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We observe that the external charges in SU(2) gauge theory can be classified accordingyl 
to their Hopf index. The relationship of this topological classification and the winding 
number classification of gauge transformations is indicated. The Coulomb solution of the 
Yang-Mills equations with external charges is obtained with the aid of the gauge trans
formations characterised by a nonzero winding number.

1. IntroductionRecently, one observes an increasing interest in solutions of classical Yang-Mills equations with external charges [l-8]. While relevance of these solutions for quantum theory is still not elear [4], they nevertheless ρrovide a very interesting insight into inter- actions of color charges. There have been discovered several types of solutions of Yang- -Mills equations for a given external source (for a review see [4]). For continuous extemal charge distributions these are: the static Coulomb solution anditstime dependent generaliza- tions [2], the so called non-abelian Coulomb solution and its time dependent generaliza- tions [4]. There exist also bilurcating solutions—they appear only if the extemal source is sufficiently strong [4]. Only the static Coulomb solution and its time dependent generaliz- ations are known in an exact form. The others are constructed only in the form of a per- turbative series (in the extemal source). Apart from the great progress in the field, there is a number of problems unsettled as yet. In this notę we address ourseives to one such undiscussed problem, namely the question of whether any topological numbers are in- volved or not.We observe that there exists a class of continuous external charge distributions that admit a topological number, namely the Hopf index [9]. This class of external sources is characterised in detail in Section 3. The most important feature of it is that the color direction of the extemal source approaches a constant vector when r → oo (this is equivalent 
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560to a compactification of Jł3 to S3 — the standard procedurę required when introducing topological numbers). We also observe that the usual method [2, 8] of obtaining the static Coulomb solution, by means of a gauge transformation, works also in the case of the extemal charge distributions with the nonzero Hopf index. However, the method now requires the use of the so called large gauge transformations characterised by a nonzero winding number. We argue that the external charge distributions with nonzero Hopf index lead in a natural way to the non-abelian Coulomb solution of Jackiw, Jacobs and Rebbi [4].The plan of this notę is the following. In Section 2 we briefly describe the method of obtaining the static Coulomb solution and we fix the notations. In Section 3 we describe the extemal charge distributions with nonzero Hopf index and we show that the correspond- ing Yang-Mills potentials can be obtained with the aid of the gauge transformations characterised by a nonzero winding number. Section 4 is devoted to some finał remarks. In the Appendix we describe briefly a definition of the Hopf index.
2. The static Coulomb solutionClassical Yang-Mills equations (the gauge group is SU(2)) have the tollowing form 5vF∖-ig[Λv,FvJ = -gjμ, (1)

^vμ ^v^-∣l ^μAv lg[Aμ, AvJ,where the current Jμ is assumed to be of the form
Jμ(x) = δμ0ρ(x). (2)From (1) it follows that V*→lΛJ''] = o∙ (3)The current (2) describes static extemal color charges, with charge density ρ(x). Here we use the following notations

Aμ = i σaAaμ, ρ(x) = ⅜ σaρa(x) = ⅜ σρ, (4)where σa are Pauli matrices, a = 1, 2, 3.Equations (1), (2) are covariant under the gauge transformations
A'μ = ω~1Aμω-{----- ω~1δμω,

Fμv = ω-1Fμvω, j'μ = ω~1jμω, (5)where ω = ω(t, x) is an SU(2) matrix valued function of (t, x). This covariance can be used to rotate the only nonvanishing component of the current to the so called (4) abelian frame, where
Jo(×) = β'3(×)- (6)
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In this frame Eqs. (1), (3) can be easily satisfied with the Ansatz
Ali nonlinear terms vanish and one is left with the usual Poisson equation

ΔA'0∖x) = gρ'3(x) (7)which, in the case of ρ'3(x) vanishιng at infinity, has the Coulomb solution (we assume the usual boundary conditions at infinity)
(8)The constraint (3) is satisfied automatically in the abelian frame. Coming back to the initial frame one gets

