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Abstract
The El Niño Southern Oscillation (ENSO) is a recurrent climatic pattern with important ecological consequences for seabirds 
due to its impacts on the abundance and distribution of food resources. We investigated the effects of ENSO phases on the 
foraging ecology of a marine top predator at Clarion Island in the Eastern Tropical Pacific using GPS and time-depth recorder 
data and regurgitates from incubating masked boobies (Sula dactylatra) during 3 consecutive years. Foraging locations 
were recorded in 2016 (El Niño, one female, three males), 2017 (neutral; six females, nine males), and 2018 (La Niña; eight 
females, ten males). Local sea surface temperature (SST) and chlorophyll-a concentration (CHL) within the birds’ foraging 
range were compared among the 3 years. Regurgitates were collected opportunistically from 25 and 31 incubating adults in 
2017 and 2018, respectively. Average local CHL and SST were similar among years (mean SST 25 °C; mean CHL 0.10 and 
of 0.09 mg m−3 in January and March, respectively). Masked boobies travelled a maximum of 66 ± 34 km from the colony. 
The maximum trip duration was 7.7 ± 3.4 h and total distance travelled during a foraging trip was 164 ± 73 km, with no sex- 
or year-related differences. Masked boobies mainly caught flying fish, but their diet also included one squid and six other 
fish families. In contrast to previously reported changes in foraging ecology of seabirds, masked boobies at Clarion Island 
seemed to be unaffected during El Niño, because the local oceanography was relatively unperturbed by ENSO oscillations.

Introduction

The El Niño-Southern Oscillation (ENSO) is a dominant 
driver of inter-annual variabilities in the physical and bio-
geochemical states in the Pacific. Its warm phase, El Niño, 
is perhaps the most important climatic anomaly in the East-
ern Tropical Pacific (McPhaden et al. 2006; DiLorenzo and 
Miller 2017), causing wide-scale ecological disturbances 

in the region (DiLorenzo and Miller 2017). The intensity 
and frequency of El Niño events are currently increasing 
as a result of human-accelerated climate change (Walther 
et al. 2002; Cai et al. 2014) and are unlikely to be accounted 
for solely by natural variability (Trenberth and Hoar 1997). 
Increases in the frequency of El Niño events are predicted 
to lead to decreased ocean productivity, altered food web 
dynamics, and shifts in species distributions (Walther et al. 
2002; Hoegh-Guldberg and Bruno 2010; DiLorenzo and 
Miller 2017). Changes in the availability and distribution of 
fish species may impact the prey availability for top preda-
tors like seabirds, with consequences for their behavior, 
physiology, and demography (Vargas et al. 2006; Grémillet 
and Boulinier 2009; Oro 2014; Champagnon et al. 2018). 
Seabirds are currently the most threatened group of birds 
(Croxall et al. 2012) and conservation actions that antici-
pate the effects of climate change on their populations are 
required (Monahan and Fisichelli 2014). However, predict-
ing the effects of global warming on seabirds is complicated 
by gaps in knowledge for many remote tropical regions (Oro 
2014), and there is thus a need for local studies to obtain 
information on the reactions of seabird species to local and 
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wide-scale environmental oscillations (Jenouvrier 2013; Oro 
2014).

Seabirds may respond to changes in the availability 
of their main prey by switching the targeted prey species 
(Ancona et al. 2012) and adjusting their foraging behavior 
(Harding et al. 2007; Elliott et al. 2008; Castillo-Guerrero 
et al. 2016). During periods of lower productivity, which 
affect prey abundance, seabirds may forage further and for 
longer periods (Burger and Piatt 1990; Harding et al. 2007) 
and switch prey species and size (Burger and Piatt 1990; 
Croxall et al. 1999). Seabird species differ in terms of their 
behavioral plasticity (Gilmour et al. 2018), and although 
relatively plastic species continue to breed during El Niño 
events, less-plastic species may experience dramatic popu-
lation collapses (Ribic et al. 1997; Quillfeldt and Masello 
2013; DiLorenzo and Miller 2017; Wingfield et al. 2018). 
Masked boobies (Sula dactylatra) represent an ideal species 
for documenting the effects of El Niño events in a tropical 
marine predator. This species is large enough to carry track-
ing devices, continues breeding even during El Niño events 
(Nelson 1978), and individuals may adjust their foraging 
movements and prey items according to availability (Nelson 
1978; Sommerfeld et al. 2015).

