
  

Abstract—One of the significant aspects for enabling the 

intelligent behavior to the Unmanned Aerial Vehicles (UAVs) is 

by providing an algorithm for navigation through the dynamic 

and unseen environment. Therefore, to be autonomous, they 

need sensors to perceive their surroundings and utilize gathered 

information to decide which action to take. Having that in mind, 

in this paper, the authors designed the system for obstacle 

avoidance and also investigate the elements of the Markov 

decision process and their influence on each other. The flying 

mobile robot used within the considered problem is quadrotor 

type and has an integrated Lidar sensor which is utilized to 

detect obstacles. The sequential decision-making model based on 

Q-learning is trained within the MATLAB Simulink 

environment. The simulation results demonstrate that the UAV 

can navigate through the environment in most algorithm runs 

without colliding with surrounding obstacles. 

 
Index Terms—unmanned aerial vehicles, collision avoidance,  

reinforcement learning, Q-learning.  

I. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) have become 

increasingly widely used due to their ability to operate in 

remote or hazardous areas, collect data, and perform various 

tasks autonomously. However, UAVs face a critical challenge 

in ensuring safe operation, primarily when operating in close 

proximity to other entities. Therefore, collision avoidance 

systems are essential to ensuring UAV safety and have been a 

research focus in recent years. 

Reinforcement learning (RL) is a machine learning field 

that has shown great promise in developing systems which 
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have to learn from experience and adapt to changing 

situations. This makes RL suitable framework for the 

implementation on intelligent mobile robots that operate in 

dynamic and complex environments. 

In [1], the authors presented the development and 

evaluation of a Deep Recurrent Q-Network with Temporal 

Attention, which is used in a deep RL robotic controller to 

enable efficient obstacle avoidance for UAVs. cGAN network 

is used to predict a depth map, which is then utilized to 

determine the optimal action for the UAV. Critical 

information is retained over a long sequence of observations 

to solve the problem of partial observability successfully. In 

research [2] the authors focused on utilizing the Q-learning 

algorithm to create a method for UAVs to learn paths and 

avoid obstacles. In order to deal with continuous state space 

fitting, a neural network is employed. Additionally, the 

authors propose a trap-escape strategy to aid the UAV in 

extricating itself from problematic situations. To address the 

high variance and low reproducibility of collision avoidance 

policies obtained by utilizing RL, [3] introduces a two-stage 

training method for RL-based collision avoidance. Within the 

first stage, the policy is optimized by using a supervised 

training method with a loss function that encourages the agent 

to follow the well-known reciprocal collision avoidance 

strategy, while in the second stage, it is refined by using 

policy gradient method. 

Different from other approaches, this research aims to 

investigate the performance of a Q-learning-based collision 

avoidance system for UAVs, which is a part of the larger 

navigation system presented in [4]. 

The rest of the paper is organized as follows. Section 2 

provides the Bellman equation for updating Q-value at every 

time step and procedure for the trade-off between exploration 

and exploitation. Section 3 describes the proposed action 

space, state space, and reward function with particular 

reference to minimal requirements for the Lidar sensor 

implemented on a flying mobile robot. Section 4 explains the 

simulation setup, while Section 5 presents the experimental 

results generated within the MATLAB Simulink environment. 

Finally, Section 6 concludes the paper with suggestions for 

future research. 

II. Q-LEARNING 

Q-learning is a well-known and widely used RL algorithm, 

which is an off-policy, model-free, temporal difference 

control algorithm first introduced by Watkins in 1989. One of 

the main characteristics of this method is the capability for 
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direct approximation of the optimal state-value function, 

independent of the policy being followed. For more 

information regarding this algorithm, the authors refer to [5]. 

