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The elastic p — p cross-section is calculated in the quark model using Glauber multiple 
scattering expansion. We flnd that: (a) recoil effects are crucial for momentum transfers 
higher than 2 (GeV∕c)2; (b) multiple scattering terms are larger than required by the data. 
We interpret this last result as evidence for negative correłations at short distances (in the 
impact parameter piane) between quarks in the proton.

1. IntroductionMost of the existing evidence for compositę structure of hadrons has been derived from the studies of lepton-hadron interactions. The emerging picture is that hadrons are composed of quarks carrying the quantum numbers and neutral glue which is responsible for binding forces. It is, however, much less elear how this compositę structure is reflected in strong interactions. Many different possibilities are thus still open.The ambiguity arises because the information obtained from lepton-hadron processes about distribution and properties of glue is rather indirect. Indeed, glue, being neutral, does not interact with leptons. On the other hand the glue interacts strongly with quarks (providing the binding force) and with itself1. Consequently, it must play a very essential role in the strong interaction of hadrons. Thus hadronie strong interactions seem to be the natural place for studying the properties of glue.This point of view was emphasized recently in a series of papers by Van Hove and collaborators [1-4], It was assumed that (i) glue is the only part of the hadron which undergoes strong interactions and (ii) that the distribution of glue is not related to the distributions of quarks (except for constraints implied by conservation laws). The model 

(855)



856
turned out to be successful in semi-quantitative description of high-energy pp-interactions (diffractive and non-diffractive). Recently, it was shown that it can also describe very ρrecisely [4] the complicated structure observed in pp elastic scattering at ISR energies [5],In this paper we study another model of the glue interaction and apply it to the description of the elastic pp interactions at high energies.Our starting point is the observation that the additivity rules are satisfied to a very good approximation not only for inelastic but also for diffractive (vacuum exchange) processes [6]. This suggests that either the quarks are responsible also for strong interaction of hadrons or, if glue plays an essential role, the amount of glue is proportional to the number of quarks in the hadron. The simplest way to understand this fact is to assume that hadrons are built from quarks “dressed” with glue, i.e. that most of the glue is concentrated around the point-like quarks2. Such picture is not new. It was implicitly used in all early discussions of the additive quark model [6].We are thus led to the picture of hadrons in which quasi-free dressed valence quarks are confined into the region of the hadronie size. This picture resembles the one known in nuclear physics.Having adopted the picture of the hadron as a bound state of the dressed quarks, it seems natural to describe the elastic hadron-hadron scattering by means of Glauber model [8, 9], which proved so succesful in studying the interactions with nuclei at high energies. In this paper we present such a Glauber model calculation for elastic pp scattering.The Glauber model was already applied to elastic hadron-hadron scattering by several authors [10, 11], Most of this work was devoted to study of meson-nucleon total cross- -sections and elastic scattering at smali momentum transfers [10]. In particular, the devia- tions from simple additivity rules were discussed in detail. Nucleon-nucleon elastic scattering was considered in Ref. [11]. Apart from several technical details (e.g. the exρlicit choice of the wave functions and quark-quark interactions) our calculations agree with generał qualitative results of Ref. [11], However, sińce we compare our results with the data at much higher energies than those available to the authors of Ref. [11], our conclusions differ substantially.Our main conclusions are:(a) The recoil corrections are essential for the description of the region beyond the first diffractive minimum. This indicates that only finite number of constituents takes part in the collision (the recoil corrections vanish for infinite number of constituents).(b) In the simple calculation presented in this paper, the multiple scattering corrections are by far too strong. Several possibilities of improving this result are discussed.In the next Section the model is formulated in morę detail. In Section 3 we define our choice of quark densities and amplitudes. The generał discussion of multiple scattering corrections and recoil effects is given in Sections 4 and 5. Our numerical results are presented in Section 6. The conclusions are listed in the last section. The summary of the formulae used in numerical calculations is given in the Apρendix.

