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Kaluza-KIein reduction scheme is generalized to a supermanifold which is a product 
of some basie supermanifold and a classical simple Lie supergroup with nondegenerate 
Killing form. The resulting theory and its invariances are discussed in detail.

PACS numbers: ll.10.-z

1. IntroductionKaluza-KIein type theories on ordinary manifolds have been widely discussed for a long time (for a review see [1] and references therein). They are expected to be useful, for example, in supergravity [2], This Kaluza-KIein scheme was also applied to some special manifolds with Bose and Fermi coordinates [3]. In the present work we generalize this scheme to an arbitrary supermanifold which is (locally) a product of some other (basie) supermanifold and a simple Lie supergroup with nondegenerate Killing form. Another new feature of our analysis (in comparison to [3]) is the inclusion of (even and odd) Brans-Dicke-like scalars. The generalization we present here is done mainly from the mathematical point of view and remains in a close analogy with the geometrie treatment of ordinary Kaluza-KIein reduction scheme given, e.g. in [4]. However, it turns out that odd coordinates which we must use to describe our supermanifolds cause not only technical troubles but also imply some limitations on possible invariances of the finał theory, as it is discussed in Sect. 3.Our paper is organized as follows. In the first part some mathematical preliminaries conceming differential geometry on supermanifolds are reviewed, and generalized Kaluza- -Klein Ansatz imposed on metric is formulated. In the second part we show that starting from the product supermanifold described above, and taking as a lagrangian the supercur- vature density, we obtain, after reducing it in Kaluza-KIein manner, the sum of super- curvature scalar of the basie supermanifold, a term describing Yang-Mills type field valued 



816in Lie superalgebra of the chosen supergroup, and a lagrangian of scalar fields. In the Appendix some mathematical theorems concerning Lie superalgebras and their (invariant) metrics are given, and possible invariances of our finał lagrangian are obtained in detail.
2. Riemannian supergeometry and the Kaluza-Klein Ansatz2.1. The metricLet M be an (m, n)-dimensional supermanifold (mathematical details can be found in [5] and [6]). We can locally describe it by m even {x"} and n odd {θa) coordinates (shortly 

{xμ, 0a} ≡ {xx}). The coordinate basis (associated with {x'4}) of the bundle tangent to this supermanifold is denoted by {5x} = {∂μ, 8a}. The basie object of metrical super­geometry — the metric g — is a covariant, second rank tensor such that the suρermatrix [g4B] is even, invertible (even and invertible supermatrices form a supergroup denoted by GL(m|n); for details see [5]) and supersymmetric, that is
gBA = (-)P(A)P(B)gAB, (2.1.1)where p(α) = 0 and p(ci) = 1. Let {eA} ≡ {eμ, ea} be some other (may be non-coordinate) basis of the tangent bundle, related to {∂a} by

= La.a8a, (2.1.2)where the supermatrix [La-a] is an element of the supergroup GL(m∣π) described above. Using (2.1.2) we obtain
gλ'B' = g(eA,> eB') = ^A'AgAB(^--Sl)BB'> (2.1.3)where (Ls1)bb. = (_)pW(i+p(b'»lb,b (2.1.4)is the supertranspose to [Lb.b]. The formula (2.1.3) describes the transformation rule of the metric under the basis change (2.1.2). The contravariant metric tensor is defined by

gABgec — gcegBA A 
C (2.1.5)≈ δand satisfies from (2.1.3) and (2.1.5):

(2.1.6)where [(L~1)bb] denotes the supermatrix inverse to [Lbb].2.2. The connectionThe connection coefficients Γab are defined by: Veχ⅛ = = ecFCB (2.2.1)



817(ec does not act on Γ^b), whcre V denotes the supercovariant derivative, which satisfies [6]:
= cλ‰a,

