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It is shown that the perturbative calculations in Regge limit in nonabelian gauge 
theories are in agreement with the hypothesis of the reggeization of vector meson (gluon). 
The infrared properties of the integral equations for various quantum numbers exchange 
in the t-channcl are studied in the spontaneously broken theory; the role of the Higgs particles 
is investigated.Someconnections with deepinelastic scattering are also discussed. The integral 
equation describing the three gluon exchange in a colour singiel stale is formulated and its 
infrared properties are studied. It is argued that it generates a fixed branch point in /-piane.

PACS numbers: 12.40.-y, 12.40.Mm

1. IntroductionThe problem of high energy scattering in nonabelian gauge theories (NAGTs) has been widely discussed in the literaturę [1-8], The calculations have been performed for various classes of processes in different approximation schemes. The picture which emerges seems to prove QCD to be the theory of strong interactions.In this talk we would like to present the results which have been obtaincd by various authors [1-6, 8-21] in so called Regge limit of QCD, where s is large and t fixed (by s and 
t we denote the usual Mandelstam variables).Perturbative calculations based on the usual Feynman techniques have been performed up to the 12,h order in the leading ln s apρroximation [1-3]. To avoid infrared divergencies the gluon mass λ has been introduced by means of Higgs mechanism, in soms cases the limit λ → 0 can be taken and we again arrive at the massless theory. It has been shown that for vector meson quantum numbers exchange in r-channel perturbative results agree with the hypothesis of the vector-meson reggeization in NAGTs [9-11]. This will be de- monstrated in Section 2 in the two lowest orders of the perturbation expansion.Next we shall briefly sketch the alternative technique for the summation of the perturbation [4-6] series based on unitarity and analyticity. In this context we shall explain the role of the Higgs particles in the whole scheme.
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The picture which emerges is the reggeization of vector meson in NAGTs. We shall next, in Section 3, use the Regge-like formulae for the scattering amplitudes to show how one can derive the integral equations for various quantum numbers exchange [4-6]. The results for SU(3) are as follows: antisymmetric octet (gluon) reggeizes, symmetric octet also has a Regge pole structure, singlet (the Pomeron) has a fixed branch point in complex angular momentum j-plane. The integral equations for the octets exchanges suffer from infrared divergencies (one has to keep λ ≠ 0) but in the Pomeron case all infinite terms cancel out — this we shall explain in details — so one can take λ = 0 limit.Some connections of the Pomeron equation with deep inelastic scattering (DIS) will be also discussed [7, 8, 15, 21].The procedurę presented in Sections 2 and 3 leads to the Gribov Reggeon calculus of reggeized gluons [22, 23] with calculable vertices [5, 6, 15-17], Tn our case for leading ln s aρproximation only the 2 → 2 vertices are needed explicitly. Using the rules of the Reggeon calculus [22] we derive in Section 4 an integral equation for the three reggeized gluon system exchange in a colour singlet state [19]. This amplitudę has C-parity C' = — 1 and therefore differs from the Pomeron. Phenomenologically it can be responsible for the behaviour of F3 structure function in neutrino-hadron scattering for x → 0. We shall investigate the infrared properties of this equation and argue that it generates a fixed branch point in ./-piane [19]. Some authors [15-17] go beyond the leading logarithmic approxi- mation in order to construct a complete Reggeon calculus with all types of vertices. In this paper however we will not consider this problem.

2. Reggeization of high,energy amplitudesAt the begining of this section we shall recall what reggeization of a particie in a given theory means [10, 15], We shall be working with the Sommerfeld-Watson representation of the scattering amplitudę f dω e~iπω-σ
A(s, t) = s — s“ -----------Fω(t), (2.1)J 2πι sin πωwhere j = ω+l is complex angular momentum variable and σ denotes signature.For the moment łet us consider a fermion-fermion amplitudę in any gauge theory. In the first order of the perturbation expansion (one spin j — 1 vector meson exchange) 

Fω(t) is n<5nanalytic in ω⅛
Fω(0 ~ <5ω,0∙If the higher orders remove this nónanalyticity and the amplitudę Fω(t) will have a t dependent pole in ω-plane (Regge pole) one would say that the vectφr meson reggeizes [10]

e-⅛α(r)-σA(s, t) ~ s“(!) + 1 ----- -<x(t), (2.2)smτια(t)where the trajectory α(t) is a calculable function of t, proportional to the coupling constant 
g2, vanishing for t = λ2 (z — vector meson mass), and signature σ = — 1. Some authors
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[1-4] have successfully undertaken the efforts to calculate the scattering amplitudes up to the 12'h order of the perturbation theory. The calculations were performed in a leading logarithmic approximation where terms (g2 ln s)n were picked up. These results were com- pared [10] with the exρansion of Eq. (2.2) and it turned out that for vector meson quantum numbers exchange in the ∕-channel ρerturbative results were in agreement with the Regge

