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The Kolbig-Margclis formula is fltted to some explicitly nonperturbative models 
of diffractive production. It is shown that, in spite of the fact that the standard procedurę 
of fitting the integrated cross sections may give acceptable fits, thus obtained “cross sections 
of unstable particles”, σ2, grossly disagree with the “true” cross sections known exactly 
from the models.

1. IntroductionThere have been many “measurements” of the total cross sections of unstable particles from their diffractive production on nuclear targets [1-4]. It has also been clearly realized that these “measurements” are model dependent because the numerical characteristics of attenuations of produced unstable particles have been determined from an optical model analysis of diffractive production [5].This approach is reasonably reliable in the case of e.g. photoproduction of vector mesons on nuclei [6, 7] because of the perturbative naturę of such processes. The situation however is not at all elear when the incident particles are hadrons, as it is the case in experi- ments of Refs [l-4]. There is even one well known examρle of hadronie diffraction on nuclei where the model of Ref. [5] gives wrong cross section for an unstable particie: This is Kl → Ks regeneration. The explanation is also well known: The relevant attenuations are not the attenuations of KL and Ks but, rather, of K° = —y- (Kl+Ks) and
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Ko = —j= (KL —Ks). This means that this process, in spite of being weak (in the sense that, √2on one nucleon, o∙kl→ks *⅛  <7kl, total), cannot be treated ρerturbatively but, rather, in a nonperturbatiυe way proposed long time ago in Ref. [8].The naturę of diffractive processes in the case of incident pions or protons [1-4] is indeed an open problem [12], The existing analyses [13] treat these processes perturba- 
tiυely, following [5], and obtain cross sections of unstable objects, σ2, strongly vaιying from channel to channel. Thus a relevant question arises what happens when the standard formulae of [5] are forced to fit an exρlicitly nonperturbative mechanism of Ref. [8]. What shall we get then for cross sections of unstable particles? Shall we be able to get reasonably good fits to the optical model formulae af Ref. [5] ? Will thus obtained cross sections of unstable particles have physical meaning they are supposed to have?Such questions were already asked in Refs [9, 10]. This paper employs a well defined and soluble nonρerturbative model of diffractive excitations to test the physical meaning of the standard parametrisations of the experimental data of diffractive dissociation on nuclear targets.

2. The modelThe model we employ is a specific nonperturbative realisation of the scheme of Ref. [8]. We reject the assumption [1-5] that diffractive production occurs on one nucleon at a de- finite point inside of the target nucleus, and that the attenuations inside the nucleus are merely the attenuations of the incident particie and of the produced physical object de- tected outside of the nucleus. Rather, the propagation inside of the target nucleus consists of a multitude of diffractive transitions between various possible states and the relevant attenuations are not of the physical states but of the “eigenstates of diffraction”, which states diagonalize the diffractive part of the S-matrix (the “bare particie” states of Ref. [8]). The unitary transformation between the physical states |1), |2> ... |fc> ... and the “eigenstates of diffraction” ∣φ1>, ∣ψ2> ••• Iy,z≥ •••lv>i> = ∑ ∖k> <k∖ri> = ∑ ulk∖ky, ulk = <jφply, (2.1)
k kdiagonalizes the matrix of all possible amplitudes of diffractive transitions in hadron- -nucleon collisions y = {ytv} ∕21 0 \

U~1γU = l λ2 \. (2.2)
The operator of diffractive transitions in hadron-nucleon collisions is

T(B) = ∑ ∖ψn>λn(B) <φπ∣, T(B) ∖ψn> = ⅛(B) ∖ψn>,
n = l 

(2.3)
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where N is the number of the “eigenstates of diffraction” and B is the impact parameter. 
λn(B) we cali the profile of the n-th eigenstate of diffraction.The operator of diffractive transitions in hadron-nucleus collisions we define as follows

Ta(B) = ∑ ∣yn>Γπ(B) <y>π∣,
n= 1

Γn(B) = 1 - [1 - ∫ d2sAn(B-s)D(s)]',, (2.4)
oowhere Z>(s) = ∫ dzo(s, z), ρ — single nucleon density in the target nucleus, A — atomie

— 00number. Thus the transition amplitudę between two physical states is<⅛∣T√B) ∣p> = X <⅛∣yn> [1 -(1 -λn * D)x] <%]p>
n