An alternative explanation was given in Ref. [7],



8572. Formulation of the modelIn this section we summarize the basie assumptions of the model and the main formulas used.We describe p—p interactions as a collision of two systems, each one composed of three dressed valence quarks3. The quark-quark interaction is assumed to be purely absorp- tive. According to the Glauber model [8] the elastic amplitudę f⅞>r a collision of particles A and B with the quarks frozen in transverse positions {si} has the form:
Γ(b-, &}) = 1- ∏ ∏(1-y0∙(⅛+sf-sf)), (2.1)

Fig. 1. Proton-proton scattering in the quark modelwhere γij denotes the elastic amplitudę of the z-th and √-th quarks interaction and b is the impact parameter (see Fig. 1). The elastic amplitudę in momentum transfer representation is a Fourier transform of the amplitudę in impact parameter space:T(Λ) = ∫ d⅛<Γ(h; {⅛>λi ea't, <2.2)where < )AB denotes averaging over quark density distribution D(s1, s2, s3) in CM systems of particles A and B, respectively:
I∖b) ≡ <Γ>74β = ∫ d2s^ ... d2sB3DA^})DB({^})r(b ■ {Ji}). (2.3)The detailed description of this formula is given in the Appendix.With this normalization the cross sections are given by the following formulae: total cross section: σ,ol = 2 Re T(0), (2.4)

3 As explained in the introduction we assume that alt glue and possible q q pairs are concentrated 
around valence quarks.
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elastic differential cross section:

da 1 → ,
dt

= - ∣T(d)∣2, t ~ — A2, 4π (2.5)single diffraction (of B particie) cross section:
ffSD = \d2b^r{b-,{^)>A>B-^ (2-6)total diffraction cross section:
σTD = ∫d2b<r2(b∙, {si})yAB — acl. (2.7)It is seen from these formulae that the cross-sections (2.4)-(2.7) are specified by the q—q elastic amplitudes γij and quark densities Z>({si}). In the next Section we discuss our choice of these functions.

3. Quark densities and quark-quark amplitudesWe are now going to discuss some plausible choices of the unknown functions in our model. There are two such functions in the formulae of Section 2: D(s1, s2> S3) a∏d ^i(b). The function D({si}) describes the distribution of quarks in the impact parameter piane. 
γ(b) is the quark-quark scattering amplitudę.To compute the scattering amplitudę in different orders of expansion (2.3) we have to perform the integration over several two-dimensional variables. To control the depen- dence on parameters we considered distributions which can be at least partly integrated analytically. The obvious first choice for D({si}) and γ(b) is therefore a Gaussian function

= ,3∙υwhere A denotes the average radius squared for particie A (analogous formula holds obviously for particie B) and
γ(⅛) = γ(0) exp . (3.2)Due to the normalization condition ∫ {J¾}Z>({.si}) = 1 there is only one free parameter in the function Z>a({s1∙}). For γ(b) we have in principle two parameters. However, it can be shown that the value of γ(0) should be close to 1 if we want to produce sizeable inelastic diffractive cross-section by means of formula (2.7). In fact even for this maximal value allowed by unitarity for purely absorptive amplitudę, inelastic diffraction in this case is slightly too smali [1]. It can be corrected by flattening of γ(b) at b 0 in the analogous way as in the glue model of Van Hove [4]. However in our case a smali change of shape of γ(⅛) is not very crucial for the elastic scattering, as we will discuss later. Anyway, in the following we will always use y(⅛) satisfying the conditiony(0) = 1. (3.3)
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The functions (3.4) and (3.6) differ from (3.1) and (3.5) by additional <5-functions. Due to these <5-functions unphysical transverse momentum distribution of center of mass of the particles is avoided [9] or, in other words, the recoil effects are properly taken into account4.

4 For the quark model it is not quite obvious that the choices (3.4) or (3.6) are superior; some part 
of the momentum can be carried by “bag walls”, “additional glue” or other hypothetical objects (absent 
in nuclear physics) and some transverse oscillations of “ąuarks CM” are in principle possible. Comparison 
of the results obtained with both choices may help to understand better the quark dynamics.

