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Abstract
The South Pacific Gyre has the most hyper-oligotrophic waters in the world and is considered the largest “oceanic desert.” 
Rapa Nui (Easter Island), located within the South Pacific Gyre, is a breeding ground for masked boobies (Sula dactylatra), 
which are seabirds with a foraging range that effectively confines them within the gyre. The foraging ecology of this species 
in the gyre was examined by attaching GPS and time-depth devices to chick-rearing adult birds (9 and 14 birds in 2016 and 
2017, respectively) and by collecting regurgitates (18 and 15 samples in 2016 and 2017, respectively). In addition, the birds’ 
foraging ecology between years was compared. Masked boobies traveled in various directions, dived at unspecific locations, 
and explored areas < 110 km from the colony. Local environmental conditions were not significantly different between 
years, and differences in foraging parameters (maximum foraging range, trip duration, and dive depth) were greater among 
individuals than between years. The foraging characteristics of masked boobies suggest that resources were ephemerally 
distributed around the colony, with similar abundances across years. Under these conditions, traveling to unspecific locations 
may increase the area covered and the probability of prey encounter. The spatial and temporal consistencies in environmental 
conditions explain the uniformity of foraging parameters between years. The ability of masked boobies to exploit ephemer-
ally distributed resources in seascapes like Rapa Nui may help explain its pantropical distribution.

Introduction

Optimal foraging theory suggests that predators make 
foraging decisions that optimize energy intake with mini-
mal energy investment, thus maximizing energetic gain 
(Charnov 1976; Pyke et al. 1977; Louzao et al. 2014). 
In the tropical marine environment, prey can be concen-
trated in areas of enhanced primary productivity [high 
chlorophyll-a concentration (CHL) and lower sea-surface 
temperature (SST)] (Ballance et al. 2006), and seabirds 
may travel directly to these areas where prey encounters 
are likely to be higher (Weimerskirch 2007; Assali et al. 
2017). However, the South Pacific Gyre may be an espe-
cially challenging region for seabirds. This region has the 
most hyper-oligotrophic superficial waters in the world 
(Claustre et al. 2008) and is considered to be the world’s 
largest “oceanic desert” (Morel et al. 2010). The gyre cov-
ers an area of 37 million square kilometers (Longhurst 
et al. 1995; Reintjes et al. 2019), with Rapa Nui, also 
known as Easter Island, located at its center. While some 
seabird species breeding within the gyre, such as petrels, 
travel thousands of kilometers to forage at fronts with high 
productivity (Clay et al. 2017), other species with smaller 
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foraging ranges still manage to forage and breed success-
fully within the gyre (Jaramillo et al. 2008; Flores et al. 
2014). Little is currently known about how seabirds adapt 
to survive in this tropical, low-productivity environment 
and how they modify their foraging strategies to fulfill 
their energetic requirements.

The masked booby (Sula dactylatra) preys mainly on fly-
ing fish and squid throughout its range but consumes other 
prey families according to localities (Nelson 1978; Priddel 
et al. 2005; Asseid et al. 2006; Weimerskirch et al. 2009; 
Young et al. 2010; Kappes et al. 2011). Masked boobies for-
age by plunge diving and have been reported at a maximum 
distance of 367 km from the colony (Asseid et al. 2006), 
meaning they are effectively confined within the gyre while 
breeding. Seabird species inhabiting low-productivity areas 
like Rapa Nui are expected to spend long periods searching 
for food because prey abundances are lower and more unpre-
dictable than in productive areas (Ashmole 1971; Longhurst 
and Pauli 1987; Jaquemet et al. 2005). The waters around 
Rapa Nui have low variability in terms of CHL and SST at 
a mesoscale level (Testa 2014) and hence may not provide 
appropriate physical features for prey accumulation within 
the birds’ foraging range. However, Rapa Nui forms the part 
of the Easter Seamount, comprising large seamounts that 
can reach > 3000 m above the surrounding seafloor (Rodrigo 
et al. 2014). Seamounts support a wide diversity of fish and 
other potential prey species and may thus act as a resource 
patch (Riotte-Lambert and Matthiopoulos 2019) provid-
ing enhanced foraging opportunities for marine top preda-
tors (Ballance et al. 1997; Pitcher et al. 2007; Clark et al. 
2010). Seamounts can therefore be critical foraging areas 
for seabirds in the food-stressed environment of oligotrophic 
oceans (Pitcher et al. 2007).

