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REMARK ON THE COPENHAGEN VACUUM
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It is pointed out that the Yang Mills vacuum structure proposed by the Copenhagen 
group can be obtained very simply and within their assumptions, when their gauge condition 
is used instead of the linearised equations of motion. Other choices of gauge are shown 
to lead to higher energy densities than that chosen. The fuli equations of motion together 
with the gauge condition admit only a trivial solution with zero colour-transverse gluons. 
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A tentative description of the ground state in pure Yang Mills theories has been 
developed by a group in Copenhagen [1-8]. Their proposal was triggered by the observa- 
tion madę by Sawidy [9] that, because of quantum fluctuations, the state which corresponds 
classically to a non-zero homogeneous colour magnetic field, may have lower energy than 
the state corresponding to zero colour fields. Nielsen and Olesen noticed that energy can 
be further lowered by adding gluons with magnetic moments parallel to the field [1, 2]. 
The search for a lowest energy state had been refined and finally a theory formally similar 
to the theory of type II superconductors in magnetic fields emerged [8]. It has been stressed 
that the ordered structure typical of superconductors is strongly modified by quantum 
fluctuations so that space filled with a “spaghetti of color magnetic tubes” [6, 7] is prob- 
ably a better picture than a crystal. The fluctuation effects, however, have only been 
qualitatively discussed and we do not consider them here.

The vacuum structure worked out in Refs. [1-8] was obtained by solving linearized 
equations of motion corresponding to the standard Lagrangian of the Yang Mills theory, 
and choosing the solution for gluon fields which corresponds to the lowest classical energy.
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The following assumptions and∕or results from Refs. [1-8] are used in our further analysis.
The third comρonent in colour space of the gluon field has been fixed by the assumption

A3μ≡Aμ = Hx1δμ2, (1)

where δ is a Kronecker delta. Following Refs [1-8], we use as colour-transverse fields

(2)

and its complex conjugate. In this notation it is assumed (cf., e.g., [7]) that

W ≡ Wl = -iW2, W3 = JF4 = 0. (3)

Assumptions (1) and (3) have a simple classical interpretation: A3μ provides the homog- 

eneous magnetic field, which according to Sawidy [9] has lower energy than the per- 
turbative vacuum, when quantum fluctuations are included, and Wi ≠ 0 with condition
(3) corresponds to the presence of gluons all with magnetic moments parallel to the magnetic 
field. Finally, the energy density, which using standard formulae and assumptions (1) and 
(3) reads

ε =⅛(H-2g∣lF∣2)2 + 2 cW 2 δW 2 ( 5 5 \ 2
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should be minimized with respect to W at fixed H. Stability with respect to changes in H is 
ascribed to quantum fluctuations, which however are supposed not to interfere with the 
determination of W from (4). In order to support this assumption one would have to 
calculate an effective Yang Mills lagrangian at least at the one loop level. This is a difficult 
problem (cf., e.g., [10]) not solved generally even in QED.

The gauge condition for field W is chosen as [2]

(∂μ-igAμ)W<i = 0. (5)

Substituting formulae (1) and (3) into condition (5) we find

d
+ i -~

0x2
W = 0. (6)

Usually the gauge condition only eliminates unphysical degrees of freedom. Here, 
however, with only one unknown function W, it can replace the equations of motion. As 
shown below, the structure obtained in Refs. [1-8] follows easily from condition (6).

We observe that the generał solution of equation (6) is

Z gHx2i∖
W(xl, x2, x3, χ4) = exp I------1 F(∑, x3, x4), (7)

where z = x1+zx2 and Fis an arbitrary function diflerentiable with respect to z. From 
the minimum condition for the energy density (4), we immediately conclude that F should 
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be independent of x3 and x4 and we have

= exp F(ς), (8)

which is the crucial result from Refs. [1-8], It has been madę plausible that the modulus 
| W] should be periodic in both x and y. Many other choices lead to reductions in energy 
density, which on the average tend to zero, when the volume increases to infinity [5], The 
assumption that W should be doubly periodic [5] may be equally plausible a priori, but 
it has been checked numerically that it leads to less reduction in the energy density [7]. 
Since | W\ is doubly periodic, the function F(z) must be expressible in terms of elliptic 
functions [11]. The actual calculation involves no physics and has been described in detail 
in Ref. [7], The remaining free parameters should be adjusted so as to minimize the energy 
density (4). This reproduces completely the results obtained in Refs [l-8]. Given the 
assumptions (1), (3), (4) and (5), the solution is exact. In particular, no linearisation is 
involved.

We conclude with a few remarks.
— The choice of gauge (5) is crucial for our argument. Another gauge condition would 
in generał lead to a different solution for W. For example, the condition ∂μWμ = 0 is incon- 
sistent with (7). In Refs. [1-8] it was an open problem, why gauges other than (5) were 
excluded. The analysis from Refs. [1-8] shows that this problem is closely related to the 
problem of justifying the use of linearized equations of motion.
— It is not elear, whether the linearized equations of motion have much merit. The terms 
quadratic and higher order in W must be important, sińce they reduce the energy density 
by a factor of seven [7] from its “unperturbed” value ∙∣∙ H2. Besides the solution used in 
Refs [1-8], the linearized equations of motion have many other solutions, but they are all 
excluded by the gauge condition (5). Finally, the linearized equations suggest a harmonie 
time dependence of W (cf., e.g., [5], Eq. [10)), which has then to be dropped.
—• Substituting solution (7) into the fuli (non linearized) equations of motion one finds 
W = Q and there is no unstable modę. We conclude that the vacuum structure from Refs. 
[1-8] is non classical in the sense that it does not satisfy the classical equations of motion.
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