Fig. 1. Fermion-fermion scattering in the first and, second order in αspole structure of Fω{t). This means that vector meson in NAGT reggeizes. In fact reggeiza- tion occurs in all gauge theories based on a semisimple Lie group [13], whereas in QED photon does not reggeize.To illustrate this let us consider the second order fermion-fermion amplitudę (Fig. Ib). In Feynman gauge for SU(τV) theory one obtains in the first and second order

(2-3)
(2.4)

where Tare group couplings of vector meson to fermion, 1 unit matrix (for singletexchange), 
m and λ denote fermion and vector meson mass respectively, stands for fermionhelicity conservation.In the second order only singlet and adjoint representations are exchanged, and in fact both of them appear in Eq. (2.3) with nonvanishing imaginary parts. In other words vector meson quantum numbers can be exchanged in the second and in the first order as well. This is not true for QED sińce photon has C-parity Cγ = — 1 and two photon state can have only C2γ = + 1. There is no 3y coupling and as a cofisequence photon does not reggeize.In SU(2) theory the last term in (2.3) vanishes and the amplitudę for vectof meson quantum numbers exchange (term proportional to f(A) • T(B)) agrees with the expansion 



776of Eq. (2.2) with σ = — 1. But for N > 2, in SU(3) theory for examρle, there is another term proportional to T(A> • T(B) which seems to spoił the reggeization pattem (2.2). This term, however, arises from the contraction of the symmetric structure constants dabc and should be therefore identified with the symmetric octet exchange [11, 20], whereas the second term in (2.3) comes from the antisymmetric octet (gluon) exchange. Symmetric octet exchange, as seen from Eq. (2.3), is one power of logarithm down with respect to the antisymmetric octet.In the Clebsch-Gordan series for the direct product of two octets (adjoint representa- tions of SU(Λr) group) octet (adjoint representation) appears twice8®8 = l®8a®8s® ...These two octets differ by generalized C-parity [24]: C8a = — 1, C8s = + 1 and therefore they should not be mixed in the fermion-fermion scattering amplitudes. Having this in mind we see that up to the 2nd order amplitudę with gluon quantum numbers exchange has Regge form of Eq. (2.2). In the symmetric octet case it can be shown that reggeization also occurs [11, 20] but the relevant trajectory differs in mass term from that of Eq. (2.4).There is another trouble about Eq. (2.3); in any realistic theory we would like to have massless gluons, but the limit λ → 0 for the amplitudę (2.3) does not exist. We will show however, that in renormalizable SU(Λr) theory with massive “gluons” and Higgs particles the colour singlet exchange amplitudę is infrared safe [6, 10] and λ can be put equal to 0. For other representations this limit does not exist, but their infrared behaviour is crucial for the finitness of the singlet exchange.Now we shall come deeper into the question of the reggeization in SU(7V) theory and the Pomeron. In what follows we shall use the unitarity and dispersion relations. This method was proposed in Refs. [4-6] and we shall only quote the results trying to describe physics rather than technical problems. In order to regularize the infrared diver- gencies in this approach one introduces Higgs particles [9, 25]. In SU(7V) theory (N > 2)

Fig. 2. Multigluon production in A+B scattering; an illustration of Eq. (2.5)the Higgs sector is morę complicated than in SU(2) model. For instance in SU(3) it consists of scalars in octet representation which couple to gluons with dabc couplings and colour singlets as well [13, 18, 25]. It should be noted that the generał approach to this problem in massless theory in Coulomb gauge has been worked out in Ref. [16].Let us consider a multigluon production in A + B→A' + B' + D1+D2+ ... D„ collision where A(A'), B(B') stand for gluons, quarks or hadrons (see Fig. 2). We will
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show that in the high energy limit this amplitudę can be written in a Regge form [5]

(2.5)
where Y∖κ∙ is a coupling to the external particles and γ° are Lipatov-Dickinson vertex functions describing the emission of gluons (or Higgs particles) [4-6].

