, there is an interesting mixing between spin and color degrees of freedom of the particie.In the second part we investigate classical Yang-Mills fields generated by external sources. We discuss the problem of gauge invariance of energy in the presence of an ex- ternal current and we present certain topological characteristics of the extemal charge distribution. Next, we describe the exact Abelian Coulomb solution for a set of spatially separated color charges, we discuss a perturbative approach to solving Yang-Mills equatiops with weak external sources, and we construct within this perturbative approach a Nona- belian Coulomb solution for the external color charge characterized by Hopf index +1. We also consider certain modification of CCD in which the Yang-Mills potentials are coupled to gauge invariant extemal sources.
Part I: Color Charged Particie in an External Nonabelian Gauge Field

I.l. The equations of motion for classical particie with spin and color spinClassical mechanics of colored particles [29-46] is the very interesting example of clas­sical mechanics with internal degrees of freedom, even though one should not expect to observe colored particles in any experiment, according to the color confinement hypothesis.Here we would like to propose a set of classical equations of motion for a colored and spinning particie interacting with an external SU(2) Nonabelian gauge field. We find that because of mixing between color and spin, it is necessary to introduce a new classical dynamical variable [Ja6], a,b = 1, 2, 3. The constraint relations between [Jah], the classical spin S, and the classical color spin 7 are also found. The fuli presentation of our results is published elsewhere [37].The classical equations of motion for a spinless, colored particie were extracted by Wong [29] from the Heisenberg equations for the momentum and color spin operators derived from Dirac equation with external SU(2) gauge field. The replacement of the operators by c-number classical quaπtities in the Heisenberg equations led to the classical equations of motion. In the non-relativistic limit these equations are
mx = gIaEa+ — x×BaIa, (1)

c

ia = j-εβbe(Ab0-Ah^Ic, (2)



828where I = (7a), a = 1,2, 3 is the color spin vector of the particie, the dots denote differen- tiations with respect to time. The color electric and magnetic fields are defined as (3)where Faμv is the SU(2) field strength tensor, see formula (3) in Ch. 1, §1 of Part II.Our derivation also starts from the Heisenberg equations, however we make two essen- tial improvements. First, we use the Foldy-Wouthuysen representation for the Dirac equation with SU(2) gauge external field. This allows us to avoid the well-known problem [47] with interpretation of the α = γ0y matrices as the classical velocity (this problem is present in Ref. [29]). Second, we identify the classical quantities as the expectation values of operators, assuming the quantum state of a wave packet form. We avoid the ambiguous and formal procedurę consisting of replacing quantum operators by c-number quantities used in Ref. [29]. This allows us to observe mixing between spin and color spin. Moreover, in our approach from the knowledge of classical quantities one can gain an information about quantum mechanical wave function of the particie, while in Ref. [29] the wave function is completely abandoned.Our results were obtained with the apρroximate Hamiltonian H2 in the Foldy-Wou- thuysen representation. The obtained classical theory is a nonrelativistic one. Moreover, the equations (21), (23), (24) below for the intemal degrees of freedom can not be rewritten in the relativistic form by merely introducing the proper time by yd∣dt = didτ. The equations have truły nonrelativistic form.The Dirac Hamiltonian in the Foldy-Wouthuysen representation calculated up to the order (mc)-2 is [37]
H = mc2β+ -Lβ(p-lA}+gA0+^- εiksSsFik

2m \ c / 2mc

- 7 'f*)  + (?- 7 7*H  - ⅛da <4)

where DkE' is the covariant derivative of the color electric field, Aμ = AaμTa, fa = — are the SU(2) generators in the fundamental representation. β = y° is taken here to be diagonal
j =,i i / σ' 0 \ ,and S = f 1 σi / ls t ιe sPm oPerator∙From the Hamiltonian (4) we obtain the following Heisenberg equations of motion. We introduce the mechanical momenta,

c
(5)
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then (6)

(7)
We consider also spin S' and color spin Ta operators,

(8)

(9)
Now let us tum to the expectation values. In this Section we assume the following “particle-like” form of the Dirac bispinor γ in the Schródinger picture in the positive energy sector [47] (10)

where a = 1, 2 refers to spin, η = 1, 2 refers to color. Here x(t) is the trajectory of the corresponding classical particie, φ(x-x(f)) is the c-number valued wave packet localized at x(t), with the average momentum<φ∣p∣φ> = mx(t). (11)We neglect the quantum mechanical spreading out of the wave packet. We find it convenient to assume that for x close to x(t)

u(x, t) = \ 1 + ~ Ai(x(t), f)∆xi- ~ ∂iAk(x(f), t)∆x,∆xk 
\ nc 2nc

(12)
where ∆xl = x,-x,(t). Furthermore, while calculating the expectation values we assume that due to the localizability

{φ∖∆xl∖φy = (φ∖∆x'∆xk∆xs∖φ} = 0 (13)
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(in fact, the spherical symmetry of φ(x- x(t)) with x(r) as the center will do this), and that<φ∣dx'dx4∣φ> = <φ∣dx,Jxfcdxsdxp∣φ> = 0. (14)Then we have the following formulae:<v,l⅛lφ> = mxr(f), <φ∣7⅛π's∣y>> = m2xrx', (15)

la(t) <r∣⅛> = mo+(0Γs⅛o(0, (16)Sb(t) d= <y∣Ssfc⅛> = w0+(t)Ss6u0(t), (17)⅜ <ψ∣ [⅛, 4] + |y> = mΓxr(t), (18)⅜ πs]+ ∣V,> = muo(t)SlT^uo(t)xr, (19)where the subscript S denotes the Schródinger picture oρerators, ∣ι∕>> is the Schrodinger wave function (10).Let us now calculate
= <ψ∣ (the r.h.s. of (7) taken to the Schrodinger picture) ∣φ>

= - ⅛⅛)j)Γ(o+gF√⅛)r,
cwhere in the last step we have used (15) and the definition (16) of the classical color spin vector I. Moreover, because we neglect the quantum mechanical spreading out of the wave packet, which gives the contribution of the order /1 to d[ψy∣dt we neglect all other terms of the same or higher order in h for consistency. Thus, we have obtained the following classical equation for the trajectory

mxr(t) = - A xiFariΓ,+ eF°0rl°. 
c

(20)
Similarly, for the classical color. spin vector we obtain

(21)
where we have to introduce the new classical quantityno ⅛ <v∣fs⅛> = m<⅛0(∣). (22)
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For the classical spin, vectordS' = _g_ 

dt mc
~ (Eatxp- Eapx,)1 Jap(f). (23)

In. order to have a closed set of equations we have to add the equation for Jap(t).In the case where spin and color decouρle, ιff(t) = φx(t)χη(t), we have Jap(f) 
= Γ(t)Sp(t). However, in the generał case Jap(t) is an independent quantity, see next Sec- tion. The equation for Jap(t) follows from

dJap -ndSb dτa ..rpa + — sb.
dt dt dtnamely

dJab
dt

(24)
The equations (20), (21), (23), and (24) are the classical equations of motion for the particie with spin and with color spin. The equation (20) coincides with the Wong,s equation (1), others do not. Observe that from these equations it does not follow that S2 and I2 in generał are constants of motion. They can under special circumstances become constants of motion, e.g. when Jab = IaSb.

1.2. The constraint equations and the determination of the wave function u0(t)The equations (20), (21), (23), (24) have to be completed with constraint equations. The reason is that the fifteen numbers Γ, Sb, Jah are expectation values in the single state u0(∕). Therefore, these expectation valu.es depend on 6 independent, real numbers forming w0(t) (because m0 is normalized to 1 and because the overall phase factor of u0 does not change the expectation values). Thus, the constraints are necessary if the classical mechanics based on the equations (20), (21), (23), (24) is to be related to the quantum mechanical Dirac particie. We find these constraint equations in this Section. We also Shall show how to calculate M0(∕)from known T(f), Sb(t), Jab(t), and we shall find the time evolution equation for w0(t), [37],First, let us show that knowledge of the classical quantities I, S, Jab determines the wave function mo(0 uP to an arbitrary time dependent phase factor. This fact we shall regard as proof that the above set of classical dynamical variables describing the intemal motion of the particie is complete, in the sense that any other classical, internal dynamical variable, i.e., the expectation value óf an operator in the state u0, is a function of I, S, [Jαb].

valu.es
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To this end we shall regard the spinor [wθ,,] as 2 × 2 matrix u0. Then, the normalization condition wJα',Mθ'' = 1 takes the form Tr UqM0 = 1. (25)Furthermore, r ≡ <w0∣f,,∣w0> = ⅛Tr (u*σ auξ) = ⅜ Tr (uoσβτtto+), (26)

St = 4 Tr (u0+ σ'u0), (27)
Job = ⅜Tr(u0+σhu0σβτ), (28)where the star denotes the complex conjugation, and T denotes the transposition of the matrix. It is elear that we cannot determine the overall phase factor of u0.From (25)-(27) it follows that “o«o = ⅜σ0 + Sσ, (29)u0+ u0 = 4 σ0 + Iστ. (30)Equations (29), (30) imply that∣detw0∣2 = ⅜-I2 = ⅜-S2. (31)Thus, we see that for SU(2)-colored particie

I2 = S2 ≤ (32)It is easy to see that this fact is consistent with the equations (21), (23) only if
εbacIttJcs = εtkrSkJbr. (33)Utilising (26)-(30) it is easy to prove that the condition (33) is satisfied. Relations (32), (33) are examρles of the constraint equations.From (31) it follows that u0 is a singular matrix only when S2 = I2 = 1/4. It is easy to prove that det u0 = 0 is equivalent toHαo, = Γz∖ (34)i.e., in this case the spin and color spin decouple. In this degenerate case knowledge of I and S, together with the normalization conditions
ξ+e = ι, z+z = ι,determines ξ, γ up to the arbitrary time-dependent phase factor. For example, when ∕3≠ -1/2,

X = exp [⅛(,)] ⅛+∕>)-'≈ Q1++'∕aj, (35)
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and if ∕3 = —1/2 χ = exp [iα(t)]Analogous formulae hołd for ς.Let us remark here that the above relation between I(S) and the 2-spinor χ(ξ) can be refined by utilising the coherent states for the SU(2) group, [39].In the degenerate case (34) we have Jab = ΓSb. The constraint (33) becomes trivialized to 0 = 0. However, [Jafc] does not cease to be an independent dynamical variable for the particie, as we shall argue below. This means that the relation det u0 — 0 is not conserved in time.Now, let us consider the generał case, which also includes det u0 = 0. In order to determine u0 we recall that any 2×2 matrix can be written in the form