Tropical regions typically experience variable environ-
mental conditions (Hamer et al. 2002). During periods of 
lower productivity, which affect prey abundance, seabirds 
may forage further and for longer periods (Burger and Piatt 
1990; Harding et al. 2007), use different areas to forage 
(Péron et al. 2012), or switch prey species and size (Burger 
and Piatt 1990; Croxall et al. 1999). However, conditions 
within the gyre are less well known than for other oceano-
graphic regions (Mannocci et al. 2014; Clay et al. 2017; 
Reintjes et al. 2019), and the levels of variability of environ-
mental conditions are poorly known (Testa 2014). It is pos-
sible that masked boobies may adjust their foraging move-
ments and diet between years if considerable environmental 
variation occurs (Nelson 1978; Sommerfeld et al. 2015). 
However, adjustments in their foraging movements and diet 
can be costly, because spending more time foraging during 
poor years increases absence times from the nest, potentially 
leading to deferred reproduction, lower growth rates, and 
higher chick mortality (Quillfeldt and Masello 2013; Guil-
lemette et al. 2018).

With around 70 breeding pairs, the masked booby is the 
most numerous of the few native species on Rapa Nui (Jara-
millo et al. 2008). It has a predictable presence on the island 
and is large enough to carry tracking devices that can be 
used to research their foraging strategies. These characteris-
tics make the masked booby an ideal species for determining 
(1) if foraging incidents occur in relation to static marine 
features like seamounts in Rapa Nui and (2) if the birds’ 
foraging ecology remains consistent between years based 
on environmental characteristics. It was expected that (1) 
masked boobies would travel directly to seamounts, reducing 
foraging times, with lower variability in foraging behavior 
than if prey patches were unknown (Sommerfeld et al 2013; 
Patrick et al. 2014; Oppel et al. 2015), and (2) that their for-
aging parameters would adapt to inter-annual environmental 
conditions.

Materials and methods

Data collection

Rapa Nui is the highest point of the Easter Seamount chain, 
reaching > 400 m above sea level (Rodrigo et al. 2014). Moai 
and the Pukao are the closest seamounts to Rapa Nui, reach-
ing > 2000 m above the sea floor, with summits at 261 and 
623 m depths, respectively (Rodrigo et al. 2014). Seamounts 
produce local turbulence and recirculation patterns that 
promote the entry of nutrients at relatively shallow depths, 
thus enhancing the primary productivity at Rapa Nui (Testa 
2014). The seamounts at Rapa Nui are considered impor-
tant marine conservation spots due to their diversity of fish 
(Friedlander et al. 2013) and are used sporadically by local 
fishermen (Mecho et al. 2019).

Data were collected at Motu Nui (109.4° W, 27.2° S, 
Fig. 1), a 3.9 ha islet covered with grass and surrounded 
by sea cliffs, located southwest of Rapa Nui. On Motu Nui, 
masked boobies nest in areas free from grass on the top of 
the islet and on the cliffs. Similar to Rapa Nui, Motu Nui 
has introduced species, including the Argentine ant (Line-
pithema humile) and the Chimago caracara (Phalcoboenus 
chimango), which can be potential predators of seabird 
chicks and eggs (Luna et al. 2018). There were 56 breeding 
pairs of masked boobies in 2016 and 77 breeding pairs in 
2017.

The foraging movements of masked boobies were studied 
by attaching GPS CatLog-S devices sealed in a heat-shrink 
epoxy casing (3.7 × 2.2 × 0.8 cm, Catnip Technologies, Hong 
Kong) to nine chick-rearing birds (3 females and 6 males) 
in October and November of 2016 and to 14 chick-rearing 
birds (8 females and 6 males) in November of 2017. Chicks 
from tagged birds were covered with down and weighed 
0.4–2.1 kg, and were thus estimated to be 1–8 weeks old 
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(Priddel et al. 2005). Eight and 12 of the tracked birds in 
2016 and 2017, respectively, were simultaneously equipped 
with time–depth recorders (TDRs; CEFAS Data Storage 
Tags G5+, Cefas Technology, UK). Two of the TDR devices 
had large sensor variations and were excluded from further 
analyses.

