

Memoria Investigaciones en Ingeniería, núm. 24 (2023). pp. 117-128

https://doi.org/10.36561/ING.24.9

ISSN 2301-1092 • ISSN (en línea) 2301-1106

Este es un artículo de acceso abierto distribuido bajo los términos de una licencia de uso y distribución CC

BY-NC 4.0. Para ver una copia de esta licencia visite http://creativecommons.org/licenses/by-nc/4.0/

117

In defense of extreme database-centric architecture

En defensa de una arquitectura extrema centrada en la base de datos

Em defesa de uma arquitetura extrema centrada em banco de dados

Alfonso Vicente1

Recibido: 28/05/2023 Aceptado: 28/05/2023

Summary. - A famous aphorism in computer science goes: "All problems in computer science

can be solved by another level of indirection", often expanded by the humorous clause "except for

the problem of too many levels of indirection". After 30 years of applying the first aphorism, multi-

tier architectures (i.e. architectures with many levels of indirection) have become the de facto

standard for web applications, leaving little room for alternative architectures. But in the industry,

there is a product to develop and run web applications that follows a different architecture, centered

on the RDBMS to the extreme of not needing any other component to function. There are not many

papers in academia that addresses RDBMS-centric architectures in general, and this extreme

architecture in particular has not been considered. In recent works I have analyzed the case of an

extreme database-centric architecture, which I have called RDBMS-only architecture. This article

defends the relevance and analyzes opportunity cases of this approach.

Keywords: RDBMS, Web Application Architecture, Database-Centric Architectures.

Resumen. - Un aforismo famoso en ciencias de la computación dice: "Todos los problemas en

ciencias de la computación pueden resolverse con otro nivel de indirección", a menudo ampliado

con la cláusula humorística "excepto por el problema de tener demasiados niveles de indirección".

Después de 30 años de aplicar el primer aforismo, las arquitecturas de varios niveles (es decir,

arquitecturas con muchos niveles de indirección) se han convertido en el estándar de facto para

las aplicaciones web, dejando poco espacio para arquitecturas alternativas. Pero en la industria

existe un producto para desarrollar y ejecutar aplicaciones web que sigue una arquitectura

diferente, centrada en el RDBMS al extremo de no necesitar ningún otro componente para

funcionar. No hay muchos artículos académicos que aborden las arquitecturas centradas en

RDBMS en general, y esta arquitectura extrema en particular no se ha considerado. En trabajos

recientes he analizado el caso de una arquitectura extrema centrada en bases de datos, a la que

he llamado arquitectura RDBMS-only. Este artículo defiende la pertinencia y analiza casos de

oportunidad de este enfoque.

Palabras clave: RDBMS, Arquitectura de aplicaciones Web, Arquitecturas centradas en la Base

de Datos.

1 Magíster en Informática. Facultad de Ingeniería, Universidad de la República (UDELAR), Uruguay,

avicente@fing.edu.uy, ORCID iD: https://orcid.org/0000-0003-3575-5326

https://doi.org/10.36561/ING.24.9
http://creativecommons.org/licenses/by-nc/4.0/
mailto:avicente@fing.edu.uy
https://orcid.org/0000-0003-3575-5326

A. Vicente

Memoria Investigaciones en Ingeniería, núm. 24 (2023). pp. 117-128

https://doi.org/10.36561/ING.24.9

ISSN 2301-1092 • ISSN (en línea) 2301-1106

118

Resumo. - Um famoso aforismo em ciência da computação diz: "Todos os problemas em ciência

da computação podem ser resolvidos por outro nível de indireção", frequentemente expandido

pela cláusula humorística "exceto pelo problema de muitos níveis de indireção". Após 30 anos

aplicando o primeiro aforismo, as arquiteturas multicamadas (ou seja, arquiteturas com muitos

níveis de indireção) tornaram-se o padrão de fato para aplicativos da Web, deixando pouco espaço

