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We analyse classical gauge potentials generated by static external sources coupled 
to gauge invariant, nonlocal operators. For the gauge invariant operatora involving fermions 
we find two sharply distinct cases. In the first one, the external source decouples front Yang- 
-Millsequations what leads to zero gauge potentials. The other one is found to be inconsistent 
with classical Yang Mills equations. We consider also nonlocal, gauge invariant operators 
without fermions. We argue that there exists a possibility that the corresponding classical 
gauge field configuration is that of the closed magnetic flux tubę with quantized energy.

PACS numbers: ll.10.Np, ll.10.Lm

1. IntroductionThe nonlocal, gauge invariant operators (shortly NGIO), constructed from nonabelian gauge potentials, were considered in a number of papers, e.g. [1, 2]. Presently, there exists a hope that such operators provide a string picture of hadrons within the framework of nonabelian gauge theories [2]. They are expected to be directly related to the long distance structure of the nonabelian gauge theory. The elementary fermion and nonabelian gauge fields are not expected to reflect the long distance structure of the theory because of confine- ment of quarks and gluons.We shall consider the following examples of NGIO:lP(y, x∣C) = χ(v)P exp [ig f Aμdz>}≠x), (1)
C,xwhere x, y are points in Minkowski space-time, C is a path connecting y and x, P denotes path ordering of exponentials along C, χ, ψ are fermion fields, and Aft = AaμTa, where 

T“ are generators of SU(2) (or its representation). As the fermionless NGIO we takelt'0(x, x∣C) = Tr P exp [ig f T,,<∕z''], (2)
c 

(429)



430where the tracę is with respect to colour indices and C is a closed contour which starts and terminates at the same point x.In order to calculate S-matrix in terms of NGIO it is necessary to consider Green functions for such operators [3]. As an intuitive starting point for this calculation one could take the Feynman path formula for the generating functional for Green functions. Apart from the gauge fixing and F-P ghost terms which are not important on the classical level, the total action in such a formula would beS = Sym + Sf+ ∫ JW, (3)where
Sym=-⅛V",v, a =1,2, 3,is the Yang-Mills action, SF is the Dirac action for fermions, W denotes NGIO and ∫JIF is specified in Section 2.In this paper we start an investigation of the static classical approximation to the above sketched problem. Our expectation is that this can be an easy way to get important information about properties of Green functions for NGIO. We restrict ourselves to the most interesting gluonic sector of the theory by neglecting SF.The paper contains our results concerning the most interesting question, namely what are the classical stationary points of the action ,S'yw +∫∙∕JF'. As W we take the NGIO (1) and (2). The fermion fields present in (1) are regarded as apriori fixed external fields. In other words, we try to find classical gauge potentials generated by the external source J. This external source is, of course, gauge invariant, as it is coupled to the gauge invariant NGIO.We observe that such sources imply classical Yang-Mills equations with an external current of colour along the path C. In the case of NGIO given by (1) we show that the Yang-Mills equations are inconsistent, unless the fermion fields satisfy certain condition. When fermions do satisfy the condition, the external current in Yang-Mills equations vanishes and the external source decouples from Yang-Mills equations. This gives zero gauge field for such a source.The fermionless case (2) is morę complicated. The gauge potentials generated by the current of colour flowing along the path C can be easily found. Because the linę C has zero thickness, the potentials are singular on C. This is an unpleasant difficulty for the classical approach, because the external current of colour contains explicitly Jlμ(z) taken for ze C and this is infinite. Of course, this difficulty could be resolved by a quantum smearing of the curve C. One should use some smooth J{x,y∖C) and to average (2) with it. We say “quantum smearing” because results of papers [2] strongly suggest that J(x, y\C) can be interpreted as a wave functional for a string.However, there still exists a possibility of a classical description. Namely, one could think of such a wave functional J(x, y ,C) that it can be described classically by some very complicated curve C, so complex that Aμ will be finite on C. In fact, in the quantum theory the curve C (being the shape of the string) strongly fluctuates, and therefore there is no reason why the best classical description should be given by geometrically simplest lines. 
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We consider a curve C that fills in a torus, the twodimensional manifold. Such a curve could be considered intuitively as a limiting case of a curve winding around some given circle, when the number of windings increases to infinity. Continuous curves filling morę than onedimensional manifolds are known in mathematics, e.g., Sierpiński curve [4]. The corresponding solution of Yang-Mills equations is given by some colour magnetic field restricted to the inside of the torus and zero electric field. The classical selfenergy of the source is, unexpectedly, quantized through a selfconsistency condition. For a thin torus the energy spectrum is linear. Such a toroidal magnetic flux tubę we would like to interpret as a classical picture of a glueball.Two remarks are in order:1. We consider the simplest, so called abelian, solutions of Yang-Mills equations. It is known, [5], that for a given external source Yang-Mills equations admit also other types of solutions. A similar phenomenon should be expected also in the case of the gauge invariant external sources.2. Notę that the action S is not in generał real because of the term Scxl = ∫ JW. It is interesting that in spite of this, one could choose an overall constant in Sext in such a way that the stationary points are given by real gauge potentials Aaμ.In the next Section we shall present an analysis of Yang-Mills equations for the case ofNGIO (1). In Section 3 we analyse the case of NGIOgiven by (2). In Section 4 we make some ending remarks.