Notably, masked boobies are sexually sized dimorphic, 
with females being 16% heavier and 2% larger than males 
(Sommerfeld et al. 2013). Some seabird species with size 
dimorphism have shown sex-specific foraging strategies dur-
ing periods of reduced food availability (Ishikawa and Wata-
nuki 2002). However, previous studies of masked boobies 
found no evidence of sex differences in foraging parameters 
(Weimerskirch et al. 2009; Young et al. 2010; Kappes et al. 
2011; Oppel et al. 2015; Poli et al. 2017), though males in 
some colonies had lower diving rates and dived less deeply 
than females (Sommerfeld et al. 2013; Weimerskirch et al. 
2009). Foraging segregation between sexes may occur only 
under specific circumstances, e.g. when environmental con-
ditions are poor and food becomes scarce (Castillo-Guerrero 
and Mellink 2011; Paiva et al. 2017; Miller et al. 2018). It 
is therefore important to explore the influence of climate on 
the foraging ecology of both sexes in seabirds, to highlight 
demographic heterogeneities with potential consequences 
for population dynamics (Oro et al. 2010, 2018; Patrick and 
Weimerskirch 2014).

In this study, we obtained tracking and diving data and 
collected and analyzed diet samples from masked boobies 
to describe the foraging ecology of this species under dif-
ferent environmental regimes (in relation to ENSO phases), 
and to evaluate the influence of wide-scale environmental 
conditions on local oceanography and foraging segregation 
between the sexes. We hypothesized that masked boobies 
would forage further and for longer periods during periods 
of lower productivity (which affect prey abundance), and 
may switch prey species and size. We also considered that 

sexual segregation in foraging would occur during periods 
of lower productivity (e.g. during El Niño), whereas forag-
ing differences between sexes would be less evident during 
periods of average or high productivity (e.g. neutral or La 
Niña years).

Materials and methods

Data collection

Revillagigedo Archipelago is a Mexican-designated marine 
protected area in the Eastern Tropical Pacific Ocean 
(CONANP 2017; DOF 2017) and is within an area vulner-
able to marine heatwaves (Frölicher and Laufkötter 2018; 
Smale et al. 2019). Clarion Island is the most remote island 
of the archipelago, with breeding populations of several 
species of birds, including the ground-nesting, piscivorous 
masked booby (S. dactylatra). Clarion Island (18° 21′ 7.53ʺ 
N, 114° 43′ 18.61ʺ W; Fig. 1), which lies 985 km west of 
the Mexican mainland and 710 km southwest of the Baja 
California peninsula (Wanless et al. 2009), includes a breed-
ing colony of around 100 pairs of masked boobies (Wanless 
et al. 2009; Almanza-Rodríguez 2019).

We visited Clarion Island for 30-day periods in January 
2016, March 2017, and March 2018, respectively. Tracking 
data were collected opportunistically from incubating birds 
using i-gotU Loggers (i-gotU GT-120: Mobile Action, Tai-
wan) in 2016 (four females and four males), and CatLog-S 
Loggers (Catnip Technologies, Hong Kong, China) in 2017 
(six females and nine males) and 2018 (eight females and ten 
males) (Supplementary material 1). Incomplete trips (depar-
ture or return from/to the nest not registered) and gaps in the 
tracking data while at sea occurred in 2016 (1–82 min), 2017 
(1–13 min), and 2018 (1–8 min) due to battery failure of the 

Fig. 1   Location of Clarion Island in the Eastern Pacific Ocean. Sche-
matic representation of currents. Background shading indicates sea 
surface temperature in January 2016
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GPS devices. Incomplete trips were excluded from the anal-
yses, and trips with gaps were included to estimate forag-
ing trip parameters. After data selection, 10 trips from four 
individuals in 2016, 47 trips from 15 individuals in 2017, 
and 58 trips from 18 individuals in 2018 were included in 
the analyses (Supplementary material 1). The GPS devices 
were programmed to record time, latitude, and longitude 
every 1 min in 2016 and 4 min in 2017 and 2018. Twenty-
one of the birds with GPS devices were also equipped with 
time-depth recorders (TDRs; model G5+, Cefas Technology, 
UK), but only six birds had identifiable dives in 2017 and 
one in 2018. The TDR devices were programmed to record 
pressure data every 1 s on 12 bits.