para arquiteturas alternativas. Mas na indústria existe um produto para desenvolver e rodar

aplicações web que segue uma arquitetura diferenciada, centrada no RDBMS ao extremo de não

precisar de nenhum outro componente para funcionar. Não há muitos artigos acadêmicos que

abordam arquiteturas centradas em RDBMS em geral, e essa arquitetura extrema em particular

não foi considerada. Em trabalhos recentes, analisei o caso de uma arquitetura extrema centrada

em banco de dados, que chamei de arquitetura RDBMS-only. Este artigo defende a relevância e

analisa casos de oportunidade dessa abordagem.

Palavras-chave: RDBMS, arquitetura de aplicativos da Web, arquiteturas centradas em banco de

dados.

https://doi.org/10.36561/ING.24.9

A. Vicente

Memoria Investigaciones en Ingeniería, núm. 24 (2023). pp. 117-128

https://doi.org/10.36561/ING.24.9

ISSN 2301-1092 • ISSN (en línea) 2301-1106

119

1. Introduction. -This article defends the hypothesis that a web application architecture physically

contained in a Relational Database Management System (RDBMS), which has been called an

RDBMS-only architecture, is a valid alternative, with advantages and disadvantages compared to

the well-established multi-tier architectures.

It is important to clarify that this hypothesis is not inconsistent with the well-established theory

that argues that multi-tier architectures constitute an adequate conceptual framework for the design

of web applications, since they provide many important advantages. However, the hypothesis

would be inconsistent with a theory that argues that multi-tier architectures are the only suitable

conceptual framework for web application design, leaving no room for alternative architectures.

Although this latter theory has not been explicitly affirmed, it has sometimes been implicitly

assumed, and the little available literature that presents alternatives will also be discussed.

Furthermore, as this work summarizes previous publications, an article [1] and a master's thesis

[2], its focus is to defend the relevance of the approach and analyze the opportunity to use it in

certain use cases. It might appear that defending an argument implies bias. However, I believe this

is not the case. From an empirical and historical point of view, multi-tier architectures have come

to be seen as the only viable alternative. A whole generation of software engineers has been trained

according to this idea, and there is almost no dissenting literature.

This article attempts to put the "extreme" database-centric architecture on an equal footing with

the "extreme" middleware-centric architecture. The advantages of the latter have been extensively

analyzed, but the advantages of the former have not.

Sections 2 and 3 provide a theoretical framework for understanding the validity of a database-
centric architecture from conceptual and historical perspectives, respectively. Section 4 briefly

presents the extreme database-centric (or RDBMS-only) architecture. Section 5 argues in defense

of this architecture, explaining its advantages and the best possible cases of application. Finally,

section 6 presents some conclusions and reflections.

2. Web application architectures from a conceptual point of view. - This section will discuss

the relationship between layers, understood as portions of code with well-defined responsibilities,

and tiers, understood as physical and/or technological components of an information system.

At a conceptual level, information systems are typically designed with three layers: 1) the

presentation layer, 2) the application logic layer or business logic layer, and 3) the resource

management layer or data access layer. The presentation layer is responsible for managing the

display and collecting information from and to the end-user, usually through a Graphical User

Interface (GUI). The business logic layer handles the processing related to the specific business

application, while the data access layer executes database functions such as retrieval, addition,

deletion, and modification of records [3].

In real systems, these conceptual layers can be combined and distributed across separate tiers, often

involving different servers and specialized technologies. Many modern web applications employ a

three-tier architecture, commonly known as 1) the client-tier, 2) the middle-tier, and 3) the data-

tier. In most cases, there is a one-to-one correspondence between layers and tiers. Specifically, the

business logic layer typically aligns with the middle-tier, which is positioned "in the middle"

between the client and data tiers, constituting a physical middle-tier. This situation explains why

the terms "business logic layer," "middle layer," and "middle tier" are sometimes used

https://doi.org/10.36561/ING.24.9

A. Vicente

Memoria Investigaciones en Ingeniería, núm. 24 (2023). pp. 117-128

https://doi.org/10.36561/ING.24.9

ISSN 2301-1092 • ISSN (en línea) 2301-1106

120

interchangeably, and there are even specialized technologies referred to as "middleware".