2. Yang Mills equations with the gauge itwariant sources involving jermionsWe search for a stationary point of the actionS = -⅛∫d2 * 4xF≈vFβ"v + Sext, (4)where Sext = ∫ d4xd4y ∫ [⅛]J(y, x∣C)W(y, x|C), (5)
W(y, x∣C) being given by (1). Here [dcμ] denotes a functional measure in a space of paths C, connecting the points x, y in Minkowski space-time. Observe that the terms ψyA,ψ, present in the neglected 5,f, would act as an additional gauge noninvariant external source for Aμ. Such sources are already well investigated [5]. In this paper we are not concerned with them.In the following we assume that the external source Jis strictly localised in three-space and that it is static, i.e.,

J(y, x∣C) = qδ(x-xa)δ(y-xb) [ó(Ć-Ć<0))] [<5(C0-x0)]<5(x0-y0), (6)where [<5(C- Cto,)], [<5(C0- x0)] are the functional delta functions, xα, xb are fixed points in three-space and C<0) is a curve connecting xα, xb. The two deltas, δ(yc0 — y0) and [<5(C0- x0)] make the configuration to be equal time configuration. The fact that x0 is unspecified implies that the configuration is the static one. We assume that ∕, ψ are constant in time. q is a constant characterising the strength of the external source.
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(7)The action (4) implies the following equations for the gauge potentials

DμFμv = 'Jext>where
(8)

and Dμ = ∂μ + ig[Aμ, ■ ].In order to calculate explicitly√",t we parametrize the linę C(0): λ e [0, 1], Cμ°, = Cμ0∖λ) ≡ ⅞G0, <T(0) = xaμ, C<fl0>(l) = xbμ. Of course, xa0 = x60 = ⅞(Λ∙)∙ Then
xb 1P exp [ig ∫ Aμdzμ] = P exp [ig ∫ dλvμAμ^], 
Xa 0<√zμwhere vμ = and the variational derivative in (8) yields after a straightforward 

dλcalculation
j"°l = o,

Jext = gd S dλd(λ)Ja(z(λ))δ(χ-∑(Λ)), (9)
owhere

Ia(z(λ)) = iχ(xb)Vc(xb, z(λ))T°Vc(z(λ), xa)y(xa), (10)and
X

yc(x, y) = P exp [ig ∫ Aidz,}. 
c⅛Thus,∕"* t = 0, except for the linę Ć<0), along which there is a flowof colour charge.It is well-known [6] that Yang Mills equations (7) imply the constraint