The function (3.6) may be regarded as a superposition of Gaussians with different widths. It has a virtue of producing dipole proton formfactor: (3.7)Notę that analogous formula for pion (two quark system) produces simple pole formfactor. The function (3.6) is therefore a simple example of a choice producing correct quark counting rules.The shape of the function γ(b) seems to make not much difference in the elastic amplitudę. As noted above, the magnitude of inelastic diffractive cross-section suggests that quarks are “black” i.e. y(0) = 1. We have checked that two other choices which satisfy the condition (3.3)
b2 b27(⅛) = i-(i-e~ R^)(i-αe^W), (3.8)→ —y(⅛) = [1 — exp (-λe ^r)]∕(l -e^λ), (3.9)give p—p amplitudes similar to that obtained from the Gaussian form (3.2).

The choice of Gaussian function in all arguments for D((si}) is not quite unreasonable, sińce in this case one gets Gaussian p—p amplitudę in the first order apρroximation (corresponding to a simple exponential in i). It has been conjectured by many authors that the dip-bump structure in differential cross-section is due to the interference between single and double scattering both being monotonie functions in t. Our choice can be regarded as the simplest ansatz satisfying this scheme.We will compare the results obtained using Eq. (3.1) and the following altemative forms of Z)({si})
(3-4)
(3.5)
(3.6)
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Since the form (3.8) corresponds to a Gaussian with additional “taił” (for β > 1) and the form (3.9) interpolates for different values of 2 between a Gaussian and “black disc”

lim [l-exp(-2e *2)]∕(1 -e~λ) = Θ(C-b2),
Λ→oo
R2->0 

R2 lnΛ = Cwe can regard our three cases as a fair representation of different possibilities. Hence we conclude that change in y(b) does not influence significantly the shape of the elastic cross- -section.Our choice of functions D may seem to be rather arbitrary. However, it seems to be difficult to find a function differing significantly from (3.6) or (3.5) and producing dipole formfactor, if we do not introduce correlations between quarks other than <5-factor. Therefore, similar results for significantly different choices (3.4) and (3.6) or (3.1) and (3.5) suggest the conclusion that these results are representative for quite a wide class of density functions D.This class is defined mainly by three requirements:(z) quarks are weakly correlated,
(ii) all the quarks interact with the same amplitudę,
(iii) distribution of quarks is consistent with electromagnetic formfactor of the proton.We shall see whether with these assumptions our model is able to describe the data.

4. Multiple scattering correctionsIn order to estimate the magnitude of multiple scattering we present here a simplified argument which is independent of particular choice of functions D({si}) and y(⅛).The geometrical picture suggests that w-th order contribution to the total cross-section behaves like wn ■ (x∣2)n, where
(4-1)

is approximately the probability of two quarks (each from another proton) to interact, and wn = is a ∏umber of different choices of pairs of interacting quarks. r2 is squared radius of q —q interaction which measures the effective size of quark in transverse piane and <s2> is mean squared value of transverse quark position in the proton.A lower bound for X can be obtained from experimental data on total p—p cross- -section σtot and elastic slope in forward direction B. Because of shadowing effects the following inequality holds:
σtot < 9σJJJ}, (4.2) 
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where σqoqt denotes the total quark-quark cross-section and equals to 2πr2 by definition of r. Similarly the slope B is increased by the multiple scattering and so it is greater than the slope for point-like quarks Bp = <s2>.