^ej= eAf,

VeA(S®T) = (V^S)0T + (-)p<s>pσι(V^T)0S (2.2.2)(5, T arbitrary tensors; p(S).p(T) their parities). Assuming the connection to be metrical, that is Vg = 0, and solving this cquation, we obtain the following formulas valid in ar­bitrary non-coordinate basis:
rCAB = łgCD{(-)P(DHP(A, + i’!B,)(^gBD-^.BD) (2.2.3)(please notę different conventions than in [6]), where

[eA, eB} ≡ ex¾-(-)p∞pw⅛e4 = c%BeD,
£

cD,AB ~ SDEcAB∙2.3. The supercurvature tensorThe supercurvature tensor is defined by
(2.2.4)

K(.eB, ec)eo = = ^a^ (2.3.1)
(eA also does not act on Rabcd), where (2.3.2)Ricci supertensor equals to«co = (-)p^Raacd = oaΓad-{-YwScΓad_l_ ( _ j,'iaiPae∕ed — (— jp,∙4) <1 + f(c^ΓceΓab

s∖p(E) + p(C)(p(A) + p(Ey)E rΛ l ) tΛC1 ED (2.3.3)and we define Ricci superscalar as: (2.3.4)Under the basis change (2.1.2) Rcr> transforms like the covariant metric tensor (this is due to (-)pt4' in the contraction of supercurvature tensor).2.4. The Kaluza-Klein AnsatzWe start from a supermanifold P which is assumed to be a bundle space of some principal fiber superbundle with superconnection. The precise mathematical meaning of these notions is not important for our purposes because Kaluza-Klein reduction scheme 



818is based only on local properties of (super) manifolds. This means that P looks locally like a (direct) product of some basie (physical) (m. n)-dimensional supermanifold M and (p, g)-dimensional Lie supergroup G, and a supermatrix Vaz(xb, yw) is given, which (also locally) describes the connection.(Conventions: xA, xB,... are coordinates of M; yz,yw, ... coordinates of G; ez, ew, ... (which will be used later on) are left-iπvariant vector fields on G — the set {ez} is isomorphic to Lie superalgebra G of G and satisfies
[⅛> ew} ~ fzweu∙ (2.4.1)

fzw — structure constants of G; ez, ew ... form also a basis of the bundle tangent to G). Let eA = cA — Vλzez be the horizontal lift of 8A; we must have [4]
[eA, er} = 0 (2.4.2)(as Vλz describes the superconnection). From (2.4.2) we obtain(-r,,xW = (2.4.3)and this formula, which can be integrated to:l√(χ, y) = (-)P(Z) u +piW»VAw(x, 0) Adz√y- 1(y)) (2.4.4)([Adzwr(γ~1(y)] is the representative of γ^^1(y) in the adjoint representation — y(y) is the ele­ment of G corresponding to {yz}'.. we assume y(0) = 1) gives us the y-dependence of 

Vaz(x, y), while its x-dependence is arbitrary.Having assumed the supermanifold M to have the metric gAB(x) we organize P = M×G into Riemannian superspace giving its metric (in the basis {<‰, ez}) by the matrix
(2.4.5)

(∕,J... denote both A.B ... and Z, W...; notę the mixed order of even and odd rows and columns in the supermatrix (2.4.5) as a whole).The formula (2.4.5) is a straightforward generalization of Kaluza-Klein Ansatz (with scalar fields) to a supermanifold case. gpf2(x) is an arbitrary left-invariant metric on G. In the basis of left-invariant vector fields {¾} it does not depend on y, but of course may depend on x. Let us notę that left invariant metrics on G areinone-to-onecorrespondence with metrics on its Lie superalgebra G (see for instance [7] for analogous result conceming ordinary Lie groups; the generalization of it to supergroup case is simple).
3. Dimensional reductionAs a lagrangian on the supermanifold P = M x G we take the superscalar density= ((-)p(‘W)+p<G)sdet[^J])1/2R/., (3.1)where sdet denotes superdeterminant [5].