P>μja^ ≡ ∂μjaμl - gε°bcAbμf⅛ = 0 (11)for any current on the r.h.s. of them. For gauge noninvariant external sources this constraint is a nontrivial condition to be satisfied. For the gauge invariant sources, the current (9) satisfies the constraint identically on the whole Ć<0), excluding the end ρoints xa, xh. At these points the constraint is not satisfied unless the fermion wave functions χ, ψ obey certain condition. Namely, from (9) we get (12)
1where j,(x) = gq ∫ dλv,(λ) <5(x — z(ż)) is the usual current obeying the static continuity oequation δijl = 0 for x ≠ xa, xb. Thus, the last term on the r.h.s. of (12) vanishes for 
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x ≠ xa, xb. It is easy to verify that the first term on the r.h.s. of (12) cancels with the term 
εabcAbμJ^t present on the l.h.s. of the constraint (11). For x = xa, x = xb we have 
Sij' ~ δ(x-xab) and therefore the constraint (11) implies

Ia(xa) = T,(xb) = 0. (13)However, from (10) it follows thatΓ(z) = D°∖Vc)Ib(xb),where Dab(Vc) is the matrix of the adjoint representation of SU(2), corresponding to the group element lzc(z(z), xb). Therefore the condition (13) implies Γ(x) = 0 for all x e Ct°', 
i.e. the external source decouples from Yang-Mills equations. This means that the external source does not generate any gauge field. In particular, it has zero classical selfenergy.To summarize, either the external source decouples from classical Yang-Mills equations or it is not consistent with them. We would like to interpret this result as an indication that NGIO for which 7α(x) = 0 are, in some sense, favored by the nonabelian gauge theory.

3. The gauge irwariant sources without fermionsNow we shall consider the action (4), (5) with Wreplaced by fV0(x, x∣C) given by (2) and J = J(x∖C) = qδ(x-xa) [<5(C — Ć<0))] [<5(C0-x0)]. In the corresponding Yang-Mills equations (7) the external current has the form (9), where now
la(z) = i Tr [‰ x)TaVc(x, ^β)]. (14)

Vc is calculated along the other arc of Ć<0) than that used i∏ Fc. One can verify that the external current satisfies the constraint (11) on the whole Ć(0).At first sight Yang-Mills equations look as very complicated integro-differential nonlinear equations. Still one could find a solution for them. Namely, we observe that because gauge transformations just rotate the colour spin vector (7fl), one can perform such a gauge transformation that the resulting (7°) will point in the 3-rd direction for all 
z e Ć(0>, i.e. Γ = Ieaz, where eaz = <5a3, [7], Then, the Ansatz Aaμ(x) = δa3 Aμ(x) reduces Yang Mills equations to ordinary Maxwell equations for Aμ(x) with the external static current

j‘M = dλuiδ(x-Cl0∖λ))
0along the linę C<0). The corresponding solutions are known from a text-book electrody- namics. As the next step, we insert the solutions for Aμ on the r.h.s. of (14). Because the l.h.s. is given (7° = δa3I), this yields a consistency condition from which one could try to determine some constants present in Aμ.Unfortunately, because of zero thickness of the linę Ć(0), Aμ has a logarithmic singular- ity on C(0) and we meet the difficulty mentioned in Introduction. As it is explained there, we assume that C<0> is at least a twodimensional structure. The simplest possibility is to assume that Ć(0) is a torus, i.e. the current forms a torus-like coil. This assumption is
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not as peculiar as it may look at first sight. Firstly, we recall that in Yang,s formulation of nonabelian gauge theories, [1], one uses the exponentials exρ [igAμdxμ] independently at each space-time point x. There is no reason why one should arrange these infinitesimal exponentials just along the simplest lines and to neglect morę refined possibilities. Secondly, some support comes also from energy considerations. Namely, the classical selfenergy of an infinitely thin, static, Iinear current diverges logarithmically. On the other hand, classical selfenergy of the current forming the torus is finite, equal to the energy of magnetic field inside the torus.Thus, we assume that C(0) forms a torus-like coil. The solution of the Maxwell equations is given by some magnetic field inside the coil. It remains to check the consistency condi- tion. Because we have Aa' = δa3A,, Ta = ⅜ σ0, σα — Pauli matrices, then