Individuals were captured at their nest by hand or using 
a hand net from a distance of 1 m. The sex of the individu-
als was determined by size and vocalization; females are 
bigger and have a rough voice, whereas males are smaller 
and have a high-pitched voice (Nelson 1978). The devices 
were attached using TESA tape on top of the three central 
tail feathers. The GPS devices, including the waterproof 
heat-shrink casing, weighed 22–30 g and the TDR devices 
weighed 6.5 g. The masked boobies weighed 1.4–2.6 kg and 
the combined devices, therefore, did not exceed the recom-
mended 3% weight threshold for attached devices (Wilson 
and McMahon 2006; Vandenabeele et al. 2012). The total 
handling time never exceeded 10 min to minimize distress 
to the birds as a result of the tagging process. Individuals 
were captured at night from 19:00 to 03:00 h to prevent sun-
stroke to the birds and to avoid potential predation of eggs 
and chicks by common ravens (Corvus corax) and snakes 
(Masticophis anthonyi). Among the 37 tracked individuals, 
16 lost their eggs during the tracking period. However, the 
loss of eggs was not exclusive to tagged individuals: from 
62 nests monitored in 2017, 14 eggs hatched and 12 of the 
14 chicks died (Almanza-Rodriguez 2019).

Diet samples were collected opportunistically in 2017 and 
2018 if the bird regurgitated spontaneously as a result of our 
presence in the colony or during tagging. The whole regur-
gitate was placed in an individual plastic bag and weighed, 
and each prey item was later removed from the bag, photo-
graphed, and identified to the family level, based on Pacific 
fish guides (Fischer et al. 1995). Diet was described based 
on ‘numerical frequency’, defined as the number of items 
from a given prey family in relation to the total number of 
prey items (Alonso et al. 2018).

Environmental data on chlorophyll-a concentration 
(CHL) and sea surface temperature (SST) were down-
loaded from Aqua MODIS, NPP, 0.025 degrees, Pacific 
Ocean Lon ± 180, monthly composites, from the ERD-
DAP database (https​://coast​watch​.pfeg.noaa.gov/erdda​p). 
CHL and SST are influenced by ENSO (DiLorenzo and 
Miller 2017) and are considered to be good proxies for 
seabirds’ prey availability (Kappes et al. 2010; Paiva et al. 

2010). A circle of radius 180 km (maximum range of a 
masked booby from Clarion Island with an error thresh-
old) was created around Clarion Island and the CHL and 
SST within the circle were extracted using the function 
‘extract’ in the package ‘raster’ (Hijmans 2019). Using 
the extracted data for CHL and SST, we calculated the 
mean and standard deviation for each variable within the 
maximum foraging range for the breeding seasons in 2016, 
2017, and 2018 (Figs. 2, 3). In addition, the Oceanic Niño 
Index (ONI) was used to classify the year as El Niño, La 
Niña, or neutral. ONI considers El Niño conditions to 
exist when the index is ≥  + 0.5 (indicating that the East-
Central Tropical Pacific is warmer than usual), La Niña 
when the index is ≤  − 0.5 (indicating that the region is 
colder than usual), and El Niño-neutral when the index is 
between − 0.5 and + 0.5 (https​://www.cpc.ncep.noaa.gov/
produ​cts/analy​sis_monit​oring​/ensos​tuff/ensoy​ears.shtml​).

Data processing

Tracking data were processed in R 3.6.2 (R Core Team 
2019). GPS fixes included multiple trips from a single 
bird. To obtain information on the foraging parameters 
per individual trip, all GPS fixes were analyzed using the 
function ‘tripsplit’ in the package ‘IBA’. This function 
calculates the maximum distance from the colony, total 
distance travelled, and the trip duration for each individ-
ual trip (Lascelles et al. 2016). The maximum distance 
from the colony was measured as the most distant point 
in a straight line from the colony, total distance travelled 
was the summed distance between consecutive fixes from 
departure to return to the colony, and trip duration was the 
total time between departure and return to the colony. For 
the TDR data, a zero offset correction for surface drift was 
applied and only dives deeper than 0.5 m were considered 
as true dives.

