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The viscosity coefficients of the Hagedom hadronie matter are obtained by solving 
the Boltzmann kinetic equation in the relaxation-time approximation. The upper limit 
for the inerease of entropy per baryonic charge was found to be < 10~*  in the “hadron era” 
of the Friedman universe and the model behaves almost like dust-filled models. There is 
no anisotropy damping in the Bianchi type I universe but a substantial growth of entropy 
is possible in that era when anisotropy has an extremely high value.

IntroductionThe entropy per baryon Σ (= s∣kn, where 5 is the entropy density, n — baryonic charge density, k — Boltzmann constant) is one of the observational features of the Uni- verse. Its rather high value (~ 108) can be interpreted either as a particular initial condi- tion for the Universe, or as a result of cosmological evolution. The second point of view has no strong theoretical support (see e.g., [l]-[6]). The present work is intended as a study of a new possibility. It is the Universe filled, in the hadron era, with fluid obeying the Hage- dorn equation of state [7], which allows particles to be non relativistic as the energy density approaches to infinity. This equation results from a bootstrap model for hadrons when assuming an exponential mass spectrum of hadrons (resonances), and consequently the universal maximum temperaturę To. We are attempting to answer the question how these properties can affect cosmological evolution and entropy production processes in Fried­man and anisotropic Bianchi type I models near the initial singularity. We are dealing with this equation of state following Sistero,s argument [8] that it should be valid up to the quantum threshold.The other important problem we are dealing with and which can be strictly connected with the first one, is the damping of anisotropies in the early evolution of cosmological models to the observed — from relic 3 K radiation — level (< 10^3; see [9]). As suggested by Misner [10], the viscosity could be an efficient damping factor. To obtain viscosity
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coefficients, the relativistic Boltzmann kinetic equation is solved in the relaxation-time approximation as proposed by Anderson [11]. The CGS units are used. The signature of the metric is (4----------), Greek indices run 0, 1, 2, 3 values.

1. The υiscosity of Hagedorn fluid

We apply the procedurę of Appendix I for the Hagedorn fluid as referred to a local Lorentz reference frame. The equilibrium distribution function is

(1.1)
where h is the Planck constant, c — speed of light, ρ(m) — density of hadron states, the sign + for fermions (f) and the sign — for bosons (b), ρ(m, n) = ρb-(— l)"ρf. A non- -equilibrium correction to f0 is τrel (= a relaxation time) times

where β = c/kT. It is a good approximation if we take only the first term of the above series. Then ρ(m, 1) = ρb + ρf = ρHagedom ≡ £h and
μ γ∕1(p", T) = h~3 T==2 (βuμ)fl>ti(m)- (1.2)

√ m c +pA non-equilibrium part of the energy momentum tensor is (1-3)where
( λ a exp [mc2∕kT0] a exp [∕J0mc] _0H(m) = (m2c2 + m2c2)5'4mJmo (mc)5''2 = (1-4)

a = 2 ∙ 10~9 erg3/2c~3/2, kT0 = 160 MeV = 2.6 ∙ 10~4 erg, m0 = 500 MeV. Decomposition T»glof Tμf = XyσCμ'yσ, X = —τ-βuγ, taking into account the asymptotic behaviour (1.4) 
’ h3

ρκ, allows one to find viscous terms in Tμv (see Appendix 1). We shall use the following abbreviation
00⅞,*>(j8)  ≡ 4πacβ~v2 ∫ dzz5z2^^texp[z^0∕^]Ki(z), βmφc (1-5)
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where mtci ⅜> ⅛Γis a limiting value of mass arising from the substitution of the asymptotic formula for ρtt. The approximation used here is physically irrelevant in the limit T → To. 
β0 — c∣kT0 and Ki(z) denotes the modified Bessel function of the second kind. With these abbreviations we get viscosity coefficients in the form

(1.6a)

(l∙6b)
(l∙6c)

It must be pointed out that the <5 coefficient in Tμv does not vanish and it is of the magnitude order of χ, when T → To. The Weinberg procedurę (Appendix II) enables one to put <5 = 0 with a newly defined temperaturę T, but the resulting χ(f), ζ(T), η(T) are qualitatively the same (as T → To) as in the above ones. It seems that in our rough approximation, it is not necessary to put Tμv into the Eckart form. Therefore, in the following we will use relations (1.6a, b, c).From Hagedorn paper we borrow the asymptotic form ∂p∣∂ε — (T0-T)∣T0 and then using (1.6), we get the asymptotic form of viscosity coefficients ^all terms 
T ~~T Γπ

f(T):f(T)/ln —--------- >O(Γ→ To) are omitted. The asymptotic from of Ki(z) = — e~z
To ∖ 2zis used because in (1.5) the lower limit of integration βm*c  > 1

(1.7a)
(1.7b)
(1.7c)

where Ω ≡ τrelac∣h3(2πβ)3l2.