The GPS devices were programmed to record time, lati-
tude, and longitude every 4 min, and the TDRs to record 
pressure data every second, and temperature every minute 
at 12 bits. The GPS devices weighed 26 g and the TDR 
devices weighed 6.5 g; given that masked boobies weighed 
1.8–2.6 kg, the total weight was < 3% of the body mass 
threshold for attached devices (Wilson and McMahon 2006; 
Vandenabeele et al. 2012). The individuals were captured 
at their nest using a hand net from approximately 1 m. The 
loggers were attached on top of the three central tail feathers 
using waterproof adhesive TESA tape. All individuals were 
released back to their nest after attaching the devices. Birds 
were captured between 07:00 and 10:00 h and between 16:00 
and 19:00 h to avoid the hottest time of the day. The total 
handling time during capture and recapture did not exceed 
10 min.

Diet samples were collected opportunistically from 
masked boobies that regurgitated spontaneously as a result 
of the authors presence in the colony, or during tagging 
efforts. Eighteen regurgitated samples were collected in 
2016 and 15 in 2017. Due to the digested state of the sam-
ples and a lack of information on Rapa Nui fish species, fish 
and squid in regurgitates were identified to family level using 
a Pacific fish guide (Fischer et al. 1995) and a site-specific 

fish guide (Randall and Cea 2010). Notably, although regur-
gitates provide a useful and non-invasive method for obtain-
ing valuable information about seabird feeding ecology, the 
presence of different prey items in the diet may vary due to 
different intrinsic digestion rates (Barrett et al. 2007).

Regarding local environmental predictors, data on 
CHL, bathymetry, and SST were downloaded from https​
://coast​watch​.pfeg.noaa.gov/erdda​p. CHL and SST data 
were derived from monthly composites with a resolution 
of 0.025° (approx. 2.5 km) from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) sensor carried 
onboard NASA’s Aqua satellite, and bathymetry (BATH) 
data from ETOPO1, 0.017°. The names and coordinates of 
the nearby seamounts were obtained from Rodrigo et al. 
(2014). Average environmental conditions were extracted 
using the raster data of BATH, CHL, and SST inside a radius 
of 120 km (maximum range of a masked booby from Rapa 
Nui with an error threshold) using the function “extract” in 
the package “raster” (Hijmans 2019a).

Data processing

Tracking and diving data were processed using R 3.5.2 (R 
Core Team 2018). Foraging trip parameters including maxi-
mum foraging trip distance, total distance traveled, and trip 
duration were calculated after running the function “trip-
Split” provided by Lascelles et al. (2016). The maximum 
foraging trip distance was measured at the most distant point 
in a straight line from the colony. Total distance traveled 
was the sum of the distance between consecutive fixes from 

Fig. 1   Motu Nui location in 
relation to the South Pacific 
Ocean (a) and Rapa Nui (b), 
showing chlorophyll-a concen-
tration

https://coastwatch.pfeg.noaa.gov/erddap
https://coastwatch.pfeg.noaa.gov/erddap
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departure to return to the colony. Trip duration was the total 
time between departure and return to the colony. Foraging 
trips were considered as soon as the bird left a 1.5 km radius 
from the colony, because flying fish leaving the water and 
masked boobies foraging in the vicinity of the colony was 
observed. Although short trips may include birds bathing 
(Granadeiro et al. 2018), the presence of diving events in 
the vicinity of the colony demonstrated that these areas were 
also used as foraging grounds.

Using GPS data at 4 min intervals, foraging behavior dur-
ing the foraging trips was classified using the speed and 
turning angle from successive locations with value delimit-
ers of 0.60–3.14 radians (high turn) and 0–12 km h−1 (low 
speed). Value delimiters for speed and turning angle were 
based on the Expectation Maximization binary Clustering 
(EMbC) algorithm (Garriga et al. 2016, 2019) and were 
within the thresholds used for other sulids (Mendez et al. 
2017). Regarding diving data, a zero offset correction was 
applied for surface drift in the pressure sensor, and only 
dives deeper than 0.5 m were considered as true dives (Sup-
plementary material 1). It is acknowledged that this thresh-
old may omit shallow dives (Hagihara et al. 2011), but a 
larger threshold identified 21% more records as dives by 
including false dives due to noise or activities such as sitting 
on the water surface. Mean and maximum dive duration (s), 
mean and maximum diving depth (m), and diving rate (dives 
h−1) were calculated per individual trip.

