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The predictions of parton models for the single-particle distribution in the large py
. . . do c

region are analysed. An explicit expression for the slope B in the formula EdT = — e Bxr
P Py

is derived. It is shown that the weak rapidity dependence of B, observed at ISR implies the

do
hard scattering cross-section I to be approximately independent of energy ar fixed pr.

1. Introduction

In this paper we study the single-particle distribution of large py mesons produced
in high-energy collisions. Taking the parton model as our basic assumption we attempt to
determine what the available data imply for the interaction of elementary hadronic constit-
uents at small distances. Our main result is that, in order to describe properly the rapidity
dependence of the large py spectrum it is necessary that the elementary hard scattering

do
cross-section s depends approximately only on pq.

In parton model the fast moving hadron is treated as a collection of non-interacting
point-like constituents — partons. In hadron-hadron collision these two parton clouds go
through each other and the large p; particles are produced as a result of the wide angle
elastic scattering of fast constituents.

There is a number of parton models which have been proposed to describe the large
pr phenomena (see, e. g. Ellis talk at London Conference 1975). They differ in the type
of constituents which are assumed to give the leading contribution to the wide angle
scattering and in the shape of the hard scattering cross-section.

* Address: Instytut Fizyki UJ, Reymonta 4, 30-059 Krakéw, Poland.
(633)



634

However, in spite of these differences in details all these models predict:

a) power-like fall off of the single-particle inclusive yields in the transverse momen-
tum pq,

b) large pp scaling, i. e. the dependence on energy only by the scaling variable

NEN

¢) coplanarity and the jet structure in the large py events.

These predictions are confirmed by the recent experiments [1-4] so that it is likely
that the parton model can provide a proper dynamical description of large p; production.

In this situation it seems worthwhile to go one step further and ask whether the data
can tell us something more about the details of the model; in particular, about the type of
constituents which undergo the hard scattering and the angular dependence of the hard
scattering itself. Such information should be very valuable (in fact, necessary) for finding
the correct interactions of hadronic constituents at small distances.

The purpose of this paper is to attempt such an analysis. We derive the (approximate)
analytic formula for the single-particle distributions, starting from the simple paramet-
rization of the quark mode! input. We then compare the results with the data from
CERN-ISR experiments. As shown below the data restrict quite severily the angular
dependence of hard scattering as well as the type of constituents dominating in meson
production at large py.

We start with a brief reviéw of the present experimental status in the large p; produc-
tion on the single-particle level in the ISR region (x; < 0.3, iyl < 1):

1) py dependence: the single-particle spectrum falls off approximately like some
power of py, for p; 2 GeVjc with a power N = 8 for mesons and N & 12 for barions
I, 2, 4};

2) s dependence: large py scaling is satisfied to a good approximation, i. e. the single-

-particle distribution depends on s only by the scaling variable x; = % (1, 2, 4]:
EL o aten v, (1.1)
Pp
For y = 0 fits of type
AL 12)
&p - pl

with B ~ 13 for 7° and B ~ 15 for n*, n~ seem to describe the data rather well for x; < 0.3
[, 2, 4]

3) y dependence: for small y (Jy! < 1) the function g(xy, y) depends weakly on y.
One can see it in Fig. la, where g(xq, y) is presented for y = 0.0 and y = 0.75. The slope B
in (1.2) seems to be only slightly greater at y = 0.75.

The relevance of the scaling variable x; = x; cosh (y) assumed by some authors as
the typical one for the parton models (what is not true it general, as we show in the next
Section) is tested in Fig. 1b (Figs la and 1b are taken from Ref. [2]). One can see there
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Fig. 1. The scaling function g(xt, ») (Ref. [2]): a) g(xT, ») versus xr: test for scaling g(xT, y) = glx1),
b) g{x, y) versus xg = xt cosh y: test for scaling g{x1, ¥) = g(xg), ¢) g(xT, ») versus xr = % x1(1+4cosh y):
test for scaling g(xt, ) = g(xF)

that the data does not favour the scaling of type g(xy,y) = g(xg). Thus the rapidity
dependence can be summarized by the formula

do ¢
E— = — ¢ B i.3
d’p pr ¢ (13)

where B(y) depends very weakly on y. In particular, B(y) = B(0)cosh (y) gives much too
strong rapidity dependence than observed experimentally.