However, it is important to understand that the business logic layer is not necessarily limited to

residing in the middle-tier.

How can the layers be distributed across tiers? Since layers are simply code components with

specific responsibilities, it could be argued that the question is poorly formulated because the code

comprising a single layer could be distributed across multiple tiers. However, for the purpose of

modeling the problem, it is simplified by assuming that a layer is atomic.

Modern web applications must be accessible through web browsers without the need for plugins,

a concept known as thin client. In other words, the majority of the code for the three layers must

be distributed across two tiers: the middle-tier and the data-tier. According to the loft principle, at

least two layers should coincide in a single tier. However, it is also possible for all three layers to

coincide in one tier.

There are several theoretical approaches to analyzing the possible alternatives for organizing the

architecture of an application in tiers. One of these approaches is Koppelaars' classification, which

categorizes the eight theoretical combinations of three-tier systems, considering both a thin version

("little code") and a fat version ("lots of code") for each tier [4]. It's worth noting that in practice,

there are only seven relevant combinations, as the thin/thin/thin case holds no genuine interest. A

thin/fat/thin architecture (or Thick Middleware) implies that the code is predominantly in the

middle-tier, whereas a thin/thin/fat architecture (or Thick Database) means that the code primarily

resides in the data-tier2.

According to Koppelaars' classification, the majority of modern web applications have a
thin/fat/thin architecture (or Thick Middleware). However, Middleware is not the only tier that can

be enriched with business logic. Web applications require thin clients, but the use of a thick

middleware tier, while common, is neither necessary nor universal. There is an alternative approach

to locate complex business logic: the data-tier. In this case, as Koppelaars points out, a thin/thin/fat

combination is theoretically possible and, in some cases, may be advantageous. He refers to this

case as the database-centric architecture. The terms database-backed, RDBMS-backed, database-

centric, and database-driven are typically used interchangeably to describe web architectures where

the RDBMS plays a vital role. In database-backed websites, content is dynamically generated by

querying the database, and there is no application server [5].

Another way to interpret this classification is as the possible distributions of the layers across

levels. Thus, a common distribution aligns each layer with a tier (presentation layer in the client-

tier, business logic layer in the middle-tier, and data access layer in the data-tier). Using the

notation: P for the presentation layer, BL for the business logic layer, and DA for the data access

layer, this architecture can be denoted as the ordered triad (P, BL, DA), where the order

corresponds to the client, middle, and data tiers. Following this nomenclature, and adopting the

idea of using "thin" when there is little code, two possible distributions of a thin/fat/fat architecture

could be (thin, P+BL, DA) and (thin, P, BL+DA). It is also common for the "lots of code" that

implement the presentation, business logic, and data access layers to all be situated in the middle-

tier (thin, P+BL+DA, thin). Conversely, although less frequent, it is also possible for the "lots of

2This classification, however, does not make it clear how the "lots of code" of each layer would be distributed in the middle

and data tiers of a thin/fat/fat architecture. For this reason, an alternative that allows these distinctions to be made is

presented below.

https://doi.org/10.36561/ING.24.9

A. Vicente

Memoria Investigaciones en Ingeniería, núm. 24 (2023). pp. 117-128

https://doi.org/10.36561/ING.24.9

ISSN 2301-1092 • ISSN (en línea) 2301-1106

121

code" to be located in the data-tier, encompassing the presentation, business logic, and data access

layers (thin, thin, P+BL+DA), as presented graphically in Figure I.