878
2. The viscous dissipation in the Friedman universeIn the universe with the Robertson-Walker metric, Einstein equations take the Fried­man form (with 4 = 0):

R2 = ⅛κεR2-kc2, (2.1)(εR3)∙ = ~p(R3)' + 9ζRR2. (2.2)Here κ = 8πG∕c2. In equation (2.2) the first term on the right hand side describes the adiabatic expansion and the second term is a dissipative one (only the bulk viscosity does not vanish). ( )’ indicates a derivative with respect to time.There is a thermodynamic relation [12]:
A curvature term in (2.1) is negligible near the singularity, therefore, using (2.2) and (2.1) one dbtains the equation describing an influence of bulk viscosity on the early evolution of Friedman models:

Two cases should be considered:
i. The adiabatic case ζ = 0. There is no entropy production. Thus, the entropy per baryon does not change with time. The quantity (ε + p)/T is proportional to the entropy density.
ii. The viscous case ζ = £A. For two time instances, given by their temperatures T*  and 
T, from (2.3) one obtains ∑∕∑.=ψκy(¾i).
Using (2.1) and the abbreviations (ε+p)∣T = x, lζ(κε)ll2∕T = f(x), it is easy to obtain: x(T,)ln (Σ∕Σ*)  = | - dx, (2.4)J χ(χ-∕(χ))

x(T)where * denotes the initial value of any quantity. From Hagedorn,s paper we have ε∕c2= 1.26 ∙ 1014T,o∕(To- T) g • cm-3 and p = ε0 ln— in the asymptotic region T → To. ≡oTo find the upper limit on ζ, one has to take τreι of the order of the age of the universe, 
t, but not shorter than a characteristic time of strong interactions ~ 10-23 s (approximation limit). Then ζ ■ θ < ∖(F2p, and the condition T^sc <⅞ p is satisfied in the whole rangę of validity of our approximation 1 — 10-3 8 > T∕T0 > ⅜, where the upper limit follows from the inequality t > 10-23 s, the lower limit is a limit of the validity of the Hagedorn descrip- tion of the cosmological matter. In that rangę the entropy production is negligible (Σ-Σ,)∕∑*  < ιo-4.

(2.3)
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3. The role of shear viscosity in a simple anisotropic (Bianchi type I) modelAmong the spatially homogeneous anisotropic models, Bianchi type I models which have a simple Euclidean homogeneity group possess the simplest structure. The linę element has the form:

ds2 = dt2-R2(t) (e2β,dx2 + e2β2dy2 + e2β3dz2), (3.1)where β1+β2+β3 = 0 and β,s are functions of time only. We omit the bulk viscosity term in the energy momentum tensor. Then,
and Einstein equations take the form:

where σ = √β2+β2+β3 describes the anisotropic part of the expansion. This set of equa- tions can be solved when the equation of state is given. If one takes Hagedorn,s equation, then, in the asymptotic limit T → T0,p < ε always holds and it is a very good approxima- tion to put
P = 0. (3.4)In that particular case it is easy to obtain solutions from (3.3a, b, c):

κεR3 = Q+ ∫ 2κησ2R3dt Q = const., (3.5)
βiR3 = C,∙exp [ —∫ 2κηd(∖∙, Ci = const., i = 1, 2, 3, (3.6)

R = [√lt(t+B)]ιz3, A, B = const. (3.7)We can follow (3.6) to derive
σ = C exp [ —∫ 2κηdt]. (3.8)The strongly anisotropic 7? > t and the nearly isotropic B <ś t cases of (3.7) have the simple form jRa = R1t'li and Ri = R2t213 respectively, R1, R2 = const. As in the end ιo^4of [2], we estimate in (3.6), (3.8) the value ∫ κηdt < 10~6. The conclusion is that l0-23there is not anisotropy damping in the hadron era. On the other hand, energy εR3 (and entropy ε∣T ■ R3) can rise substantially as can be seen from (3.5), but it is possible 



880
only for very high anisotropies (i.e., “anisotropy energy density” σ2∕2 by many orders of magnitude exceeds the matter energy density κε). It is not elear whether our approximation can be applied in that extreme case.