For reasons which will be clear in the next Section we have tried to test scaling of
type

g(xr, y) = g(} x¢(1+cosh y)),
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or B(y) = B(0) 4 (1+cosh y). As seen from Fig. lc, it fits the data rather well, especially
for larger values of xy.

To observe the y dependence of B we have fitted the formula (1.3) (or, in another
words, (1.2) for y = 0 and y = 0.75 separately) to the ACHM data (Ref. [2]); the result is
presented in Fig. 2. Solid lines correspond to B(y) functions considered above. Hence we

s

© 308 GeV/c

A 451Gevic

o 53.2Gev/c

® Al energies

Bly)
» Bly)=8{0)coshy
” —
%
5 8ly =8I0} % (1ecosh y)
%
13]
2 Bly)=8(0)
n
0
L2
.33
7
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i

10 129 cosh y
{y=00) {y=0.75)

Fig. 2. » dependence of the slope B in the formula (1.3). Points are results of the fit to the ACHM data
(Ref. [2]). Solid lines correspond to the functions B(») tested in Fig. 1. Dashed line is the prediction of
the model with isotropic (at fixed s) hard scattering for <{xt> = 0.2

conclude once more that B(y) = B(0) cos y is excluded by the data. As seen from Fig. 2,
the value of B for y = 0.75 lies between B(y) = B(0) and B(y) = B(0) 4 (I +cosh »).

In the present paper we find an explicit (although approximate) expression for
g(xg, ¥} valid in the ISR region for most versions of the parton models. 1t has the form
suggested by (1.3), where

B(y) = B(0) [, cosh v+, 4 (I +coshyv)], B,+8,=1 (1.4)

B(0) is determined by the structure functions involved in a model, #, and f, are sensitive
to the angular dependence of the hard scattering.
In particular, if the hard scattering cross section does not depend on angle (energy)
at fixed py, 1. e.
do

da i
-~ {(py, 0) = — (pr, 90°), (1.5)
dt dt
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then B, = 0, B, = 1, while if it does not depend on angle ar fixed s, i. e.
da 5, 0) = do (s, 90°) 6
ar T T (1.6)

then B, = 1, f, = 0.

Comparison of the formula (1.4) with properties 2} and 3) of the experimental yield
imply the following constraints on parton models:

a) B{0) = 13-15 for = production,

b) B1 < B>-

Thus our conclusion is that to reproduce weak rapidity dependence of the single-
-particle distribution one has to build the model with the hard scattering which does not
depend on energy at fixed py (Eq. (1.5)).

On the contrary to it, models with isotropic (at fixed s) hard scattering (Eq. (1.6))
are far from beeing able to reproduce b), i. e. they give too sharp rapidity dependence and
seem to be excluded by our analysis.

Values of B(0) are calculated for = production in the Constituent Interchange Model
(CIM) [5]. We find a) to be approximately satisfied by all leading subprocesses with the
double-jet fragmentation in the final state, while the quasi-exclusive contributions give
too small value of B(0).

2. Calculation of the single-particle distribution

Let us start with the general formula for the single-particle distribution in the parton
models (see Fig. 3 for notation):

do [ dx., [ dvGope )G 22 +HA©B), (@l
3 = Xe Xe,Ue X JUe X 3 Ca N 5 .
@l J 1J A 2{B\ Ve, ﬁl ) ( )
\ El AB—i+ X El ciez—+1+X

where G, (a(X;,), Go,p(xc,) are the structure functions of constituents c,, ¢; in incoming
protons 4, B, respectively, for which we take the standard form

ncl{A nchB .