Fig. 2. Graphs representing different terms in the multiple scattering expansion of pp amplitudęHence for x we have: (4.3)
This estimate gives following ratios of subsequent orders of scattering:9 : 3.6 : 0.8 : 0.1 : 0.0008 : 0.00004 : 0.000001 : 0.00000001So one should expect several orders of scattering to be of similar magnitude. To illustrate this fact we show results for Gaussian γ(b) (Eq. (3.2)) and -D({sJ) given by Eq. (3.4). Numerical values for r2 and <s2> are chosen to fit the total p—p cross-section and profile function at b = 0 : Γ(0), for total CM energy √s = 53 GeV. The contributions of con- secutive orders to these two quantities are the followingσt0t = 42.5 mb = (56.0-16.8 + 3.9-0.7+0.2-0.03+0.004-0.0004+0.00002) mb, (4.4)Γ(0) = 0.75 = 1.37 - 0.95 + 0.47 - 0.18 + 0.06 - 0.02 + 0.003 - 0.0005 + 0.00003. (4.5)The contributions of multiple scatterings to dσ]dt and to Γ(b) are shown in Figs 3a and 3b (the numbers on the curves denote how many orders in multiple scattering are included).
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second (2), third (3), fourth (4), fifth (5) and ninth order of the multiple scattering expansion for the Gaussian 
density function (3.4) and Gaussian quark amplitudes (3.2) with the typical values of parameters
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5. Recoil effects for scattering at high momentum transfersIt has been pointed out recently [13] that the ISR results for high momentum transfer elastic pp scattering [5] are rather embarrassing for “composite structure” models of pp collisions (as e.g. Chou-Yang model [14]). Indeed, although such models are able to predict a dip and secondary maximum corresponding to that observed in experiment for moderate momentum transfers, they fail to reproduce correctly differential cross section for higher t. In particular, the predicted decrease after the secondary maximum is too fast, and further dips (expected in the model) do not appear in data. Consequently, experimental cross section at momentum transfer, say, 5 (GeV∕c)2 is by orders of magnitude higher than model predictions.

5 We would like to thank Professor Czyż for pointing out this to us.

We would like to emphasize here that for the “composite structure” models with finite and smali number of particie constituents (as in the quark model discussed in this paper) the result quoted above is valid only if one neglects recoil effects5. Introducing an additional <5(2)(^ s>) factor (s1∙ are positions of constituents in impact parameter piane) 
iinto the density functions of (3.1), (3.5) one can enhance the resulting cross section (at high momentum transfer) by orders of magnitude.We shall demonstrate this statement for the simple case of Gaussian density functions and quark amplitudes. Denote any of the terms in the multiple scattering exρansion of pp amplitudę by Tk(∆f.

Tk(∆) = ∫ d2sλl ... d2sfd2bDx({s[,})Dfl({sJ}) exp (- ∑ mij(b +¾4-s≈)2)et^(5.1) 
‘JOne can provc that the formulae obtained by integrating Eq. (5.1) with (7j) and without recoil factor in D(Tkr) are related by [9]

_ Δ2Λ
Tkπt(∆) = e~ ~β^Tk(Δ). (5.2)This does not mcan yet that the result with recoil is much less steep, sińce A is a free parameter which should be fitted scparatcly in both versions of the model. However, we can estimate its value by comparing the exρerimental forward slope with the slope of single scattering term (expected to dominate forward scattering). We have

Thυs Anr is about 10—12(c2∕GeV2) and Aτ about 15 —18(c2∕GeV2). We are now able to comρute differential cross section in both models, but to get the idea of their relative magnitude it is enough to compare one of the least steep terms in amplitudę, expccted to be relevant in high momentum transfer region, T,4(d). It corresponds to three independent 
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collisions, in which all the quarks from both protons take part pairwise (first graph in III order in Fig. 2). This term is given in the discussed models by

We see that the value of Aτ does not enter at all in the exponent. This reduces the estimated error of the ratio of (5.3) and (5.4) (xr and xor are much smaller than 1 and not very different in all our fits). We have
which corresponds to 8 orders of magnitude in the differential cross section at 
t = —5 (GeV∕c)2. Thus the disqualifying results of Ref. [13] do not apply to the quark models with smali number of quarks and recoil effects taken into account. It is therefore interesting to try to fit these models to the data. Notę that for the infinite number of consti- tuents (optical limit, as in the Chou-Yang model [14]) the recoil effects are negligible [9], The results of Ref. [13] seem to rule out all such models as possible pictures of high t scattering.