Mo = HV,where
H = H+ = √MoMo

(36)
(37)is a positive definite, hermitean matrix, and V is a unitary matrix determined from (36). If m0 is not singular, the matrix V is determined uniquely, namely

V = H~iu0. (38)From (29), (37) we obtain
where A = ⅜+⅜√l-4S2,

(39)
(40)and σ0 is the 2x2, unit matrix. Furthermore, because∕ σ'∖στ = σ = I -σ2 ,

∖ ff3∕we obtain from (29), (30), (39) that
V+SσV = 7σ, (41)i.e., V represents a rotation which rotates S into I, where
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(42)

For instance, when S ≠ -I we may take
Obviously, (41) docs not determine V completely. Namely, we can take

V = v0c,where C is any unitary matrix commuting with lσ. Any such C has the formΓ y(t) Jrσ' C = exp [iβ(t)] exp i (43)2 |Z|JThus, we see that in the generał case h0 is not determined by the knowledge of I(t) and S(t) — apart from the unessential phase factor exp [iβ(t)] we do not know the function }’(')• Therefore [Jαf,] is the new dynamical variable for the classical particie, independent of (Iα), (Sfc). Observe that if at certain instant ∕0
then uol(to) — ζ Oo)χ,,Oo)>

In the degenerate case λ = I = S = 1/2, and therefore in this case all dependence on y(r) takes the form of the undeterminable phase factor exp [zy(t)∕2]. It can be shown that in this case (46) can be written in the form (34) with ξ, η given by (35).In the generał case however, the function γ(f) does not appear in the form of a phase factor, so it has to be determined. This determination is possible if in addition to I, S we also know the matrix [Jfl6]. From (46) we obtain

Jai(t0) = Ia(t0)Sb(t0).

(44)
(45)However, it is easy to check from (36), (38), (40) that the quantity Qab = Jab-ΓSb is not a constant of motion. Therefore, in generał (41), (42) do not hołd for t ≠ t0, and therefore 

Jab does not cease to be the independent dynamical variable.From (39), (42), (43) we obtain 1111 ( γ λ γ \»o = -7≡ exP [»/?(*)]  I cos - +i - sin -√2λ ∣S + 7∣ \ 2 I 2/
[⅛ ∣S+I∣2 + (S×I> + 2(S^+7σ)]. (46)

Jab = ⅜ -→2^ +si∏ γAab+ cos γBab, (47)
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where

(48)

In these formulae the barred indices a, B, etc., denote the change of sign of the vector or the tensor when the value of the index equals to two, e.g.,

The presence of the barred indices is due to the fact that σar = σa. From (47) we can dcter- mine y if we know 7, S, [Joh].Thus, we have proved that 7, S, [Jαθ] form the complete set of classical dynamical variables for the intemal motion of the particie. Now, we shall find the constraints. For 15 real number valued quantities (Γ), (Sb), [Jab] we have to find 9 independent equations, in order to be left with 6 independent quantities.In order to find the constraints, we consider the matrix Mvμ, defined by (49)Comparing (49) with definitions of Γ, Sb, Jab, we see that
(50)The matrix Mvμ obeys the relation (51)where (gμv) = (1, —1, —1, —1) is the Minkowski space-time metrics. Jn the degenerate case this relation can be easily verified by a direct calculation. In the nondegenerate casc, det u0 ≠ 0, this identity comes simply from the fact thatLv,, = M∖,∕ldet ∕iu∣ is a Lorentz transformation, because the matrix u0∕(det m0)1'2 is an element of the SL(2, C) group. Here we use the well-known relation between SL(2, C) and the proper, orthochronous Lorentz group, [48]. The Lorentz transformations obey the relation

This relation leads to (51).



836 Let us recall that ∣det m0∣ is determined by I or S via (31). From (50), (51) we obtain that⅜-S2 = ]det m0∣2,
ila-Jat,Sb = 0, 

4JabJdb-ΓId = jdet H0∣2<5fli.
(52)(53)(54)Another set of relations is obtained from the fact that if Lvμ is a Lorentz transformation, then (Lτ)vμ is a Lorentz transformation too. The difference between L and Lτ is equiv- alent to the interchange of S and I, and to the replacement of Jab by Jba. Thus, we obtain⅜-I2 = ∣detu0∣2, (55)

⅛Sb-JabΓ = 0, (56)
4JdbJdc—SbSc = ∣det M0∣20f,c. (57)In the degenerate case these relations can be easily verified by a direct calculation.The equations (52), (55) are equivalent to (31). The equations (53), (54) are the nine constraint equations. The equations (56), (57) are equivalent to (53), (54) because (53), (54) together form the sufficient condition for L''μ to be the Lorentz transformation. The previously found relations (32), (33) also follow from (52)-(54).The next problem to be investigated is the question whether the classical equations of motion (21), (23), (24) respect the constraints, i.e., whether the above relations are conserved in time if I, S, [J"6] evolve in time according to the equations of motion.It seems that the most illuminating way to find the answer to this question is to observe that those three classical equations of motion can be derived from a single equation for M0(t). Then, the solutions to (21), (23), (24) can be regarded as the exρectation values (26)—(28) in the state w0(r) for all t—this would guarantee that together they form the matrix (49) for all t, i e., that the constraints are conserved.Such an equation for w0 can be derived in the following manner. From the Schrodin- ger equation

0
i li — ψ = H2,ψ 

Otwe obtain for the wave packet (10) that
C(p ć

ih — u0 + ihφ — ιιυ = H2φu0, (58)
Ot Ot

ψ(x, t) = u(x, t)φ(x-x(t)) ≡ φ(x, t)u0(t).Herc we regard u0 as the 2-spinor, not as a 2 × 2 matrix.



837Now we assume that
(59)

In fact, this assumption does not restrict the generality of our arguments, because if a cer- tain u0 does not obey (59), then

obeys it. Because wj «o = 1 > the above exρonential is a time-dependent phase factor (the integrand is imaginary). Therefore, (59) is merely a restriction on the overall phase of u0, which has no effect on Z, S, [Jα6], as is elear from (16), (17), (22).From (58), (59) we obtain that
ih = (u+H2u)φ- ^-AakXkΓφ, 

ot cand therefore
ih , uθ — H2u0-(u0 H2u0)u0, 

otwhere
H2 φ---- — AlXl +

c
— AaiIaxi 
c

(62)
is the “effective” Hamiltonian for spin and color degrees of freedom. It is easy to check that H2 has the form (we neglect the terms of order h2 because we neglect the spreading out of the wave packet which gives the contribution of order h to ∂φ∣ct)∙.

H2= ⅜ mP- - Aiii + gA0+ — A"Γxi
c c

JlL
2mc

£iksSSF ik (63)
where we have used (15). Of course, ∏2 is a hermitian matrix.Thus, the time evolution of u0 is govemed by the nonlinear equation (61). In fact, the nonlinear term in (61) is superficial. The simple change of phase of u0. performed by passing to

(64)



838removes this term. Namely, w(t) obeys the linear equation. dw —
ih — = H2w. (65)

otThe nonlinear term in (61) is necessary in order to ensure (59). Of course, w(t) does not obey (59) in generał.From (64), (65) we see that
~ (uo ^»o) = puo [∏2, ⅛, (66)
at nwhere P denotes fa, Sb or Jab. It is easy to check that this equation leads to the equations (21), (23), (24) for Ia, Sb, Jab.Now we can prove that the constraints are conserved in time. The proof is based on the plausible assumption that the equations (21), (23), (24) for the fixed trajectory x(t) have a unique solution determined by the initial data I(t0), S(t0), [J"6(∕0)]∙ If the initial data are specified in such a way that the constraints are satisfied, then there exists u0(t0) such that (26-28) are true for t = t0. Next, we solve (61) for u0(t) with the u0(t0) as the initial data. Applying (26-28) again with the calculated u0(t) we obtain the solution I(f), 

S(t), [Ja6(t)] of the equations (21), (23), (24) with the chosen initial values. As for this solution (26-28) are true for all t, the constraints are conserved in time.Finally, let us state once morę the most interesting result of this Section: the intemal degrees of freedom for the classical particie with spin and SU(2) color spin are described by a 4×4 matrix [Mvμ], which is closely related to an element of the SO(3,1) group, due to the constraint equations.Finally let us notę that we do in fact not take the classical limit for spin and color degrees of freedom. We just consider the expectation values of quantum spin and color operators for spin ⅜ and color ⅜ particie.
1.3. Limitation of the concept of the classical colored particieThe derivation of the classical equations ρresented above relies on the “particle-like” Ansatz (10) and the assumptions (13) and (14). If they are true, the classical equations form a classical approximation to the Dirac equation with the extemal SU(2) gauge field. If they are not true, the classical equations can still be considered as a selfconsistent basis for a classical mechanics of a spinning, colored particie. However, in this case the classical mechanics ceases to be a classical apρroximation to the quantum mechanics based on the Dirac equation.In fact we would like to present a simple example which suggests that the relevance of the classical mechanics for the classical limit of quantum mechanics of a particie in the external Yang-Mills field seems to be restricted, [38], The point is that we find examples in which the wave equation, here for simplicity we consider the Schródinger equation, does not allow for a satisfactory notion of a classical trajectory of a single point-like particie 



839even in the limit h → 0. However, in the particular circumstances where such a trajectory can be defined, Eqs. (1) and (2) can be derived, e.g. by the semiclassical method as we will show in this Section. In the other case, the Eqs. (1) and (2) can still be considered as a self- consistent basis for the very interesting example of classical mechanics with intemal de- grees of freedom, however without correspondence to quantum mechanics of a point-like particie in the extemal Yang-Mills field.We consider the Schródinger equation for a spinless particie with the Hamiltonian 
H = ~(p--Aata} + gA°0 ta (67)

2m\ c )

(Γawhere ta = — are the generators of the SU(2) gauge group. We shall consider the simple case of a gauge potential of the “Abelian” type
Aμ(x, t) = haAμ(x, t), (68)where h = (ha) is a constant vector in the color space, and h2 = 1.Our argument for the lack of a satisfactory notion of the classical trajectory is based on the investigation of time evolution of a wave function which at the moment t = t0 has the form of the localized at x = x0 wave packetφ"(x, t0) = u⅛(t)φ(x-x0), (69)where the index η describes color degrees of freedom. We assume also that the wave packet is localized in the momentum space, the average momentum being mυ0.Let e± be the normalized eigenvectors of the Hermitean matrix httttt,

(hata)ei ≈ ±⅜ei.The Schródinger equation
. o →in — w = Hw

∂t ψcan be projected one e±, yielding
where

φi(x, t) = eiψ(x, 0,
ψ(x, t) = e+φ+(x, t) + e-φ-(x, 0>

(70)