(1—xg,)=® 22

Gcl].‘\(xcl) = (l—xm)quIA’ GczIB(xcz) =

€1 M >

(transverse motion of ¢, and ¢, is neglected). Powers g.,|a, &3 are determined by the
formula

8eja = 2ma—1,
where m,, is the minimal number of quarks which must be slowed down in A to produce ¢

with x ~ 1 (e. g gqp = 3, &g = 1, &npp = 5 etc.). Inclusive distribution for the sub-
process c;c, — 1+ X can be written as

do _ d’p,, [ do dN
d’p, E;, d3P1‘ d’p,

E} cie2—1+X EJ; crea—Jide El i1+ X

+J, 1) (2.3)
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Since the hard scattering is assumed to be the elastic one

4o S 5G4t <d0“> (2.4)
-3 = —0($ u oy .
d3p-'1 T d ciea=Jids

E.Il cic2—I1)>

(quantities with A refer to c;c, CM frame, without A to AB CM frame; sece Fig. 3).

2 2
52(py+Pa 12ty = (pa-py )3y = (P Pi ),

; Bl PaBs
Xeq = Elpey)eprey. WXep = E(P"c[_'s) P Prey” ILA A py
Vs

Fig. 3. Definition of the variables used in text

From the dimensional analysis (Brodsky-Farrar counting rules [6]) which is assumed
to work in the wide angle region s — o0, ¢t — 0, /s fixed

doy _ I ' 25)
T ) - G ) 2.

where n = N,—2, N, beeing the number of external quark legs in the hard scattering
amplitude.

The simplest formula for the jet J; fragmentation (zero width approximation) reads

o

1 . " "
3 = ;5(p%1|,1)x1G1|11(x1), (2.6)

El Ji-»p1+X
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where ﬁmh is the transverse component of p, relative to the jet axis ;,11 and X,
Ei+pm L
2131, Py,
The calculation of the integrals involved in (2.1) and (2.3) is presented in the Appendix,
here we wish only to describe briefly the method. It can be proved (see Appendix) that
the symmetrization A «» B can be reduced approximately to the replacement

f(—i-) = foym (i , ) =f(—t:) +f<—l:'>
S M M S

in (2.5). Now, using the well-known properties of the symmetric functions and the two-body
condition 5+%+u ~ O we find that f,,, depends only on the one variable

.
“©r R

A=z = ——>—> = cosh® )
4tu  sin® Gy, Vi
since
Foa\ ./t @& t &
Sl =y =) =F{= =, % + =) = h(d). @7
N N s S S S

Thus the symmetrized hard scattering’ cross-section can be written as follows:
doy Co Co
— = — fum = = H(A) = ———= H(A 2.8
(dt )sym Sn fy sn ( ) (4 Tlx)n ( ) ( )
where
.
H(\) = 7 h(4). 2.9)

Note that the conditions (1.5) and (1.6), considered in the Introduction can be simply
expressed in terms of H and k functions

; A

"“ o 0) = ";“ (pr, 90°) <> H(A) = const, (2.10)
doy doy .

- (s,0) = o (s, 90°) <> h(4) = const. 2.11)

In general, the function H(A) is determined by the angular dependence of the hard scat-
tering cross-section and thus it depends on the details of a particular model. However,
since H(A) decreases for large 4 due to the factor 1/A" (or at least remains constant) in
almost all proposed hard scattering models, we can use for the integration purposes the
approximate form

H(2) = H(cosh? 3;,) ~ H(1)e ™. (2.12)
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Fig. 4. Function H(A)/H(l) for some hard scattering models. Numbers coincide with those from Table I

The detailed shape of H(4) and the values of a (numerical fits) for some parton models
can be found in Fig. 4 and in Table 1, respectively. If H(1) decreases with A for A > 1
then one can use for by-hand estimates the steepest descent formula for «

s (2.13)

~ Y —

hQ2) a=1

In particular, we find from the above that o = 0 for the angular dependence given by
{2.10) and o = n (= 4 for meson production) for the one given by (2.11).