6. The results of numerical calculationsIn this section we summarize the results of our calculations and compare them with experimental data. We have computed the elastic amplitudę of p—p scattering in impact parameter representation and in momentum transfer representation as well, including all orders of scattering (Eq. (2.1)). The comparison of the results for Gaussian γ(b) (Eq. (3.2)) and for three different jD({si}) given by Eqs (3.1), (3.4), (3.6) was madę. Such D functions lead to Gaussian (G) or dipole (d) electromagnetic proton formfactors — corrected for recoil effects (r) or not (nr). Thus we denote our three cases by: (G, nr), (G, r), (d, r) respec- tively. It is convenient to parametrize the results by q— q interaction radius squared r2 and dimensionless parameter x = r2∕<s2> (Eq. (4.1)). For all amplitudes and cross-sections considered here these parameters are fixed by following requirements :σt0t = 42.5 mb,
Γ(b = 0) = 0.75,according to experimental data at total CM energy -Js = 53 GeV.

(6.1)(6.2)

(5.3)
(5.4)

and



In Figurę 4 we show the deρendence of Γ(b = 0) on parameter x. From this graph and Eq. (6.2) we obtain x = 0.36 for all three cases. Then the requirement (6.1) implies the following values of q—q interaction rangę r, transverse proton size6 Rp = V<s2> and logarithmic slope B of dσ∣dt (for smali momentum transfer).

6 The quark density distribution (3.6) leads to electromagnetic proton formfactor of correct dipole 
form, so it may be interesting to compare the transverse proton size Rp = 0.31 fm2 resulting from our 
fit and R2sm = Q.44 fm2 given by experimental proton formfactor

Fexpω = (l+r/0.71)-2.

The difference between values of Rp and Λem has simple physical interpretation. The neutral glue does not 
take part in electromagnetic interactions and can be regarded as fourth component of proton, carrying 
a part of total proton momentum. Therefore there are no momentum conservation constraints on quark 
wave functions (the recoil effects are not important in this case). In the strong interaction processes the 
recoil corrections are necessary and the following relation should hołd:

p2 _  2 d*
∙λP — 3* ^cm∙

This prediction is in good agreement with the values quoted above.

D function r [fm] Rp [fm] B [GeV-2J

(G, nr) 0.33 0.55 10.6
(G,r) 0.31 0.52 9.7
(d,r) 0.33 0.55 10.6

Fig. 4. The values of opacity for central collision Γ,(0) calculated for Gaussian density function with (3.4)

and without recoil (3.1) and for dipole density function with recoil (3.6) as a function of parameter x = ——
<s2>
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Fig. 5. Comparison of the experimental differential cross section a) and impact parameter profile b) with 
the model calculations for Gaussian density function with and without recoil for typical values 

of parameters
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Fig. 6. Comparison of the experimental differential cross section a) and impact parameter profile b) with 
the model calculations for Gausssian and dipole density function with recoil for typical values of parameters



868 The results for differential cross-section dσ]dt for cases (G, nr) and (G, r) are compared with experimental data in Fig. 5a. This picture shows that recoil effects are responsible for slow decrease and large values of dσ]dt at large momentum transfer. (This fact was already discussed in Section 5 . However, nonę of the model curves agrees quantitatively with data.For the set of D functions (Eqs (3.5), (3.6)) giving dipole formfactor we present only (d, r) curve (Fig. 6a) and compare it with (G, r) curve to exhibit the dependence of dσ]dt on the shape of quark density distribution.The proton profile in impact parameter space Γ(b) obtained in all three cases is morę “black” for smali values and morę “transparent” for large values of impact parameter

Fig. 7. The values of the product of total cross section and dip position — σ,t0 calculated for Gaussian and 

r2
dipole density function with recoil as a function of parameter x = —— . Experimental value is shown 