Figure I. A database-centric architecture

Thickening the data tier with presentation and especially with business logic code, could be

possible when the RDBMS implements a Database Programming Language (DBPL). This

architecture is feasible whether it is referred to as thin/thin/fat, (thin,thin,P+BL+DA), database-

centric, or Thick Database. However, couldn’t this database-centric architecture be more extreme?

Without the need for middleware, the thin/zero/fat combination is possible. This alternative will

be addressed in Section 4, following the historical discussion in Section 3.

3. Web application architectures from a historical point of view. - The decade of the nineties

was marked by the advent of the Web, which made its debut in 1991. Tim Berners-Lee's invention

had three fundamental components: URLs, which enabled access to the entire Web in a "flat"

manner; the stateless HTTP protocol, which standardized communication; and the HTML

language, which simplified the creation of web pages. This era also witnessed the development of

graphical browsers such as Mosaic and Netscape. Netscape, in particular, introduced features like

Secure Sockets Layer (SSL) for secure information transmission and cookies for tracking user

information [6].

From the early days, there was a recognized need for creating database-backed websites, where

content could be generated dynamically from information stored in a database. In 1993, the

industry proposed a solution called the Common Gateway Interface protocol (CGI), which outlined

how web servers could interact with external programs known as CGI scripts, and how these scripts

could return dynamic pages to the web server [7].

Although it was technically feasible to develop a "web listener" that would allow the entire

application to be implemented in a Database Programming Language (DBPL) as shown in Figure

II, this approach was not pursued at the time due to the lack of mature DBPLs. Instead, Object-

Oriented Programming (OOP) gained popularity during this period [8]. Object-Oriented Database

Management Systems (OODBMS) were not widely adopted by the industry and did not reach

maturity [9]. As a result, most web application architectures followed a typical pattern of having

an object-oriented middle-tier and a relational data-tier.

https://doi.org/10.36561/ING.24.9

A. Vicente

Memoria Investigaciones en Ingeniería, núm. 24 (2023). pp. 117-128

https://doi.org/10.36561/ING.24.9

ISSN 2301-1092 • ISSN (en línea) 2301-1106

122

Figure II. The web listener of an RDBMS as a protocol adapter

This introduced a challenge: persisting objects in a relational format was not straightforward due

to the object-relational impedance mismatch. To overcome this challenge, a dedicated component

called Object-Relational Mapping (ORM) was introduced. These components have evolved over

time to simplify data access and hide much of the complexity. In this scenario, the Thick

Middleware architecture, where the middle-tier contains the bulk of the code, became the norm for

web applications.

Oracle, in contrast to the prevailing trend, historically embraced a database-centric architecture

with its products Forms and Application Express (APEX), leveraging its DBPL called PL/SQL

[10, 11]. However, the feasibility of this approach does not depend on any particularity of the

Oracle RDBMS; any RDBMS implementing a DBPL can serve as the foundation for an RDBMS-

only architecture. This notion has been demonstrated in other works [1, 2].

APEX, which follows an extreme database-centric architecture, exemplifies the thin/zero/fat

combination, or what I refer to as the RDBMS-only architecture, where an entire application

resides within the RDBMS. In fact, even the web server can be contained within the RDBMS using

the Embedded PL/SQL Gateway (EPG). Alternatively, the web listener component can be

deployed as an Apache module or a Java application. Regardless of the deployment method, the

focus of the architecture remains exclusively on the RDBMS. When Oracle describes the APEX

architecture as "simple," it pertains to the physical view. However, it is important to note that while

the physical view of the RDBMS-only architecture simplifies by consolidating all the complexity

into a single component, it introduces increased logical complexity within that component, which

raises design considerations.

An interesting historical question arises: why did Oracle choose to pursue a path that seemingly

contradicted the prevailing trend, and why did others not follow suit? While definitive answers to

these questions may be elusive, several hypotheses can be considered: a) the evolution of APEX

was largely unplanned, and b) the APEX architecture went unnoticed by academia and the industry.