For tracking data in 2017 and 2018, foraging behavior 
was determined based on the speed and turning angles from 
successive locations during the foraging trips using a clus-
tering algorithm (Garriga et al. 2016). Value delimiters of 
0.18–3.14 (high turn) and 0–20 km h−1 (low speed) were 
used to identify foraging behavior and were within thresh-
olds applied in other sulids (Mendez et al. 2017). Using the 
foraging locations, kernel estimation of the utilization dis-
tribution (UD) of core (50%) and general (95%) areas were 
delimited using the function ‘kernelUD’ in the package ‘ade-
habitatHR’ (Calenge 2006). The reference bandwidth was 
used (0.10–0.13), and the Bhattacharyya coefficient (BA) 
was calculated. BA is a measure of similarity between two 
probability distributions, indicating the overlap in kernel 
density estimates, and can range from 0 (no overlap) to 1 
(identical UD).

https://coastwatch.pfeg.noaa.gov/erddap
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
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Statistical analyses

Inter-annual differences in CHL and SST were analyzed 
using one-way analysis of variance with year as factor. 
Differences in foraging parameters between sexes and 
years were analyzed using linear mixed-effect models in 

the package ‘nlme’ (Pinheiro et al. 2019) with maximum 
distance from the colony, total distance travelled, and trip 
duration as response variables, respectively. Residuals were 
plotted against fitted values and there was no obvious devia-
tion from the assumption of normality and homoscedasticity 
of residuals. Year, incubation status (maintained and losing 

Fig. 2   Chlorophyll-a concen-
tration (CHL, mg m−3) in the 
Eastern Tropical Pacific (upper 
panels) and at Clarion Island 
(lower panels) in January 2016 
(A1 and A2), March 2017 (B1 
& B2), and March 2018 (C1 & 
C2). Black dot indicates study 
area; circle represents area used 
to extract mean and standard 
deviation of CHL

Fig. 3   Sea surface temperature 
(SST, ºC) in the Eastern Tropi-
cal Pacific (upper panels) and 
at Clarion Island (lower panels) 
in January 2016 (A1 & A2), 
March 2017 (B1 & B2), and 
March 2018 (C1 & C2). Black 
dot indicates study area; circle 
represents area used to extract 
mean and standard deviation 
of SST
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eggs), and sex were included as fixed factors, as well as the 
two-way interactions year × incubation status and year × sex. 
All models included individual bird identity as a random 
factor to avoid pseudo-replication. The significance of the 
factors was tested by comparing models with and without 
interactions and fixed factors. Comparisons were made using 
likelihood ratio tests (Kokubun et al. 2010; Peck-Richardson 
et al. 2018) using the ‘anova’ function.

The overlap between sexes and years (2017 and 2018) was 
calculated by analysis of similarity (ANOSIM) with BA on 
the 95% and 50% UD using the package ‘vegan’ (Oksanen 
2019). We compared the number of prey items by year and 
sex, respectively, using chi-square tests. Statistics were per-
formed in R 3.6.2 (R Core Team 2019) and maps were pro-
duced using QGIS 3.4 (QGIS Development Team 2019). The 
results are presented as mean ± standard deviation.

Results

The environmental conditions within the foraging range 
of masked boobies (< 180 km) during the 3-year study 
period (2016–2018) showed an average CHL concentration 
of 0.09 ± 0.02 mg m−3 and average SST of 26.3 ± 1.3 °C. 
Average local CHL and SST did not differ significantly 
among years (CHL: ANOVA, F (1,1) = 2.12, P = 0.38, SST: 
ANOVA, F (1,1) = 0.61, P = 0.58) (Figs. 2, 3, 4). Based on 
the ONI, January 2016 was an El Niño phase (ONI 2.5), 
March 2017 was El Niño-neutral (ONI 0.1), and March 
2018 was a La Niña phase (ONI − 0.6) (Fig. 4). During the 
three tracking periods, the mean SST was 25 °C and the 
mean CHLs were 0.10 and 0.09 mg m−3 during January 
and March, respectively. The conditions within the foraging 
range of the masked boobies thus remained stable and did 
not coincide with the expected ENSO conditions.