<s >
as horizontal linę

when compared with experimental distribution. The comparison of Γ(6) with data (from Ref. [15]) is presented in Fig. 5b for (G, r) and (G, nr) cases and in Fig. 6b for (d, r) case.In all our model curves the position of first dip in dσ∣dt is distincly shifted to smaller values of momentum transfer (—10 = 0.7 —0.8 GeV2 for all the cases) than the experi- mental value —10 = 1.34 and a second dip in dσldt is present in contradiction with ex- perimental data. For our simple choices for functions D and γ the position of the first dip cannot be fitted correctly without significant decrease of total cross-section. This is seen in Fig. 7 where the product -t0σlot (which is the function of x only) is plotted vs x for two cases: (G, r) and (d, r). Both curves lie below the experimental value.
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7. Conclusions and outlookWe have presented the calculation of the elastic pp scattering in a specific quark model. The main assumption is that the proton consists of three valence quarks, each dressed with the corresponding piece of glue (and possibly qq pairs). Ali these dressed quarks contribute to the elastic scattering amplitudę according to the multiple scattering expansion. We have assumed furthermore that quarks are uncorrelated except for momentum conservation constraints. To satisfy the experimental estimates for inelastic diffraction, quarks are assumed to be smali and nearly “black”, i.e. in central qq collision the unitarity is saturated. As long as this condition is fulfilled, the detailed shape of qq amplitudę does not influence our results7.

7 It should be emphasized that this situation is quite different from that in the Van Hove glue model [2], 
where the change of the same function (glue-glue amplitudę) affects simultaneously elastic and inelastic 
diffraction, whereas the corresponding density function (distribution of the glue position) is rather irrelevant 
for the results. This is so because in the Van Hove model there is only one active constituent — the glue, 
and its size is not much smaller than the size of the proton.

We find these assumptions strongly restrictive and determining the resulting elastic amplitudę almost unambiguously. The numerical study of this amplitudę led us to the following conclusions.1. Recoil factors in the quark density functions (implied by the momentum conser- vation for quarks) play essential role for the momentum transfers higher than 2 (GeV∕c)2. In particular the recoil factors increase the cross-section in this region by several orders of magnitude, as compared to the calculation without recoil. They seem thus to be necessary to get rid of discrepancy [13] between the data and the composite models without recoil. We like to emphasize that these recoil corrections appear only if the colliding objects consist of finite number of constituents.2. Multiple scattering terms are very important. In fact, to obtain a reasonable accuracy in the disscussed momentum transfer rangę, it is necessary to consider multiple scattering expansion up to (at least) fifth order.3. With the assumptions listed at the beginning of this Section we were unable to fit the model to the existing data. In particular, it seems impossible to describe simulta- neously the position of the dip in the difierential cross-section and the value of the total cross-section. Furthermore, using the experimental value of the total cross-section, the calculated difierential elastic cross-section behind the dip is too large and a secondary minimum appears at ]r∣ ~ 3(GeV∕c)2 contrary to the experimental observations.4. These discrepancies between the model and the data indicate that the model overes- timates the multiple scattering constributions. Indeed, the position of the dip is determined mainly by interference between single and double scattering. Consequently, by suppressing the multiple scattering terms, the dip is moved to higher values of momentum transfer, as required by the data. At the same time the magnitude of the secondary maximum is reduced and the second dip shifted to high values of momentum transfer. Let us add that also the well-established additivity rules [6] indicate that the multiple scattering corrections should not be too large. This last observation gives further support to our conclusion.
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We would like to close our discussion by few speculations about possibilities of further investigation along the lines presented in this paper.Since our numerical estimates indicated that multiple scattering corrections are too large, it is necessary to search for mechanisms which would reduce them. In the multiple scattering model we consider, a natural way to suppress these multiple scattering terms would be to introduce the repulsive short-range correlations (in the impact parameter piane) between the quarks in the proton. We thus feel that our calculation strongly suggests the existence of such correlations. It remains to be checked, however, if it is possible to obtain a quantitative agreement with the data in this approach. This is an interesting question to study.The origin of such correlations between quarks in the impact parameter piane may be two-fold. They may be either the genuine dynamical correlations, or they may appear as the result of integration over the longitudinal variables of an otherwise uncorrelated (or weakly correlated) distribution (the momentum conservation constraints i.e. recoil factors should always be included). Longitudinal variables were neglected altogether in the present paper. We thus feel that the next step is to repeat our calculation with longitudinal variables taken properly into account.Another possibility of reducing the multiple scattering corrections is to accept that the qq cross-section is not a fixed number but may depend on other parameters (e.g. x value of the quarks) [3], This may occur, e.g. if the amount of glue which dresses a given quark fluctuates and consequently changes from one quark to another. It would certainly be interesting to formulate a specific model taking this possibility into account and to study its consequences.We thank Professor W. Czyż for help in understanding the multiple scattering model and for constant encouragement. One of us (A.B.) thanks Professor L. Van Hove for illuminating discussions.