Fig. 3. The leading contribution for gluon-gluon scattering (each ggg vertex is a sum of three terms)In the first order the dominant contribution comes from the gluon exchange (see Fig. 3). In what follows we assume that also external particles are gluons
Λgg→gg(s> 0 — ?2 (2.6)

where we have suppressed Lorentz and colour indices of Λgg→gg∙ Amplitudę (2.6) should be contracted with the polarization 4-vectors of external gluons 
where s is a spin vector of a particie at rest. Formula (2.6) gives the leading contribution only for transverse polarizations, whereas for longitudinally polarized gluons we have in fact to count all 9 terms which are represented by' the graph in Fig. 3. This leads effectively to the replacement (for t ~ z2)

Sμμ, ^^* ^λΛ,λΛ'aλA
— 1 for transverse polarizations —⅜ for longitudinal polarizationswhere by ŻA we have denoted polarization of a particie A (transverse zA = 1, 2 and longitudinal ŻA = 3). The quantity aλ^ is usually included in the definition of the vertex function [4-6].
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The r⅛ext step is to calculate the imaginary part of the second order amplitudę [4, 5]. This can be done via unitarity sińce we know the leading form of the first order amplitudę

d‰2Eχ-(2π)3 d‰2∕⅛(2π)3
(2.7)The sum goes over gluons and Higgses in the intermediate states (the summation over the indices i, j is understood).In order to calculate the fuli 2nd order amplitudę we shall use dispersion relations with one subtraction [4, 5]. The result for octet exchange is given by

s
r≡T2

2^AB→A'B' (2.8)Formula (2.8), as should be expected, is in agreement with our reggeization conjecture (2.5). One thing however should be noted at this point. Suppose that only gluons occur as intermediate particles A', B' in Eq. (2.7), then ^ab→aib'(s, i) would be proportional to
2 2

aiA ■ a>.Bwhereas from (2.8) it is elear that
24ab→a-b, oc aiA ‘ aλa(remember that each vertex Γaa. includes <⅛a). This matters, of course, only for longitudinal polarizations (sińce λj1a=3 = - ⅜)∙We can rewrite a2A in a form

It turns out that ⅛ Λλa^λa.3 term cancelled by the diagrams with Higgses emission, so that in fact longitudinally polarized internal gluons do not contribute to the scattering amplitudę. Not only Higgs particles regularize infrared divergencies, but also cancel the contribution from the unphysical polarizations of the intermediate gluons.The next step is to calculate thfe ∕42→2 + ι amplitudę. In the lowest g3 order this amplitudę can be represented as a sum of five terms (see Fig. 4) each being a priori a different function of s and t, and having a different group factor.It can be seen, however, that the energy momentum dependence of graphs (b) and (c) or (d) and (e) differs only in s:gn. Consider graphs (b) and (c): for diagram (c) 
Pc — sι — ^Pa∙Pd whereas for (b) pi = — 2pλpo ~ -sl if i < s (i.e. pA ≈ pA.), so that both graphs have the same energy-momentum dependence. The group theoretical factor for sum of these two graphs can be therefore calculated using Jacobi identity [18] (see Fig. 5). The resulting group factor is exactly the same as for graph (a) of Fig. 4. The same procedurę can be repeated for the lower parts of diagrams (d) and (e). Hence the amplitudę A2 →2+1 
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has the following form: a group factor as for “central” gluon production of Fig. 4a multi- plied by a function of s1, s'1, jpcx, pc-1 which is the sum of the contributions of all diagrams (a)-(e), that is
Λ-2→2+l(s> 0 = s^AA' ~i2 -12 )1CC'(PCU Pd) ~2 772 ^BB'∙

Pc-λi Pc,~~^

Fig. 4. One gluon production in gluon-gluon scatteringThe explicit form of the functions y?C'(?ci> Pc,ι) can be found in Refs. [4-6], The above reasoning can be extended [4, 5] for a multiparticle production amplitudę ∕l2→2+n yielding formula (2.8) in the lowest g2+n order and can be represented by a graph on the r.h.s. of Fig. 2. The horizontal lines represent real QCD gluons (or Higgs particles), whereas the