= ∑ U -1 [1 - (1 - λn * <] I7a&, (2.5)
nwhere λπ * D denotes the convolution (see Eq. (2.4)).From (2.3), (2.4) and (2.5) follow the well known formulae for the total and the inclu- sive diffraction cross sectionsστ = 2 ∫ d2B ∑ <l∣yπ>Λn(B) <ψπ∣l> = 2 ∫ d2BΛ(B)

n= 1σo = ∫ d2B £ | ∑ <∕c∣yπ>2π(B) <yn∣l>∣2 = ∫ d2B(Γ(B)-Σ(B)2) (2-6)
k≠l n=lfor hadron-nucleon interactions, andσ⅜υ = 2 ∫ d2BΓ(B),= ∫ d2B(Γ2(B)-Γ(B)2) (2.7)for hadron-nucleus interactions. λn, Γ etc. aie the averages taken over all eigenstates of diffraction with probabilities of their coupling to the i ncident particie state: Pn = | < 11 φπ> |2.Two qualitative features of a nonperturbative description, with many eigenstates of diffraction at work, can at this point be emphasized. The first is that the orthogonality condition satisfied by (U~1l7)tp = ∑ <⅛> <%∣p> = δkp (2.8)

nimplies that, in generał, Uik = <Λ∣φi∕ fluctuate as one varies i with fixed k.The second is that z; must vary as one varijs i, to have a non zero inclusive diffractive production on one nucleon (compare Eq. (2.6)). In fact, in the numerical examples given below, one has to have as large as possible fluctuations of A’s in order to account for the observed diffractive production on one nucleon. These fluctuations of Ulk and λi result, in generał, in a somewhat irregular dependence of the exclusive diffractive nuclear cross 
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sections on both, the nuclear density (strictly speaking on the variable ξ = AD, see below) and on the number k which labels produced physical states, even if the underlying attenua- tions of the physical states do not depend on k at all (see Fig. 2). This should be contrasted with the standard description [1-5] of such processes which would give, for all exclusive diffractive production channels, the same X-dependences of the cross sections — if it reproduced correctly the true attenuations of produced states we assumed in our numerical examples give∩ below.Thus if naturę realizes non ρerturbative mechanisms of diffractive production and we try to fit them by the standard [1-5] perturbative parametrisations, we should expect a mismatch. Our quantitative analysis shows below that this mismatch results in fluctua- tions of the “total cross sections of unstable particles”, σ2, which rcflect this mismatch rather than very different attenuations of physical objects diffractively produced. In the next secrion we discuss this point in morę details.

3. Determination of the cross sections of unstable particlesWe shall limit our discussion to very high entrgies where the longitudinal momentum transfers and the invariant masses of the diffractively produced objects can be neglected. Although this approximation excludes any quantitative predictions and comparisons with available experimental results, it may be good enough for a qualitative analysis. In fact, this is our conj ≡cture that one can extend our qualitative conclusions to energies as Iow as several GeV, where large body of the available data comes from.We shall discuss the formulae for A > 1 (in the optical limit), but there is no problem in doing everything with A smali. The standard [1-5] parametrisation of the cross sections in the impact parameter representation for the incident hadron, with the nucleon cross section σl, diffractively producing unstable particie (defined e.g. by its mass and quantum numbers) with the nucleon cross section σ2, is 
where c is an adjustable constant and ξ = AD{B).On the other hand in our nonperturbative calculations the cross section for producing the ⅛-th state from the incident hadron (labelled 1 ≠ k) is (from (2.5))σx(σ1, k; B) = ∣ ∑ <k|%>e-2'"XD(B)<Vn|l>|2 = 1 ∑ <A⅜π>e-2'"‰ll>∣2. (3.2)