(71)
(72)(73)and (74)



840From Eqs. (71)-(74) we see that any time dependent wave function can be represented as the sum of two wave functions, each evolving in time independently of the other. The equations (71) can be regarded as the Schródinger equations for two scalar (i.e., colorless) particles with the opposite electric charges +g∣2, placed in the extemal electromagnetic field Aμ. Aρρlying these observations to the initial wave packet (69) we obtain that
ψ±(x, to) = c±φ(x-x0),where w0(t0) = c + e++c_e_evolve as the independent wave packets. Hence, if the usual conditions for the classical limit of quantum mechanics are satisfied, we can approximately write that

t

to

(75)
where x+(z)(5L(z)) is the classical trajectory of the particie with the electric charge +g/2 ( —g/2), placed in the gauge field Aμ with the initial data x(Z0) = x0, x(t0) = v0. The ex- temal field Aμ is taken at the point x = x±(t), respectively.The form (75) of the wave function can easily be justified within the framework of the Feynman path integrals [49]. In particular, the phase factor in Eq. (75) is just exp (i∣hS[x+]) where S,[x±] is the classical action for the classical trajectory x + (∕) — it is the common overall factor in any semiclassical approximation.In generał the trajectories x+(z), x~(t) are of course different, although the initial positions and velocities are identical. This means that the time dependent wave function 
ψ(x, t) does not in generał have the form of a single wave packet. The initial wave packet (69) has dissociated in two separate wave packets, Observe that the difference between x+(z) and x_(z) does not vanish even in the limit h → 0 because x±(t) obey different classical Newton equations which do not contain h. In this sense, the dissociation of the wave packets in the Nonabelian gauge field is a macroscopic phenomenon.In the Abelian case one could also have a dissociation of the initial wave packet, e.g., in experiments of the Stern-Gerlach type. However, in this case the separation is due to the coupling of spin to the external field. Because spin couplings are proportional to h, the separation between wave packets vanishes in the limit fι → 0 — therefore in the Abelian case the satisfactory notion of classical trajectory for a single classical particie in the external field can be introduced in that limit.When x+(z) ≈ x_(Z) ≡ x(z), (76)
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what implies also that x+(t) ≈ x_(t), we can write that

φ(x, t) = exp(iH φ(x-x(t))u0(t), (77)

where
«o(0 = c+ exP i

h

t

to

In this case it is easy to show that
Ia = <ψ∖t0∖ψ>obeys the Wong,s equation (2) using the formula

where m = e↑,te- obeys the relation h×m = im. Eq. (80) follows from Eqs. (77), (78), and (79). The Wong,s equation (1) can also be obtained in this case. Namely, x±(t) obey the equations mxi(t) = + —* 2 1 _— *± c (81)
Then it is easy to see that the center of mass,x(t) = ∣c+∣2x+(0 + |c_j2x_(t)obeys Eq. (1), because h7 = ⅛(∣c+∣2-|c_|2) as it follows from Eq. (80).The condition (76) is obeyed for sufficiently smali t because of the equality of initial ρositions and velocities. However, for larger t it is not satisfied in generał because of the influence of the extemal field. Then there is no satisfactory notion of a classical trajectory of a pointlike particie. Also, Wong,s equation (2) then gives wrong prediction for I(t). For the potential (68), namely, it predicts in generał a rotation around h for all i, while Eqs. (79), (73) and (75) give7(t) = ⅜(∣c+∣2-∣c-∣2)h = const (82)when the two wave packets become spatially separated.

(80)

(78)
(79)



842 Now we would like to present another argument for the lack of the point-particle-like classical limit. As is well-known, in the Abelian case the classical limit can be obtained by the substitution
into the Schrδdinger equation and letting h → 0. The real number valued function S turn out to satisfy the classical Hamilton-Jacob eąuation. In the Nonabelian case we can sub stitute

= CXP (⅛ ty’

In the leading order in h we obtain
and (83)

(84)
The last equation implies that f is an eigenvector of hata because Aai has the form (68)∙ This means that f = e±, as calculated in Eq. (70). Thus, from (83) we obtain two Hamil- ton-Jacobi equations, one with electric charge +g∣2, the other one with —g/2. Thus we again find the two independent classical motions.Let us also consider the gauge potential of a morę Nonabelian type that Eq. (68) namely

Aa0 = 0, Aai = Aδai, (85)
Ag

A — constant. Such a potential gives Eaι = 0, B"‘ = —— δaι. It is easy to check that the 
ncspectrum of the Hamiltonian (67) has two branches→ 1 Ag -£±(P) = —-p2+ —- |p| +

2 Let us notę in passing that in this case the Wong,s equations (1) and (2) have interesting integral 

of motion, namely mx+hl, which resembles the well-known example of the Nonabelian monopole field 
[34). [35] where L+h! is an integral of motion, L —angular momentum of the particie.

Im 2mc
3g2A2
8mc2

(86)
Therefore, the initial wave packet (69) will have two comρonents, each moving with different group velocity

1’group
£E(p) 

dp
1 → _ l gA Po

Pθ+ 2 I | ’m mc ∣p0∣ (87)where p0 is the center of the wave packet (6) in the momentum space2.



843The example (85) can be easily generalized to arbitrary co∏stant potentials, Aaμ = const.In both the considered cases, Eqs. (68) and (85), the splitting of the initial wave packet is due to the presence of the color operators T“. Therefore we think that this phenomenon is typical for most of Nonabelian gauge potentials, although we cannot exclude a possibility of the existing of particular gauge potentials in which the initial wave packet will not disperse on the macroscopic scalę. On the whole we are led to the generał conclusion that the relevancy of the classicai mechanics of colored particles for the description of the classi- cal limit of quantum mechanics of colored particles is restricted. Nevertheless, such a classi- cal mechanics remains to be the very interesting example of selfconsistent classicai mechan­ics of a particie with intemal degrees of freedom for any extemal Nonabelian gauge field.Our considerations can easily be generalized to SU(n) fields. Then, the equation (70) will have n different eigenvalues, and the initial wave packet will in generał dissociate into n separate wave packets.Let us end this Section with the following remark connected with the real, physical theory, i.e. QCD. The above presented considerations Suggest that the color charged mat- ter, i.e. the quark matter, placed in an external classicai Nonabelian gauge field in generał will tend to disperse all over the space. For example, one can consider the potential of the form Aaμ(x) = Aμ(x)ha(x), where ha(x) is constant in each of regions Ωi coveriπg the whole space, however the direction of h changes from region to region. Then the initial wave packet will dissociate into many separate wave packets, the number of them depends on the number of the crossed regions Ωi. According to e.g. Ref. [50] the QCD vacuum is filled with randomly fluctuating Nonabelian gauge fields. In such a vacuum, in order to have a localized ciot of color charged matter propagating in a definite direction it is necessary to have a strong force binding the matter together in order to prevent it from dispersing over the space. The commonly conjectured confinement force could be such a force. Without this force all matter would disperse all over the space!
1.4. Finał remarksThe formal aspects of classicai mechanics of colored spinless particie were investigated in a number of papers — see [30, 32, 33,46] and references therein. In particular, the Lagrangian and Hamiltonian formulations of the classicai mechanics were constructed, and usefulness of Gιassmann variables was advocated. The classicai mechanics of particles with spin also was considered in numerous papers, see [51, 52] and references therein. Particles bearing both spin and color spin were considered earlier in [30, 33], and recently in [44], howeveι within an entirely different framework. Our work indicates the possibility of nontrivial mixing between spin and color, resulting in the new classicai observable [Jo6].Much less investigated was the problem of correspondence between the classicai mechanics and quantum mechanics of colored particles. The treatment in the pioneering paper [29] was not satisfactory. We find that such a relation is very limited — it is difficult to extract the notion of classicai trajectory of the colored particie from quantum mechanics. This fact corresponds rather well with the commonly believed confinement of colored particles.



844 Finally, let us mention that even though classical particie with color spin is not a phys- ical object, the classical mechanice of colored particles can be a useful theoretical model. For example, it helps to formulate hypotheses about properties of color interactions, see e.g. [31, 35, 36], Also it can be applied directly in quantum calculations within the framework of the proper time method [53], see e.g. [54-56],
Part II: Nonabelian Gauge Fields Generated by External Sources

11.1. Rudiments of the theory of Nonabelian gauge fields in the presence of external sources11.1.1. Energy of the system of Nonabelian gauge fields and external sourcesIn the following we consider SU(2) gauge fields. We frequently use matrix notationA = (!)where Ta = σa∣2 are the generators of SU(2) gauge group,[Ta, TbJ = iεabcTc. (2)The field strength tensor is F^v bμAv ∂vAμΛ^ ig{Aμ9 Avf (3)In the presence of an external source Yang-Mills equations have the form
DμFμv = j\ (4)where j'' is the extemal source, and

DμFμv = 0μFli'l + igUμ,F^ (5)is the covariant derivative of the field strength tensor. From (4) it follows that
Dμjμ = 0, (6)where

Dμj*  = ⅛Γ+ig[A.M∙This condition is a consistency condition. If Aμ does not obey (6), then it can not solve (4). Observe that because (6) involves Aμ, it can not be regarded as a simple condition on
3 Jn this part we use the units c = fi = 1.
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jμ. This is in contiast to the Abelian case, in which we have ∂μjμ = 0 what can be obeyed just by an appropriate choice of jμ. In practice (6) is the fifth (matrix) equation for Λfl.The Nonabelian gauge transformations have the form

A, =ωAω~l-∖----- ∂μωω 1,g (7)
F'v = ωFμvω~1, (8)

j'μ = ωjμω~1, (9)where ω = ω(x, t) e SU(2). The Yang-Mills equations (4) are covariant under these trans- formations.The equation following from (4) for v = 0 is the Nonabelian Gauss law
DiFi0 = J°. (10)It is easy to check that it is sufficient to impose (10) at certain instant t = t0 — due to the other Yang-Mills equations it will be obeyed for all t. This follows from the equationD0(θ∕i°-J0) = 0.Thus, (10) is in fact a constraint on the initial data for time-dependent Yang-Mills equations. Now we shall consider the energy of the system of extemal sources and gauge fields.The energy-momeDtum tensor for Yang-Mills fields is (for a pedagogical derivation see, e.g. [57]) T'*,v = f^Faaβ. (11)It is easy to check that from (4) it follows that

∂μTμ' = -jaβFa'lf. (12)Thus, T°° is not coπserved in generał. However, in the ρarticular case when jai = 0 we have
∂μTμ0 = 0, (13)and therefore