819
(Remark. It is easy to show that for arbitrary (m, zι)-dimensional supermanifold (we assume 
n to be even) with the metric gAB we can find a basis in which gAB is given by

(3.2)
we define (—)p(M) = sdet [gXB] (in this basis) and (—)p(G) is defined analogously.) Our aim is to calculate (3.1) and to integrate it over G. We shall perform the calculationsin the horizontal lift basis {eA, ez} given by (2.4.1), (2.4.2) and satisfying:

[ca, eβ} = -Fλbz¾,
[eA, ez} = 0,[e∣F> ez} = fw∕.eι> (3-3)where (as it is easy to check from (2.4.1))

Fabz(x, y) = ^VBz-(-)p(X)p(B)aBk7-(-)p(R)p(BJfARlBS^. (3.4)The horizontal lift basis is very suitable for calculations because [gjj] has in this basis a block-diagonal form [g/j] Sab(x) ;_____ ^^
| gPQ<^)_ ’ (3-5)

From (2.4.5) we obtain (in the coordinate basis {0a, ∂z})sdet [gH] = sdet [gAB] ∙ sdet [gj>β] ∙ (sdet [Ezz'])2, (3.6)where [Ezz (>■)] is the inverse of [Kzz(y)} defined by¾∙(.v) = Kz z(y)∂z. (3-7)
Rp in the horizontal lift basis equals to (3-8)After long and tedious calculations we obtain (discarding the total divergence) the following finał form of our lagrangian (3.1)= (( —)p(M,sdet [gχβ])v2 • sdet [Ezz'] ■ [‰v + ‰ge + ‰1]. (3.9)where ‰,r. = Φ~*~  Rm(Zab),⅛ge = ⅜ gcυFti,zez) (3.10) 



820and s≤fscal is the sum of two terms (kinetic and potential) of the following form
^sea.-Rin = ~⅜ <t>Z\ ~ QpgM(YX

(^P2\_y(A)(l+p(P) + p(Q» + p(P)gABt-d^PQ) ^a^qp)

(3.11)We have also substituted
Spq — Φ ’ r^pQ ^ι sdet [^pq] — ( )pf' \ (3.12)where </> is the scalar (Brans-Dicke-like) field. Rc, is the Ricci superscalar of G and it equals to

rg = (~rp^p^fxxfγxp(-)^^p^p^

+ (-)p∞ (1 +P^ + P^f^xz^γuf^p (3.13)It plays the role of the scalar superpotential. In the case when g'PQ does not depend on x, the scalar superpotential reduces to a (cosmological-like) constant. To obtaining the above results we have used the following formula derived from properties of superdeter- minant and metrical superconnection:(-rcVδVflH∕χ = ((-)pwsdet [gXB])“1/2aB[((-)p(M,sdet [gAB])1/2gBAWA]. (3.14)The last step in the Kaluza-Klein program is to integrate (3.9) over the supergroup manifold G. We shall limit ourselves to those Lie supergroups whose maximal Lie sub- groups are compact and whose Lie superalgebras are simple (over complex numbers.) and have non-degenerate Killing foims (for details concerning Lie superalgebras see [8]), Let G be one of such superalgebras with p even and q odd generators. By Lie supergroup corresponding to this Lie superalgebra we mean (formally) the set of elements of the typey(y) = exp {i(∕Ta + ∕Qα)}, (3.15)where Ta are generators of some compact real form of maximal Lie subalgebra Go of G 
(Go for our class of superalgebras is semisimple or is the direct sum of semisimple and U(l) Lie algebras, and a compact real form of it always exists, see [9]), Q1 are odd generators of G, ya and are respectively even and odd elements of R ® Λ(q) where Λ(q) is appro-
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priately chosen Grassmann algebra with q generators. It is known that the volume of super- group whose maximal Lie subgroup is compact equals to zero (see [10] and references therein). This fact makes the integration over such Lie supergroup non-trivial as Jzfgrav and ^7gauge ∞ (3-9) do not depend on y. The measure dμ = dy ∙ sdet [Ezz'] is invariant. Therefore, by integrating these two terms over the whole supergroup manifold we obtain these terms multiplied by the volume of the supergroup, that is zero. As the way out of this difficulty we propose to integrate =Sfgrav and ≈27sca∣ over maximal Lie subgroup G of G. The ∙≤fgauge term may depend on y because of the y-depeπdence of Fabz given by