Aμ(x) = ω(x)Aμ(x)ω 1(x)- δμω(x)ω 1(x), (9)where ,3* 3
Aμ(×) — Λ-0 — ∂μ0is given by (8).The abelian frame solution (8) vanishes when ρ' → 0. In Ref. [4] it is shown that there exist solutions which do not vanish when ρ, → 0 in the abelian frame — they are called the non-abelian Coulomb solutions.The only constraint ω(x) is subject to is

ff3ω~ i(χ)j0(×)∞(×) = β'3(x) • (1°)
Neither ω(x) nor ρ'3(x) is determined by (10) uniquely. Thus, formula (9) describes a family of solutions, enumerated by allowed values of ω(x) and ρ'3(x). In particular, solutions with different ρ'3(x) have in generał different energies<T = ⅜ ∫ d3x[E⅛iα + BiaBia], Eia ≡ F"o, Bia ≡ ⅜ εiktFakl(see, e.g., [5]).The above method of solving of Yang-Mills equations with extemal charges was proposed in Ref. [2] for continuous charges and in Ref. [8] for a set of pointlike charges. For a morę detailed description of the solution in the case of a continuous charge distribu- tion we refer the reader to papers [2-4].



562
The most essential step in the above procedurę is the choice of ω satisfying (10). We argue in the next section that there exist ρ(x) such that the corresponding ω(x) is topologic- ally nontrivial, i.e., it is characterised by a nonzero winding number. Śuch ρ(x) themselves are characterised by the nonzero Hopf index.

3. The external charge distributions and the Hopf indexLet us consider the extemal charge distributions ot the following kind:a) (?(*)  ≠ θ f°r a∏y fi∏ite x,b) ρ(x) → 0 when ∣x∣ → ∞ (localizability),
c) lim

∣x∣ → co

g(x)Vρ2(∙v) (11)
where cisa constant vector, independent of the direction along which ∣x∣ → co. When ρ(x) belongs to the class (11) of the external charges, one can introduce the normalized vector field e(x) ≡ g(x)√F(≡) ’ (12)
which is constant at infinity. Therefore e(x) can be regarded as a normalized to unity vector field on the 3-dimensional sphere S3. Then x is identified with the stereographic projection coordinates on S3. The set of possible values of e(x) can be identified with S2. Thus, e(x) defines a map from S3 into S2. Such maps are known to be classified accordingly to their Hopf index [9].Some of the charges which do not belong to the class (11) can also be classified accord- ing to the Hopf index — the only requirement is that the set of x such that ρ(x) ≠ 0 should allow a compactification to S3. For example, if ρ(x) = 0 outside a bali B, then it is sufficient that e(x) = constant for x from the surface of B.The Hopf index was already applied, for instance, in discussion of closed vortices in classical field theory [10], magnetohydrodynamics [lla] and nematic liquids [llb]. The vector field e(x) with the Hopf index n can be described as follows [lla]. Consider the constant unit vector field ez(x) parallel to the z-axis. Then rotate ei(x) around the radial direction defined by n = x∕∣x∣. The angle of rotation φ(r), (r = |x|), should satisfy the conditions

φ(ff) = 0, φ(∞) = ⅛m. (13)For example, one can take <f(r) = 4n arctg r. The resulting vector field e(x) has the Hopf index n. Such an e(x) forms a torus-like structure in S3 (hence in R3).One can also introduce the topological charge density and the corresponding current [10], Namely, one can introduce an antisymmetric tensorAv = e(⅛e × ∂ve), (14)
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and the corresponding potentials

fμv ∂vClμ. (15)The current is given by iμ = fμ‰ (16)where fvμ = ⅜ εfneσfβa is the dual of fμv. In particular,
4πn = ∫ d3xi0 = ∫ d3xa rot a. (17)Of course, in our static case e does not depend on time. Therefore one can take a0 = 0 and then ik = 0, i.e., in the static case only z0 ≠ 0.The formulae (14)—(16) make it possible to extend the topological classification also to time-dependent external sources. We will not discuss this problem here.The crucial point is to what extent the classification of the external charges according to the Hopf index is gauge invariant. Because the gauge transformations (5) of the source 