Diving and foraging locations are not necessarily the 
same; dives may reflect attempts to capture prey, whereas 
foraging locations reflect searching behavior (Bennison 
et al. 2017). Because of this dissimilarity, foraging and 
diving activities during the foraging trips were tested for 
matches in time and space. First, the locations were grouped 
into “events” considering at least three successive loca-
tions (an area-restricted search approach; see Mendez et al. 
2017). The locations falling within a 10 min range were 
then merged and assigned a median latitude and longitude 
as a central location. Finally, the locations were matched. 
False positives (foraging locations but no dives) may occur 
if boobies capture prey on the wing (Weimerskirch et al. 
2005), in which case TDRs will fail to record dives, while 
false negatives (dives not matching foraging locations) may 
arise from opportunistic foraging events (Montevecchi et al. 
2009), in which case the ability of a classification based on 
speed and turning angles is limited for identifying forag-
ing behavior. Due to the associated error in each technique, 
foraging and diving events were tested separately. A radius 
of 10 km around each seamount was created and diving and 
foraging events within this radius were classified as “close 
to seamount,” while others were classified as “far from sea-
mount.” Distance from the seamounts was calculated for 
each dive and each foraging event using the package “geo-
sphere” (Hijmans 2019b).

Statistical analyses

It was tested if seamounts affected masked boobies’ forag-
ing behavior by applying linear mixed-effects models. Div-
ing rate was used as dependent variable; seamount use or not 
use was used as factors, with the birds’ identity as random 
factor. It was determined if foraging or diving events were 
more likely to occur in the immediacies of the seamounts using 
Chi-square analysis to compare dive and foraging events clas-
sified as “close to seamount” vs “far from seamount.” The 
variability of individuals’ foraging behavior was evaluated 
by analysis of variance with foraging or diving parameters as 
dependent variables and the birds’ identity as a fixed factor. 
Individual consistencies in foraging parameters were further 
investigated using the individual as a random intercept in the 
package “rptR” (Stoffel et al. 2017; Grecian et al. 2018). This 
package calculates variances between and within individuals 
and produces a value between 0 and 1, with values closer to 1 
representing higher consistency and values closer to 0 repre-
senting lower consistency (Courbin et al. 2018).

Inter-annual differences in foraging trip parameters were 
examined using linear mixed-effects models with foraging 
(maximum foraging range, trip duration, and total distance 
traveled) and diving parameters (mean diving depth, mean div-
ing duration, and dive rate) as dependent variables, year as a 
fixed factor, and birds’ identity as a random factor to account 
for pseudo-replication. The models were fitted using the “lme” 
function in the package “nlme” (Pinheiro et al. 2019). Model 
selection was performed using a likelihood ratio test. There 
was no significant difference in foraging or diving parameters 
between the sexes (P > 0.05), and information for both sexes 
was therefore pooled (Supplementary material 2). Residuals 
were plotted against fitted values, and there was no obvious 
deviation from the assumption of normally distributed and 
homogeneous residuals. To test if similar areas were used 
during both years, the Bhattacharyya coefficient (BA) was 
extracted using the function “overlap” in the package “ctmm” 
based on the GPS data (Calabrese et al. 2016). The BA is a 
measure of similarity between two probability distributions, 
which gives the overlap in the kernel density estimates (Win-
ner et al. 2018). The overlap between years was calculated by 
analysis of similarity (ANOSIM) with BA using the package 
“vegan” (Oksanen 2019). The number of prey items by year 
was compared using Chi-square tests. The results are shown 
untransformed, and the values for foraging parameters are 
given as mean ± standard deviation.