Fλbw(x, y) = Fλbz(x, 0) Ad (y- 1(y))"z(-)pw (1 +p(Z)) (3.16)and obtained from (2.4.4) and (3.4). We can now distinguish two cases. In the first we assume the metric ⅞pq to be Ad(G)-invariant. This means (for our class of superalgebras) that %PQ is proportional to the Killing form of G and the <Sfgauge term does not depend on y. In this case we integrate it like =Sfgrav and jSfscal over G described by coordinates y only and we obtain finally
(3.17)where A = RG is a constant, K denotes the Killing form on G. The last term on the r.h.s. of (3.17) (the gauge term) is invariant under the action of the whole supergroup G, that is we can replace Fabw(x, 0) in it by Fabw(x, .∣'(.v)) and the x-dependence of y is arbitrary. Let us notę that the scalar term in (3.17) is of Brans-Dicke type.The second possibility arises when we do not impose any constraints on ^PQ. Then the gauge term must be integrated over the whole supergroup G and we obtain from it after reduction a Yang-Mills type lagrangian whose internal metric K is the average of over G 1

dyV{y) (-)p∞o +*x" Ad (γ~1(y))zχ‰ Ad(γ-,(y)Γr∙ (3.18)
As it is discussed in the Appendix, this metric is invariant under the action of G and in generał it is not invariant under the whole supergroup G. It depends on x via one or two scalar fields which are linear combinations of ^pq(x) and can be calculated from (3.18) (for the generał form of K and its implications for the invariance of the gauge term see Appendix). The whole reduced lagrangian in this case has the form:

— Vg{Φ 2 7?M + =£’scal + .£’gal,ge},where ^2scal is the same as in (3.11) and
⅛gc = ⅜ φp^+lK(x) {{-YwgABFBCw{x, 0)ew, scdFdaz(x, 0)¾).

(3.19)
(3.20)



822As it was men.tion.ed above, ^gauge does not change when we replace Fabz{x, 0) by Fab∖x, y(x)), where y are coordinates of G only. However, that term is usually not invariant under the action of the whole G. To interpret the scalar term in (3.19), we write g' in the form:g⅛ = M⅛r(Mst)rβ, (3.21)where K is Killing form of G and Mpx(x) is an element of GL(p∣<j) ∙gpβ is invariant under the replacement
Mpx → Mpx = M pγBγx(x) (3.22)if [B∕(∙v)] leaves K unchanged. So [B√γ] is an element of Osp (G, K) — the orthosymplectic supergroup leaving the Killing form K on G invariant. Thus the scalar term may be inter- preted as some GL(p∣<∕)∕Osp(G, K) super σ-model (for the discussion of similar problems in ordinary group case see [11] and references therein).

4. Finał remarksAlthough we do not discuss any possible applications of our scheme, let us notę at the end that taking ordinary or extended superspace as M, the gravity term in our lagran- gian (3.17) or (3.19) is simply the starting lagrangian of the so-called gauge-supersymmetry approach to supergravity (for review of this approach see [12] and references therein). Thus one of possible applications of our results may be the obtaining of a superspace version of supergravity (simple or extended) coupled to matter represented by Yang-Mills field valued in some Lie superalgebra and Brans-Dicke-like scalar fields. So Kaluza-Klein type theories on supermanifolds may be useful for superunifications.The author is grateful to Professor Jerzy Rayski for introducing him into Kaluza- - Klein type theories and useful discussions and to dr Henryk Arodź for careful reading of the manuscript and constructive conversations.
APPEND1XIn the Appendix we discuss the averaged metric on G given by (3.18), and particularly its invariance properties. Let us remind that our analysis is limited to simple (over C) superalgebras with nondegenerate Killing form. Any Lie superalgebra with these properties is isomorphic to one of the followingSpl («, m) with n, m i- 1: n ≠ m,Osp(n, 2r) with n. r > 1; w ≠ 2r + 2, (A.l)