The first hypothesis can be justified by recognizing that APEX did not originate as a purpose-built

solution for its current objectives. Instead, its conception was incremental. From the outset, the

Oracle RDBMS was designed to handle HTTP requests, which laid the groundwork for the

architecture, at least in practice. However, initial expectations regarding the capabilities of this

technology were modest, limited to the potential use for developing reports and replacing

spreadsheets. It was only over time and through experimentation that APEX's capabilities

expanded to enable the development of stateful applications and the provision of an Integrated

https://doi.org/10.36561/ING.24.9

A. Vicente

Memoria Investigaciones en Ingeniería, núm. 24 (2023). pp. 117-128

https://doi.org/10.36561/ING.24.9

ISSN 2301-1092 • ISSN (en línea) 2301-1106

123

Development Environment (IDE) built on the same technology. The evolution of APEX can be

seen as a spontaneous order—an outcome of human action but not human design. In retrospect, the

decision made by APEX architects proved to be fruitful, providing Oracle's clients with an

alternative to building enterprise web applications without the need for additional technologies.

To justify the second hypothesis, it is helpful to distinguish between two types of novelty: true

novelty, which entails genuinely new ideas, and novelty of arrangements, where the novelty arises

from the combination of existing ideas. In this context, APEX represents a novelty of arrangements

by combining preexisting capabilities of a DBPL within an RDBMS with the use of HTTP as a

communication protocol. While this form of novelty of arrangements is indeed novel in practice,

it does not rely on any published original idea. Additionally, compacting an entire enterprise

application into a single physical tier appears to contradict the current trend of multi-tier separation,

service-oriented architectures, and decoupled components running on containerized platforms.

Furthermore, Oracle has not made any efforts to publish specific details about the APEX

architecture at an academic level, limiting its description to aspects relevant to application

administrators, developers, and its technical circles. Consequently, due to its status as a novelty of

arrangements, its divergence from prevailing trends, and Oracle's limited interest in conducting

and publishing research papers on the subject, it is understandable why the APEX architecture has

gone unnoticed by academia and the wider industry.

4. The extreme database-centric architecture. - This section presents the proposed extreme

database-centric architecture, which can be seen as a simple shift in emphasis from multi-tier

architectures. Instead, a multi-layered architecture is proposed, but with these layers being logical

layers within an RDBMS. The simplification is physical and technological, but the complexity

does not disappear and is evident in the development and process views of the architecture [2].

Figure III illustrates the logical view of the architecture. On the right side are the layers of user

applications. Each layer's code is only allowed to interact with objects and invoke code residing in

the immediate lower layer. The Data Logic (DL), Business Logic (BL), and User Interface (UI)

Code layers follow the Koppelaars classification. However, a new Service Interface (SI) Code layer

is introduced at the same level as the UI Code layer. Additionally, the Interface Wrapper layer aims

to separate the input and output of data from the specificities of both the graphical interface and

web services. On the left side is an "engine" that does not adhere to the layered architecture of user

applications. The engine is responsible, among other things, for executing the application flow.The

innermost layer is not depicted in Figure III, as it represents the layer of the RDBMS itself, where

database objects such as tables and indexes are located, and where the specific SQL dialect of the

RDBMS executes SELECT, INSERT, UPDATE, and DELETE statements.

Figure III. Logical view of the extreme database-centric architecture

https://doi.org/10.36561/ING.24.9

A. Vicente

Memoria Investigaciones en Ingeniería, núm. 24 (2023). pp. 117-128

https://doi.org/10.36561/ING.24.9

ISSN 2301-1092 • ISSN (en línea) 2301-1106

124

The DL Code layer encompasses stored procedures and/or functions that allow the use of SQL

statements. This layer provides an interface to the upper layer for manipulating database relations

as if they were an Abstract Data Type (ADT). It is worth noting that this layer can be automatically

generated and kept synchronized with the database schema, and a catalog of existing functions can

be maintained for use by the outer layer. It could also provide a standard RDBMS-independent

interface if a standard DBPL existed. The absence of such a language at present does not imply

that it cannot be developed in the future.