In every time step, the state-value function is updated using 

the following equation: 

 

1 1 1( , ) (1 ) ( , ) [ max ( , )]
t t t t t t t t t

Q s a Q s a r Q s a  + + += −  +  +   (1) 

 

where: Qt+1(st, at) represents state-value function at time step 

t+1; rt+1 denotes the reward function; st represents the state at 

time step t; at represents the action chosen by the intelligent 

agent at time step t; γ is the discount factor (0 ≤ γ ≤ 1); and α 
is the learning rate (0 ≤ α ≤ 1).  
 Even though the intelligent agent does not have the 

information about the environment dynamics at the begging of 

the learning process, it certainly has to know which action to 

take at every time step, which is achieved by introducing the 

initial policy into the RL framework. In this paper, ε-greedy 

policy is utilized for action selection process, and it is defined 

as shown in the following equation: 
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where ε denotes the parameter which defines the ratio 
between exploration and exploitation (0 ≤ ε ≤ 1). One of 

significant challenges that especially arises in RL is trade-off 

between exploration and exploitation. In this paper, the ε 
value is updated per the following rule: 
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where εmin is the minimal value of ε which should be defined 
at the begging of the training process. 

III. ALGORITHM DESIGN 

In this section, we define action space, state space, and reward 

function for the design of a RL simulation model utilized for 

the tasks of collision avoidance, navigation, and localization 

in the unknown environment. It is important to emphasize that 

the state space needs to be defined with the data not specific 

to a current environment so that generalization can be 

achieved also in a new scenario. Therefore, the environment 

needs to be configured in such a way as to enable UAV to 

visit as many states as possible. Since the task of the 

intelligent agent is to learn the optimal behavior, the episode 

is terminated when the UAV collides with an obstacle or 

when the maximum number of time steps is achieved. 

 

A. Action Space 

In order to define input parameters for the RL algorithm, 

the action space, state space, and reward function need to be 

defined. On the other hand, it is essential to optimize the 

balance of both the action and state space dimensionality to 

increase the learning speed of the intelligent agent and enable 

the adequate generalization process adaptable to other 

scenarios [6]. Therefore, the action vector consists of the 

following three actions: going forward, going diagonally left, 

and going diagonally right (see Fig. 1.). It is obvious, by 

seeing at the action space configuration, that the forward 

movement is favored. The defined action space reduces the 

maneuverability of the agent, however, a smaller action space 

is one of the prerequisites for adequate convergence properties 

of the Q-learning algorithm. 

 

 
 

Fig. 1.  Actions which an intelligent agent can select at every time step. 

With the previously defined action vector, the intelligent 

agent needs to anticipate the sequence of actions that will lead 

to the state from which the currently detected obstacle is 

avoidable. To achieve the aforementioned, the simulation 

constraints that depends on action values, sensor view and 

range, and state space need to be defined. 

B. State Space 

State space is defined according to the distance data 

acquired by a Lidar sensor with a 360° environment view 

attached to the intelligent agent. It is essential to define the 

minimal upper bound value of the Lidar range required for a 

mobile robot to perform obstacle avoidance maneuver if the 

object is detected (see Fig. 2.). For an intelligent agent to learn 

the maneuver mentioned above, the considered states need to 

be visited a sufficient number of times during the training 

process in order to get as good value estimations as possible. 

 

 
 

Fig. 2.  Calculation of minimal upper bound value of the Lidar range. 
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State space defined with all Lidar distance (increment of 2 

mm) and angle values (increment of 1°) is infinitely large 

(3604001). Therefore, the state space needs to be discretized 

for a learning algorithm to converge to an optimal value. The 

first approximation is added to the angle of view, which is 

bounded to [-75,75] degrees in front of the robot (Fig. 3). 

 

 
 

Fig. 3.  Lidar measurements bounded to the [-75,75] degrees. 

 

In the next step, state space is discretized and defined by using 

variables x1, x2, x3, and x4. Values of these variables depend on 

the area in which the obstacles are detected, defined by angle 

and distance from the mobile robot. Variables x1 and x2 are 

used to define the distance (d) to the closest obstacle: 
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The main difference between these two variables is that x1 is 

used to define distance in the area left to UAV’s heading 

direction (see Fig. 4), whereas x2 defines distance to closest 

obstacle in the area right to UAV’s heading direction. The 

distance d is calculated for both sides separately.  

 

 
 

Fig. 4.  State-space areas discretized by using state variables x1 and x2. 