γ2,γ3(for details and notations see [8] and [13]). It is also true that any invariant bilinear (even) form on such superalgebra is proportional to its Killing form. It is easy to show that the 



823metric Kxγ given by (3.18) is invariant under G. In fact(-)p∞u+pW) Adzx(γ- 1(y)‰ Adtzr(γ "1(y))= ⅛J dyV(y) (~y(r)(1+P(X>) Adpz(Γ1C∕)) Adzx(<1(y))
%pq Ad%(γ-1(∕)) Adσy(y- 1(y)) = Kxγ (A.2)because of the invariance of the measure. It is impossible to do the same for the whole supergroup G, because we can not interchange the order of integration and multiplication by odd Grassmann variables. The most generał Ad(G)-invariant metric on G belonging to (A.l) has the form

m"[¾]∙ (A-3)
where Ko is symmetric, Ad(G0)—invariant metric on Go and Kl (skew-symmetric), Ad(G0) — invariant metric on G0-module G1(G = Go φ δ1; Go, G1 are even and odd parts of G). To ρrove this we use the infinitesimal form of (A.2)K([ety, e};ez) = K(ew; [e, <⅛}), (A.4)where e belongs to Go. Using the basis {ez} consistent with the root-space decomposition of G, and assuming e to be an element of Cartan subalgebra of Go we obtain in particular

—λfγ(eK)wz = λz(e)Kwz (for all e), (A.5)where {e, ew} = λw(e)ew. Let eweGn and ezeG1. Then Kwz ≠ Oimplies +λw(e) = — λz(e) (for all e). But this is a contradiction because λw is an even root and (—2z) is odd and for our class of superalgebras they have to be different. This proves (A.3).(Skew)-symmetry of K0(K1) follows from (3.18) and the fact that is supersymmetric. Using similar arguments it is not difficult to ρrove that Kl is nondegenerate and unique up to a constant. (It is true for both possible cases:1. G0-module Gl is irreducible — then is obvious.2. G0-module G1 is a direct sum of two irreducible pieces — then it is necessary to use skew-symmetry of Kl in the proof.) For Lie superalgebras (A.l) Go is either simple (then 
Ko is unique up to a constant) or it is a direct sum of two algebras (which are both semisimple or one of them is U(l) algebra) Go = G0(V) + G0(2) — then Ko depends on (at least) two arbitrary constants). So the most generał form of K is

(in the first case)or 
(in the second case) (A.6)
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where Ko, K0ll), Ko(2}, Kl do not depend on x and a(x), aL(x), a2(x), b(x) are normalized in such a way that for a = aL = a2 = b = 1 K is simply the appropriate Killing form K. However from (3.18) using the invariance of the measure we obtainstr (K~1K) = ∫ dyV(y) str(K-1^) = 0 (A.7)(str denotes supertrace), where K~1 is the (Ad(G)-invariant) inverse of K. (A.6) and (A.7) imply ∖ a(x)p — b(x)q = 0 (for simple Go),∖a1(x)pl + a2(x)p2- b(x)q = 0 (in the second case), (A.8)
where p, pl, p2, q are dimensions of Go, G0(1), Go(2), G1 respectively. It is easily seen from (A.8) that K in generał can not be Ad(G)-invariant. Ad(G)-invariance of K is possible only for Lie superalgebras for which pl+p2-q = 0. (p-q = 0 never happens for Lie superalgebras belonging to (A.l)).
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