E = ∫ d3xT0° = ⅜ ∫ (EttiEai + BaiBai)d3x, (14)where
E°i≡F°0i, Bai = -⅛ εi∣aFak3 (15)are the color electric and magnetic fields respectively, can be adopted as the conserved energy of the system of Yang-Mills fields and extemal color charge j0.The physical meaning of the formula (14) becomes a little bit morę transparent when one decomposes the electric field into longitudinal and transverse components, [7]. The 



846loπgitudiπal component is not an independent variable because it can be calculated from the Gauss law (10).In the Abelian case, we have
E = Et + El,where div Eτ = 0, rot El = 0, EL = —grad /,and from the Abelian Gauss law ^Z = ~Q,where ρ ≡ j0. Then, the energy can be written as

E = ⅜ f d3x(E2+B2) = ⅜ f d3x(E∣ + B2) + — f ⅛2⅛Ωd3xd3x'l (16)J J 8πJ ∣x-x,∣The first term on the r.h.s. of (16) gives the energy stored in the degrees of freedom which are intrinsic to the gauge field, while the second term is the energy due to the presence of the external charge. It is also elear that E, is not a dynamical variable because it is fixed completely by the Gauss law constraint.In the Nonabelian case such a simple interpretation of (14) is not possible. Namely, from the Nonabelian Gauss law (10) we obtain⅜∫(⅛)2d3x = -⅜∫(3-1etot)zf(3-1ρtot)d3χ, (17)where
βtot(x, t) = j0(x) + ig[>fi(x, t), Eτ(x, t)], (18)and $ is the operator with matrix elements

δah = δabA-εabcAciδi (19)where δab is the Kronecker delta, A is the laplacian. The operator δ becomes symmetric when Aai obeys the Coulomb gauge condition 8iA" = 0. In (18) we have noted that the gauge fields can in principle depend on time, although the extemal charge j0 is static. From (17) we obtain £ = ⅜ ∫ d3¾⅛2 + (Bfl)2]-⅛ ∫ d3¾3-1r)d(δ-1ρ'ot). (20)The formula (20) differs from the Abelian formula (16) in two important respeets. First, both terms on the r.h.s. of (20) contain Ai fields. Thus, the separation on pure gauge field part and pure external charge part does not happen in this case. Secondly, the o operator in some cases is not invertible. This problem is closely related to the existence of so called infinitesimal Gribov copies in the Coulomb gauge. The meaning of this fact is that £[ st'H contains certain degrees of freedom which should be regarded as dynamical ones because ££ is not determined uniquely by the external charge and Aa, Eγ via the Gauss 



847Jaw constraint. To our best knowledge, up to now no one was able to succeed in separating those degrees of freedom from Efj.Now, let us consider the generał case, in which jai can be different from zero. It is not difficult to check that the quantityEo = ⅜ ∫ d3x[(Eai)2+(Bai)2] - ∫ d3xJaiAai (21)is constant in time if Aaμ obeys (4). However, it is easy to check that the term
∫ d3xjaiAaiis not gauge invariant [21], [58]. Therefore, (21) is not a satisfactory expressioπ for the energy. We propose two possible ways to solve this difficulty.The first possibility [27] is to add to (21) another gauge noninvariaπt contribution describing the intemal energy of the extemal color currents, chosen in such a way that the total exρression becomes gauge invariant. For example, we can do this by reinter- preting j‘ as a quark current

jaμ(x) = gψ(x)yμTaψ(x), (22)where the bisρinor y(x) transforms under fundamental representation of SU(2). We assume that ψ(x) does not depend on time in order to have time-indeρendent jaμ. Then, we can add to the r.h.s. of (21) the term
Ejnt = —i ∫ ψ(x)γl∂iy(x)d3x + m ∫ ψ(x)ψ(x)d3x. (23)It is easy to see that E = E0 + Eint (24)is gauge invariant and constant in time. Observe also that when ji = 0, then Eint becomes gauge invariant. Therefore, Eint can be included intoE also when ji = 0. This rather natural solution to the problem of gauge invariance of the energy has the following important consequence: it is not enough to specify jμ(x) in order to calculate the energy of the system. One should know rather the external field y(x) instead of the extemal source jμ(x) in order to have the fuli specification of the system.The second possible way to avoid the difficulty is to change the form of the coupling of the gauge field to the external source jμ, i.e. instead of

$ jaμAaμd3xto write a different, gauge invariant expression. We will describe our proposal in morę detail in Section II.3. Here we would like only to mention that this generał linę of im- proving the theory of extemal colored sources was pursued also by Nambu and Venturi, [58], although in different manner. In our opinion the first proposed solution, based on (22)-(24) is morę natural from the point of view of the standard CCD, in which selfin- teracting Yang-Mills fields are coupled to quark fields.
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II.1.2. Gauge invariant characteristics of the external color chargesFrom (9) it follows that the coloi 4-current density jv is not gauge invariant, in contrary to the Abelian case in which the electric current is gauge invariant.It is natural to ask what are gauge invaιiant features of the extemal color charge. Of course, gauge invariant are the local quantitieshf,v(x, t) = ⅜ Tr [jμ(x, t)jv(x, t)]∙ (25)The diagonal elements hvv are the moduli of the components of the current density jγ. We would like to point out that there also exist certain global characteristics of the external color current, [28] which are invariant under so called smali gauge transformations.For definiteness, let us consider the time-independent color charge density j0(x) = j⅛(x) 2 ‘We also assume that jo(x) = ea(x)f(x), (26)where |e| = 1, and f(x) ≠ 0, possibly exceρt for the single point x = 0. This assumption about f(x) is a technical one. It can be avoided at price of complicating of the analysis. We assume also that j0(x) is continuous. The color structure of j0 is entirely described by e(x).The gauge invariant characteristics of e(x) is given by the winding number π2[e], called also the Kronecker index — an element of the second homotoρy group π2. This topological number is present here because e(x) defines a continuous mapping of the sphere S2 : |x| = R, R > 0, into the sphere S2 : |e| = 1, and such mappings are classified accordingly to π2, [59, 60]. This number is invariant under continuous deformations of the mapping e(x): S2 → S2. From this fact it follows that π2[e] does not depend on the radius R(≠ 0). It also follows that π2[e] is gauge invaria∏t. Namely, mappings S23x 
→ ω(x) ∈ SU(2) = S3 are topologically trivial [59, 60]. Therefore one can continuously deform ω(x), |x| = R, into the unit matrix. This deformation of ω(x) gives also a contin­uous deformation of e'(x), defined ase'(x) = ω(x)e(x)a>~ 1(x)into e(x). Thus, π2[e] is gauge invariant, because π2[e'] = π2[e].Of course, when π2[e] ≠ 0, e(x) has to be singular at least at one point. With the assumptions following (26) this point is x = 0. In this case we have to take /(0) = 0 in order to keep j0(x) continuous.Example of e(x) such that π2[e] = k is given by

(27)
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9, φ — spherical angles, k — integer. The case k = 1 was investigated in [7, 8]. For |fc| > 1 no exact solution is known. Likely, such solutions can not be spherically sym- metrical. However, it is possible to obtain aρproximate solutions by perturbative expansion in powers of j0, see Section II.2.2.Now, let us consider in morę detail the class of e(x) characterized by π2[e] = 0. Utilising regular gauge transformations it is possible to transform this class of extemal color charges into the Abelian gauge frame, in which→ σ3e(x) = - . (28)
This follows from the facts that: 1) such e(x) can be continuously deformed to the constant map, e(x) = const, for each R (= ∣x∣), 2) continuous deformation of e(x) is equivalent to local rotations of e(x), i.e., it is equivalent to the gauge transformations. Moreover, e(x) does not have to have the topological singularity at x = 0 induced by behaviour of e(x) at x = 0. Therefore, we assume that e(x) is regular everywhere. Now we will show that this class of e(x) admits for a topological subclassification.Namely, consider e(x) such that → σ3 e(x) → - (29)
when ∣x∣ → oo. Then, e(x) becomes constant at spatial infinity and therefore we can pass from R3 to its compactification S3, still keeping <?(x) continuous. Thus, such e(x) can be considered as a continuous mapping from S3 into S2. Such mappings are known to be classified by the Hoρf index ∕ι[e], [59, 60],Of course, even if h[e] ≠ 0, one can find ω(x) such that-1 → σ3ω 1e(x)ω = — . (30)
However, it is possible to prove that such ω(x) themselves are characterized by nonzero winding number π2[ω]r π3[ω] = ft[e]. (31)Here, π3[ω] is an element of the third homotopy group, which classifies mappings from S3 (compactified R3) to another S3 (formed by the manifold of SU(2) group). The equality (31) follows from another equality (38), ρroved below.Gauge transformations ω(x) such that π3[ω] ≠ 0 are called the large gauge transfor­mations. It is well-known that they have to be regarded on a different footing than smali gauge transformations, i.e., those with π3[ω] = 0, [61], The existence of the large gauge transformations implies the ⅛-vacuum and instanton tunneling in the quantized Yang- -Mills theory. Therefore, it would be natural to expect that the external charges with nonzero Hopf index would play an essential role in a classical gauge theory which somehow takes into account the presence of the θ-vacuum.
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It is well-known that one can construct the conserved current Jj1[e] corresponding to the Hopf index regarded as a conserved (topological) charge, [62]. This current is con- structed as follows. Introduce the antisymmetric tensorΛv = (∂μe×∂ve)e (32)and introduce the potentials

fμ, = ∂μav-∂vaμ. (33)Then, the current is given by the following formula
jri[e] (34)