APPENDIXIn order to compute the elastic amplitudę in impact parameter representation Γ(⅛) (Eq. (2.3)) one has to average all terms of the multiple scattering expansion (Eq. (2.1)) over quark density distributions in particles A and B. Many terms produced by Eq. (2.1) are equivalent, i.e. after averaging they become equal. Thus, for each order of scattering, elastic profile Γ(b) is the sum of only several different contributions. In the case of p—p scattering there are altogether 25 different terms contributing to Γ(b) (Eq. (A.l)); the corresponding diagrams are presented in Fig. 2. The lines show, which pairs of quarks interact during collision. Each diagram is multiplied by the number ck indicating how many multiple scattering expansion terms of this type are equivalent. We are going now to describe a simple algebraic scheme which solves the problem of integration over trans- verse quark positions {si} (Eq. (2.3)) when the quark density distributions Dλ, Db and 
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q-q scattering amplitudę γ are Gaussian or superpositions of Gaussians, e.g. (3.5), (3.9)8.

8 In the latter case each of the amplitudes Γ∣c contributing to Γ,(⅛) becomes superposition of the 
terms which can be calulated in frames of the presented scheme (all of these terms are of the form described 
by Eqs (A.3), (A.4)). An example of the calculation with functions being superpositions of Gaussians is 
presented at the end of the Appendix. The <3-factors responsible for recoil effects can be easily introduced 
into the presented scheme using the standard method described e.g. in Ref. [9],

This scheme can be useful in analytical and/or numerical calculations. The fuli elastic amplitudę Γ(b) can be written as follows
Γ(b)= ∑ (-l)n+ickΓk(b) (A.l)

*=iwhere the amplitudę Γk corresponding to ⅛-th diagram (which belongs to n-th order of scattering) has the form
Γk(b) = ∫ d2s^ ... d¾({¾4})Dβ({J,β}) ∏ γij(b + sf- sf). (A.2)

(i.j)The product involves all quark pairs (i,j) which undergo interaction in the process (<j)described by fc-th diagram (see Fig. 2.). Thus, in generał case, we have to calculate for each diagram an integral of the following type (the index k is not written explicitly)
I(b) = ∫ d2sj} ... d2se3 exp (- w(lf, ..., ; ⅛)), (A.3)where

(A.4)
The form (A.4) of w corresponds to Gaussian density distributions with individual radius squared (^41, A2, A3 in particie A, B1,B2,B3 in particie B) for each quark and to Gaussian quark profiles γij with different radii rij for each interacting quark pair The radii rij determine the matrix mij0 if quark pair (i,j) does not interact in the process described by the considered diagram, (A.5)mυ = • —y- otherwise. 

ruWriting explicitly the exponent w (Eq. (A.4)) as a second-order form of (2-dimensional) variables si(s∣ = s1, ..., s3 = s6) we have
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After changes of variables in w (Eq. (A.6)) — translation to obtain a (positively defined) quadratic form and subsequent diagonalisation of this form — the integrand in (A.3) becomes the product of independent Gaussians and integration is then trivial. In terms of matrix G, vector V, and scalar Z the result reads

(A.7)
The explicit forms of Z, V, and G can be written in the following way: (A.8)

