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We argue that a ciot of color charged mat ter placed in an extemal nonabelian gauge 
field will not, in generał, propagate in any definite direction. Instead, it will tend to disperse 
all over the space. We also prove that if the position x(t) and the color spin vector 7(t) of the 
classical colored particie are identified with the expectation values of the corresponding 
ąuantum operatora in the state representing a wave packet, then the classical Wong,s equa- 
tions give wrong values of I(t~) for large time t.

PACS numbers: ll.10.Np, 03.50Kk

1. Introduction

The classical mechanice of color charged particles has been initiated in paper [1] 
and developed in a number of other papers, see, e.g., [2]. It represents the very interesting 
example of the classical mechanics of point-like particles with intemal degrees of freedom, 
and it has been considered in this same spirit as the very old classical mechanics of spinning 
particles, see, e.g., [3]. The classical mechanics of colored particles has also been consid
ered for morę practical reasons [4]. Namely, it is so simple that it provides thp explicitly 
calculable examples of interactions with nonabelian gauge fields. Therefore, it can be 
a handy tool for investigating effects which are due to interactions with nonabelian gauge 
fields.

In the nonrelativistic limit, the equations of motion for a spinless, color charged 
particie are, [1],

(1)

(2)
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where 7 = (/“), a = 1, 2, 3, is the vector of the classical color spin of the particie, and

Eai = Fa0i, Bak = -⅜√¾

F°μv = δμA°-5vAaμ- ~εabcAbμAcv.

In paper [5] this set of equations was extended to include the spin of the particie.
It is natural to ask whether the classical mechanics ot colored particles represents 

a classical limit of the first quantized theory: The rather formal derivation of equations (1), 
(2) from Dirac,s equation with an extemal SU (2) gauge field, presented in paper [1], 
could suggest that this is just the case. In paper [5] we have tried to obtain (1), (2) as the 
classical limit of the Dirac equation in a morę explicit manner. Namely, we have consid- 
ered the wave packet of the assumed “particle-like” form in the Foldy-Wouthuysen 
representation for the Dirac equation (we neglect the quantummechanical spreading out 
of the wave packet)

ψ°",(x, t) = φ(x — x(t))u",(x, t), (3)

where φ(x-x(t)) is a localized, c — number valued wave packet moving along the trajec- 
tory x(t) with velocity x(0, and uxη(x, t) slowly changes with x. The index a = 1, 2 refers 
to spin, and η = 1, 2 refers to color degrees of freedom of the Dirac particie. We have 
considered the exρectation values of quantum operators in the state (3) and we have 
derived classical equations of motion for them. Unexρectedly, the equations, e.g., for 
the trajectory x(t), have not come out gauge invariant, in generał. Only in the particular 
case of sufficiently large velocities x(t) (in the sense madę precise in [5]) is it possible to 
write approximate equations which are gauge invariant.

The obtained in [5] set of classical equations can be considered as the selfconsistent 
basis for the classical mechanics of colored and spinning particles for any velocity x(t). 
Wfien one neglects the spin, this set of equations reduces to (1), (2). In our approach the 
classical color spin vector 7 is identified with the expectation value of the SU(2) gener
atora T (the color spin operators) in the state (3). However, the relevance of this classical 
mechanics for the classical limit of the Dirac equation in our approach is restricted to the 
sufficiently large velocities, because only in this case can one neglect the troublesome 
gauge noninvaι‰nt terms.

In this paper we shall show that the relevance of the classical mechanics is even morę 
restricted. Namely, in Section 2 of this paper we shall present a very simple example 
which shows that the particle-like Ansatz (3) itself has a rather limited region of appli- 
cability. This Ansatz approximates the exact solution of the Dirac equation only when 
the effects due to the extemal fields are smali, in particular when g is smali and when 
the time interval is not too large. The Ansatz (3) also works in some other very particular 
cases, which are, however, of the trivial type, 7(0 = const. Thus, the difficulty with ob- 
taining (1), (2) as the classical limit of Dirac,s equation becomes squared — not only the 
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particle-like Ansatz (3) leads to the difficulties with gauge invariance, but also it tums 
out that Dirac,s equation does not allow for any particle-like Ansatz which would be 
generally correct. This suggests that the concept of the classical, color charged particie 
does not follow from the underlying first quantized theory. Another argument supporting 
this point of view is presented in Section 4. Thus, the nonabelian case is in sharp distinction 
from the abelian one. In the later case, the notion of a classical, electrically charged par
ticie can easily be extracted from the first quantized theory [6].

In order to simplify the analysis, in the following we neglect the spin of the particie. 
Then, the nonrelativistic quantum mechanical Hamiltonian of the Dirac particie in the 
Foldy-Wouthuysen representation becomes essentially the Schrodinger Hamiltonian

H = mc2 + (p- — Aata} + gAa0ta, (4)
2m\ c J

where ta are the generators of the SU(2) group. In (4) we have also neglected the Darwi- 
nian term, and we have restricted our considerations to the positive energy sector of the 
theory in order to avoid ęlassical antiparticles. The particle-like Ansatz now becomes

ψ,(x, i) = <p(x-x(t))u"(x, t). (5)

In the following we assume that

ut>(x, t) = uj(t), (6)

because the dependence of u on x was introduced in [5] essentially for technical reasons, 
and it is not important here.