n nIn (3.1) and (3.2), for the sake of simplicity, we neglected the spatial extensions of all the objects propagating through the nucleus but this can be corrected, if necessary, by using convolutions instead of products (σD → σ * D, λ'nD → λn* D, compare (2.4) and the discussion of the finite size effects of Λπ(B) at the end of this~Section).In order to see how the standard procedurę [1-5] works, we calculated explicitly (3.2) for the two specific models described in the Appendix (Case I, Case II, see also Ref. 
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[1]) and then fitted (3.1) to these curves in a similar manner as one fits the experimental data: fd2BaA(a1a2; B) is fitted to ∫√2δσx(σ1, k∙, B) by adjusting σ2 and c. Since we know the cross sections for all states of our model, we can see whether the standard procedurę gives σ2,s which are realistically close to their true values.Figs 2,3 and Table I present some examples of the fits of (3.1) to the Case I, where 
a', b', c', d' are the transition amplitudes for hadron-nucleon diffractive processes: a' — elastic, b' — excitation of the “first” excited state, c' — of the “second”, d’ — of the “third” (the prime means integration over B, e.g. a' = %d2Ba(β)). Thus on one nucleon only three states can be excited, all the others can be reached only through some inter- mediate states e.g. the “sixth” state can be reached by first exciting the “third” from which the “sixth” can be reached. The complete transition matrix, y, between the physical states is given in the Appendix (A5). This transition matrix is diagonalised by,,. . / 2 πkl

(k ψ1> = Ulk = /-------sin------- , (3.3)⅜+l N + l’ V 7where N is the number of diffractive states (the rank of the transition matrix). The eigen- values of y come out to be. πn , πn , πn
λn = a-c+2(b-2d) cos —-----F4c cos2---------|-8d cos3------ . (3.4)A+l A + l A + l V ,One may easily construct many similar and morę complex models but for qualitative discussion Case I is quite adequate as an illustration of a few relevant points.

Fig. 1. The differential Kolbig-Margolis (KM) cross-sections σ4(σ1σ2, £) for σ1 = 40 mb and different 
values of the parameter σ2 (60, 40, 20, 0, —20 mb) which labels the curves. Each curve is normalized to 

1 at its maximum
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In Fig. 1 we show a typical sequence of σ4(σ1σ2j £) for fixed σ1, and varying σ2. We can see that the curves vary systematically with σ2 : for σ2 > 0 all of thsm have one maximum which shifts with decreasing σ2 towards larger ξ,s. We also continue to σ2 < 0 curves which are monotonically increasing everywhere.In Fig. 2 we show a sequence of σx(σ1, k∖ ξ) for flxed σ1 and various excitations k (solid lines). All these curves cortespond to similar attenuations of the produced physical states (σk = 48 mb for k = 2 — 9). The amplitudes a, b, c, d were chosen to give a reason-

Fig. 2. An example of the model results for differential diffractive production cross-sections, σj4(σ1, k; ξ), 
for the states k = 2—9 (solid lines). The curves result from Case I with the amplitudes a' = 2 fm2, b' = c' 
= d' = 0.4 fm2 and N = 10 (see the text for morę details). Each model curve is compared with the 
corresponding KM cross-section σ<4(σ1σ2, ξ) (dashed lines) with σ2 fitted to the integrated cross-sections, 
see Fig. 3 (the values of σ2 are given in the figurę). Also shown are the KM curves corresponding to the 
true total nucleon cross-section of each state (σ2 = 48 mb, dotted lines). The normalization is fixed by 
the model “data” for the integrated cross-sections at A = 112, similarly as in Fig. 3. Below the figurę the 

values of ξ corresponding to central densities of some nuclei are markedably large diffraction on one nucleon and the same σ1 as in Fig. 1. These curves are compared with σjl(σ1σ2jξ) both for σ2 obtained from the standard fit (dashed lines; the values of σ2 are given in the figurę), and for the true value of attenuation (dotted lines) which is σ2 =48 mb in all cases.



621
A comparison of the curves of Fig. 2 clearly shows these important characteristics of our nonperturbative production mechanism: The character of the wave function of the produced object, <∕c∣ψn>, is yeryessential for the shape of σx(σ1, k; ξ) .The oscilla- tions of <fc∣φπ> and of λn with n (compare (3.3) and (3.4)) can cause some dramatic changes in shapes of the curves with neighbouring k,s. As we can see morę than one maximum is possible. Thus the differential characteristics of σ4(σ1σ25 ξ) and σ^4(σ1, k∙, ξ) can be very different.However, the standard fitting procedurę is done [1-4] with the integrated cross sections through their dependence on A. Fig. 3 shows that such fits can look quite respectable! Yet they give wrong σ2,s! Not only that σ2 may come out very different from the “true”