 

Variable x3 and x4 are defined according to the following 

equation: 
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where g represents the angle of the Lidar beam that detected 

the obstacle (see Fig. 5.), while areas h1 : 0° ≤ g < 25° and h2 : 

25° ≤ g < 50° and h3 : -25° < g ≤ 0° and h4 : -50° ≤ g < -25°. 

 
 

Fig. 5.  State-space areas discretized by using state variables x3 and x4. 

 

Finally, elements of the state-space vector are defined in the 

following way: 

 

1 2 3 41000 100 10
id

state x x x x=  +  +  +                  (6) 

 

Since D(x1, x2) = {0,1,2} and D(x3, x4) = {0,1,2,3}, the total 

number of states are 144. As mention earlier, in every time 

step the agent can choose one of three possible actions. 

Therefore, the dimensions of Q-table are 144 x 3. 

C. Reward Function 

To perform a training by utilizing RL algorithm, it is 

necessary to quantify the behavior of intelligent agent (i.e., the 

sequence of actions), differentiate between a set of different 

behaviors, and estimate the value function for every visited 

state-action pair. For all the previously mentioned tasks, the 

reward function is utilized. Reward function is also used to 

learn which actions are optimal in each state. In this paper, the 

reward function is defined as a sum of four functions (r1, r2, r3 

[7], and r4), defined with equations (7) to (10): 
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where at is the action taken at the current time step. The 

function r1 is utilized to encourage the intelligent agent to 

move forward and discourages left or right moves. This 

function favors the behavior where the intelligent agent does 

not make unnecessary turns. The function r2 is utilized to 

discourage intelligent agent from coming close to the 

obstacles. In (9), Δd represents the difference between the 

cumulative distance from the obstacles in the entire sensor 

view in two consecutive time steps. Whereas Wr2 is a 

weighting vector that emphasizes obstacles that are closer to 

the center of the sensor view, i.e., that are in the intelligent 

agent’s path. It is important to note that the positive reward in 
(7) must not be larger than the negative reward in (8) to 
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discourage the forward movement toward incoming obstacles. 

On the other hand, the positive reward in (8) needs to be 

larger than the negative in (7) since obstacle avoidance has 

priority over forward movement. The function r3 discourages 

zig-zag movement, which is especially important in the 

domain of aerial vehicles with the limited flight time. Finally, 

the function r4 is utilize to discourages movement in circles; 

specifically, it gives a negative reward if the agent makes four 

consecutive left or right actions. The entire reward function is 

defined with the following equation: 

 

1 2 3 4

100, collision

, no collision
t

r
r r r r

−
=  + + +

                 (11) 

 

The reward function would be a sum of all four reward 

functions if the intelligent agent did not collide with the 

obstacle. The collision is detected if the smallest element of 

weighted distance to the obstacles is smaller than the 

threshold value which is defined as follows: 

 

min( ) ,
w collision w t t

d d d W d =                  (12) 

 

where Wt is a weighting vector. 