TABLE 1

The function H(2)/H(1) and the value of & for some hard scattering models. Values of « are the results
of fit H(A) = H, e

[
dO‘H |
No Model ik y H(A)/H() o
|
1 isotropic hard scattering Lo ._1_~ 3.77
(at fixed s) 5* i
2 CIM (spin 0 quarks) 7z*p — 7+ (5 Y 2 ! 1.26
spin 0 quarks) #*p — 7*p =\ 2 23 ’
¢ 5 \3 4 3
3 CIM (spin 1/2 quarks) 7c"p — *p S 2 Z_ 0.33
s\ —u A A2
4 isotropic hard scattering oo (5§ + LAY 1 0.0
(at fixed py) se\F u
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With H(Z) given by (2.12) the integrals in (2.3) can be easily performed by means of
the saddle point method (see Appendix for details) and the final result reads

d‘f; = %‘ eTBOTIT L (3, 5 ,), 2.14)
El AB-1+X
where N = 2n,
B(x1,,0) = B(0,0) = B = AL (8cijat 8ealn)s
€7
(X)) = ﬁ]\i, (2.15)
N-2+g,
B(xr,, y1) = B[ BY1y ) (1bcosh v+ cosh yl], (2.16)
Bxy, +a Bxy, +o
Cipg, = ET TR (2.17)
2 ¢ o
¢, = — e Aty sH(1) \/BxT1+<x’ (2.18)
1
XY™y, = Ojdil)%i’“zc;”,l(;%l) = nyy, ((gy\;'—’_‘)z!%vg—;?;—i ) (2.19)

For the quasi-exclusive limit (1 = J,) one has to take {x;> = (X} ~2);, = L.

3. Discussion and conclusions

Formula (2.14) gives the prediction for the single-particle distribution in the large p;
(pr > 2 GeV/c), small xp (xp < 0.3), small y (|y| < 1) region, valid (approximately)
for the broad class of the parton models. An interesting point is, that all the freedom due
to the a priori undetermined angular dependence of the hard scattering cross-section
appears to be reduced to one effective width parameter «. In the following we present the
comparison of (2.14) with the experiment.

3.1. Value of Bfor y, =0

As seen from (2.15) B is determined by the behaviour of the structure functions G, 4,
G,ps Gip, near x = | and by the power # in the hard scattering.

We present here the numerical results for 7 production in the CIM. Values of B for
various CIM subprocesses are collected in Table I1. For two-body resonant decay we take
simply Gll,l(il) ~ 8(x,—14). Comparison of the results from Table II with the data is
presented in Fig. 5. Since parameters B and N in the formula (1.2) are strongly correlated,
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TABLE II
Values of the slope B in the formula (2.14) for various subprocesses in the CIM

No Subprocess g1/5 £Cy/A £Ca/B Ged B

1 Mq - Mg 0 5 3 1 8.0
2 Mg - M@ - M+X) 1 5 3 5/7 11.2
3 Mg - M- M+X)q 3 5 3 5/9 144
4 Mg —» (M* - M+M")q — 5 3 1/2 6.0
5 qq - MM 0 3 3 1 6.0
6 aa-M->M+X)M 3 3 5/9 10.8
7 aq— (M* > M+M)M — 3 3 12 12.0
8 MM - (g » M+X)gq i 5 5 5/7 14.0

it is useful to work on the (B, N) plane, as proposed by the ACHM Collaboration, where
the regions of the best fits to the ACHM and CCR data are presented. Dashed line gives
the best value of B with fixed N for ACHM data. As seen from Fig. 5, there is some
discrepancy between the ACHM and CCR data and therefore, if we fix N = 8 (which is
indeed fixed for the leading subprocesses in Table 11) then the allowed region for B extends