The Hopf index is given by AM = f d3xJ⅛(e]. (35)Similarly, one can construct the conserved current corresponding to the winding num- ber π3[ω]ι
Jw[ω] =-----jε"vρ'τTr [∂vωω~1∂eωω~1∂σωω~1]. (36)24πThe winding number is given byπ3[ω] = ∫ d3xJw[ω]. (37)Front (34), (36) it is elear that spatial topological currents are present when the extemal color charge is time-dependent. In the time-independent case they vanish, and the four- -currents reduce to the Hopf index density and the winding number density.Now we shall prove that J&M = (38)where

eσ = ωσ3ω~1. (39)From (38) taken for μ = 0, together with (35), (37), follows the equality (31).The proof of (38) is the following. Substituting (39) into (32) it is easy to find the potentials av defined by (33),
av = — i Tr [σ3ω~1<>vω].As the next step, we ρrove thatJfi[e] =6^ε^σTr[dv+cΛl (40)
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The proof of (40) is nothing morę than tedious algebra based on the following param- etrization of a>: SU(2)aω = φ0σ0 + iφσ, (φ°)2 + φ2 = 1.It is easy to see that the r.h.s. of (40) is equal to J‰[ω].Let us generalize the above considerations to the time-dependent external color charges j0(x, t). From the condition (6) it follows that5o7o~⅛[ΛJo] = 0, (41)i.e., J0(x, t) = u(t, 0∖x)jo(x, 0)u- 1(t, 0|x), (42)where

u(t, 0∣x) = T exp [ig ∫ A0(x, t')dt'] (43)
ois an element of SU(2), T denotes time ordering. From (42) it follows that the time evolution of j0 is described by time-dependent gauge transformations. As we know, continuous gauge transformations can not change the topological number π2[e]. Therefore, the basie classification of j0, based on the second homotopy group π2, holds also for time-dependent external color charges Jo, provided that the time evolution is continuous.What concerns the Hopf index subclassification in the sector π2[e] = 0, it also holds for time-dependent charges under some assumptions. Because time evolution (42) is as- sumed to be continuous, it can be regarded as a continuous deformation of the vector field e(x, t = 0), and therefore it can not change the value of the Hopf index h∖e(x, t)] which takes discrete (integer) values only. However, it is important that (42) does not change the boundary conditions imposed on e(x) at spatial infinity. This is equivalent to the assumption that lim e(x, i) is time independent ^and equal to θn⅛f this

assumption is satisfied, the Hopf index subclassification can be cxtended to time- -dependent color charges.The presented topological classification of external charges is kinematical one in the sense that it is entirely based on the fact that the color current has values in 3-dimensional space. It has not been clarified whelher the topological characteristics of the external charge somehow manifest themselves in the form of solutions of Yang-Mills equations with the externaJ charge. In this respect, an interesting example is discussed in Section II.2.3 — an external color charge with Hopf index +1 is shown to support perturbative Nonabelian Coulomb solution.It is also not elear how to generalize the above classification to SU(∕ι), n > 2, gauge groups.
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II.2. Examples of Nonabelian gauge fields generated by external sourcesII.2.1. The Abelian Coulomb solution for the system of spatially separated external chargesClassical Yang-Mills equations with nonvanishing external sources provide us with a relatively simple example of color interactions. Solutions of these equations possess a number of rather peculiar properties. This can be observed even in the simplest case of the Abelian Coulomb solution presented below, [6],The equations have the form (4) of the Chapter II. 1 (1)where the external color current j' obeys the condition (6) of the Chapter II.l (2)We use the matrix notation Dμjμ = 0.

a = 1, 2, 3, σa — Pauli matrices. The covariant derivative has the form
Dμ( • r = ¾( ∙)δ+⅛[Λ,( ∙ )c]∙In the following we shall consider only the case without spatial currents

j∖x, t) = δv0j0(x, t) (3)with j0(x, t) continuous.Let us now consider the case of time independent J0(x), nonvanishing only in severaldisconnected, bounded regions Ωl, Ω2, ...,Ωn of space. Then, we can write
N

jo(x) = g ∑ Ka(x),
a= 1

(4)where for x e Ωtt, for x φ Ωx,Utilising gauge transformations
A'μ = ωAμω 1 + — ∂μωω

g

K = ωJμ<° (6)where ω e SU(2) is appropriately chosen, it is sometimes possible to rotate in color space the charge density .∕0(.v) in such a way that it will become parallel or antiparallel to the 
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third directions in color space, i.e.,

-', → ff3 /3 → 

√o(*)  = ^jo (χ)- 
z

(J)This is the so called Abelian gauge frame.The sign of j'0i(x) has to be constant in each region Ωα, i.e., j'o(x) has to be parallel or antiparallel to the third axis in color space in the whole Ω1. Otherwise, the gauge trans- formation ω determined from (6), (7) would not be continuous. Uncontinuous gauge transformations are not allowed because of differentiations present in (5). (In fact, it is easy to give examples of singular gauge transformations which change physical charac- teristics of the system, like its energy.) However, the relative sign of j'o(x) between different Ωα,s is not determined. This follows from the fact that in between the regions Ωct the gauge transformation ω can be chosen freely, because j0 = 0 there. Therefore, one can always find a smooth gauge transformation ω(x) rotating jó“(x) from the antiparallel orientation to the parallel one, or vice versa, in a chosen region Ωp, while not rotating j'0s(x) in the other regions Ωα, α ≠ β. For example, one can take ω(x) = ωβ(x), where,n _ ∫eχp O2*)  for × e) 11 for xeΩα, α ≠ β, (8)and for x φ Ωa,a = 1, ..., N, ωp(x) interpolates smoothly between the values (8). Thus, we can write
N

a= 1

(9)
where qx = +1, and K'x(x) > 0. The value of q,1 is not determined — it can be changed by the gauge transformations of the type (8).With the external color charge (9) we assume the following Ansatz for A'μ∙.

A'i = 0, A'o = y <(x). (10)
Then (2) is satisfied automatically and (1) leads to the ordinary Poisson equation

zMθ3(x) = g £ qjKi(x)

1with the solution (vanishing at infinity)
aPerforming the gauge transformation inverse to (5), (6) we calculate A,l, thus obtaining a Solution to (1) and (2) with the external color charge (3). This solution is called the Cou- lomb solution.
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(11)

The energy for this solution is
r g2 ∖^π f K(x)K'β(x) j3→,3→,
⅛2j"'J^WM=1It depends on the choice of values for qa,. Thus, the fact that ,∕0(x) is not gauge invariant has lead to appearance of several physically different solutions. Therefore it would be in- teresting to identify certain gauge invariant features of the external color charge distri- bution j0(x, t). We have attempted to achieve this by ascribing to J0(x, t) topological numbers, Section II. 1.2. The above method of solving Yang-Mills equations with external charges was proposed in [3] for continuous charges and in [6] for a set of pointlike charges.In literaturę there are given also many other types of solutions besides the Coulomb solutions, like the “screening” solutions and “magnetic dipole” solution of Sikivie and Weiss [3] or time-dependent generalization of the Coulomb solutions, the “Nonabelian Coulomb” solution and its time-dependent generalization, and bifurcating solutions of Jackiw and collaborators, [7, 8], There is no explanation why do all these solutions exist and what are they for. Only rather partial results on this are available. For examρle, below we shall argue that the Nonabelian Coulomb solution is intimately related to the charge with nonzero Hopf index.II.2.2. The perturbative approach to Yang-Mills equations with weak external sourcesAmong many very interesting developments in the subject of classical Yang-Mills equations with external sources there is also an idea cf a perturbative expansion of the classical solution in powers of the external charge, [7]. This idea is very attractive, because it is the proposal of systematic and calculable procedurę for solving Yang-Mills equations even with comρlicated extemal charges. In the paper [7] only the lowest order approxi- mation is presented. Next, it is there applied in order to show existence of a new interesting type of solutions, namely Nonabelian Coulomb solutions (see the definition in the next Section). The authors give two examples of external color charge densities for which the perturbative Nonabelian Coulomb solution exist. In this Section we investigate this pertu⅛ative method in morę detail, [27].It should be clearly stated that the perturbative method, although very useful, is not universal. There are solutions which can not be reached in the perturbative way. For example, type II solutions discovered in [7] do not exist for sufficiently smali q.We consider Yang-Mills equations with fixed, static color charge density

Jμ — ^μθQβ(.x) — ⅛θJθ(λ)> (12)where q is a smali parameter and ρ is a smooth function vanishing at infinity. Here we σαagain use the matrix notation. e.g. ρ = <_>a—. The gauge group is SU(2). We assume 



855that solutions of these equations have the following form
Ao = qAi01> + q3A<03> + .... (13)
Ai = q2AlA> + q4A^ + (14)consistent with an analysis of powers of q in the equations. We find that Yang-Mills equa- tions with external charge (12) admit the perturbative solution (13), (14) only if there is also present a spatial current (15)This unpleasant fact was not observed in [7], The current ji is not arbitrary. It is induced by the assumed color charge (12) and it is necessary for consistency of the perturbative method. The phenomenon reminds very much examples from the quantum field theory, e.g. the inducing of λφ4 term is scalar electrodynamics, [63]. There the quartic term is necessary for applicability of perturbation theory, namely for its renormalizability.If ρ(x) obeys the conditiond(z 1(x)ρ(x)) = -ρ(x), (16)where ż(x) is an arbitrary, non-vanishing regular function of x, then the second order contribution to the current vanishes, Jiu, = 0 although the color magnetic field in generał need not vanish in this order. Therefore, this class of extemal charges is particularly in- teresting. It can support perturbative solutions of the magnetic type. In this case the possible presence of the magnetic field is due to particular features of the charge ρ, because the induced current of order q4 at least cannot produce magnetic field of order q2. The con­dition (16) appears in the lowest order in q and therefore it was discovered in [7], although in a different way and with different interpretation. We give new examples of charges obeying this condition. The analysis of the perturbative procedurę is preserted in Section 2 of our paper.We expect that for smali q and smooth and localized ρ(x) the ρerturbative series is convergent to an exact solution of Yang-Mills equations, because there is rather little room for a pathological behaviour under such strong regularity coπditions. However, one assumption has to be added. The reason is that the perturbative procedurę involves taking iπverse of the operator of linearized Yang-Mills equations around the zeroth order solution. For the Ansatz (13), (14) the zeroth order solution is Aμ = 0. As it is well known, in gauge theories such operator is not invertible, unless one restricts the space of functions by adding a gauge condition. In our paper we assume that Coulomb gauge condition

δiAi = 0.For static, regular, and vanishing at infinity fields this condition is sufficient for inverti- bility of the linear operators. Of course, the solution calculated in the Coulomb gauge can afterwards be transformed to another gauge, if desired.
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The Yaπg-Mills equations in the static case can be written in the form (g = 1) ⅛Ft°+i[V0] = (17)

δkFki + i[A0, F0i] + i[Ak, Fki] = -ji, (18)wbere
Fk0 =-δkA0-i[Ak,A0], (19)

Fki = okAi-SiAk+i[Ak,Ai]. (20)These equations have to be completed with the well-known consistency condition, 
- 3di - >[Λ, λ]+<[Λ. = θ- (2i)In this Section (21) is regarded as an equation for jk. Inserting (13), (14) and (15) we obtain order by order in q the followiπg equations¾λ2>= i[41∖W- (22)

⅛F= →[42∖^]+i[43U], (23)etc. We do not display higher order equations to save space. Their derivation is equally straightforward.From these equations Jfc(2n) is determinod up to a curl. In order to remove this non- uniqueness we can assume e.g., that the covariant curl of jk vanishes,⅝s(⅞λ+i[AJs]) = 0- (24)This condition determines the curl of ]k2n∖⅛¾Jju> = 0, (25)⅛A∫'4l = -'W42,A(2)-F42’). (26)etc., what together with the divergence given by (22) and (23) fixes jk2n} uniquely provided that we also assume that jk(2n) vanishes at ∣x∣ → oo.From (22) and (23) it follows that in generał jk2n} ≠ 0, because the commutators on the r.h.s. of (22) and (23) do not vaπish. Thus, for the consistency of the method it is necessary to accompany the given extemal charge ρ(x) by the extemal current jk of order 
q2 or higher. This phenomenon reflects the Nonabelian naturę of the theory because it is caused by nonvanishing commutators.From (22) we see that if b¾,U]=0, (27)then we have J/2) = 0. However, J/4) ≠ 0 in this case, in generał. Vanishing J/4> requires to satisfy another nontrivial condition, namely [Ą3>, <?] = 0.