IV. SIMULATION SETUP 

In this section, the employed simulation model developed 

within the MATLAB Simulink environment will be presented, 

specifically two libraries were utilized: UAV Toolbox and 

RL. It is  important to note that RL-block can be used in 

event-based mode since version R2022a. Therefore this is one 

of the first research papers that utilizes RL-block in the 

mentioned mode (see Fig. 6.), but in general, also one of the 

first studies that use RL-block for the intelligent tasks on 

flying mobile robots. The prevoiously mentioned mode can be 

utilized when different sample time of the low-level control 

system and intelligent agent is required. For example, when 

the action is defined as the next pose that the agent should 

visit, the RL-block should acquire and process information 

only when the pose is achieved. Furthermore, this mode is 

also suitable when we want to investigate the flexibility of the 

intelligent agent's behavior, i.e. to examine the dependence 

between the state variables’ limits defined in (4) and the 

values of specified actions. Accordingly, it is much easier to 

determine hyperparameters of the RL algorithm if we define 

the actions as fixed values, while the number of samples in 

which the action is performed/exectued is changed for every 

algorithm run. Another significant aspect when utilizing a 

reinforcement learning algorithm is the definition of an 

adequate sample time. Evidently, for the actions defined as in 

Fig. 1., this value should be as high as possible so that the 

agent can achieve the next pose in the shortest possible time 

interval. However, it should be noted that the maximum value 

of the sample time is conditioned by the behavior of the 

intelligent agent, which depends on the adopted low-level 

control implemented in the Simulink library. The 

recommended sample time for the adopted low-level control 

is 0.001 s, however this value turned out to be too small for 

training the intelligent agent. Therefore, in the next step, it 

was increased ten times, and after that, the accuracy in 

achieving the desired pose was tested, as well as the flight 

stability of the UAV. The agent has demonstrated the best 

behavior when set to move 2 m forward and slightly worse 

but still satisfactory when it is set to move 1 m forward, which 

is closer to the robot's behavior in a real environment. 

Therefore, it makes sense to adopt sample time which will 

cause reduced accuracy in achieving the desired pose. The 

errors should not be so large as to disturb the operation of the 

entire system and not small enough because it will not reflect 

the operation of the system in real-world. Finally, to examine 

the limits of the adopted low-level control, the sample time 

value was again increased ten times, i.e. its value was set to 

0.1 s. The obtained results have showned that the flying 

mobile robot was not only unable to achieve the desired pose 

with the necessary accuracy, but also it lost stability and felt 

on the ground. 

 

 
 

Fig. 6. Part of the complete Simulink model. As can be seen, RL agent block, 

observation block, reward function, and isdone function have to be the 

elements of enabled subsystems. Furthermore, RL agent sample time should 

be set to -1 in order to enable event-based simulation. 

V. EXPERIMENTAL RESULTS 

As mentioned in the previous Section, one of the 

prerequisites for achieving a good generalization is reflected 

in the number of visited states and the number of actions 

taken in all states of the system. The question that arises now 

is how can we influence the intelligent agent so that it 

achieves the best possible generalization. The performed 

simulations demonstrated that the probability of visiting a 

greater number of different state-action pairs is higher when 

the agent is set to start its movement from different initial 

poses rather than when the maximum number of time steps is 

increased. This certainly makes sense, because at the 

beginning of the training process, the agent mainly explores 

the environment by randomly choosing actions (according to 

the adopted ε-greedy policy). This often leads to a collision 
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with obstacles and, therefore, to a reduction in the possibility 

of exploring some new unvisited states. Furtermore, if the 

agent did not visit a sufficient number of state-action pairs at 

the beginning of the training process, it is unlikely that it will 

succeed in visiting all of them in the future. Regarding solving 

this problem, it has a sense that actions that the intelligent 

agent has tried once and have led to a collision with the 

obstacles should be forbidden during the future exploration 

process, with a thorough analysis of cases in which all 

possible actions chosen by the intelligent agent could lead to a 

collision. 

An additional question that arises is whether there is a 

connection between the configuration of the environment and 

the reward function. The conducted simulations showed that 

there is a relation between them. For example, before the 

implementation of the r4 in the reward function, the agent had 

a tendency to drop into a local minimum during the training 

process, which was manifested by orbiting around the 

obstacle. This makes sense, since the negative reward given in 

expression (7) is smaller than the positive reward given in 

expression (8). Therefore, the maximum number of time steps 

was achieved while obtaining a large cumulative reward by 

orbiting around the obstacle, which is not desired behavior. 

To solve the mentioned problem, in the next step, an 

additional expression given in (10) was introduced. It is 

important to note that introducing a new element that figures 

within the reward function was not enough to solve the 

problem of achieving the local minimum because the agent 

again learned how to orbit around the obstacle, but this time 

applying different sets of actions. The conclusion was that it is 

impossible to define all potential cases in which this behavior 

occurs. However, the way to solve this problem should be 

sought in a different configuration of the environment itself. 

Certainly, it is necessary to point out one conclusion about the 

training processes during which this behavior was observed. 

Suppose the agent found itself into a local minimum in several 

episodes. In that case, it does not necessarily mean that it will 

generate identical behavior at the end of the training process 

due to the stochastic nature of the adopted ε-greedy policy. On 

the other hand, if the mentioned behavior occurred in a large 

number of episodes, and primarily if the agent received the 

large cumulative reward by orbiting around the obstacles, it is 

very likely that the agent will have a tendency to often fall 

into the local minimum after the end of the training process. 