c e Bxr

do
B E— = —%
d’p  pr

8

3k 123727
\

S
T
Ve

[

3

W NG oW A

———————————— “pen@uumm— CC R 7{2
— xz:u/% CCR =

(=]
T
P

N 2
N\ x“=15/27 N
A I 1
8 9 10 n

I
i
o
<

Fig. 5. CIM predictions for B(0) on (B, N) plane. Numbers coincide with those from Table 1T

from 6 to 15. Almost all values of B from Table II fall into this region. Thus the pre-
sent data are not able to discriminate in a definite manner between various subprocesses.

However, if one forgets for a moment about the discrepancy in N and compares
results from Table Il with the best fits for B to ACHM and CCR data (where the nice
overlap is present), then the quasi-exclusive components seem to be excluded (see Fig. 6).
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If further experiments give support to this guess, it can introduce very essential cut-
-offs among possible subprocesses in the CIM. The point is that if for some reason the
quasi-exclusive limit of some subprocesses gives a negligible contribution (it would be
desired to reproduce the experimental value of B), then all the inclusive versions of this
subprocesses are even strongly supressed due to simple relation between the normalization
constants (2.17). Since n,;, is typically of order of 1, {xY7%y;, in (2.17) introduces the

8
17+ »
Mg —eM" (= MeM')

4—16 L ik

5 1+ Mg—M (~=M+X)q
8= 14 = - CCR

B3+ MM—gl=MX)g
— qG— MM MM
P Mg—Mg(—~MX) ACHM
6—11 — —

10+ qq—»M(»M-X)M —_— 1

91 . .
, N Mg —Mg (quasi-exclusive)

o

7+ - e

93— MM (quasi- exclusive)

5—6

5 4

4 4+

314+

Fig. 6. Comparison of the CIM predictions for B(0) with the region of the best fit for B to the ACHM and
CCR data (Refs [2], [1])

suppresion by a factor 2.5 -10-2 for g,;;, = 1 and by a factor 2 - 10~ for g,;, = 3.
Thus, if one takes seriously this elimination, then, as seen from Fig. 6, the only subprocess
which remains is the annihilation MM — qq. However, more consistent experimental
information is needed to decide if this guess can be turned into a definite statement.

3.2. Rapidity dependence of the single-particle distribution
The formula (2.16) can be written in the form given in the Introduction (Eq. (1.4))

B(%r1, 1) = B[B,(x1;) cosh y, + ,(x1,) % (1+cosh y)]
where

Bxr,

Bi(xr1) = E;i—':& s Balxy) = m s Bixr)+Balxry) = L.

Thus the rapidity dependence of the single-particle spectrum is determined by the relative
values of B, and B,, i. €. by Bxy; and a. Two extreme cases f; = 0, f, = 1 (x = 0) and
By =1, B, = 0 (¢ = o0) were discussed in the Introduction (see Figs 1b, lc, 2) and we
have found there that for §; = 0, 8, = 1 (¢ = 0) a reasonable fit can be obtained, while
B =1, B, = 0 (o = o) gives too fast growth of B, i. e. too sharp rapidity dependence.
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Thus the constraint for the hard scattering cross-section we find reads

dUH dG'H o
By « P (Bxpy) > a< T (pr. 0) ~ a (pr, 90°). (3.1)
i. €. the hard scattering should be independent of energy (or, what is equivalent, of angle)

at fixed py.

For the quantitative comparison of various models the parameter « can be used:
the smaller value of « the weaker rapidity dependence of the single-particle spectrum
predicted by a particular model. For the CIM with spinless quarks we have « ~ 1.3, This
is still comparable with (Bxy, > (for {x1;> = 0.2 we have (Bx,;> =~ 2.6 what gives §, = 0.33,
B, = 0.67 and the constraint (3.1) is not fulfiled). However, inclusion of spins changes
the angular dependence of the hard scattering; for spin 1/2 quarks the value of a appears
to be essentially smaller and is of order 0.3 for almost all CIM amplitudes with 6 quarks.
Now we have f, = 0.1, f, = 0.9 and the condition (3.1) is satisfied to a good approxima-
tion. Thus the CIM with spin 1/2 quarks is able to reproduce the weak rapidity de-
pendence observed experimentally.