Tracked birds were observed during the tagging period of 
4 days and no individual showed signs of discomfort associ-
ated with the devices, such as frequent touching the device 
or increased preening activities. We obtained 115 tracks 
from the 37 birds leaving the island to go to sea. There were 
no significant differences in foraging trip parameters among 
birds in relation to incubation status (maintaining or losing 
the egg), sex, or the three tracking periods (January 2016, 
March 2017, and March 2018) (Fig. 5) and there were no 
significant interactions between the factors (Table 1).

The areas used for foraging by masked boobies were 
similar between sexes and years (2017 and 2018) (BA range 
at 50% UD: 0.11–0.99, ANOSIM R = -0.15, P = 0.96; BA 
range at 95% UD: 0.10–0.99, ANOSIM R = -0.16, P = 0.95) 
(Fig. 6). Of the 18 diving devices deployed on individuals in 
2017 and the three in 2018, only seven recorded identifiable 
dives, while the other devices had no clear dives or showed 
large pressure variations that prevented the identification of 

dives. Among all dives, 66% lasted ≤ 3 s and 82% were ≤ 2 m 
depth (Fig. 7). The deepest dive was 5.5 m and the longest 
13 s. No statistical comparisons of diving parameters were 
possible due to the limited number of recorded dives.

Regurgitates from 25 individuals in 2017 (14 females 
and 11 males) and from 31 individuals in 2018 (14 females 
and 17 males) were collected, comprising 186 individual 
prey items. The numerically dominant prey family for both 
female and male masked boobies in 2017 and 2018 was 
flying fish (Fig. 8). Regurgitates contained an average of 
3.5 ± 2.1 prey items (range 1–13 items) from 1–3 families. 
The prey items in the diet were homogeneous between years 
(chi-square test, X7 = 4.96, P = 0.66) and sexes (chi-square 
test, X7 = 2.96, P = 0.89).

Discussion

Despite the limited number of samples, this study provides 
novel evidence for the foraging ecology of masked boobies 
at Clarion Island during consecutive years. We expected that 
masked boobies would show different foraging strategies in 
response to changes in the availability and distribution of 
their food resources; however, despite these assumptions, 
no significant ENSO effects were detected at Clarion Island.

Peaks in CHL and lower SST in the first trimester of the 
year mirrored the peaks from the California Current (Lluch-
Cota 2000; Valencia-Gasti et al. 2015) and demonstrated 
the influence of this current at Clarion Island. However, 

Fig. 4   Time series of monthly mean chlorophyll-a concentration 
(CHL, dashed) and sea surface temperature (SST, line) within the 
maximum foraging range (180 km) for masked boobies (Sula dactyla-
tra) from January 2016 to April 2018. Background corresponds to the 
Oceanic Niño Index (ONI), which classifies conditions like El Niño 
(index ≥  + 0.5, indicating that the East-Central Tropical Pacific is 
warmer than usual), La Niña (index ≤  − 0.5, indicating that the region 
is colder than usual), and El Niño-neutral (index − 0.5 to + 0.5). 
Arrows indicate tracking periods in January 2016, March 2017, and 
March 2018
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the CHL peaks in the coastal part of the California Current 
reached 1.8 mg m−3 (Lluch-Cota 2000), compared with a 
maximum of only 0.1 mg m−3 in the present study. The low 
influence of the California Current may be caused by the 
distance between Clarion Island and the coastal upwelling 
resulting in a weakened effect on productivity, such that the 
island maintains low-productivity waters that are less sus-
ceptible to ENSO-related environmental oscillations. The 
unusual environmental stability around Clarion Island, with 
no major inter-annual variations, may thus maintain stable 
local availability of the main prey species of masked boobies 
between ENSO phases, which may explain the consistent 
foraging parameters of masked boobies across years.