We shall consider the simple case of a color gauge potential of the “abelian” type

a;(x, t) = haAμ(x, t), (7)

where h = (ha) is a constant vector in the color space, h2 = 1.
Iń the next Section we shall describe the true time evolution of a wave function forming 

the wave packet (5) at the moment t = t0, placed in the nonabelian gauge field (7). In 
Section 3 we compare the time evolution of the position x(t) and the color spin I(t) of the 
classical particie, as calculated from the classical equations (1), (2), which were derived 
in [5] from the Ansatz (3) equivalent to (5) when one neglects the spin, with the true time 
evolution of the expectation values of the quantum operators. The conclusion of Sections 2 
and 3 is that the Ansatz (5), as well as the classical equations (1), (2), give definitely wrong 
predictions for sufficiently large t. The true time evolution of the initial wave packet does 
have in generał the particle-like form (5) — the initial wave packet dissociates into two 
separately moving wave packets with constant and opposite color spins. In Section 4 
we present certain generał observation conceming the behaviour of color charged matter 
in the external nonabelian gauge fields and we present the other argument for the lack 
of the particle-like classical limit of the Dirac equation.
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2. The waυe packet in the external nonabelian gauge field

Let us now consider the time evolution of a wave fimction which at the moment 
t = t0 has the form of the wave packet (5) loćalized at x = x0

√(x, t0) = φ(x-x0)uη0(t0). (8)

In the case of the gauge potential (7), the Hamiltonian (4) can be written as

(9)

where we have neglected the unessential constant mc2. Let e± be the noπnalized eigen- 
vectors of the hermitean matrix hafe, fa = ⅛σa,

(hata)ei = ±⅜ei. (10)

From (9), (10) it follows that the Schródinger equation

, δψih — = Hu 
dt

decomposes into two independent scalar equations

(11)

where

and

Of course,

(12)

From (11), (12) we see that any time dependent wave function can be represented as 
the sum of two wave functions, each evolving in time independently of the other, and 
according to equations (11). These equations can be regarded as the Schródinger 
equations for two scalar (i.e., colorless) particles with opposite electric charges ±,g∣2, 
placed in the extemal gauge potential Aμ.

In particular, this applies to the initial wave packet (8). Writing

uo(*o) = c+e++c_e_, (13)



17

we see that the components

φi(x, t0) = φ(x-x0)ct (14)

will evolve as if they describe the scalar particles with electric charges ±g∕2 in the extemal 
electromagnetic field Aμ. Therefore, the time evolution of φ+ and <p_ has the standard 
form of a wave packet moving in an extemal electromagnetic field. Hence, if the usual 
conditions for the classical limit of quantum mechanics are satisfied, we can write the 
approximation

t

φi(x, t) = c±φ(x-x±(t)) ∙ exp ∣y ∣dt' [± y 

to

where x+(t) (x-(t)) *s t^e classical trajectory of the particie with electric chargeg∣2 (-g∣2) 
placed in the gauge fiejd Aμ with the initial data x(t0) = Xo, *(/o)  = v. In (15) the extemal 
field is taken at the point x(z). For simplicity we have neglected the spreading out of the 
wave packet.

The form (15) of the wave function can he easily justified within the Feynman path 
integral approach to the problem, [7]. Namely, the time evolution of the wave function 
can be written in the form

φi(x, i) = ∫ d3x,Ki(x, t; x,, t0)φi(x', t0), (16)

where the time evolution kemel can be written as

K±(x, f, x,, t0) = N|[⅛(t)] exp θ- Si[J(t)]) (17)

Here N is a normalization constant. The integral is over all paths q(t) such that

q(t0) = x', q(t) = x, (18)

S[J(r)] is the classical action for the trajectory q(t). In our problem

t
s± [?(0] = | dt' q2 τ y Ao ± ½ Ja) . (19)

*0

In the classical limit, h → 0, the kemel K can be calculated by the standard method, see [7], 
Ch. 3, Sect. 5 and 6, based on the expansion of ¾] around the classical trajectory up to 
the quadratic terms,

t

s[«] ≈ Slqei]+^dt'dt'⅛  ̂ _ , (20)

<0

(15)

In the classical limit, h → O, the kemel K can be calculated by the standard method, see [7], 
Ch. 3, Sect. 5 and 6, based on the expansion of ¾] around the classical trajectory up to 
the quadratic terms,

(19)



where the classical trajectory <jcι(t) = ×±(f) is determined from the classical equations of 
motion

(21)

supplemented with the boundary conditions (18) for ξcιθ)∙ Inseririg (17), (19), (20) in (16) 
we see that the phase factor exp S⅛ςl]^ appears. The s^classiea! apprθli≡tion 

also makes it elear that the time evolution of the wave packet will follow the classical 
trajectory x±(t).