Results

A total of 123 foraging trips were recorded from 23 indi-
vidual masked boobies (Fig.  2). Nests were monitored 
every day during the tagging period of 4–6 days and no bird 
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showed signs of discomfort associated with the devices, such 
as making frequent contact with the devices or increased 
preening activities. Individuals performed an average of 
1.64 ± 0.48 trips per day. The mean maximum distance from 
the colony was 31.9 ± 21.5 km, mean foraging trip dura-
tion was 3.4 ± 2.1 h, and the mean total distance traveled 
during a foraging trip was 80.6 ± 54.2 km (Fig. 3). Diving 
information was obtained from 18 individuals. Most dives 
occurred at the surface below 2 m (59%) and lasted < 2 s 
(49%) (Fig. 4). The deepest dive was 6 m and the longest 
time submerged was 10 s. Dives occurred throughout the 
foraging trip at a rate of 4.8 ± 4.2 (range 0.2–36.7) dives 
h−1, and not at specific sites (Fig. 5). Regurgitates contained 
3.7 ± 3.2 items from 1.5 ± 0.8 prey families. Considering the 
total number of prey items collected, flying fish dominated 
the diet (Fig. 6).

Foraging and dive events (n = 554) matched in 32% of 
all events (true positives), while 44% of all foraging events 
(n = 495) showed no dives (false positives) and 23% of all 
dive events (n = 497) did not match foraging events (false 

negatives). Foraging (Chi-square test, X494 = 467, P = 0.80) 
and dive events (Chi-square test, X496 = 466, P = 0.82) were 
not significantly related to seamounts (Fig. 7). Dive rates 
(linear mixed-effects model, F(1, 95) = 0.27, P = 0.60) did 
not differ significantly between trips within or outside the 
immediacies (< 10 km) of seamounts. Only 28 of the 495 
foraging events (searching behavior) and 31 of the 497 total 
dive events (attempts of capturing prey) occurred in the 
immediacies of seamounts (Fig. 5). Foraging and diving 
parameters varied between individuals (Fig. 2, Supplemen-
tary material 3), with significant inter-individual differences 
in maximum distance from the colony, trip duration, mean 
dive duration, dive depth, and diving rate (Table 1). Indi-
viduals’ dive depths and durations were repeatable, but the 
maximum distance from the colony, trip duration, and diving 
rate were not (Table 1).

Within the foraging range of masked boobies, the water 
depth was 2.9 ± 0.5 km, CHL was of 0.02 ± 0.01 mg m−3 
in both years, and SST was 22.2 ± 0.4  °C in 2016 and 
21.6 ± 0.2 °C in 2017 (Fig. 8). There were no significant 
differences in foraging and diving parameters between 
2016 and 2017 (Table 1), and the areas used by masked 
boobies overlapped between years (BA range at 50% UD: 
0.53–0.99; ANOSIM R = 0.01, P = 0.10; BA range at 95% 
UD: 0.53–0.99; ANOSIM R = 0.01, P = 0.09). The main prey 
items in both years were flying fish, but the birds’ diet was 
more diverse in 2016 than in 2017, with the inclusion of 
anchovies (Engraulidae), sardines (Clupeidae), and dolphin-
fish (Coryphaenidae) (Fig. 6). Sea chubs (Kyphosidae) were 
more important in 2017, occurring in six regurgitates with 
4.6 ± 2.4 prey items, compared with two regurgitates with 
1.5 ± 0.7 prey items in 2016. Nevertheless, the prey items in 
the diet were homogeneous between years (Chi-square test, 
X8 = 2.50, P = 0.96).

Discussion

The results of this study provide novel information on the 
foraging behavior of a seabird species in the South Pacific 
Gyre. The diving parameters were similar to previous reports 
on diving depths and durations acquired for the species at 
Clipperton Island (Weimerskirch et al. 2009) and Phillip 
Island (Sommerfeld et al. 2013). Masked boobies at Rapa 
Nui made more trips per day (1.6 trips per day) than birds 
from St. Helena and Ascension Island (0.4–1.0 trips per day; 
Oppel et al. 2015), possibly related to the fact that forag-
ing trips of masked boobies from Rapa Nui were similar 
to or shorter than those of masked boobies’ from the other 
colonies. Interestingly, foraging trips of masked boobies 
would be expected to be shorter in colonies where water 
productivity was higher, and should thus reflect the possibili-
ties of prey encounter. However, although the CHLs at St. 