ρ(x) are just x-deρendent rotations of the vector field ρa(x), it is obvious that one can choose ω(x) such that it will unfold the configuration obtained with the prescription (13), thus reducing its Hopf index to zero. For instance, we may take
(18)

The axis of rotation is x∕∣x∣, the angle of rotation 
satisfies (13) with n → — n.However the gauge transformation (18) has nontrivial topological properties. It is an element of the n-th Pontriagin class of the gauge transformations [12] related to a classification of mappings from S3 to S3. Thus, we obtain the result that the external charge distribu- tions with the Hopf index n are obtained from the charge distribution (6) in the abelian frame by a gauge transformation with the winding number n. As a corollary we obtain the result that, similarly as the winding number, the Hopf index is invariant under smali gauge transformations, that is gauge transformations with zero winding number.Let us recall that the large gauge transformations (i.e., those with n ≠ 0) have to be treated on a different footing than the smali gauge transformations. The reason is that the large gauge transformations cannot be directly implemented in the quantum theory through the Gauss law constraini, which is the generator of the smali gauge transformations. In fact, they require to introduce the θ-vacuum, and only after that they are implementable as multiplication by ths factor elp (inff), [12]. The presence of the 0-vacuum is the physical effect caused by the large gauge transformations.The Coulomb solution of the Yang-Mills equations with the external charge char- acterised by n ≠ 0 is given by (8), (9), where ω(x) is given by (18) or any gauge transformation satisfying (10) and homotoρically equivalent to (18).
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Let us observe that from (9) it follows that Aμ does not vanish when the extemal charge ρ(x) tends to zero. It becomes the pure gauge ω~1∂μω. On the other hand one can think of constructing a solution which vanishes when ρ → 0. This could be done by a per- turbative expansion in the source and presently we are trying to find it in an exact form. Then, from (8), (9) it follows that the corresponding solution Aμ in the abelian frame would not vanish when ρ' → 0. But this is the defining feature of the non-abelian Coulomb solution of Jackiw, Jacobs and Rebbi [4]. Thus, the charge distributions with the nonzero Hopf index seem to lead in a very natura! way to the non-abelian Coulomb solution for gauge potentials.

4. Finał remarksWe have found out that there exists a gauge invariant (we mean the smali gauge transformations) topological number characterising the extemal charges in the Yang- -Mills theory. Strictly speaking, the topological classification works for the normalized external charge e<,x) = ρ(x)∕∣ρ∣∙ Thus, all ρ(x) which differ by a normalisation factor belong to the same class. This classification of the extemal charges is intimately related to the large gauge transformations with nonzero winding number.Because the large gauge transformations imply the θ-vacuum, it is natural to think of a clasical gauge theory which somehow takes into account the presence of this vacuum. Unfortunately, such a classical theory is not constructed as yet. The only thing we dare to say at the moment is that one can expect that the external charge in such a theory is a superposition of the original charge with n = 0 and its “copies” with all values of the Hopf index. Thus, the topologically nontrivial charges would be indispensable in that theory. It is not impossible that such a theory would exhibit the commonly believed con- fining property of QCD.Another very interesting problem is to generalize the presented topological classification of the external charges in SU(2) gauge theory to SU(n), n > 2, gauge group.
APPENDIX

Definition of the Hopf indexLet e(x) be a unit vector field, ∣e(x)∣ = 1, on 3-dimensional sphere S3 (x are the stereo- graphic coordinates on S3). The values of e(x) we regard as points of S2. Let e0(x) denote some fixed vector field. The vector equatione(x) = e0(x) (Al)is the equation of a closed curve C on 53. If, for a given e(x), the equation (Al) does not define a closed curve on S3, then there exists another e(x), homotopically equivalent to e(x), for which (Al) does define a closed curve. Now, if Ω is a closed, connected surface on S3 having C as the border, then e(x) maps Ω on the sphere S2. The Hopf index of the 
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vector field e(x) is defined as the number of times e(x) maρs Ω onto S2. It can be shown that the value of the Hopf index does not depend on the particular choice of e0(.x). We take e0(x) = ez, where ez denotes a constant unit vector parallel to the z-axis. The Hopf index has the same value for all homotopically equivalent e(x).
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