857Now iet us tum to the equations for gauge potentials. From Eqs. (13), (14) and (17-20)we obtain the followiπg equations for A^n 1∖
∆A<f> = -§, (28)

∆A^ = -2i[A<k2∖ ∂kAf01>], (29)

∆A^ = -2i[Ajc2i, M<o3>] -2i[Λ4∖ ¾4υ] + [42)> [42∖ <’]], (30)etc., when we have used the assumed Coulomb gauge condition for Ak. The equations for the vector potential are the following√∞-i[<>,Mn (31)
δA^ = -7r>+μ<1>,μp>,41,]]-i[43^Λυ]- i[4υ, 8iA^-] + i[A<k2∖ 8iA^] -2i[Λ2,, 8kA^], (32)etc. In the first step of the procedurę we determine A(ol) and then j/2) and A$2\ In the next step we calculate Ą3) and jk4∖ Aj4∖ Equations (28)-(32) require to specify the boundary conditions at infinity. We choose them to be the same as in the electromagnetics, i.e. for the localized external source all potentials should vanish at infinity.Let us now come back to the condition (27). For SU(2) gauge group it implies that

§(x) = z(x)Ą”(x), (33)where λ(x) is an arbitrary function. The equation (28) then takes the form of the condition (16) for ρ(x). Equivalently, one can consider
∆A<01∖x) = -z(¾υω∙ (34)

The condition (34) is of course obeyed by any Abelian configuration, Atfi ~The external charge with nonzero Hopf index + 1 is another examρle in which the condition (16) is obeyed. It will be considered in the next Section. Yet another example is provided by external charges whose orientation in color space is characterized by arbitrary, nonzero Kronecker index K. That is, we takeρ(x) = ρ(x)e(x),where
e(x) =

/sin 9 cos Kφ∖ sin 9 sin Kφ I, cos 9 ] 



858and ρ(x) is a function vanishing for x = 0 in order to ensure continuity of ρ(x) at x = 0. Because of (33) we have⅛n(x) = ψ(x)e(x), ∙ψ(x) = λ~1(x)ρ(χ).Substituting this to (34) we obtain three equations, from which it follows in spherical coordinates that
κ2-ι

ψ(r, 9, φ) = f(r) (sin 9) 2 (35)where∕(r) is any regular function of r = ∣x∣ vanishing at r = 0 in order to ensure continuity of Ą1’ at the origin. From the same equations it follows that
— — ^-(r2 — A 

r2∕(r)dr∖ dr )
(K2-1)24r2 sin2 5 + K2 + 1.Therefore,

q(x) = ~2
r dr\ dr) 4 sin2 9+/(0 (κ4-l +κ2+1) κ2-t(sin 9) 2 (36)From (36) it follows that f(r) should behave like r2+a, δ > 0, for r → 0, in order ρ(0) = 0. We also see that only for K2 = 1 the external charge ρ(x) becomes spherically symmetrical (this case was considered in [7]), and that for K = 2 it has singularity for 9 = 0, π of the integrable type.The number of examples of charges obeying (16) (which is equivalent to (34)) can also be sometimes increased by utilising the well-known behaviour of the Laplace operator under inversions. It is easy to check that if ^o '(x) obeys (34), then 

Λ>(x) = y Λυ , (37)
where x = (r, 9, φ) and R is a fixed radius, also obeys (34) with z(x) replaced by

R4 (R2 
λ'(χ) =yλly,5, 9,

The above examρles are so generał that from (37) we do not obtain a new example. How- ever, for the examρle discussed in the next Section, the transformation (37) leads to a new form of the external color charge.II.2.3. The perturbative Nonabelian Coulomb solutionThe perturbative method of solving of classical Yang-Mills equations is exceptionally well-suited for investigations of the Nonabelian Coulomb solutions, because they are defined through their behaviour in the limit q → 0. The definition, given in [7], requires



859first to transform ρ to the so called Abelian gauge frame in which → σ3
& {χ) = eW -- • (38)Then, the Nonabelian Coulomb (NC) solution is the static, finite energy solution which in the limit q → 0 does not vanish and becomes the pure gauge

Λo =0, Ai = i∂iωω (39)It should be added that ω(x) is a gauge transformation of such a type that Ai in (39) cannot be gauge transformed to zero by gauge rotations around the 3rd axis, which leave the charge (38) invariant. The purpose of this complex definition is twofold. First, to distin- guish NC solutions from morę trivial Abelian Coulomb (AC) solutions, which exist for any charge of the form (38) and have the property that Ao and Ai vanish when q → 0 in the Abelian gauge frame (38) (up to static gauge transfomations leaving (38) invariant). Secondly, the pure gauge limit (39) for q → 0 ensures that the nonzero strengths for q ≠ 0 are entirely due to the external charge, that is that the solution is not a superposition of a solution of sourceless Yang-Mills equations with e.g. AC solution.In this Section we apply the perturbative method to the external charge (12) with ρ(x) characterized by Hopf index ± 1, [27], We adjust ρ(.x) in order to obey the condition (16), and we calculate the solution in the lowest non-vanishing order. The solution is found to be of the NC type, in accordance with our prediction [28] that the external charge with nonzero Hopf index supports NC type solution.The external charges characterized by nonzero topological currents (34) of the Chapter II. 1 (and zero Kronecker index) lead in a very natural way to the Nonabelian Coulomb solution. To see this, we observe that in the Abelian gauge frame we still have some residual gauge freedom, namely the gauge transformations of the form 
(40)because they do not change the form (38) of the external charge. We shall have the Nona­belian Coulomb solution only if the limit (39) can not be compensated by gauge transforma­tions (40). If the term (39) can be compensated, then

8μωω~l = ∂μωoa>01. (41)This however implies that Jw[ω] = 0 because now all the terms on the r.h.s. of (36) of the Chapter II. 1 commute, due to (41) and to the fact that ω0 contains only commuting matrices 
σ0 and σ3. Thus, if Jw[ω] = J∏[e] ≠ 0, we can have the Nonabelian Coulomb solution. It is sufficient to find any solution of Yang-Mills equations for j0(x) characterized by Jw[e] ≠ 0 and such that it tends to zero when j0 → 0 (e is related to j0 by (26) of the Chap­ter II.l). Then, after passing to the Abelian gauge frame by gauge transformations and after performing the limit Jθ → 0, we are left with the gauge term (39) which can not be compensated by gauge transformations (40).



86Q The task of explicit obtaining the Nonabelian Coulomb solution is very difficult, because the charge j0 such that JH[e] ≠ 0 is merely cylindrically symmetrical, implying cylindrically symmetrical solution of Yang-Mills equations at best. Precisely speaking, no explicit example of the exact Nonabelian Coulomb solution is known up to now.Our perturbative solution has the limit (39) with ω(x) characterized by the winding number +1. Therefore, our solution could be related to a gauge field generated by weak external charge of the form (38) immersed in a topologically nontrivial (i.e., nonzero winding number) sector of Yang-Mills θ-vacuum, [61]. This is one of the reasons that we find the external charge with nonzero Hopf index interesting.Our example of the NC solution is nicer than the two examples presented in [7], because our external charge can be gauge rotated to the Abelian gauge frame by a regular and simple gauge transformation. In the first examρle presented in [7], the gauge transformation is singular. The second example in [7] contains three subcases. 1) The external charge already being in the Abelian gauge frame — then, the solution is not of the NC type. 2) The external charge can be homotopically deformed to a standard charge with nonzero Krone- cker index — then the gauge transformation is singular. 3) The gauge transformation is regular, however it is very complicated — this makes it difficult to compare NC solution with AC solution for this charge.The Hopf index enumerates continuous mappings from S3 into S2. Its definition can be found, e.g. in [59, 60], The continuous color charge distribution ρ(x) can define such a mapping. Namely, we assume that ρ(x) ≠ 0. Then e(x) = ρ(x)∕∣ρ(x)∣ has values in S2. In order to compactify R3 to S3, we include the point at infinity. For continuity of the mapping it is then necessary to assume that lim e(x) = const., i.e. that it does not depend ∣x∣→∞on angles. In this way e(x) gives a continuous mapping from S3 into S2.It has been proved, in Section II. 1.2, that the color charge distribution with orientation in color space characterized by the Hopf index H can be obtained from the charge in the Abelian gauge frame (38) by a topologically nontrivial gauge transformation, given by ω(x) with the winding number equal to H. The form of such a gauge transformation canbe taken as
where

Thus we have
(42)
(43)
(44)where ρ(x) ≠ 0. This gives→ → Z →→ α × x → 2

ρ(x) = ⅜ ρ(x) cos χ(r)aσ + sin χ(r)------σ+2 sm∖ rwhere we have introduced the vector a = (0, 0, 1) in order to simplify the formula.
(45)



861The functions ρ(x), χ(r) we shall determine from the condition (16) for the magnetic type solutions. We assume from the beginning that ρ(x) and ż(x) are spherically symmetrical. With this assumption the condition (16) can be obeyed only if H2 - 1. Denoting ρ(r)∕A(r) by ψ(r) as before, we obtain from (16) the following equations (dots denote differentiations with respect to r)
ŻV+ — Z'Z÷2ZΨ-----2 ,ψ sin χ = 0, (46)

r■7 2

r2 2~ΨZ + — ψ + -5 φ cos χ-----i ∙ψ + λtp = 0, (47)
r r r2 4 4 (48)ψ+ — ψ~ "7

r r~
ψ4—,ψ cos γ + λψ = 0. 

rSubtracting the last two equations we obtainχ2+4(cosχ-l) = 0, (49)
rwhich can be easily integrated. Taking into account the boundary conditions (43) we obtain χ(r) = 4 arctg(μr∕∕), (50)where H = ± 1 and μ is an arbitrary constant scalę, μ > 0.Now, the equation (46) becomes the first order equation for ψ(r). Its integration yields ψ(r) = d(l+μ2r2Γll2, (51)where d is a constant. Next, we calculate ρ = λιψ from, e.g. Eq. (48). The result is 