El Niño affects the abundance and distribution of fish 
species that depend on upwelling, such as anchovies and 
sardines (Velarde et al. 2004; Ancona et al. 2012; Quill-
feldt and Masello 2013; Champagnon et al. 2018), and is 
thus especially challenging for seabirds adapted to prey on 
these small pelagic species. Nazca boobies (Sula granti) and 
blue-footed boobies (Sula nebouxii) in the Galapagos were 
reported to be affected by El Niño (Anderson 1989), probably 

because they depend on fish species such as anchovies, and 
sardines (Ancona et al. 2012; Tompkins et al. 2017). In con-
trast, red-footed boobies (Sula sula) and frigatebirds (Fregata 
minor), which prey on flying fish and squid (Schreiber and 
Hensley 1976; Young et al. 2010), remained unaffected dur-
ing El Niño (Anderson 1989), suggesting that El Niño may 
not represent an additional pressure for seabird species in 
low-productivity warm waters, such as masked boobies, that 
prey on flying fish. This may also help to explain why sea-
birds inhabiting higher productivity areas are more severely 
affected by El Niño than those in low-productivity areas 
(Ribic et al. 1997; Quillfeldt and Masello 2013; DiLorenzo 
and Miller 2017). Masked boobies in the current study inhab-
ited a low-productivity area and preyed mainly on flying fish 
and squid, which may show increased abundances in warm 
and low-productivity waters (Churnside et al. 2017; Lluch-
Belda et al. 2014; Doubleday and Connell 2018).

Consistent with previous studies on masked boobies, we 
found no significant difference between females and males in 
terms of maximum distance from the colony, trip duration, 
or total distance travelled (Weimerskirch et al. 2009; Young 

Fig. 5   Foraging trip parameters 
of masked boobies (Sula dacty-
latra) at Clarion Island during 
the breeding seasons in 2016 
(birds = 4, trips = 10), 2017 
(birds = 15, trips = 47), and 2018 
(birds = 18, trips = 58)
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et al. 2010; Kappes et al. 2011; Oppel et al. 2015; Poli  et al. 
2017). Some previous studies found differences between the 
sexes in relation to diving depths and rates (Sommerfeld et al. 
2013; Weimerskirch et al. 2009); however, although previ-
ous studies reported no problems with detecting and ana-
lyzing dives for masked boobies (Sommerfeld et al. 2015), 
our current devices failed to record enough diving events 
for statistical analysis. The failure of the devices to record 
the diving behavior of masked boobies could be because the 
birds were catching their prey on the wing, when subsurface 
predators flush flying fish or squid to the surface or out of 
the water (Davenport 1994; Muramatsu et al. 2013). Masked 
boobies are likely to catch prey on the wing because they 

form associations with tuna species during foraging (Au and 
Pitman 1986), and albacore (Thunnus alalunga), yellow-fin 
(T. albacares), and bigeye (T. obesus) tuna, some of which 
also consume flying fish (Lacerda et al. 2017; Chagnon et al. 
2018; Lewallen et al. 2018), all occur in the waters surround-
ing the Revillagigedo Archipelago. We recommend using 
accelerometers (Sommerfeld et al. 2013) or videography 
(Machovsky-Capuska et al. 2011) in future studies to inves-
tigate the diving behavior of masked boobies.

Foraging trip parameters from tracked birds that lost their 
eggs and remained to defend their territory/sit on their nest 
were similar to those for birds that kept their eggs. Losing 
eggs may influence the bird’s behavior at sea because non-
breeding boobies move over larger distances than breeding 
boobies (Kohno et al. 2019). However, considering that 
masked boobies may lay second clutches within a period of 
28–83 days (Priddel et al. 2005), tracked masked boobies 
that lost their eggs did not modify their foraging behavior 
because they may continue to be tied to the nest site. An 
alternative explanation is that non-breeding seabirds pre-
sumably disperse in response to changes in food availability 
and prevailing local conditions (Dingle and Drake 2007; 
Newton 2012), and there were no dramatic changes in the 
prevailing local conditions at Clarion Island. Thus, breeding 
and non-breeding birds may share foraging grounds year-
round, due to the local environmental stability at Clarion 
Island.