On the other hand, models without or with very soft angular dependence «f fixed s have
too fast fall-off in y and are excluded by our analysis: for (1) = const we have o = 4,
By = 0.6, B, = 0.4 and (3.1) is badly violated. It can be seen in Fig. 2, where B(y) for
o =4, {xg;» = 0.2 is plotted.

The authors are grateful to A. Bialas and to R. Wit for continuous help during the
course of this work, for useful remarks and for critical reading of the manuscript.

APPENDIX

In this Appendix we present the calculation leading to the formula (2.14). The first step

is to perform the trivial integration over angles in (2.3). The resuit is
do
&Tp_; = dxcthl§A(xC;) dxczccle(xcz)

EI / AB—1+X

1

dx SR doy’
X fﬁ% Gy, (x)o(s +1 +14) (735) +(A < B). (A1)
Xy

Since the phase-space limits in (2.1) are

~ ~ Py c [+
0=5+t+1 =X, ,Xe,5+ = b+ —— Uy,
1 Xy
X b
X < 1, Xe, < 1, ,\c‘ t1+—;iu1 <0,
Xy Xy

the symmetrization A «» B (or ¢, <> u,) of the integral is equivalent to the symmetriza-
tion (x,, <> x,,, 1 «» 1) of the integrand.
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n
Let us consider first the case when G, z(x) = Gg,p(x) = G(x) = —x°~(1—x)“°.

Then the only part of the integrand in (2.1) which should be symmetrized is f{¢/s) and to
obtain the symmetrized expression one has only to replace f{(1/s) by f.,.. = ft/s)+/a/s)

52 1 -
E=3 = —wx = Y = h2 2 .
h(2), where A P -~ cosh? y;, (see (2.7)

To perform the integrals in (5.1) it is convenient to change variables

Y
€2

MY M M
Xeps Xy = s ;xc1=7e, X, == —— ¢
s \/s
where M, Y are mass and rapidity of ¢ ¢, system. We have

1

do 2 ¢ dec, 26, (R
—— =— — | X x
@p, ECTEN G
EI AB-1+X '

X j dYF, (ﬁ ey) F. (-Ai_ e“Y) H(cosh? (Y —y,))
NE Js

1
where F(x) = xG(x), M = 2py,, cosh (Y—y,), HQA) = — h(}).
A

To perform the integration over Y we note that the integrand is a product of two
strongly peaked functions of ¥, which for the integration purposes can be approximated
by the Gaussian shapes

I = )

~ nf(\/(l -3 x_”leyn) (1 ___% xTJ,e—yx) _% xnx)lgce— 2gcxax(*ran ¥1) (Y= Yo)?

& —8o(1+cosh y)xza,, — 2gexra (¥ — Yo)?
~ e e ,

where
- * - 1—'%)6 e *
Yo=3(i+y) = Ly, )’1=%1n-—1——ﬂi:";lz0,
1‘—7 xT,le
\/(1 -3 xp,€") (1 =% xpy,e7) %
1(X1y, Y1) = ~ 1

(-1 x15,€") (1—% xyy,67"") —3% Xy,)?

and the equalities with*, used in the following, are approximately satisfied for small x,
and y,; 2. H(4) decreases for large 4 due to the factor 1/4” in almost all proposed hard
scattering models. Thus we can approximate