ρ(r) = 35μ2d(l+μ2r2y5l2. (52)Observe that this function does not vanish for any finite r, as required at the beginning of this Section.Thus, we have found the external color charge with H2 = 1 obeying the magnetic condition (16). Because of (33) we also know AiJ∖
a×χ ,+ sin χ(r)------σ + 2 sin

r
χ(r) σx g¾^12 r r J ’ (53)and we also have J/2) = 0.Now we would like to calculate A{2\ From (31) we have (54)



862where Ął) >s given by (53). The calculation of J-2> from (54) is rather straightforward, altħough it is very tedious and leads to rather uninstructive formulae. Therefore we cal- culate here only the leading term for large r.Because the r.h.s. of (54) behaves like r~4 for large r, we can write
^P(χ) = f d3x' -Λ- [4ιv,), M<o1V')].4πj ∣x-x∣ (55)

Next we use the standard multipole expansion [64], Because the commutator on the r.h.s. of (55) has vanishing divergence, the magnetic pole term is absent. The magnetic dipole term is different from zero. For large r

(56)
where the magnetic dipole moment is

(57)
From (57) it follows that the vector potential (56) contains nιixing between color and space, and that is not spherically symmetrical.The spatial current J;<2) vanishes. Nonvanishing current can appear in the order q*  or higher. In order to check this it is necessary to check whether [Ą3), Ął ’] = 0. This is a very tedious calculation. It requires first to calculate A{(>} from (29). We have not done it because in any case the nonvanishing current is at least of order q\ and therefore can create magnetic field of order at least q\ as it follows from Eqs. (31) and (32). Thus, our perturbative solution is a new example of the known phenomenon, [3], of creating magnetic fields by static color charge densities. Because the magnetic field is here of order 
q2, it can not be attributed to possible nonvanishing j/4).The obtained perturbative solution is of the NC type. As it is seen from (44), the external color charge with Hopf index H can be gauge rotated to the Abelian gauge frame by the gauge transformation α>o l(x), where ω0(x) is given by Eq. (42). In the Abelian gauge frame we obtain lim A'i(x) = -iω0 l∂iω0. (58)

5→OThis pure gauge potential can be regarded as belonging to the sector of the Θ-vacuum with the winding number +H.Let us now compare our solution with the AC solution for the color charge distribution (45), (50) and (52). This exact solution is obtained by gauge rotating ρ(x) to the Abelian gauge frame, and next substituting into Yang-Mills equations the Ansatz
A- = 0. (59)
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The resulting linear Poisson equation for ^40,zM0 = -QQ(r) yields Λ0(r) = V <ld(1 +μ2r2)~ll2. (60)Next we gauge rotate the color charge back to the initial form (45) using ω0(x). The corre- sponding gauge transformation of the gauge potentials gives

^o(x) = A0(f)ω0(x) — 1(x), (61)
Af(x) = ifi1ω0(x)ω0 1(x), (62)where ω0 can be read off from Eqs. (44) and (45).This AC solution is exact. It has zero color magnetic field and the potentials vanish when q → 0 in the Abelian gauge frame. On the other hand, the vector potential (56) of the NC solution does not have the Abelian form in the Abelian gauge frame, 

√{[nc ≠ Ai-----. The AC solution differs from the NC one also by magnitude of Ao,(63)From (63) it follows that the energy of the AC solution is (⅜5-)2 times greater than the energy of the NC solution. This relation is true only for smali q, because we have neglected all contributions to the energy of the NC solution of order higher than q2. The observed fact that the NC solution has lower energy than the AC solution is in fuli accordance with the generał argument given in [7] for all NC type solutions. However, the big magnitude of difference is somewhat surprising.We have used the perturbative approach to solve the classical Yang-Mills equations with the external charge with nonzero Hopf index. This method allowed us to perform some calculations. The morę ambitious task to find the NC solution exactly seems to be very difficult, because one should not expect that the gauge potentials will possess morę than merely cylindrical symmetry, if any. This leads to untractable set of nonlinear equa- tions. The problem is even morę difficult because of the possibility that ≠ 0. There- fore, the solution with ji = 0 need not exist — if it exists, then it has to be singular in the limit q → 0, or it has to cease to exist for smali q (such solutions were found in Yang- -Mills theory, [7]).
II.3. Fields generated by gauge inυariant external sourcesIn this Chapter we would like to describe the anounced in Section II. 1.1 modification of the coupling of an external source to the Nonabelian gauge field, [65]. The motivation is twofold. The first one is based on the difficulties with gauge invariance of energy for the standard coupling Aaμjaμ. The other one is the following.
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In spite of numerous efforts it has not been possible to obtain confinement of quarks within classical chromodynamics. On the other hand, it is commonly believed that quantum chromodynamics does confine quarks. Therefore, CCD can not be regarded as a long dis- tance limit of QCD. One is tempted to guess the form of a classical theory describing the effective long-distance structure of QCD (up to smali quantum fluctuations). Below we present an effort in this direction. Namely, we assume that a physical source of Nonabelian gauge field has to be described by a gauge invariant mathematical object. This would correspond to the expectation that only color singlets are the physical states in QCD. Therefore, we shall consider the gauge invariant external sources. Such sources can not be coupled directly to Aaμ because the total action would not be gauge invariant. We assume that they are coupled to gauge invariant, nonlocal objects (NGIO). We shall consider the following examples of NGIO:H'(J∙, λ-∣C) = χ(y) P exP [jg f Λjz"]v,(x)> (!)

C,xwhere x. y are points in Minkowski space-time, C is a path connecting y and x, P denotes path ordering of exponentials along C, ∕, γ are fermion fields, and Aμ — AaμTa, where 
Ta are generators of SU(2) (or its representation). As the fermionless NGIO we take

W0(x, λ∣C) = Tr P exp [ig f Aμdzμ'], (2)
cwhere the tracę is with respect to colour indices and C is a closed contour which starts and terminates at the same point x.The nonlocal, gauge invaι iant objects, constructed from Nonabelian gauge potentials, were considered in a number of papers, e.g. [66]. Presently, there exists a hope that such objects provide a string picture of hadrons within the framework of Nonabelian gauge theories. They are expected to be directly related to the long distance structure of the Non­abelian gauge theory. The elementary fermion and Nonabelian gauge fields are not expect- ed to reflect the long distance structure of the theory because of confinement of quarks and gluons.In order to calculate 5-matrix in terms of NGIO it is necessary to consider Green functions for such objects [67]. As an intuitive starting point for this calculation one could take the Feynman path formula for the generating functional for Green functions. Apart from the gauge fixing and F-P ghost terms which are not important on the classical level, the total action in such a formula would beS = Sym + Sf+ ∣JW, (3)where SyM = -⅜ FμvFa'ιv, u = 1,2, 3,is the Yang-Mills action, SF is the Dirac action for feimions, W denotes NGIO and ∫ JW is specified below. Our considerations can be regarded as an investigation of the static classical apρroximation to the above sketched problem. Our expectation is that this can be an easy way to get important information about properties of Green functions for 
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NGIO. Wę restrict ourselves to the most interesting gluonic sector of the theory by neglecting SF.Here we shall investigate the question what are the classical stationary points of the action S,ym+∫ JW. As W we take the NGIO (1) and (2). The fermion fields present in (1) are regarded as a priori fixed external fields. In other words, we try to find classical gauge potentials generated by the external source J. This external source is, of course, gauge invariant, as it is coupled to the gauge invariant NGIO.We observe that such sources imply classical Yang-Mills equations with an external current of color along the path C. In the case of NGIO given by (1) we show that the Yang-Mills equations are inconsistent, unless the fermion fields satisfy certain condition. When fermions do satisfy the condition, the external current in Yang-Mills equations vanishes and the external source decouples from Yang-Mills equations. This gives zero gauge field for such a source.The fermionless case (2) is morę complicated. The gauge potentials generated by the current of color flowing along the path C can be easily found. Because the linę C has zero thickness, the potentials are singular on C. This is an unpleasant difficulty for the classical approach, because the external current of color contains explicitly Aμ(z) taken for zeC and this is infinite. Of course, this difficulty could be resolved by a quantum smearing of the curve C. One should use some smooth J(x,y∖C) and to average (2) with it. We say “quantum smearing” because results of papers [66b] strongly suggest that J(x, y\C) can be interpreted as a wave functional for a string.However, there still exists a possibility of a classical description. Namely, one could think of such a wave functional J(x,y∖C) that it can be described classically by some very complicated curve C, so complex that Aμ will be finite on C. In fact, in the quantum theory the curve C (being the shape of the string) strongly fluctuates, and therefore there is no reason why the best classical description should be given by geometrically simplest lines. We consider a curve Cthat fills in a torus, the twodimensional manifold. Such a curve could be considered intuitively as a limiting case of a curve winding around some given circle, when the number of windings increases to infinity. Continuous curves filling morę than onedimensional manifolds are known in mathematics, e.g., Sierpiński curve [68]. The corresponding solution of Yang-Mills equations is given by some color magnetic field restricted to the inside of the torus and zero electric field. The classical selfenergy of the source is, unexpectedly, quantized through a selfconsistency condition. For a thin torus the energy spectrum is linear. Such a toroidal magnetic flux tubę we would like to interpret as a classical picture of a glueball.Two remarks are in order:1. We consider the simplest, so called Abelian, solutions of Yang-Mills equations. It is already known that for a given external source Yang-Mills equations admit also other types of solutions. A similar phenomenon should be exρected also in the case of the gauge invariant external sources.2. Notę that the action S is not in generał real because of the term 5,exl = ∫ JW. It is interesting that in spite of this, one could choose an overall constant in Sexl in such a way that the stationary points are given by real gauge potentials Aaμ.