From (15) and (12) we obtain that

Obviously, the r.h.s. of (22) does not have the form of the Ansatz (8), because in generał 
the trajectories x+(t), x-(f) are different. The fact that the initial positions and velocities 
of the corresponding, electrically charged, classical particles are identical does not change 
this situation iri generał. Thus, y(x, t) dissociates into two separate wave packets.

When

x+(t) ≈ x-(f) ≡ x(t), (23)

which implies also that x+(r) ≈ x_(r), the solution (22) can be approximately written in 
the form (8). Namely,

where

(24)

(25)

(22)
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Thus, the Ansatz (8) is justified only in the very particular case when condition (23) is 
obeyed. This cond^ton ∙s approximately obeyed for generał extemal gauge fields only 
when the gauge coupl∙ng constant g is smali and when the time interval t-t0 is not too 
large. Only in this case solutions of Wong,s equations (1), (2) give the correct value of the 
expectation values in the true state (22). If the size of the wave packet is of the order of

the Compton wave length for the particie, 2e = —, then (23) is certainly not true when 
mc

glfl (J~to)2∕2m ≥ łifmc, where g|/| is a mean force along the trajectoiy of the particie. 
Thisgives T≈ (h∣cg∖f |)1/2 as the upper value of the time interval for which (23) hąs a chance 
to be true. Thus, in generał, the limit A → 0 has to be associated with the limit g → 0 
in order to obtain T finite.

φ(x, t) has the form (8) also when c+ = 0 or = 0. In this trivial case there is no 
color spin dynamics, 7 = const.

3. The true time evolution of the expectation υalues

Let us start from the discussion of the time evolution of the expectation value of ta,

(26)

It is easy to check that m is orthogonal to h.
From (26) it follows that T(t) obeys equation (2). This can be easily seen when one 

notices that h×m = i m.
However, for sufficiently large t—10 (23) is not obeyed. Then, the formula (26) for 

I(f) is not true, in generał. In particular, when the two wave packets in (22) become spa- 
tially separated the true color spin becomes constant,

lim I(f) = ⅜(∣c+∣2-∣c-∣2)ft, (27)
r→oo

in contradiction to the solution of Wong,s equation (2) which has the behaviour (26) for 
all t.
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Now, let us consider Wong,s equation (1) for the trajectory. The quantity h I, present 
on the r.h.s. of this equation, is equal to

hi = ⅜(∣c+∣2-|c_|2). (28)

On the other hand, x±(t) obey the equations

mxi(t) = ± y θJ+ y x fi) . (29)

From (28), (29) it follows that

x(t) = ∣c+∣2x+(t)+∣c-∣2x-(t) (30)

obeys equation (1) when (23) is obeyed. Thus, in this case Wong,s equatιon (1) has to be 
interpreted as the equation for the center of mass of the two wave packets. When (23) 
is not satisfied, equation (1) does not have any ciear interpretation in terms of the expec- 
tation values in the true state (22), except for particular cases like c+ • c_ = 0, or B = 0, 
E - const.

4. Remarks

From the above considerations it follows that color charged matter placed in an 
external nonabelian gange field will, in generał, tend to disperse all over the space. For 
example, let us consider the wave packet in the potential A“ = Aμha(x), where Aβ(¾) is 
piecewise constant i.e., the space can be divided into regions Ωi such that h(x) is constant 
in each Ωl and the direction of ∕i in each Ωi is different. It is easy to see that the initial 
wave packet will dissoęiated into many separate wave packets — their number depends 
on the number of crossed regions Ωi.

According to certan authors [8], the vacuum in QCD is filled in with nonabelian 
gauge fields which have an orientation in color space fluctuating at random. In such a va- 
cuum it is impossible to have a localized ciot of colored matter propagating in a definite 
direction, except for the superficial case of large velocities, when the high velocity will 
mask the dissociation for a certain time.

Finally, we would like to present the other argument for the lack of the particle-like 
classical limit of the Dirac equation with an extemal nonabelian gauge field. Let us recall 
that in the abelian (i.e., electromagnetic) case the classical limit can be obtained by the 
substitution of

in the Dirac equation and letting h → 0, [6]. Then, it tums out that the real-number valued 
function S obeys the Hamilton-Jacobi equation known from classical mechanics. In the

(31)
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nonabelian case the substituLon (31) leads to the following equations (in the leading order 
in h)

(32)

and

yμAμtaf-γμAμ(f"ttaf)f = 0. (33)

From (33) it follows that f is an eigenvector of the operator γμAμTa. In the case of the 
SU(2) gauge potentials of the abelian type (7) we can substitute in (32) and (33)

where α = I,2,3, 4 refers to the usual bisρinor components, η = 1,2 refers to color. 
Then, (33) will be satisfied if

This equation i« identical in form with (10): in particular A = ±1/2. Then, (32) becomes 
identical in form with the equation obtained in the electromagnetic case. However, the 
“effective” electric charge takes on two values +g∣2. Thus, we again obtain the situation 
described in Section 2; there are two independent classical motions going on.

Our considerations can be easily generalized to SU(w) gauge fields. Then, the equa- 
tion (10) will have in generał n different eigenvahιes, and the initial wave packet, when 
placed in the gauge field of the abelian type (7), will dissociate into n separate wave packets 
after a sufficiently long time.
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