X

Vc(x, Xa) = Tr exp [- ig → ∫ AidxiT3] = exp [- igT3Φd(x, xa)κ],

2 2

λ V = — (arc sin ∕+kπ), k — integer.

Ct0>,xl,and
Vc(xa, x) = exp [-igT3Φd(xa, x)κ].Here Φ is the flux of the magnetic field through the torus, d(x, xa) is the length of the torus between the points xa, x (that is the distance along the big circle of the torus between the points obtained by perpendicular projections of the points xa, x on the big circle), d(xa, x) also is the distance between the projections of xa and x but taken along the other arc of the big circle of the torus, κ is an unknown coefficient describing the density of windings of the current around the torus. The path ordering was dropped out because now the exponentials commute. From (14) we obtain that
I1 = I2 = 0, I3 = 1 = sin ⅜ gΦlκ,where ∕ = d(x, xa) + d(xa, x) is the perimeter of the torus along its big circle. Because for the thin, toroidal coil Φ ≥ qIgκS±, where is the area of the perpendicular crossection of the torus, we get the consistency condition

I = sin [½(gκ)2IqV], (15)where V is the volume of the torus. Of course, our considerations require κ → oo. In order to obtain finite results we parallelly take g → 0, in such a way that gκ ≡ λ = const.The condition (15) can be read over in at least two ways. Straightforwardly, it can be regarded as an equation for I, in which V, λ, q are fixed parameters describing the given torus. The energy of the torus is E = ⅛ H2V = ⅛q2λ2I2V. For sufficiently large λ2qV there are many values of I obeying (15).However, the condition (15) can be interpreted also as a quantisation condition for 
λ2V. Namely, when I is apriori fixed, (15) implies

(16)



435Observe that (15) implies also that q is a positive number, q > 0. Thus we have to assume 
k = 0, 1, 2, in order to ensure λ2V > 0. Then, the energy is

E = ∙∣ t∕7(arcsin I + kπ), (17)where k = 0, 1, 2, ... Observe that the spectrum of energy is linear and that it depends only on the strength of the external source q and on the constant I. The constant I in this case is not determined. However, it is natural to assume that I characterises directly the representation used for Ta, e.g., ∕(∕+l) = TaTa (for 7a = ⅛ff° this gives / = 1/2).
4. Finał remarksOur results indicate that classical gauge fields can be created in a gauge invariant manner on the classical level only if the accompanying fermions satisfy the condition (13). Then, the external current vanishes and the external source decouples from Yang-Mills equations. In particular, this means that the classical selfenergy of such a source is given entirely by the classical selfenergy of the set of accompanying fermions. This selfenergy can be calculated from Yang-Mills equations with the external current γTatp, [5, 7], (this current, coupled directly to Aμ, is a gauge noninvariant external source of gauge fields and therefore it was neglected in our considerations). Unfortunately, wC cannot relate the condition (13) to the common requirement that the fermions should form a colour singlet state.In the case without fermions, the classical approach seems to require rather complicated objects instead of a simple, closed contour C. We have considered C to be a torus. The question arises whether the resulting magnetic flux tubę is stable. Presently we haye no answer to this question. It seems that there is no reason for a topological stability. On the other hand, the spectrum (17) is bounded from below and, intrigueingly, does not depend on the size of the torus-this suggests an energetic stability.The above results can be easily extended to SU(m) groups. Of course, the number of types of NGIO then increases.
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