866A. Yang-Mills equations with the gauge invariant sources involving fermionsWe search for a stationary point of the action
where S= -∏ΛF≈vF^ + Sext,

Sext = ∫ d4xd4y ∫ [dcμ]J(y, x∣C)W(y, x|C),
(4)
(5)

W(y, x∣C) being given by (1). Here [dcμ] denotes a functional measure in a space of paths C, connecting the points x, y in Minkowski sρace-time. Observe that the terms ψyAψ, present in the neglected SF, would act as an additional gauge noninvariant external source for 
Aμ. Such sources were already investigated. In this Chapter we are not concerned with them.In tłie following we assume that the external source J is strictly localized in three- -space and that it is static, i.e.,J(y, x∣C) = ^(x-xα)5(y-xh)δ(x0-y0) [<5(C0-x0)] [<5(C-C<0>)], (6)where [<5(C - C(0))], [∂(C0-.v0)] are the functional delta functions, xa,xb are fixed points in three-space and C(0) is a curve connecting xa,xb. The two deltas, <5(x0- y0) and [<5(C0-x0)] make the configuration to be equal time configuration. The fact that x0 is unspecified implies that the configuration is the static one. We assume that χ, y are constant in time. q is a constant characterizing the strength of the external source.The action (4) implies the usual equations for the gauge potentials
where D Fμv = ?izM1 J ext> (7)

(8)and Dμ = ∂μ+ig[Aμ, •].In order to calculate explicitly jacil. we parametrize the linę C(0): λ e [0,1], Cji0* = Cμ0*(∕.)  
≡ zμ(λ), Cμo¼0) = xaμ, C{10,(l) = xbμ. Of course, xa0 = xb0 = z0(λ). Then

Xb 1P exp [ig ∫ Aμdzμ] = P exp [ig ∫ dλυμAμ^∖,
xa 0

, dzμ where vμ =----- ,
dλcalculation and the variational derivative in (8) yields after a straightforward

(9)where
Ia(z(x)) = iχ(xb)Vc(xb, z(λ))TaVc(z(λ). xa)ψ(xa), (10)



867and
Vc(x, y) = P exP [⅛ ∫ Λidzi].c,7Thus, j™, = O, except for the linę C(0), along which there is a flow of color charge.Yang-Mills equations (7) imply the constraint (6) of the Chapter II.l, i.e., ^-g⅛Xi‰ = o (11)for any current on the r.h.s. of them. For gauge noninvariant external sources this constraint is a nontrivial condition to be satisfied. For the gauge invariant sources, the current (9) satisfies the constraint identically on the whole C<0), excluding the end points xa, xb. At these points the constraint is not satisfied unless the fermion wave functions χ, ψ obey certain condition. Namely, from (9) we getW = (∂iF)ji+I'∂iji, (12)iwhere j'(x) — gq ∫ dλv,(λ)δ(x — z(A)) is the usual current obeying the static continuity oequation 8ijl = 0 for x ≠ xa,xb. Thus, the last term on the r.h.s. of (12) vanishes for 

x ≠ xa, xb. It is easy to verify that the first term on the r.h.s. of (12) cancels with the term εa⅛c∕lμjcxt present on the l.h.s. of the constraint (11). For x = xa, x = xb we have 
∂ij' ~ <5(x- xa,b) and therefore the constraint (11) implies

Ia(xa) = I°(xb) = 0. (13)However, from (10) it foliows that
Γ(z) = Dab(Vc)Ib(xb),where D"h(Fc) is the matrix of the adjoint representation of SU(2), corresponding to the group element Fc(z(2), xb). Therefore the condition (13) implies Γ(x) = 0 for all x ∈ C<0), i.e. the external source decouples from Yang-Mills equations. This means that the external source does not generate any gauge field.To summarize, either the external source decouples from classical Yang-Mills equations or it is not consistent with them. We would like to interpret this result as an indication that NG10 for which Γ(x) = 0 are, in some sense, favored by the Nonabelian gauge theory.B. The gauge invariant sources without fermionsNow we shall consider the action (4), (5) with W replaced by W0(x, x∣C) given by (2) and J = 7(x∣C) = qδ(x-xa) [<5(Ć—C(0))] [<5(C0-x0)]. In the corresponding Yang-Mills equations (7) the external courrent 7“^ has the form (9), where nowlo(z) = i Tr [Fc(xβ, x)TaVc(x, xβ)]. (14)

Vc is calculated along the other arc of Ć(0) than that used in Fc. One can verify that the external current satisfies the constraint (11) on the whole C|0).
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At first sight Yang-Mills equations look as very complicated integro-differential nonlinear equations. Still one could find a solution fot them. Namely, we observe that because gauge transformations just rotate the color spin vector (7“), one can perform such a gauge transformation that the resulting (∕α) will point in the 3-rd direction for all z e Ćl0), i.e. Γ = Ieaz, where = δa3, [6]. Then, the Ansatz Aμ(x) = δa3Aμ(x) reduces Yang-Mills equations to ordinary Maxwell equations for A,l(x) with the external static current 7ext(x) = igQ ∫ dλvlδ(x-Cm(λ))

0along the linę C<0). The corresponding solutions are known from a text-book electrody- namics. As the next step, we insert the solutions for Aμ on the r.h.s. of (14). Because the l.h.s. is given (Γ = δa3Γ), this yields a consistency condition from which one could try to determine some constants present in Aμ.Unfortunately, because of zero thickness of the linę C<0), Aμ has a logarithmic singular- ity on C(0> and we meet the difficulty mentioned earlier. As it was explained, we assume that Ć<0> is at least a twodimensional structure. The simplest possibility is to assume that Ćt0) is a torus, i.e. the current jvnl forms a torus-like coil. This assumption is not as peculiar as it may look at first sight. Firstly, we recall that in Yang,s formulation of Nonabelian gauge theories [66a], one uses the exponentials exp [ιgAμdxμ] independently at each space- -time point x. There is no reason why one should arrange these infinitesimal exponentials just along the simplest lines and to neglect morę refined possibilities. Secondly, some support comes also from energy considerations. Namely, the classical selfenergy of an infinitely thin, static, linear current diverges logarithmically. On the other hand, classical selfenergy of the current forming the torus is finite, equal to the energy of magnetic field inside the torus.Thus, we assume that C'o' forms a torus-like coil. The solution of the Maxwell equa- tions is given by some magnetic field inside the coil. It remains to check the consistency condition. Because we have Aa, = δa3A', T" = ∣ σu, σa — Pauli matrices, then
X

Vc(x, xa) = Tr exp [- ig ∫ A'dx'T3^] = exp [- igT3Φd(x, xfl)κ],
C<0>,7αand

Vc(×a, = exP [-igT3Φd(xμ, x)κ].Here Φ is the flux of the magnetic field through the torus, d(x, xa) is the length of the torus between the points xa, x (that is the distance along the big circle of the torus between the points obtained by perpendicular projections of the points xa, x on the big circle), d(xa, x) also is the distance between the projections of xa and x but taken along the other arc of the big circle of the torus, κ is an unknown coefficicnt describing the density of windings of the current around the torus. The path ordering was dropped out because now the ex- ponentials commute. From (14) we obtain that∕, = ∕2 = 0, ∕3 = I = sin ⅜ gΦlκ,



869where ∕ = d(x, xa) + d(xa, x) is the perimeter of the torus along its big circle. Because for the thin, toroidal coil Φ = qIgκS±, where S1 is the area of the perpendicular cross-section of the torus, we get the consistency condition
1 = sin [⅜ (gκ)2IqV^∖, (15)where V is the volume of the torus. Of course, our considerations require κ → oo. In order to obtain finite results we parallelly take g → 0, in such a way that gκ ≡ λ = const.The condition (15) can be read over in at least two ways. Straightforwardly, it can be regarded as an equation for I, in which V, λ, q are fixed parameters describing the given torus. The energy of the torus is E = H2V = ⅛q2λ2I2V. For sufficiently large λ2qV there are many values of I obeying (15).However, the condition (15) can be interpreted also as a quantization condition for 

λ2V. Namely, when I is a priori fixed, (15) implies
2 2 z V = —(± arc sin7+2k±π), k + = integer, = integer +|. (16)

iqObserve that (15) implies also that q is a positive number, q > 0. Thus we have to assume 
k+ ≥ 0, ⅛ 4 in °rder to ensure λ2V > 0. Then, the energy isE± — ⅛ <∕7( + arc sin l + 2k±n), (17)πwhere arcsin I < Observe that the spectrum of energy is linear and that it depends only on the strength of the external source q and on the constant I. The constant I in this case is not determined, except for the condition |7| < 1. The cases I = 0, 1 we exclude as the trivial ones. It is natural to take 7 = 4 because we have used the fundamental repre- sentation for Ta.Our results indicate that classical gauge fields can be created in a gauge invariant manner on the classical level only if the accompanying fermions satisfy the condition (13). Then, the external current vanishes and the external source decouples from Yang-Mills equations. In particular, this means that the classical selfenergy of such a source is given entirely by the classical selfenergy of the set of accompanying fermions. This selfenergy can be calculated from Yang-Mills equations with the external current ιpTaιp (this current, coupled directly to Aμ, is a gauge noninvariant external source of gauge fields and therefore it was neglected in our considerations). Unfortunately, we cannot relate the condition (13) to the common requirement that the fermions should form a color singlet state.In the case without fermions, the classical approach seems to require rather complicated cbjects instead of a simple, closed contour C. We have considered C to be a torus. The question arises whether the resulting magnetic flux tubę is stable. Presently we have no answer to this question. It seems that there is no reason for a topological stability. On the other hand, the spectrum (17) is bounded from below and, intriguingly, does not depend on the size of the torus — this suggests an energetistic stability.
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The above results can be easily extended to SU(n) groups. Of course, the number of types of NGIO then increases.This description of the gauge invariant external sources ends our investigations of classical chromodynamics of external charges.

II.4. Finał remarksThe question what is the classical Yang-Mills field generated by a given distribution of color charges is far from being satisfactorily answered. Just the opposite, numerous investigations [2-28] reveal unexpectedly complex situation. It was discovered that a fixed color charge distribution allows for infinitely many fields obeying Yang-Mills equations (4) of the Chapter 11.1, all these solutions having finite energy and vanishing at infinity. There is no elear cut principle which could tell us which of the solutions is to be adopted as “the physical one”. Much morę work is required in order to reach a satisfactory under- standing of this situation.We are convinced that further efforts in this direction will lead to important insights into Yang-Mills dynamics on classical as well as quantum levels. Already at the moment one can make interesting observations. For example, solutions with lowest energy as a rule contain nonzero color magnetic fields. Thus, the presence of color magnetic fields results in lowering the energy of Yang-Mills system. This remarkably well corresponds with the belief that the vacuum state in confining QCD is filled in with magnetic fields [50], although the precise relation of the two things is not known at the moment.A possible way of incorporating into quantized Yang-Mills theory the knowledge gained from classical Yang-Mills equations with external sources is through a modi- fication of gluon propagator. An effort in this direction is presented in [69] — unfortu- nately, it requires to invent a way of dealing with infrared divergences.The author would like to thank Professor J. Rayski for encouragement and support. Helpful discussions with Professors K. Zalewski, A. Staruszkiewicz and H. B. Nielsen are also acknowledged.
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