4. ConclusionsThe energy momentum tensor for a homogeneous, viscous hadron liquid described by the Hagedorn equation of state has a dust-like form for very high energy densities 
(T → To). There is negligible entropy production in isotropic Friedman models as in aniso- tropic Bianchi type I models except for extremely high anisotropies (σ2∕2 > κε). No vis- cous anisotropy damping appears.Because of strong anisotropy damping that takes place in the lepton era and because the ratio σ2∕κε ~ R~3 (adiabatic case) grows very quickly when R → 0, it is possible to reconcile the observed high degree of isotropy of the microwave background with the ex- tremely high anisotropies in the hadron era only if the mentioned anisotropy is allowed by the “matter creation” processes.I would like to express my gratitude to Dr. Zbigniew Klimek for suggesting the problem and for helpful discussions. I thank Professor Michał Heller for critical reading of the manuscript and for valuable discussions.

APPENDIX I
The relaxation-time cψproximation proceduręThe Boltzmann relativistic kinetic equation in the relaxation-time approximation with vanishing external and self-consistenit forces has the form:

where f,f0 are one particie distribution functions: near equilibrium and in equilibrium, respectively; τrel is the relaxation time for the system considered. Decomposition f = f0 +τre∣∕ι+ allows one, when O(τr2ei) terms and gradients of∕1 are neglected, to obtain
Λ = -P‰(∕h,)~1∙The energy momentum tensor TT = ∫pVm-1∕∙√-gd4pcan be Split into an tlequilibrium part” and a “dissipative part”. The last part isΓΓ = τrel∫pVm-1∕1√-gd4p.If the only vector in f1 is u", then we can decompose it as follows 
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where Xy is a function of uμ and T only, andCi'σ"v = auμuVu' + β(uyuσgμv + uμuvgyσ + uyuμgyσ + uyuvgμa + uσuμg'y + uσuvgμy)+y(gγσgμv+gwgvσ+gγvg',σ)∙It is easy to find α, β,γ coefficients. With abbreviationsC1 = uμuvuyut.Cμ',yσ, C2 = uμuvgγσCμyyσ, C3 = gμvgyσCμ',yathey are α = ⅛ (48C1 - 36C2 + 3C3), β = ⅛ (-6C1 + 1C2 - C3),7 = ⅛ (C1 — 2C2 + C3).The energy momentum tensor, for a viscous fluid not far from the equilibrium can be decomposed as follows (we omit an “ideał fluid part”)

Tμv = (δ+τ)uμu, -τgμv + qμuv + qvuμ + πμ',where <5 = Γ⅛√ τ = -⅜(7¾s-<5)5 qμ = Tltyuy-δuμ and qμuμ = 0; πμv = T? 
-(δ+τ)uμuv+τgμv-qμuv-qμuμ and πμvgμv = πμyιuv = 0. To get Tμv in the Eckart form (i.e., Tμvuμuv = energy density = ε) one must put δ = 0 (see Apρendix II).With the condition of non-decreasing entropy, it is easy to obtainτ = -ζθ, qμ = ιhμ∖‰-Tuy), πμv = ^2ηhμyhytσyβ,where ζ, η, χ are bulk viscosity, shear viscosity and heat conduction coefficients respec- tively, and: θ = uy.y, uy = uy-eue, hμv = gμ'~uμuy, σμv = u^μivy-⅜hμvθ-u(lluvr There are a few problems connected with the substitution method of the viscosity coefficients calcula- tion which have not been mentioned here. The reader is advised to consult the original references.

APPENDIX II
The Weinberg procedurę to convert Tμi into the Eckart formLet

Tμv = (ε + p)u⅛v-pgμv + (5 + τ)Λv-τg* ,v + ...(5 and τ are defined in Appendix I). We define a new temperaturę β : β ≈ β+ot, wherę 
<x = O(ττc,). Then, ε(∕f, ρ) = ε(β, ρ) + <x + ...

p(β, e) = p(β, e)+ «+
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and Tμ, = (ε+p)uμuv- pgμv + (3 + τ)uμuv- τgμv + ...where
To obtain the Eckart form (Γμvwμwv = energy density = ε), for Γμv, we now require 3 = 0, hence
and
This procedurę converts Tμv into the form needed but it ρrovides a new temperaturę β which has no elear physical meaning. It is valid only for smali deviations from the equi- librium state, where τreι is very short.
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