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It is demonstrated that the known perturbation expansion, and its first diagonal Pade approximant, for the Fourier transform of the energy of two classical sources in QCD, agree approximately with the potential used in charmonium phenomenology for 0.5 GeV ≤ q ≤ 10 GeV. It is argued that the singularity of the exact energy at q = 0 is stronger than qE

The energy E(x) of the two classical sources, interacting via exchange of gluons [1], is a very helpful quantity in searching for confinement. It contains all structure connected with the self-coupling of the Yang-Mills fields, while the additional complexity due to the quantum naturę of fermions in abandoned. There exists in the literaturę a calculation of this energy up to the sixth order in coupling constant g [2]. In momentum space the result reads 
(i)

where

(283)
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and q is the three-momentum conjugated to the distance of sources x, μ is the mass param- eter introduced through the dimensional renormalization, y stands for the Euler constant. 
C2(R) and C2(G) depend on the gauge group; for SU(3) we haveC2(Λ)=⅜, C2(G)=3.In this letter we try to answer the following question: does the confining naturę of the QCD forces manifest itself already in the existing perturbative expansion ? In particular, is there any connection between the formula (1) and the potential energy of the qq system

V(x) = ≡-√l-x2), (2)
xα =0.2, x measured in GeV-1, which is so successful in charmonium phenomenology [3]? Of course, we do not expect that one can prove rigorously Eq. (2), starting from (1), for all values of the momentum/coordinate. The hope is that because the effective expansion parameter seems to be g2 log μ∕q, for momenta around μ, the lower order terms provide a sufficient approximation. Therefore, we expect that starting from a truncated expansion one should be able to prove a finite confinement (if any), i. e.; to obtain a reasonable

Fig. 1. The example (momentum space calculations, μ = 3 GeV). Solid linę — the exact function /(<?) = = (⅛∕∕0', and its (N, N) Pade approximants for Λrm∣n ≤ N < 20, Λrmjn = 3 for η = —1.5 and 7Vmin = 8 for η = —4; the dotted linę — the RHS of Eq. (3) truncated to the first three terms; the dashed linę — the (1,1) Pade approximant to f(q)
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estimate for the exact function in the finite interval of momentum/coordinate. The larger the rangę of variables for which we attempt to determine the exact energy, the higher order perturbation terms are necessary. In addition, we need some technique for continuing truncated expansions of the type (1) out of the convergence circle (whose radius is probably zero in this case [4]). For the sake of simplicity we use the Pade approximants for this purpose.Let us illustrate our method on a simple example. For q ≠ 0 we have ey-∑*⅛1∙

n = 0We interpret the RHS of Eq. (3) as an idealized perturbation expansion for the "unknown” function (qllμ)η. For fixed q we construct the sequence of the diagonal Pade approximants to the RHS of Eq. (3). Then, we vary q and look on the dependence of the approximants on this variable. The results are shown in Fig. 1 for two values of η. Low Pades approxi- mate the LHS in some finite interval. The rangę of momentum for which a given Pade has converged grows fast with the order of approximant. For example, for η = —1.5, (3,3) Pade works well through four decades of q. For larger ⅛∣ the convergence is slower what is not surprising.Now we turn to the real world, i. e. to the Eq. (1). Fig. 2a shows a comparison of the formula (1) and its first Pade approximant with the Fourier transform of Eq. (2). The Coulomb part of the energy has been subtracted. We have chosen μ = 3 GeV and αs(μ) =0.23, as = g2∕4π. The value for αs(μ) is taken from Ref. [5]. Indeed, theoretical

Fig. 2. Comparison of the QCD calculations and the phenomenological potential, a — 0.2. 2a — momentum 
-q2 P(q)space F(q} -------------------- 1. Solid linę — P(√) = F. T.~1 [K(x)]⅛), where V(x) is given by Eq. (2);4παdotted linę — P(<∕) = E(q), whereE(q) is given by Eq. (1); dashed linę — P(q) equals the (1,1) Pade approxi- χP(x)mant to RHS of Eq. (1). 2b — configuration space, F(x) =----------- l-l. Solid linę — P(x) = V(x); dashed

alinę — P(x) equals the (1,1) Pade approximant to the Fourier transform of the RHS of the Eq. (1)
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calculations follow approximately the experimental parametrisation for q in the rangę 0.5 GeV ≤ q ≤ 10 GeV. The first Pade is not much better than the original series, as could be expected. A power of the Pade method is seen only for higher orders. We empha- size that the parameters μ and αs have not been fitted. They are taken from other areas of application of QCD where this theory has been compared with the experiment. Of course, higher orders are needed to confirm and extend this result.We have repeated similar calculations in configuration space. For a better under- standing what happens there we turn back to our idealized example. The Fourier transform of Eq. (3) reads

where
(4)