Fig. 3. Λ-dependences of the total production cross-sections for different states, k = 2÷9, resulting 
from the model (solid lines; the parameters are the same as in Fig. 2), and the corresponding Kolbig-Mar- 
golis fits (dashed lines) with normalization fixed by the model “data” at A = 112. To set a scalę, 10% 

“error” bars of the model “data” are also showncross sections, they may also become negative! This collapse of the Kólbig-Margolis (K-M) description has its origin in the oscillations of the wave functions <k∣φπ>. They often lead to misfits in the differential behaviour of σx(σ1σ2jξ) and σyl(σ1,/c; ξ). But not always; e.g. an excellent fit of the differential shapes in the case k = 3 of Fig. 2 gives nevertheless wrong σ2 (= 78 mb) because of these oscillations. On the other hand in the 
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case of k = 8 we have a elear case of a gross misfit of the differential shapes and again wrong σ2 (= 0).The remnants of this overall mismatch of ρerturbative and nonperturbative descrip- tions which one still sees in the integral characteristics of diffractive production are strong fluctuations of the fitted σ2∙Now we shall briefly discuss a limiting case where the K-M description has a chance of being acceptable. First we have to comment on the role of the finite spatial extensions of the diffractive eigenstates which is reflected in the impact parameter dependences of the eigenvalues λn(B). So far we have used the approximation that λn(B) are much narrower than Z)(B), thus the convolution of Eq. (2.4) can be approximated as follows∫d¾(B-s)D(s)^'C(B), λn(B) = 2'fn(B), J d2Bfn(B) = 1. (3.5)At first one may think that introducing strong “spatial fluctuations”, i.e. strong variations of∕π(B) with n, one can achieve a nonρerturbative realizations of the K-M parametiisation. Indeed, one may accept all 2' aρproximately equal and generate large enough σo for hadron-nucleon diffractive excitations by drastically changing ∕π(B) with n:nD = 2' ∫ d2B(∕2(B) -ΛB)2). (3.6)Using the apρroximatior. (3.5) and the apρroximate equality of 2',s one obtains (3.1) from (3.2), hence one recovers the K-M formula, for the excited states which have suffi- ciently large probabilities of being excited in one step. Such are the cases k = 2, 3, 4 of the third, fifth and seventh rows of Table I. Notę that in all other cases, even when fluctuations of 2' are smali, one does not obtain correct K-M fits.One should remember, however, that such mechanism of elementary diffraction leads to forward dips in all differential exclusive cross sections which fact disagrees with experiment. Indeed, from (2.3) we get the following amplitudę for the exclusive excitation 1 → k in the high energy limit

where ą is the momentum transfer and p is the incident momentum. As 2' ≈ 2'-, we get from (3.5) and the completeaess relation ∑ |y>„) <φπ∣ = 1, the following forward ampli- 
n tudes (3.8)