The BL Code layer represents the domain logic, which utilizes the functionalities provided by the

previous layer. This is the most complex layer responsible for implementing use cases and ensuring

transactional design. This layer can be further subdivided according to specific needs, either into

more internal and external layers or into segments for cross-cutting functionalities. The interface

of this layer to the outside provides high-level operations in a procedural format with RDBMS-

specific data types.

In the Interface Wrapper layer, high-level operations are consumed and offered back to the upper

layers, but with inputs and outputs in a standard format independent of both the RDBMS data types

and the interface itself, such as Extensible Markup Language (XML) or JavaScript Object Notation

(JSON).

Finally, the UI Code and SI Code layers include two different output formatting options: one

designed for end clients through a web browser, and the other designed for web services. It is

important to note that in this context, "interface" does not solely refer to graphical interface

elements. This allows the treatment of domain layer functionalities in a symmetrical manner,

whether it is a human user requiring an HTML interface or another system invoking a web service.
As long as there are no interface elements in any of the underlying layers, maintaining the interface

in these layers should be easier since it is confined to these layers. It should be noted that the

architecture is a theoretical proposal, and variants may make sense depending on implementation

decisions. For example, if it is decided to use PostgreSQL as the RDBMS and adopt a product like

PostgREST to simplify the automatic provision of a REST API from the stored procedures of the

BL Code layer, the Interface Wrapper layer could be eliminated.

In this analysis, the discussion of the specificities of the engine and the Integrated Development

Environment (IDE) is beyond the scope of this document. However, perhaps I should mention one

aspect of the interface design that Koppelaars and the APEX designers seem to have arrived at

independently: the conception of a GUI as a network of pages, where each page contains a

hierarchy of interface elements and navigation rules to other pages that are triggered by certain

events. An essential element of this navigation is that the status of each session must be maintained

in the database.

5. Defense of the extreme database-centric architecture. - In another work, I conducted a

systematic comparison between two technologies using two versions of the same application. One

version was implemented using the RDBMS-only architecture, while the other version utilized a

middleware, with the ISO 25010 standard serving as the framework [2].

In this section, I aim to defend the extreme database-centric architecture itself, rather than

advocating for a particular technology. I will identify the theoretical advantages it offers over a

multi-tier architecture. Although this focus on advantages does not imply that the approach is

without disadvantages, the software engineering community will readily and fully identify the

https://doi.org/10.36561/ING.24.9

A. Vicente

Memoria Investigaciones en Ingeniería, núm. 24 (2023). pp. 117-128

https://doi.org/10.36561/ING.24.9

ISSN 2301-1092 • ISSN (en línea) 2301-1106

125

latter.

The most apparent savings can be observed in terms of technology. The RDBMS is the only

required component, eliminating the need for a middleware technology. This can result in savings

in computing and communication time in many cases, regardless of whether it leads to savings in

licenses. Moreover, this technological simplicity reduces the number of components, thereby

minimizing potential points of failure or vulnerability. These technology savings subsequently

translate into process and personnel savings.

Process savings manifest in various forms, as multiple processes must be performed within each

component of a solution. By reducing the number of components, there are fewer elements to

monitor, update, back up, recover in the event of an incident, or integrate into configuration and

change management processes. Many routine and exceptional processes are simplified by

confining them to a single technology type.

Personnel savings primarily involve reducing the requirement for specific skills. Some companies

or departments may possess individuals with advanced database skills but lack expertise in

middleware technologies. In such cases, a database-centric approach can serve as an enabler. In

the event of an incident, for instance, there is no need to determine the involved components

initially. The troubleshooting process remains consistent, starting with the analysis of stored

procedures and proceeding to the analysis of other stored procedures and eventually SQL

statements.