Fig. 5. Jacobi identity for graphs 4b and 4cvertical lines stand for some “complex” objects obtained by a summation of a number of diagrams like those depicted in Fig. 4. These objects are just reggeized gluons and their properties will be sketched in Section 3.Here we shall not come into the details of the higher order calculations [1-5]. The main features of these calculations are as in the lower orders, namely: longitudinal polariza- tions and Higgs particles emission cancel out, and the result agrees with our conjecture (2.5). Therefore in what follows we assume that formula (2.5) can be understood as an infinite sum of perturbation series in a leading ln s approximation. The procedurę presented above leads to the fuli Reggeon calculus [22] of reggeized gluons with calcu labie vertices [15-17],
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3. Integral equations for Regge exchangesNow we come back to gluon-gluon (or i'n generał hadron-hadron) elastic amplitudę. So far we know that for gluon quantum numbers exchange this amplitudę has a Regge pole given by Eq. (2.2). However the most interesting are, of course, colour singlet channels responsible for physical amplitudes in hadron scattering [6].Once we have established the form of the w-particle production amplitudę (2.5) we can deriye the elastic amplitudę via unitarity (see Fig. 6). In gluon-gluon scattering one can

Fig. 6. Imaginary part of gluon-gluon elastic amplitudę in terms of the multiperipheral-like multigluon 
amplitudes of Fig. 2

Fig. 7. Two vertex product projected onto the irreducible representations of SU(3) grouphave singlet, symmetric (8s) and antisymmetric (8a) octets, and h:gher representations exchanged in r-channel. The behaviour of those amplitudes is govemed by the product of two vertex functions (see Fig. 7) [5]tói, ⅛ι)⅛√ ki,x-q) = flfkib ki.r, q)Pijrr(f)D + K<8a>(fcix, k,r, ^jM + K^Ck^, k,r-, g‰(8s)},
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where Pijvr(μ) are the group theoretical ρrojection operators, μ denotes the representation, and the functions Kfμ∖k, k'; q) are given by (5, 20]:

Kw(k, k'∙ q) = Kg∖q2)-2K3(k, k,-q),

K^(k, k,,q) = K%(q2)- Ki{k, k'-, q), (3.1)where μ = 8a or 8s, transverse indices are suppressed. Here
Ks(k, k'; ą}

(k2 - ż2) {(k'-q)2-λ2) + (k'2~λ2) ((k - q)2 - λ2) 
(k-k')2-λ2

(3.2
is singular for k → k', 2 = 0. The nonsingular parts are given by (5, 20]:

K⅛Xq2) = 2q2-2τ0 λ2,

K^∖q2) = q2~λ2, (3-3)The difference in mass terms between K(8*} and K(S,) is caused by the emission of Higgs particles belonging to the symmetric octet [20]. It should be noted.that the singular parts of X<8o) and Ą(8,) are the same and that the singular part of is two times larger than for octets.In order to study the analytical structure of the elastic amplitudę we shall make partial wave projection of this amplitudę:
CC

F⅜2) = 7 p (⅛) (⅛) ω 1 lm a2^),

1 ω =7-1. (3.4)T⅛e amplitudę presented in Fig. 6 is given in terms of,an infinite series which can be treated as the iteration of a certain integral equation. This equation is usually written for the function fω∖k,k-q) defined by the equation [5, 6]:
and reads [ω-α(k2)-α((k-^)2)]∕⅛ k-q) = “ns \Q )

Ng2 Γ d2k,Kω(k, k';q) + 2(2π)3 J (k'2-Λ2)((k,-q)2-k2) (3.5)f^(k', k,-q).
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Let us check the infrared properties of Eq. (3.5). If we put λ = 0 for μ = 8a or 8s we obtain

KM(k, k';q)
k,2(k-q)2

(k-g)2^∣(fc'-<∕)2J (3-6)where by k we have denoted Euclidean transverse momenta. If∕θ0 is constant the second and the third term on the r.h.s. of E<ξ. (3.5) reproduce the trajectories (2.4) on the l.h.s. of Eq. (3.5). The remaining first term in Eq. (3.6) is not cancelled and therefore λ → 0 limit does not exist for octet amplitudes. Keeping λ ≠ 0 for μ = 8a and 8s we obtain1flμ∖k k — a\ --- ω_____________
q) K⅛>(q2) ω-^(q2Y (3.7)where

d2k“ ⅛ > 2(2π)3 ⅛ ) f (k2 - a2) ((k - q)2 - a2) ’

so that the amplitudes for octet exchanges have a moving Regge pole [5, 10, 11, 20].For μ = 8a this result was expected on the ground of the perturbation theory calcula- tions presented in Section 2, hence for μ = 8a (3.5) as a sort of self consistency check is often called a bootstrap equation. The new result is that the symmetric octet also has a pole [11, 20], but is one power of logarithm down with respect to the μ = 8a exchange (see Eq. (2.3)). This is reflected in the s:gnature factors of Eq. (2.2). Since .antisymmetric and symmetric octets differ by their generalized C parities [24] their signature factors are also different. They are respectively exp — i — a(8,) (q2)^∕sin (⅜ na(8a) (q2)) and i ■ exp 
(