Thus for all ⅛ ≠ 1 we have dips in the forward direction which are not observed. One should also point out that this special case leads to disappearance of the inelastic shadowing contribution to the total cross section which again contradicts the experiments which
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clearly established its existence [14, 15]. So, the case of diffractive production generated 
exclusiυely from “spatial fluctuations” seems to be rather unrealistic.This does not mean that the “spatial fluctuations” can be neglected altogether. One can even argue that they do contribute appreciably to diffractive production [16], But even in this case it turns out that they cannot save the K-M parametrisation [9]. Although the role of “spatial fluctuations” as one of the mechanisms contributing to diffractive production deserves further analysis we shall not discuss it here. Let us only state that our numerical results do contain some contributions from “spatial fluctuations” because they are present in our λn(B) (see Appendix).Table 1 gives a sample ot fits of (3.1) to Case I (see Appendix) with various elementary diffractive amplitudes a, b, c, d and to Case II (see Apρendix). We shall not discuss Case II in any details because, though it gives larger diffractive production on one nucleon than Case I, it leads to very similar conclusions. If anything, the overall mismatch of Case II with perturbative description is still worse than of Case I.Although in Table I we do have B-dependence of Λn(B) which comes from the con- struction ot the amplitudes a, b, c, d (see Appendix) and which is reflected in the single diffraction on one nucleon (σsn), but in calculating the nuelear cross sections we accepted the approximation (3.5). From Table l we can see that smali σso does not lead, in generał, to a K-M description: Even in the cases of negligible diffractiυe production on one nucleon we get for high enough excitations negatiυe σ2. The nonperturbative character of our model leads to an overall mismatch which does not disappear in the limit σso → 0.We already stressed the point that one should rather study the differential diffractive cross sections than the integral. This differential behaviour can be — to some exteπt — extracted from the iollowing procedurę. Undemeath Fig. 2 we marked regions of ξ occu- pied by various nuclei. We can see that th; result of the fit which gives σ2 depends on the choice of nuclei: For two different sets of nuclei the fitting procedurę may pair differently σΛ(σiσ2! ξ) and σx(σ1, k, ξ). Thus the procedurę of using two different sets of A is morę sensitive to the differential characteristics of the cross sections than the standard one. We tried it on our model. In the case k = 9 we do get spectacular fluctuations of σ2 around the fit which uses all As: For the following three groups of nuclei (27, 56, 64, 112), (64 112, 184, 207, 238), (27, 64, 112, 207, 238) we get for σ2, resρectively, 58 mb, —6 mb and 0 mb. For the other cases the fluctuations are much smaller.The morał of this exercise is that if doing similar things with experimental data we get large fluctuations of σ2, it will be a signal of nonρerturbative mechanism at work. Unfortunately, lack of large fluctuations cannot be interpreted as a proof of a perturba- tive naturę of the process investigated.

4. Summary and conclusionsBy solving completely some nonperturbatiυe models of diffractive production and comparing the results with the standard parametrisation of difffactive production on nuclei [1-5] we have shown that the so called Kolbig-Margolis formula (K-M formula) gives wrong cross sections for the unstable diffractively produced objects.



625This might be expected because the K-M formula is perturbative in its naturę, except that even in the case of weak diffraction on one nucleon, in which case the K-M formula has a chance to work, the standard fitting procedurę with K-M parametrization still gives wrong σ2,s for many channels of production.lt was also shown that when one applies this standard procedurę to fit a nonperturba- tive diffraction, the fits of the integrated cross sections look as respectable as the fits in Refs [l-4]. There remains however a elear signal of an overall mismatch of perturbative vs nonperturbative descriptions even in the integrated cross sections. The K-M formula produces strong fluctuations, from channel to channel, ot the cross sections of unstable particles: a frequent occurrence of “anomalously” smali or large σ2,s. This feature is very much similar to what one observes in experiment.The differential characteristics of the production cross sections may perhaps be seen from experimental results when one fits σ2 with at least two different groups of nuclei. The accuracy of the existing data is probably still too poor to do that.It is suggested that one should make an efifort to study the measured differential cross sections avoiding the σ2,s determined from the integrated cross sections.The authors thank Professor A. Białas for discussion and encouragement.
APPENDIXWe adopt two forms of y, called Case I and Case 11, with which we study diffraction on nuclei.

Case I

(Al)
The unitary matrix (A2)diagonalizes each y(1):

(A3)
Thus U also diagonalizes y

(A4)
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y of Eq. (Al) depends onm+1 independent parameters which are algebraic functions of 2m original parameters ahβi∙,i = 1, This way one can construct y matriceswhich have an ample degree of complexity built in and are diagonalized by U. We study diffraction on nuclei using y with at most four non zero functions of the impact parameter 
B: a(B), b(B), c(B), d(B), but cne could easily construct morę complicated cases. From the product of three y(l) we get

a, b, c, d, 0, ...

b, a + c, b+d, c, d, 0,
c, b + d, a + c, b + d, c, d, 0,

7= d, c, b + d, a + c, b + d, c, d, 0, ...0, d, c, b + d, a + c, b + d, c, d, 0, ... (A5)
The transformation U brings it to a diagonal form with the following eigenvalues
The matrix (A5) is a model of diffractive processes in hadron-nucleon collisions with four amplitudes. Having chosen a,b,c,d, and the number of diffractive channels N, one can study various relations between diffraction on nucleons and nuclei. Notę thar the transformation (A2) does not depend on the numerical values of the matrix y which it diagonalizes. In the expansion (2.1) no one state dominates, very much like in Kl → Ks regeneration. In fact, our model is a direct generalizatio∏ of Kl → Ks regeneration to many degrees of freedom. When we restrict (2.1) to just two pairs of states ∣ψ1>, ∣y2> and |1>, |2> and employ (A2) we get ∖ψ1) = ^(∣1>+l2>) and ∣φ2> = -j= (∣1>-∣2>), which relations are the same as between ∣K0>, ∣K0> and ∣Kl>, ∣Ks>.The four functions α(B), b(B), c(B), d(B) are not entirely arbitrary because they must satisfy the conditions which guarantee that they represent physically acceptable description of diffractive processes in hadron-nucleon interactions. These conditions are:(z) The total cross section should be determined by a(B)