Fig. 2   Foraging trips of individual masked boobies (Sula dactylatra) 
at Rapa Nui during the breeding seasons of 2016 (n = 9, dashed lines) 
and 2017 (n = 14, solid lines). Black dot indicates the location of the 
masked booby colony
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Fig. 3   Foraging trip parameters 
for masked boobies (Sula dacty-
latra) at Rapa Nui based on the 
total number of trips (n = 123)

Fig. 4   Dive parameters for 
masked boobies (Sula dactyla-
tra) at Rapa Nui based on the 
total number of dives (n = 1404)
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Helena and Ascension Island were 0.07 and 0.08 mg m−3, 
respectively (Oppel et al. 2015), foraging trips were similar 
to or longer (3.4 and 11.4 h) and farther (41 and 78 km) 
than those at Rapa Nui, where the CHL was 0.02 mg m−3. 
Similarly, masked boobies on Clipperton Island performed 
further and longer foraging trips on average (103 km and 
8.9 h) in waters that were 10 times more productive (CHL 
0.20 mg m−3) (Weimerskirch et al. 2008) than at Rapa Nui.

The larger foraging ranges reported in other studies could 
be related to greater inter- or intra-specific competition at 
other sites. Masked boobies in the South Atlantic foraged 
closer to smaller colonies compared with more densely pop-
ulated colonies (Oppel et al. 2015). Accordingly, masked 
booby colonies on St. Helena (500 individuals), Ascen-
sion (4600 individuals) (Oppel et al. 2015), and Clipperton 
Island (120 000 individuals) (Weimerskirch et al. 2008) were 
larger, supporting the idea that larger colonies might experi-
ence high levels of intra-specific competition, resulting in 

longer foraging ranges (Lewis et al. 2001). Similar to land 
deserts, Rapa Nui supports small populations of general-
ist predators (Ashmole 1963; Cook 1997; Ayal 2007). The 
masked booby colony was ~ 70 breeding pairs, and no other 
large plunge divers, except tropicbirds, occur regularly in 
the area. The shorter foraging trips of masked boobies from 
Rapa Nui may thus reflect the low level of competition that 
occurs in small colonies.

The main prey item of masked boobies was flying fish, 
coinciding with results throughout their distributional range 
(Nelson 1978; Asseid et al. 2006; Weimerskirch et al. 2009; 
Young et al. 2010; Kappes et al. 2011). The diet of masked 
boobies at Rapa Nui included species, such as anchovies and 
sea chubs, which were not reported in previous studies. The 
difference in supplementary prey species included in the diet 
of masked boobies must reflect the fact that geographically 
separated populations of seabirds are exposed to different 
environmental and ecological conditions (Garthe et al. 2007; 
Castillo-Guerrero et al. 2016).

Foraging strategy

It was hypothesized that seamounts may attract foraging 
seabirds at Rapa Nui because of their increased food sup-
ply (Morato et al. 2010); however, contrary to these expec-
tations, masked boobies did not appear to use seamounts. 
Similarly, red-footed boobies (Sula sula) did not preferen-
tially forage over seamounts in the Mozambique Channel 
(Weimerskirch et al. 2005), though the use of seamounts 
appears to differ among seabird species (Pitcher et al. 2007; 
Clay et al. 2017). Masked boobies do not feed on primary 
producers, and there is a natural delay between the primary 
producers and fish (Suryan et al. 2012). Seamounts may thus 
not concentrate the prey items that boobies are searching for, 
and may even have the opposite effect, given that flying fish 
are offshore specialist species that prefer low-productivity 
waters (Churnside et al. 2017; Lewallen et al. 2018).