H('l) = H(COSh2 ;11) ~ H(l)e_“(y'y’)z.
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Within simplifications introduced above the integral over Y can be performed and the

result for small x,, y, reads
i
63i6 - _[ : 2 2G1|11(x Yo POy OREn gy |
d’p, PT1

X1
El AB—1+X

where N = 2n and
b(xrs,, 0) = 5(0,0) = by = 2g.,

b(x1y,, y) = b Lcoshy ——bg-il(1+ch ),
e ° boxyy, +o o boxty, t+o &

¢y, = R n2H(1) \/
S boXyy, + 0

To integrate over x, we note that since Gy (x,) = nll,I (l—xl)‘“’“ the integrand

contains the factor x) “2(1—x,)?'!" and thus is strongly peaked for some x, = {x;).
From the mean value theorem we can write
1
do aA €5 An_ A —b g,n)g
3 = | dx, 5 x1 261[1,()‘1)3 hh )’“
P11

d3P1

El AB—1+X

X1

1

€1 —BGriyn) 2 aN-2 -
R TRy xy Gy, (%) (A2)
P11

0

1
where B(x;,y,) = m b (% , yl) . Denoting B(x;,0) = B(0,0) = B we have
1 1

Bx; o
B(x+4, =B 1+cosh + cosh .
(X11> Y1) [B Yoot %( Y1) By +o h]

The last step is to calculate B. From (A.2) we find

) n Ane R
o J‘dxlxlf 2G1|J,(x1)e "R +1
B=|—" =bo (H v 3‘)
bo Z21 _
§axxi™ Gl|11(x1)e * xr1=0
N-=-3

what menas that (x> = ——— .
N-2+gyy,
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Up to now we have limited ourselves to the case when G ax) = G, s (x). However,
for small x,, y, our results can be easily generalized to the non-symmetric case. Generally,
after the symmetrization A <» B we have under the integral

[Gcl,A(xcl)Gq.B(ch)feﬂ

~

= Gc;[A(xc;)GcﬂB(xc;)f(%) +Gc1|A(xcz)Gcz|B(xcl)f<

cn>l p3Y

)

= ZelaTep [(1—x.) (1—xcz)]’}("“xm+yezm)[ ( ) +f< )] (A-3)

cr17res

Vl)l [ 3N

where

g:

t
1—x $(gcitA = gcalB) f (—3—) )
<l_x01> ———?%——— —{“(XCl — X Xy t )

Since 6 varies with ¥ much slower than the first, symmetric part of (5.3), we can proceed

as before with the symmetric part, taking g, = (g, ja+&.,8) and finally use the mean
. . . . oa Bxy Yo +ay,

value theorem in the integration over Y, taking 6 for Y =<¥Y> = ——————— One

can easily verify, that §(<Y>) = 1 for y, = 0 and for small x,,y,

Bxp, +o
i
16)()
s

6 YD) ~ 1—(8c,1a = 8cay)¥1y, Sinh y, iIN 7aN
5) ()

what gives a correction 4B to the slope B. 4B can be bounded for any f(f/@)

Ca>| Y

I
~
o

RN EN

+
~
N

gcxIA-gcle
gc1[A+gcz|B

|4B|
— <

tanh
B Y1

and can be simply neglected on this approximation level for most typical processes
4B
(e. g. |—B—|< 0.16 for Mg — Mg in CIM at y, = 0.75).
Thus our final result reads

do cll,l
d3P1 PT1

El AB-1+X

e~ BOELYONIL L (T s T))
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where

1
B(le’ 0) = B(O’ 0) =B =—x— (gc;|A+ gcle)’

Xy
<D N3
Xy) =
YT N=2+g,

( ) L l(1 c )
B(x L V) = Bl — + osh +_______.Ch ,
11> V1 B - z 1 B'rl Y1

oSN=-2
Cyyp, = Xy Dn6s,

2 ¢ H \/&T_
¢y, = — = A 1AM, e
T g gV TaiaTald Bxi;+a
1
<§7'2>J, = Jd§1£‘1—2G1|11(21) = Ny,

0

(B V-3)!
(N=2+g;)! '
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