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The form of the solution of Einstein,s equations for a spherically symmetric distribu- 
tion of matter in the co-moving coordinate system has been found. Although the pressure of 
matter is different from zero, the system is synchronous because of a suitable choice of the 
equation∣ of state.

Attempts at obtaining an exact solution of Einstein,s equations describing inhomo- geneous cosmological models are especially interesting from the point of view of investi- gations of early stages of the Universe. From the mathematical point of view the above problem is far morę complicated as compared with homogeneous models, lt seems practi- cally impossible to obtain analytical solutions in the case of inhomogeneous distribution of matter without additional assumptions. This letter presents some conclusions concerning the existence of a certain class of solutions for inhomogeneous models with the following assumptions: Einstein,s equations for the ideał fluid with pressure are discussed in a coordi­nate system synchronous and co-moving, assuming a spherical symmetry of the distribution of matter. In the case of spherical symmetry the metric has the following form:
ds2 = evdt2 - e2dr2-eμ(dθ2 + sin2 0dφ2). (1)The components of the energy-momentum tensor Tμ for the ideał fluid in the co-moving coordinate system are: Tq = b,T11 = T2 = = — p, (all others vanish), and field equa- 
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tions have the form:κp = ⅜ e~2(-∣-μ'2+μ'v')-e~v(μ-⅛μv + ⅜μ2)-e_", (2)

κp = ⅜ e-2(2v" + v'2+2μ"+μ'2-μ'z'-v'Γ+μ'v')+ ⅜e^v(Av + μv-λμ-2l-λ2-2μ-μ2), (3)κε = -e~λ(μ' +⅜μ'2-⅜ μ'Λ')+⅜ e-v(Aμ+⅜ μ2) + e-g, (4)0 = ⅜ e~λ(2μ+μμ'-λμ, — v,μ), (5)where: μ = μ(r, t), v = v(r, t), λ = λ(r, t),p — pressure, ε — energy density, κ — Einstein,s gravitational constant, the dot means a differentiation with respect to time, and the comma — differentation with respect to the r-coordinate.Using the relations Tμ'l.x = 0 which follow from the field equations one obtains the following relations: A + 2μ  --------- , v =---------- , (6)
p + ε p + εand after performing integrations:

where the functions f1(r) and ∕3(Z) can be chosen arbitrarily because the coordinates t and r can be transformed according to the relations: r = r(r') and t = z(z') [1].In order to obtain a closed system of equations we must add the equation of state — that is the relation between energy density and pressure. For example the well known Tolman solution [2] for dust matter is given for the pressure p = 0. Let us consider the equation of state of the form ε(r, t) = f(r, t)p(t), where f(r, Z) ≥ 1. Although this relation has no elear physical interpretation, we use it because it makes our coordinate system synchronous. In addition one may assume that for a fixed r the function f(r, Z) has the form of a step function — taking for corresponding time intervals characteristic values for hadronie matter, radiation or dust respectively, as in a standard equation of state in homogeneous cosmology.From equation (6) we obtain p' = 0, that means v = ∕3(Z) and

(8)
Thus
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From equation (5) after introducing the variable R = eiμ we obtain A = 2R∣R'. Integration with respect to time gives exp λ = R'2 exp f2(r), where f2(r) is an arbitrary function. After re-defining the time variable dt = eivdt equations (2) and (4) take the form:

Let us re-scale the radial coordinate r assuming∕2(r) = 0. We obtain the following system of equations:

The above system is difficult to solve without additional assumptions. When f(r, t) > 1 the system is significantly simplified. In this letter an attempt has been madę to answer the following question: is it possible to obtain a non-dust solution of Einstein,s equations with the above assumption.Applying the last assumption one obtains
p = R,~lR-2eijXl+f)~1and from equations (11) and (12):κ(p + ε) = κ(l+∕)Λ'-1R-2eiz'(l+∕)^1 = ~ ξ) •

Therefore
κeif' = 2R(R'R-RR').

(15)

(16)Thus the problem of solving field equations is reduced to the solution of non-linear, second-order, partial differential equation (16).Applying Monge,s method [3] we finally obtain:
(17)
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where functions h(R),g(r') are arbitrary andF(r) = κ ∫ e^'^dr.It is possible to obtain a solution R(r, t) after calculating the integral in (17) i.e. for a parti- cular choice of function h(R). For examρle the case h(R) = 0 is equivalent to dust solution because then equation (17) gives:

R = (3∙2^ψF÷(g(r) + t)i (18)that is Tolman,s solution. It is easy to test that, in generał, equation (17) implies dust solution only if h(R) = const/R.Thus the finał form of the solution of Einstein,s equations for an ideał fluid with pressure which is smali if compared with the energy density in the spherically symmetric and co-moving system with the universal cosmic time, is given by:
eft = R2, eλ ≈ R'2and 

where functions F, g, h are arbitrary and h(R) ≠ const/R.
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