At the beginning of the algorithm testing, the environment 

shown in the Fig. 7.a) was adopted. The idea behind this 

configuration was to allow the agent to perform movement in 

at least a few iterations before a potential collision with 

obstacles occurs. The results showed that the agent learned to 

avoid regions crowded with obstacles and how to moving 

around this space in the long run, which was different from 

what we wanted to achieve. Thus, in the next step, the 

environment's configuration was changed, i.e., the distance 

between the boundaries of the environment and obstacles was 

reduced to force the agent to enter the region crowded with 

obstacles as soon as possible. This time, the learned behavior 

was more reasonable. However, it was noticed that the 

number of visited state-action pairs at the end of the training 

process was not satisfied regarding the generalization 

problem. In the last step, the initial pose of the agent is set to 

be within the region crowded with obstacles (Fig. 7. b).  

 

  
a) b) 

 
Fig. 7. Environment configuration at the beggining (a) and environment 

configuration at the end (b) of the algorithm testing. 

 

Learning rate, discount factor, total number of learning 

episodes, the maximum number of time steps and collision 

distance are defined as shown in Table 1. 

 
TABLE I 

LEARNING PARAMETERS AND HYPERPARAMETERS 

 

Max. number of episodes 600 

Max. number of learning iterations 

(time steps) 

10 

Learning rate – α  0.5 

Discount factor – γ  0.95 

Initial epsilon value – ε  1 

Epsilon decay – εdecay    0.02 

Min. value of epsilon – εmin      0.01 

Collision distance – dcollision     1.2 m 

 

The obtained results are shown in Fig. 8. It can be seen that 

the learning process was successful and that convergence was 

achieved. However, due to the stochastic nature of the adopted 

ε-greedy policy training process was repeated a certain 

number of times in order to make an appropriate conclusion. 
 

 
 

Fig. 8. Episode reward and achieved number of steps obtained by the 

intelligent agent during the training process. 

PROCEEDINGS, X INTERNATIONAL CONFERENCE IcETRAN, East Sarajevo, B&H, 05 - 08.06.2023

IcETRAN 2023 ROI2.2 - Page 5 of 6 ISBN 978-86-7466-970-9



 
 

Fig. 9. Q-table after the training process. 

 

The final output of the learning process is best illustrated by 

the Q-table (Fig. 9.). It can be seen that the agent has visited a 

large number of states during the training process and that in 

most of the states, the agent has learned which actions 

represent the optimal solution. 
 

  

  

  
 

Fig. 10. The intelligent agent successfully avoids obstacles during the 

navigation (upper four snapshots) when starting from two different initial 

poses, and there are also two situations (bottom two snapshots) in which it 

collides with its surroundings (when starting from the third initial pose). 

VI. CONCLUSION 

In this paper, the authors presented the approach for 

collision avoidance of flying mobile robots based on Q-

learning. Lidar data is utilized to detect obstacles in the 

mobile robot environment and to represent the state of the 

system. In each episode, mobile robot is set to a random initial 

pose in the static environment and trained to avoid obstacles 

for a fixed number of time steps. Furthermore, the process of 

designing an entire obstacle avoidance system is explained in 

detail. The obtained simulation results have shown a 

correlation between the state space, action space, reward 

function, and environment configuration as well as how 

defining one element influences the other. Moreover, after the 

learning process is completed, the generated Q-table is 

sufficient for the obstacle avoidance problem for majority of 

initial poses.  In the near future research, it is planned to find 

the answers to the question of how the state space should be 

defined for arbitrarily defined actions and what the limits of 

such system in terms of the agent's maneuverability in the 

environment are. Since uncertainties and noises are more 

dominant in UAV scenarios in comparison with scenarios in 

which unmanned ground vehicles operate, the impact of the 

accumulated positioning error on determination of the state 

variables’ limits needs to be investigated in detail when the 

same action is repeated a couple of times. Furthermore, the 

inverse problem should also be considered, for a known pose 

tolerance and under imperfect sensing, as well as how to 

define adequate actions, and discretize the state space. 
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