στ = 2 ∫ d2Ba(B), (A7)which formula follows from (2.6), (A2) and (A6).
(ii) The total diffractive dissociation cross section of the incident particles which we also get from (2.6), (A2) and (A6)σso = ∫ d2B(∖b(B)∖2+∖c(B)∖2+∖d(B)∖2), (A8)should be close to the known experimental estimates. Also the unitarity bound σso(B) ≤ 4 στ(B)-σ^(B) → [∣6(B)∣2+∣c(B)∣2+∣d(B)∣2] ≤ α(B)-∣α(B)∣2 (A9) 
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should not be violated. This is guaranteed by (iii). Notę that in the coherent nuclear proces- ses we are considering in this paper we are dealing only with single diffraction and we neglect double diffraction altogether.

(iii) The profiles of the eigenstates of diffraction should be within the limits0 ≤ λj(B) ≤ 1 (A10)of complete transparency and complete absorption. We use purely absorρtive amplitudes, hence ż/s are real.The following examρle clarifies our construction of the amplitudes a(B), b(B), c(B), 
d(B). Orily one of these amplitudes is determined directly from exρerimental data. For instance, the forward elastic proton-proton amplitudę at high energies can be simply para- metrized

a(B) ≡ 0.75 exp (~B2∣r2) (Ali)with r2 determined from στ = 40 mb using (A7). The other amplitudes are rather weakly restricted by the size of σso and (ii), (iii). To simplify matters we consider the case when these amplitudes contribute to σso with comparable strengths. So, let us take∣6(B)∣ = ]c(B)∣ = ∣√(B)∣. (A12)Then the problem is reduced to determining one amplitudę, say b(B), with four possible sign choices for c(B) and d(B) (b(B) may always be taken ρositive by convention). In fact, as we argued above, the B-dependence of the amplitudes is not very critical for our calcula- tions, hence only the integral b' = )d2Bb(B) should be evaluated with (i)-(iii) satisfied. It is easy to determine the largest value of b' allowed by unitarity which corresponds to the largest possible elementary diffraction. To do this one has to find, at each B, the largest value of b not √iolating (iii), with (Ali) and (A12) put into (A6). For instance, for b(B) 
= c(B) — d(B) one obtains

h rm~∫(1-<β))∕9. for B<0.96fm
maxl j ↑a(B)∣3, for B > 0.96 fm

which gives b' = 0.4 fm2, and σ'sn∏x = 3∫J2B)6max(B)∣2 ~ 0.6 mb. For all cases of our model are significantly smaller than the experimental estimates σs∏, = 2.5 —3.5 mb. The same procedurę can be also carried out for any giv;n ratio of b(B), c(B) and d(B).

Case IIIn the Case I it is difficult to have large σso. The following construction ρrovides us with a possibility of obtaining larger elementary diffraction (σso). We assume λn(B) with large enough fluctuations to ρroduce στ and the desired σso and then use the same 
Utk as in Case I. The transition matrix is in this case

7hm — Ukι1διnλnUnm. (A13)
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The largest diffraction saturating (A9) is obtained when ζn(B) = 1 for some n, and is zero for the others. To control the size of diffraction we may take, for instance, 

h

1 ≤ n ≤ n1(B)
4,(B) = 4 n-n2

n1-n2 ’
n1(B) < n < n2(B) (A14)
N ≥ n ≥ n2{B)where, at each B, the parameters h, n1, and n2 are fitted to reproduce the desired στ(B) and σso(B). N is the number of diffractive eigenstates.One may construct, of course, many similar models. We doubt whether they would bring anything qualitatively very different from what one can see from Cases I, II.
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