Now we try to approximate the exact function of the LHS of Eq. (4) by the series on the RHS, which is a series of the Fourier transforms of the perturbation expansion terms in Eq. (3). But the RHS of (4) is convergent to its LHS only when an interchange of sum- mation and integration is legitimate. This is the case for — 2 ≤ η ≤ —1. Only then the equality with a question mark is true and we may expect the first few terms of RHS to give a reasonable estimate of the LHS. For ?/< -2orι∣>-l the integral 
does not exist and the Fourier transform is defined through thd analytic continuation in η. The original series of the RHS of (4) needs not converge to the correct answer for η < — 2. Fig. 3 confirms our expectations. In Fig. 3a we plotted the LHS, RHS (truncated to the first three terms) and the two diagonal Pade approximants to it for η = —1.5, versus x. The truncated series approximate the true answer quite well, as it should do for this value of η. The Pade approximants as usual work better with the growing order. For η = —4 (Fig. 3b), however, the situation is entirely different. The truncated series does not give the true answer at all. Its value is positive for all x and cannot be plotted on the logarithmic
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scalę of Fig. 3b. The true function is negative in this case.1 The Padć approximants, on the other hand, reproduce the proper answer quite well for high N (N being the order of the diagonal approximant). For smali N they have some trouble what is understandable if we realize that we wanted them to continue the unknown function through the pole at 
η = -3.

1 The change of sign while going from η = — 1.5 to η = — 4 is caused by the single pole at η = — 3.

Fig. 3. The example (configuration space calculations, μ = 3 GeV). Solid linę — the exact function 
qy, 
μ

4πx= — F. T.
μ

η = —1.5 and Nm∣n = 10 for η = —4; dotted linę (in Fig. 3a only) — the series of Eq. (4) truncated to the(x) and its (IV, N) Pade approximants, for .∙Vmi∏ ≤ N < 20, Λ'mι-n = 3 for
first three terms and multiplied by------ ; dotted-dashed linę (in Fig. 3b only) — the (4,4) Pade approxi

μmant to f(x)∙, the dashed linę —(1,1) Pade to /(x)Let us summarize the conclusions which emerge from this simple example. If the function to be approximated is so singular in the momentum space that its Fourier trans- form does not exist in the usual sense, then the Fourier transform of the perturbation series, term by term, needs not converge to the Fourier transform of this function defined by the analytic continuation.In view of this statement we are glad to see that the Fourier transform of Eq. (1) behaves exactly in the same way which we have found in the example for η < —2. In Table I we give few values of the Fourier tansform of Eq. (1) together with the expected phenomenological potential energy, Eq. (2). They do not agree at all, what indicates that 
E(q) is singular in momentum space. In Fig. 2b we plot the experimental potential (2) and the (1,1) Pade approximant constructed from the Fourier transform of Eq. (1). The agreement is rather poor, but we have to remember that the first Pade had also troubles in the simple example.In conclusions, we have shown that the confining character of the QCD forces manifests itself already in the first three terms of the perturbation expansion. Present knowledge allows one to demonstrate this finite confinement in a rangę of momentum 0.5 GeV ≤ q ≤ ≤ 10 GeV. Higher order calculations are necessary to confirm and extend this result.
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TABLE IComparison of the phenomenological potential, Eq. (2), with the Fourier transform of the RHS of Eq. (1) denoted by F. T. [E(⅛)] (x)

x 
CGeV 3

ET,LE(<ι)](x) 7
a14-πx

V(x) 
a14-πx

0.01 0.575 - 0.5×10~i'

0.10 0.325 - 0,5×10^2

im 2.95 - 0.55

3.16 5.00 - 5.00

11.11 6.11 - 61.73

Secondly, the Fourier transform of the truncated series does not show any sign of convergence to the expected answer. We consider this fact as an indication, even stronger than that coming from the momentum space, that the Fourier transform of the energy of the two classical sources in QCD is singular at q =0. This shows once morę the confining naturę of the qq interactions.We would like to thank R. Wit for the critical reading of the manuscript.
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