In contrast, the foraging behavior of masked boobies 
in the hyper-oligotrophic waters of Rapa Nui showed that 
their prey was not predictably distributed or associated with 
static environmental features. This was demonstrated by 
the fact that foraging parameters differed both between and 
within individuals. It was also found that an individual bird 
might make several trips on the same day following different 
behaviors and traveling to different places, in accordance 
with previous findings that showed low foraging-site fidel-
ity in tropical seabirds (Weimerskirch 2007; Kappes et al. 
2011; Hennicke and Weimerskirch 2014; Soanes et al. 2016; 
Oppel et al. 2017). Flying fish shoals are highly unpredict-
able (Oxenford et al. 1995); traveling to the same area is 
thus of limited value to masked boobies, and it may be more 
efficient to search in different locations. Other animals facing 
unpredictable resources move without any specific direction 

Fig. 5   Diving (n = 497, red circles) and foraging events (n = 495, yel-
low diamonds) of tracked masked boobies (Sula dactylatra) at Rapa 
Nui. Triangles indicate the seamounts; grey circles indicate the area 
of influence of the seamounts; size of the symbol indicates the num-
ber of dives or foraging locations per event; black dot indicates the 
colony
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but then travel directly when they see something of inter-
est (Venter et al. 2017). This seems to reflect the behavior 
of masked boobies searching for a prey patch, subsurface 
predators, or conspecifics. The ephemeral distributions of 
flying fish are further supported by the techniques used by 
fishermen, who change locations both within and between 
days to catch flying fish in the Caribbean (Oxenford et al. 

1995) and at Rapa Nui (Pau Hito, Rapa Nui fishermen, pers. 
comm.). Exploring new areas benefited fishermen facing sto-
chastic systems (O’Farrell et al. 2019). Similarly, an explora-
tive approach may be the dominant searching strategy used 
by seabirds in oligotrophic waters like Rapa Nui and may 
allow the masked booby population to maintain a foraging 
range < 110 km radius.

Fig. 6   Prey species in regur-
gitates from masked boobies 
(Sula dactylatra) at Rapa Nui 
during the breeding seasons of 
2016 (18 regurgitates, 56 prey 
items) and 2017 (15 regurgi-
tates, 67 prey items). Families 
identified include Exocoetidae 
(flying fish), Kyphosidae (sea 
chub), Engraulidae (anchovy), 
Hemiramphidae (halfbeaks), 
Clupeidae (sardines), Omnas-
trephidae (squid), Carangidae 
(jacks), and Coryphaenidae 
(dolphinfish). A number of 
regurgitates that contained the 
prey item are presented above 
the bars and correspond to 
regurgitates of 2016/2017

Fig. 7   Diving (n = 497) and 
foraging events (n = 495) of 
masked boobies (Sula dacty-
latra) in relation to distance to 
the colony and to the Pukao and 
Moai Seamounts
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Inter‑annual comparisons

There were some differences in the proportion of prey 
families included in the diet of masked boobies between 
years. Between-year differences in seabird diets are often 
associated with environmental conditions that affect prey 

distribution and abundance (Burger and Piatt 1990; Croxall 
et al. 1999). However, the environmental conditions at Rapa 
Nui were similar during both years. Although the present 
understanding of prey abundances is limited by a lack of 
information, the differences in supplementary prey species 
included in the diets between years may merely be an effect 
of the birds’ opportunistic behavior. Flying fish occur in 
patchily distributed shoals that are very difficult to predict 
in space and time (Oxenford et al. 1995), and birds may 
prevent interruptions to their food supply by opportunisti-
cally including other prey species (MacArthur and Pianka 
1966; Giraldeau and Dubois 2008). For example, masked 
boobies included small sea chubs, an inshore fish of which 
juveniles may occur offshore amongst drifting flotsam and 
algae (Randall and Cea 2010).

The foraging and diving parameters of the masked boo-
bies were similar in both study years. Similarly, petrels, as 
other tropical seabird inhabiting the South Pacific Gyre, 
showed no inter-annual differences in their foraging param-
eters (Clay et al. 2017). The consistent foraging parameters 
and relatively stable environmental conditions around Rapa 
Nui suggest that there was no need for the birds to change 
their foraging behaviors under these conditions. Flying fish 
may occur in the region throughout the year because they 
do not generally make long-distance migrations, and they 
have short generations (1–2 years) and small home ranges 
of < 500 km2 (Lewallen et al. 2018). Masked boobies form 
associations with tuna species during foraging (Au and 
Pitman 1986), and tuna may occur in the area because of 
the presence of flying fish and because of the suitable sea 
conditions around Rapa Nui for some tuna species, includ-
ing moderate SST and low surface CHL (Teo et al. 2007). 
However, detailed information on the distributions of flying 
fish and tuna is lacking, largely because data on the quantita-
tive distributions of oceanic pelagic species are difficult and 
expensive to collect (Oxenford et al. 1995; Churnside et al. 
2017; Lewallen et al. 2018). Nonetheless, masked booby for-
aging parameters suggest that prey availability is regular and 
stable, otherwise their energy reserves would be depleted 