However, it is important to note that this architecture may not be suitable for every case. For

example, I am not suggesting its use for e-commerce sites with high write concurrency.

Nonetheless, many systems do not have such demanding write concurrency requirements.

Additionally, most RDBMSs offer relatively simple and transparent solutions to achieve high read

scalability.

Therefore, the database-centric architecture could be applied in scenarios such as ticketing systems

in small and medium-sized companies, in-house applications, or systems with low write but high

read activity, like documentation systems or web logs. Furthermore, it can be an excellent

alternative for converting desktop applications to web applications, especially when the existing

architecture is already database-centric, and the business logic layer is implemented using a DBPL

within the RDBMS.

Investing in the implementation of business logic in the DBPL of an RDBMS also proves to be a

favorable option when presentation and middleware technologies are expected to change more

frequently in the long term compared to RDBMS technologies. Moreover, the technological

simplicity offered by this approach has the potential to reduce IT operating costs.

6. Conclusions. - The APEX case could represent an anomaly for following an architecture that

does not meet expectations about how a web application should be structured. Those expectations

are usually tacit, arising from continuous exposure to papers, textbooks and technologies that

propose, describe and follow very different architectures.

When the web was invented, object orientation already existed. After the first experiences with

technologies such as CGI, objects were a dominant trend in web applications, and along with

objects at least three-tier architectures and middleware. These trends could be seen as a true

https://doi.org/10.36561/ING.24.9

A. Vicente

Memoria Investigaciones en Ingeniería, núm. 24 (2023). pp. 117-128

https://doi.org/10.36561/ING.24.9

ISSN 2301-1092 • ISSN (en línea) 2301-1106

126

paradigm in the sense of Kuhn's scientific paradigm3, where a new paradigm replaces the previous

one [12]. The limitations of CGI could have been seen as evidence of a crisis of the "structured

programming paradigm", and in that sense the new "object-oriented paradigm" was not simply an

alternative but an overcoming. These ideas, explicitly or implicitly, may have dominated in both

the academic and industry communities, and may perhaps explain the scarcity of works focused on

database-centric architectures, and the uniqueness of APEX as an extreme database-centric

architecture.

As far as I know, no one has postulated the following historical conjectures: 1) the trend of using

object-oriented middleware was historically conditioned (I don't say determined) by the difference

in maturity between OOP and DBPLs, 2) that trend was never explicitly challenged theoretically,

even as DBPLs matured into a reasonable alternative, 3) Oracle's development of APEX was

largely unplanned and is little known outside the APEX specialist community, and 4) no one has

cautioned that APEX represents in practice a theoretically valid alternative.

While it is understandable historically why the alternative of an extreme database-centric

architecture was not considered, conceptually it is a valid alternative, and there is at least one

product in the industry that provides at least a glimpse of its possibilities. Moreover, there is no

reason to think that Oracle has exploited all the possibilities of the architecture, or that the internal

design of its product is the best possible.

In my master thesis I hope to have demonstrated that the development of a technology such as

APEX does not depend on any particularity of the Oracle RDBMS. With any RDBMS that has a

mature DBPL it is possible to build a similar technology, and the architecture of web applications

developed with such technology have a number of inherent advantages that make them attractive

for some use cases.

If I am correct in the aforementioned, it would be more appropriate to consider the extreme

database-centric architecture not as a paradigm superseded in the sense of Kuhn, but rather as an
underexplored yet progressive research programme in the sense of Lakatos4 [13].

It would be reasonable to invest efforts in this alternative research programme to ascertain whether

the theoretical development of the programme precedes empirical development that could yield

numerous benefits. This is the main reason why, in this scenario, a defense seemed timely.