It is necessary to apply caution when interpreting the cur-
rent results, given that some sex-related foraging differences 
may have been overlooked. However, the present findings 
suggest that females and males from Clarion Island did not 
differ, at least in terms of the foraging parameters measured 
in the present study. Although there were some differences 
in prey species included in the diet between years and sexes, 
flying fish were consistently the main prey item for both 
sexes and in both years. Moreover, the maximum distance 
from the colony (177 km) travelled by masked boobies from 
Clarion Island was shorter than that travelled by masked 

Table 1   Effects of year (2016, 2017, and 2018), sex (female and 
male), incubation status (keeping or losing egg), and their interac-
tions on foraging trip parameters in masked boobies (Sula dactylatra) 
at Clarion Island, based on linear mixed-effect models with the indi-
vidual as a random factor

Maximum 
distance

Trip duration Total 
distance 
travelled

Year
 F1,4 0.49 0.04 0.32
 P 0.49 0.84 0.57

Sex
 F1,5 1.62 2.22 1.60
 P 0.20 0.14 0.21

Incubation status
 F1,6 2.66  < 0.01 2.09
 P 0.10 0.97 0.15

Sex × year
 F1,7 0.79 1.25 0.26
 P 0.37 0.26 0.61

Year × incubation status
 F1,7 1.16 2.62 1.27
 P 0.27 0.11 0.26

Fig. 6   Kernel density-based 
utilization distributions (UD) of 
foraging locations from masked 
boobies at Clarion Island by sex 
and year. Black dot indicates 
study area
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boobies from Clipperton (245 km) (Weimerskirch et al. 
2009), Phillip Island (231 km) (Sommerfeld et al. 2013), 
and Isla Muertos (232 km) (Poli et al. 2017). Masked boo-
bies from less-densely populated colonies forage closer to 
the colony due to reduced intra-specific competition (Oppel 

et al. 2015). The small colony size (100 breeding pairs) and 
apparently stable prey availability at Clarion Island were 
thus associated with low levels of competition, and a conse-
quent lack of sexual foraging segregation.

Although there were no clear effects of ENSO on the 
local oceanography and foraging behavior of masked boo-
bies at Clarion Island, detailed information on foraging 
behavior taking account of dynamic oceanographic fea-
tures such as currents and fronts (Cox et al. 2016; Poli et al. 
2017; Spear et al. 2001), and with a larger sample size are 
needed. Moreover, the lack of response of masked boobies 
to El Niño does not mean that this seabird may not suffer 
from its consequences in other respects or at other colonies. 
Long-lived species such as masked boobies are expected to 
prioritize their own survival and future fecundity over indi-
vidual breeding events (Drent and Dann 1980), and although 
El Niño may have no obvious effect in terms of their forag-
ing behavior, it may have unseen impacts on their breeding 
participation or reproductive success (Dorward 1962; Prid-
del et al 2005). Brown boobies (Sula leucogaster) ceased 
breeding at Isla San Jorge (Mellink 2003) and experienced 
reproductive failure and adult mortality at Christmas Island 
(Schreiber and Schreiber 1989) in response to El Niño, 
whereas there was no evidence of any survival effects on 
brown boobies at Johnston Atoll (Beadell et al. 2003). Dif-
ferent effects on seabird behavior, physiology, and demog-
raphy among colonies are likely to be related to the different 
local oceanographic conditions of the islands.

Conclusions

Contrary to our hypothesis, masked boobies did not travel fur-
ther from their colony, or switch their prey items between sexes 
and years. The tropical pelagic ecosystem at Clarion Island 
remained environmentally stable, which may explain why the 
foraging ecology of masked boobies did not differ between 
years. The waters around Clarion Island did not follow the 
general ENSO-related patterns, showing that the general area 
around Clarion Island is less influenced by upwelling processes 
compared with coastal or other pelagic areas, where the effects 
are more dramatic. The similar foraging parameters of female 
and male masked boobies likely reflected low competition for 
food resources. We acknowledge that these conclusions are 
based on a limited number of samples and that further long-
term studies should be carried out to investigate the effects 
of ENSO on integrated aspects of breeding and at additional 
colonies. Nevertheless, these results provide novel information 
on the foraging ecology of a seabird in the Eastern Tropical 
Pacific, which appears to be unaffected by ENSO phases.
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