(A.9)
(A.10)

_ _c ⅛~mij-3> i = 1, 2, 3, 7 = 4, 5, 6 J‘ ,J (0 for other i < J (A.11)

The generalization of the presented scheme for different numbers of quarks in colliding hadrons is straightforward. Now, we list explicit forms of amplitudes corresponding to first seven diagrams (three orders of scattering) for our choices of functions D (Eq. (3.1)) and γ (Eq. (3.2)) (Ai = A, Bj = B, r2j = r2, i,J =1,2, 3). For the sake of simplicity we introduce dimensionless parameters X = A∣r2, Y = B∣r2. (A.12)(A. 13)
(A.14)
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(A. 15)(A.16)
(A.17)

(A.18)
The corresponding amplitudes Tk(∆) in morhentum transfer representation can be easily obtained as Fourier transforms of Γk(b) (compare Eq. (2.2)). The amplitudes Tt,,econ(d) with recoil corrections taken into account are simply connected with these functions Tk:

(A.19)(see Ref. [9]).Now let us apply the results (A. 12) —(A.18) in the case of quark distributions given by Eq. (3.5) and Gaussian q—q amplitudę Eq. (3.2). The functions Dλ, Db are the super- positions of Gaussians (A.20)with normalization conditions
∫ d2s1 ... d⅛D√{sJ, x) = 1.The explicit form of DA reads (A.22)

and the choice
leads to dipole proton formfactor. m (λ-) = x exp (— x)

(A.23)
(A.24)
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Substituting Eq. (A.20) into Eq. (A.2) we obtain

co oo

rk(b) = ∫ dx w(x) ∫ dy w(y)Γk(b; x, y), (A.25)
O owhere

rk(b; X, y) = ∫ d2st... d2⅛({¾. *)M¾  y) ∏ yij- (A.26)
(i.J)The previously obtained results (Eqs (A. 12)—(A. 18)) hołd for rk(b; x, y) with substitutions 

X = xA∣r2, Y = yB∣r2.

REFERENCES

[1] S. Pokorski, L. Van Hove, Acta Phys. Pol. B5, 229 (1974); L. Van Hove, S. Pokorski, Nuci. 
Phys. B86, 243 (1975).

[2] L. Van Hove, Acta Phys. Pol. B7, 339 (1976).
[3] L. Van Hove, K. Fiałkowski, Nuci. Phys. B107, 211 (1976).
[4] L. Van Hove, CERN preprint — TH-2278, 1977.
[5] H. De Kerret et al., Phys. Lett. 62B, 363 (1976).
[6] H. J. Lipkin, F. Scheck, Phys. Reυ. Lett. 16, 71 (1966); E. M. Levin, L. L. Frankfurt, Zh. 

Eksp. Teor. Fiz. 2, 105 (1965).
[7] W. Królikowski, Acta Phys. Pol. B8, 237 (1977) and references quoted therein.
[8] R. J. Glauber, Lectures in Theoretical Physics, Vol. 1. Interscience, New York 1959.
[9] W. Czyż, L. C. Maximon, Ann. Phys. (USA) 52, 59 (1969).

[101 N. W. Dean, Nuci. Phys. B4, 534 (1968); Phys. Rev. 182, 1695 (1969); Phys. Rev. Dl, 2703 (1970); 
Phys. Rev. D5, 124 (1972); A. Deloff, Nuci. Phys. B2, 597 (1967); V. Franco, Phys. Rev. Lett. 18, 
1159 (1967).

111] D. Harrington, A. Pagnamenta, Phys. Rev. Lett. 18, 1147 (1967); Phys. Rev. 173, 1599 (1968).
[12] A. Białas, K. Fiałkowski, unpublished.
[13] U. P. Sukhatme, Phys. Rev. Lett. 38, 124 (1977).
[14] T. T. Chou, C. N. Yang, Phys. Rev. 170, 1591 (1968).
[15] H. I. Miettinen, Acta Phys. Pol. B6, 625 (1975) and private communication.