3Many have quoted Kuhn applying his idea of paradigms to technology, without realizing that Kuhn was referring to

science. The guiding principle of technology is not truth, but utility, and for a "technical paradigm" to replace another, the

latter should constitute an overcoming according to all possible criteria. To what extent one can speak of "technical

paradigms" and what scope they might have, is a work that, I believe, remains to be done.
4Again, it should be noted that Lakatos speaks of scientific (and not technological) research programmes. It is far from

obvious what, mutatis mutandi, can be preserved by moving from the realm of science to the realm of technology. In any
case, I think the idea I am trying to convey is clear: if in the realm of science where (generally) truth is considered the

guiding principle, it is reasonable to work in parallel on alternative research programmes, how much more reasonable

should it be to do the same in the realm of technology where the main guiding principle is utility?

https://doi.org/10.36561/ING.24.9

A. Vicente

Memoria Investigaciones en Ingeniería, núm. 24 (2023). pp. 117-128

https://doi.org/10.36561/ING.24.9

ISSN 2301-1092 • ISSN (en línea) 2301-1106

127

1. References

[1] Vicente, A., Etcheverry, L. and Sabiguero, A; An RDBMS-only architecture for web

applications, 2021 XLVII Latin American Computing Conference (CLEI). IEEE, 2021.

[2] Vicente, A; La arquitectura RDBMS-only: una arquitectura database-centric para aplicaciones

Web, Tesis de maestría. Universidad de la República (Uruguay). Facultad de Ingeniería, 2021.

[Online]. Available: https://hdl.handle.net/20.500.12008/31620

[3] Scourias, J; Aspects of client/server database systems, University of Waterloo, 1995.

[4] Koppelaars, T; A Database-Centric Approach to J2EE Application Development, Oracle

Development Tools Users Group (ODTUG), 2004.

[5] Greenspun, P; Database Backed Web Sites: The Thinking Person’s Guide to Web Publishing.

Ziff-Davis Publishing Co., 1997.

[6] Ceruzzi, P; Computing: a concise history, MIT press, 2012.

[7] T. A. S. Foundation; Rfc 3875 - the common gateway interface (cgi) version 1.1, 2004.

[Online]. Available: https://tools.ietf.org/html/rfc3875

[8] Nielsen, J; Noncommand user interfaces, Communications of the ACM, vol. 36, no. 4, pp. 83–

99, 1993.

[9] Kim, W; Object-Oriented Database Systems: Promises, Reality, and Future, in VLDB, vol. 19,

1993, pp. 676–692

[10] Cimolini, P; Oracle Application Express by Design: Managing Cost, Schedule, and Quality.

Apress, 2017.

[11] Llewellyn, B; NoPlsql versus ThickDB, 2016. [Online]. Available:

https://web.archive.org/web/20170909164923/https://blogs.oracle.com/plsql-and-ebr/noplsql-

versus-thickdb

[12] Kuhn, T; The structure of scientific revolutions. University of Chicago press, 2012.

[13] Lakatos, I; Falsification and the methodology of scientific research programmes, in Lakatos
I. and Musgrave A. Criticism and the growth of knowledge, Cambridge University Press, 1970

[14] Lakatos, I; History of science and its rational reconstructions, PSA: Proceedings of the

biennial meeting of the philosophy of science association. Vol. 1970. D. Reidel Publishing, 1970.

https://doi.org/10.36561/ING.24.9
https://hdl.handle.net/20.500.12008/31620

A. Vicente

Memoria Investigaciones en Ingeniería, núm. 24 (2023). pp. 117-128

https://doi.org/10.36561/ING.24.9

ISSN 2301-1092 • ISSN (en línea) 2301-1106

128

Nota contribución de los autores:

1. Concepción y diseño del estudio

2. Adquisición de datos

3. Análisis de datos

4. Discusión de los resultados

5. Redacción del manuscrito

6. Aprobación de la versión final del manuscrito

AV ha contribuido en: 1, 2, 3, 4, 5 y 6.

Nota de aceptación: Este artículo fue aprobado por los editores de la revista Dr. Rafael Sotelo y

Mag. Ing. Fernando A. Hernández Gobertti.

https://doi.org/10.36561/ING.24.9