In the singlet case there is a complete cancellation of infrared divergencies [6], Trajec- tory α(t) defined in Eq. (2.4) is logarithmically divergent, but sińce there are two sources q2 of this divergence, namely k → 0 and k → q, trajectory α(q2) is proportional to 2 ln —.ZOn the r.h.s. of Eq. (3.5) the infrared divergencies come from three regions of phase space: 
(k2 k2 + q2∖(2 ln — +21n———y f∞y (k,k-q). Factor 2 is just because K(1) = K∏P~2Λrs*1∖ These logarithms and the trajectories on the l.h.s. of Eq. (3.5) cancel out.
/ _ q2 ji2 \2) k, → 0 giving 2( —-2 + 2 +finite termsj,

— ------∙+finite terms+—---- —------ — In cases 2) and
q2(k -q)2 (k-q)2(k -q)2 J3) the infrared divergencies also cancel because K{n\} and ∕C* n have opposite signs.Th⅛ proves that the integral equation (3.5) for the singlet exchange — the Pomeron — is infrared safe and we can put λ equal to 0.
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Unfortunately, in the singlet case one can solve Eq. (3.5) only for t = 0. Let us rewriteEq. (3.5) in the following form:

+
1 f d2k' ΓNg2 ... , , , "I ,, ,- κk''iθ) + 2α(∕φ<5'2∖k1-k') fω(k'2,k22).
ω t, (κ ) L(2π) (3∙8)

As one can easily check the effective kernel appearing in Eq. (3.8) is scalę .invariant and therefore the Pomeron equation can be diagonalized by a Mellin transfórm [6]
The solution for φω(v,) reads

1
K(y) = -2yE-y(l-v)-y>(l + v) + — ,v

(3.9)
(3.9)

yE = 0.57721... Euler constant, ψ(z) digamma function [26].The Mellin transfórm of the effective kernel of Eq. (3.8), K(y) is a symmetric function of v with respect to v0 — ⅛. Therefore if one performs the inverse Mellin transfórm inte- grating over dv along a certain path there is a “pinch” of singularities and as a consequence
Ng2

fω(k2, k2) has a branch point in ω0 = -- 2 ln 2 and a cut along the positive real axisin ω-ρlane [6], The result ω0 > 0 (i.e. Jo > 1) yields the Pomeron interceρt above unity and therefore contradicts unitarity. This is of course due to our leading logarithmic approxi- mation.It was argued [6] that for the nonforward scattering the position of the branch point does not change. The discussion of this equation can be found in Ref. [6].Since the Pomeron equation describes the propagation of gluons in a colour singlet state and does not depend on couplings to the external particles one can compare its solu- tions with the solutions of DDT [8] equation for smali x [21 ]. It is well known that in a smali 
x region the dominant contribution for DIS ampl tudes comes only from gluon exchanges [7, 8]. So one can compare the solutions fω(k21, k22) for large k2 with the gluon distri- bution functions [8] Dg→g(x) calculated for smali x(x oc s~1).In DIS one takes into account running coupling constant effects which are non-leading in the Regge limit, and therefore neglected [15]. If for the moment one also neglects running coupling constant in the DDT equation, one will find that the result in both limits for
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∕ra(^ι, ^2) and Λs→g(*)  is proportional to the modified Bessel functjon [21]
This result was obtained by approximating the kemel K(y) by its pole term (see Eq. (3.9));
K(v) ≈ -.vOne can attempt to include next-to-leading ln s term in the exρansion for the ampli- tudes in the Regge limit [27]. This can be done by introducing the running coupling con- stant into the Pomeron equation [7, 21]:

This replacement introduces a new scalę into the effective kemel of Eq. (3.8) which is no longer scalę invariant and therefore cannot be diagonalized by means of Mellin 
k22 transform. However, if we perform Mellin transform with respect to the variable —r, *1 then the integral equation (3.8) can be converted into the differential one [21]:

7- ‰(v) = — φ0,(v)K(v)av ω
(3.10)and the solution is given by

ψω(v) = exp JK(v')dv'^ . (3.11)
It should be stressed that Eq. (3.10) is valid only for large k2 sińce we have approxi- mated running coupling by its asymptotic form [7, 8], Therefore the solution (3.11) is also valid only for large k2.Function φω(y) has a pole in v = 0 and it can be seen that leading ln k2 behaviour of∕ω(⅛ι, k2) is governed not approximately (like in case of Eq. (3.9)) but exactly by a pole term of the kemel K(y). This leads to the essential singularity in ω0 = 0. In this aρproxima- tion (large k2) the Pomeron intercept is j0 = 1.Comparing the results for the solutions of the DDT and running coupling constant “improved” Pomeron equations we find that they are proportional to [21]:

'1(l79^2'n7lnln⅛)∙

It is worthwhile to notę that we have introduced the Pomeron equation assuming the reggeization of the vector meson in NAGT. Although the amplitudes with colour quantum numbers exchange are unphysical, and therefore infrared divergent, their beha- 
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viour is essential for the infrared finiteness of the colour singlet exchanges. We have seen that divergent parts of the kemel of the Pomeron equation and the trajectories, which are formally infrared divergent cancelled out.The multiperipheral-like equation (3.8) because of the scalę invariance of jts kernel generates a fixed branch point in y-plane at j0 > 1. The asymptotic freedom corrections, valid only for large k2 remove this scalę invariance and push the leading singularity in -piane to 1.

4. Three gluon integral equationIn this section we shall present the detailed derivation of the integral equation for the exchange of the system of three reggeized gluons being in the colour singlet state [19], and therefore having the generalized C-parity [24] C3G = — 1 (in the Pomeron case CP = 1). This amplitudę can contribute to the “nonsinglet” structure function F3 in deep inelastic neutrino scattering for x → 0 [19]. This contribution is iionleading in the ln Q2 exρansion but may be enhanced at x → 0 sińce it corresponds to the Regge singularity with intercept above 1. But as we shall see the three gluon equation is interesting by itself because of mathematical complexity; noncompactness and nonseparability of its kernel.In order to derive this equation we shall use the Reggeon calculus in ω-plane [22], The main ingredients of this calculus have been already presented in the previous sections. We shall briefly remind the basie rules of the Reggeon caląulus.One Reggeon exchange amplitudę, as seen froin_Eqs. (3.7) and (2.2) is given by
t — λ2 ω-a(f)'

So with each Reggeon linę carrying transverse momentum k we shall associate the propagator π ,-2 ≈(fc2)
G{k, a(k2)') = . (4.1)

Factor (ω- a(k2))~1 according to the Gribov rules appears for each one Reggeon inter- mediate state, whereas for each two or three Reggeons carrying momenta k1, k2 or 
k1,k2,k3 one has the following factors:

(ω-a(k21)-x(k22)Y1 and (ω-α(⅛-α(⅛-α(fc⅛^1.The interaction of two Reggeons beeing in the μ-th representation of SU(jV) group is given by the coupling
Ne2

K^∖kl,k'l-q)yi.2.,

k2 = ki-q and k'2 = k2-q,



where γr2∙ is the signature factor associated with the “emission” of two Reggeons 1' and 2'. As it was previously mentioned, one Reggeon exchange amplitudę has signature 
σ = — 1, hence the resulting signature factor is

With u-Reggeon emission one associates the signature factor [22]:712...» ≡ Imθ7σ(αι)i‰(α2) ⅛(Oλso that 1
7123

7 12 — πsin — a,2 π-• sin — a2 (4.2a)
-(a1 + a2 + a3)π π . πsin — a, • sin — a2 • sin — a32 i 9 2 (4.2b)

In the leading ln s approximation we keep only terms (g2 In s)n and therefore expanding π πsin — ot in the denominators of Eqs. (4.2a. b) we notice that the resulting terms — a and2 2the appropriate ∙y a from the Reggeon propagator (4.1) cancel out. So in the weak coupling limit we obtain [10, 19]: 712 → 1. (4.3a)7123 → —(α1+α2 + α3) = -ω, (4.3b)and (4.3c)
ln this approximation we do not consider nonleading interactioas as 3 → 3, or morę Reggeon lines than the minimal number needed to exchange g ven quantum numbers in t-channel (one for μ = 8 exchange, two for the Pomeron, three for the C = - 1 singlet). Using the above rules one can easily obtain Eq. (3.8) for the Pomeron.Now we shall come to the question of the three gluon exchange amplitudę, whose partial wave projection can be written as below (see Fig. 8):
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Here t is the 3 reggeized gluons-two hadrons amplitudę, Fo is the vertex function which can be expressed in terms of the infinite momentum wave function [28], ω is the signature factor in the weak coupling limit (4.3b), and G(k2) is the Reggeon propagator of Eq. (4.3c).