Table 1   Analyses of foraging 
and diving parameters of 
chick-rearing masked boobies 
(Sula dactylatra) breeding at 
Rapa Nui in 2016 (GPS = 9, 
TDR = 6) and 2017 (GPS = 14, 
TDR = 12), showing inter-
annual, inter-individual, and 
intra-individual comparisons

a Linear mixed-effect models with significant differences are indicated in bold
b repeatability estimations and r ± standard errors are presented with 95% confidence intervals in parenthe-
ses (values close to 0 indicate low consistency; values close to 1 indicate high consistency)

Inter-annual Inter-individual Intra-individual

Parameter Statistica P Statistica P Statisticb

Maximum distance F1, 21 = 0.39 0.54 F22, 100 = 1.78 0.03 0.09 ± 0.07 (0, 0.24)
Trip duration F1, 21 = 0.03 0.87 F22, 100 = 2.22 < 0.01 0.17 ± 0.10 (0, 0.37)
Total distance F1, 21 = 0.21 0.65 F22, 100 = 1.70 0.04 0.08 ± 0.07 (0, 0.23)
Dive duration F1, 16 = 0.15 0.70 F17, 68 = 3.04 < 0.01 0.43 ± 0.14 (0.14, 0.68)
Diving depth F1, 16 = 1.43 0.25 F17, 68 = 2.88 < 0.01 0.41 ± 0.15 (0.09, 0.69)
Diving rate F1, 16 = 2.76 0.12 F17, 68 = 2.43 < 0.01 0.13 ± 0.09 (0, 0.32)

Fig. 8   Chlorophyll-a concentrations at Rapa Nui in November 2016 
(a) and 2017 (b), and sea surface temperatures in November 2016 (c) 
and 2017 (d). Black dot indicates the study area
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and they would avoid breeding, which is demonstrably not 
the case. The evidence suggests that masked boobies breed 
on Rapa Nui throughout the year and have done so since at 
least 1904 (Marin and Caceres 2010; Flores et al. 2014).

Peaks in productivity are often associated with an 
increase in food availability, which plays a significant role in 
the time of breeding for many seabirds (Hamer et al. 2002). 
However, tropical areas tend to have a weak productivity 
peak (Weimerskirch 2007). Year-round breeding of several 
tropical seabirds may thus be due to the stable but short 
year-round availability of food, which offers multiple breed-
ing opportunities throughout the year, but for only a limited 
number of breeding pairs (Reynolds et al. 2014; Tarburton 
2018). It is therefore worth speculating that the year-round 
breeding of masked boobies in Rapa Nui may be another 
adaptation to hyper-oligotrophic conditions, by diluting the 
peak of food demands and potentially allowing more birds 
to coexist in the same breeding grounds than if they all bred 
at the same time.

Conclusions

The current study provides the first description of the for-
aging ecology of a plunge-diving seabird species in the 
hyper-oligotrophic waters of the South Pacific Gyre. The 
results suggest that the foraging strategies of masked boo-
bies were influenced by the distributions of flying fish at a 
distance < 110 km from the coast. The locations of foraging 
trips indicated that traveling to a specific location, such as 
seamounts, may be of little value to masked boobies in Rapa 
Nui. The stability of the environmental conditions around 
Rapa Nui means that the birds’ foraging behavior remains 
similar between years, implying similar prey abundances. 
These results show that masked boobies can adapt to a wide 
range of oceanographic conditions, including the hyper-oli-
gotrophic waters of the South Pacific Gyre, thus demonstrat-
ing the flexible characteristics of this species, which may 
in turn explain its wide distribution throughout the tropics.
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