Fig. 8. Three reggeized gluon exchange amplitudęThe leading ln .v expansion of the amplitudę f in terms of Reggeon diagrams is depic- ted in Fig. 9. Using the Reggeon calculus, with γ12-= 1 one can write down, as in Pomeron case, the integral equation for the amplitudę T defined below
3T(w; k1, k2, k3) = (ω- ∑ a(/q))T(to; ki, k2, k3).

i=l

Fig. 9. Perturbative expansion of Γ(ω) defined in text in terms of the Reggeon diagramsIt should be stressed that each pair of two interacting Reggeons is in the symmetric octet state, so that all three reggeized gluons are in the C = — 1 singlet state. Therefore the corresponding interaction vertex is just ∕f'8s*).  But, as we shall see, the amplitudę T has no infrared divergencies and therefore we can put z = 0. In this limit, however, there is no difference between X(8a)) and X(8s)).The integral equation for the amplitudę T reads [19][ω- f a(k,2)]T(m; k1, k2, k3) = F0(ki, k2, k3) + ∫ ∏ d2k'iδ<2' ( ∑ ki-A) ∑i=l i=l i=l Z=1
×∖G{k'2i)G{k'l2+i')Kl(kl-kl+1, kl~1, k'l+i, k1L1)<5<2,(k,-k!)]T(ω5 k'1, k'2, k'3), (4.4)where k4, = k1, ks = k2 etc.
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The kernels Kl(kl∙, kl+l, kl~1, k'l+l, k'l~l) (here by l we denote the number of the gluon linę, Z = 1, 2, 3) for massless theory are given by

⅛-l⅛÷l÷⅛ + l⅛-l

(⅛+ι- kl+1)2To shorten our notation we define new kemels Vl

Vl ≡ G(k'll l)G(k'i21)Kl.Now Eq. (4.4) can be written symbolically[ω-α(l)-α(2)-α(3)]T(ωj 1, 2, 3) = F0(l, 2, 3)+(F1 + F2 +P3)®T(m;1', 2', 3').In what follows we shall put A = 0. This implies that k1+k2+k3 = 0 and k'1+k2 
+k3 — 0. Again the infrared properties of Eq. (4.4) can be studied as in the Pomeron case.The infrared divergencies introduced by the propagators G(k2) coming from the region 

k't+1 → 0 or ⅛1'+1 → kt (i.e. k'l~1 → kl and k't~i → 0) are cancelled by appropriate zeros of the kernel (A?* 8,) and Λsf8s, have opposite signs) exactly in the same way as in the Pomeron case (see Section 2).Another source of divergencies in the potentials Vl is the region where ⅛∣'+1 → 2i+1 (i.e. kiL1 → ki-1, k'ι = k(). Consider k'i → kl (k'2 → k2), then there are two divergent terms in the whole kernel Vl + K2 + V3 which reproduce trajectory a(£2) standing on the l.h.s. of Eq. (4.4) 1) in
2) in

So again trajectory and the singular part of the kernel f both proportional to 2 ln 
cancel out. We should remind that in the Pomeron equation factor 2 which guaranties this cancellation is just the strenght of the kernel itself (see Eq. (3.1)), whereas here there are two divergent terms in K1 + V2 + kr3 which add up to produce the needed factor 2. The same can be repeated for k'2 and k'3. This proves that Eq. (4.4) is manifestly free from infrared divergencies. So in what follows we shall keep 2 = 0.It is easy to check that Eq. (4.4) has a trivial solution if Fo = cbnst. Then the trajec- tories and the appropriate parts of the kernel cancel out and the solution reads
This trivial solution generates a fixed pole in y-ρlane at j0 = 1. In what follows we shall try to find out the position of the most right singularity in J-piane.The main difficulty with Eq. (4.4) is, that because of δi2∖ki-k'l) function its kernel has an infinite Schmidt norm, and therefore the Eq. (4.4) is not of Fredholm type. The 
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equations with such kernels were investigated by Fadeev [29] by means of so called Fadeev decomposition. We shall exρlain how it works in our case.Consider an equation

ωT(ω-, 1, 2, 3) = F0(l, 2, 3) + (F1 + V2 + T3)® T(m; 1', 2', 3'), (4.5)where Vi contains Vi and some combination of trajectories. One defines quasi two-body amplitudę t1(l, 2, 3) as below:Z1(l, 2, 3) = F0(l, 2, 3)+ F1(2', 3') ® t1(l, 2', 3') (4.6)and similarly for t2 and t3. As we see from Eq. (4.6) t1 is defined in such a way that interac- tion takes place only between the second and the third linę.Nowwe decomρose ωT-F0 into three parts with inhomogeneous terms given by 
ti [19,29]:

ωT-F0 = ω∑ T(i)
i=lTω = ti+Viφ(Tm+Ti2>+T<3',). (4.7)Functions F(i) havβJhe same analytical form

= ti(ω', ki^, ki-1, k(+1),they differ only by the order of arguments.So far we have not specified the form of the kernels Fi. The only constraint is the infrared finitness of Eq. (4.7), and we present two possibilities below:
ωT = F0 + [F1- α(l)+α(2)+α(3)]0T+ [F2- a(2)+a(3)+a(l)]0T+ [F3-a(3) + a(l) + a(2)]0T, (4.8a)

(oT = Fo + [y1+4a(2)+⅛a(3)]0T+ [lz2÷⅛ a(3)+⅜ a(l)]0T+ [F3+4a(l)+4a(2)]ΘT, (4.8b)(compare with Eq. (4.5)). S⅛n ® is understood as the convolution in case of Vi and as a multiplication in case of α(i). To be morę specific we shall rewrite Eq. (4,7) using the decomposition of Eq. (4.8a) [19]: Ag2 f d2k∖
k; t1, -fe,-t) - <0(t, t1)+ j +

ki2(k1 + k)2 + (kι + k)2k2 
(k'1-k1)2 .+ t(m; k,1, k, -k-k'i)-t(ω∖ k1, k, — k — k1) + t(ωj -k-k'1, k'l, k)— t(m; -k-k1, k1, k)].

[t(m; k, k,i, -k-ki)-t(ω∙, k, k1, -k-k1)
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The analytic properties of t(ω) can be investigated by means of Mellin transform

t(co; k; k1, -k-k1)
f dλJ 2πi (k2)λt(ω-, ż; x1, n),

giving
A
∣fci∣,

k 
fcj= n

(4.9)
where by x, n, k we have denoted 2 dim vectors and indices ω and Λ have been skipped.Unfortunately, due to the lack of separability of the kernel this equation cannot be solved in a close form. One can however argue that Eq. (4.9) generates a fixed branch point in √'-plane [19] sińce, as in the Pomeron case, there is a pinch of the integration contour in complex ź-plane. However, the most interesting thing, the position of the singularity has not been found yet.The integral equation formulated above, after the Pomeron equation is another example of the physical amplitudę which can be calculated by means of the QCD-based Reggeon calculus. The structure of this equation is much morę complicated than in the Pomeron case, but the qualitative result is the same, namely the fixed branch point in /-piane.

5. SummaryWe have shown that the perturbative calculations in NAGTs [1-6] support the hypo- thesis of the vector meson reggeization [9-15], The calculations were performed in the framework of the spontaneously broken theory [25] and we have shown that the Higgs particles produced, say, in gluon-gluon scattering cancel the contributions from unphysical longitudinal polarizations of gluons. The leading contribution comes always from spin one gluon exchanges in r-channel, so that Higgs particles can be produced but never exchanged.The integral equations describing the nonsinglet exchanges are infrared divergent [4, 5], so we have to keep λ ≠ 0, contrary to the singlet case [6, 19] where we can put ż = 0. The symmetric octet amplitudę has a Regge pole structure [11, 20] as well as the anti- symmetric one [2-5, 10], whereas the Pomeron is described by a fixed branch point in /-piane.



791Using the results for 8a amplitudes we have established the form of the interaction vertices for the QCD based Gribov Reggeon calculus [22] of reggeized gluons [14-17]. Then we have used th:s calculus to formulate the integral equation for three gluons beeing in a colour singlet state [19], We have argued that this equation generates a fixed branch point iny-plane at j0 > 1. It should be noted that the gluonic degrees of freedom have the high intercept even for nonvacuum quantum numbers.The author is indebted to Doctor J. Kwieciński for numerous discussions and helpful remarks and to Doctor T. Jaroszewicz for reading the manuscript.
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