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Inhaltsangabe

In der vorliegenden Arbeit werden Dichtefunktionaltheorie [engl. density functional theory
(DFT)] Rechnungen mittels der ”full potential linearized augmented planewave” und der
”projector augmented wave” Methode in Kombination mit einem atomistischen Spinmodell
verwendet, um den Einfluss von Austauschwechselwirkungen höherer Ordnung auf den mag-
netischen Grundzustand ultradünner Übergangsmetallfilme zu untersuchen.
Zunächst wird eine systematische Studie zu Wechselwirkungen höherer Ordnung [engl. higher-
order interactions (HOI)] jenseits des paarweisen Heisenberg-Austausches in magnetischen
Trilagen vorgestellt. Diese Systeme bestehen aus einer einzelnen atomar hexagonal angeordneten
magnetischen Fe oder Co Lage zwischen 4d- und 5d-Übergangsmetallschichten. Während sich
die für Trilagen mit einer zentralen Fe Lage berechneten HOI Terme in derselben Größenord-
nung wie der Heisenberg-Austausch bewegen können, fallen diese Parameter für Co basierte
Systeme relativ klein aus. Die für freischwebende Trilagen gültigen Tendenzen dienen als
Grundlage für das Verständnis von HOI in ultradünnen Filmen auf Oberflächen, die einer
experimentellen Untersuchung zugänglich sind. Es wird gezeigt, dass hcp-Rh/Fe/Rh(111)
und hcp-Rh/Fe/Ir(111) die größten Werte für die biquadratische und 3-Spin-Wechselwirkung
aller untersuchten Systemen besitzen, wobei letztgenannte ursächlich für die unterschiedlichen
experimentell beobachteten magnetischen Grundzustände in Rh/Fe/Ir(111) ist (Spinspirale in
fcc-Rh/Fe, uudd Zustand in hcp-Rh/Fe). Außerdem wird das Filmsystem Ru/Fe/Ir(111) als
neuer Kandidat für experimentelle Untersuchungen vorgeschlagen, da DFT Rechnungen sowohl
eine starke Austauschfrustration mit einem reihenweise Antiferromagneten [engl. row-wise
antiferromagnet (RW-AFM)] als Grundzustand als auch signifikante Werte für die HOI Terme
und die Dzyaloshinskii-Moriya Wechselwirkung [engl. Dzyaloshinskii-Moriya interaction (DMI)]
vorhersagen.
Außerdem zeigen DFT Rechnungen, dass HOI – im Gegensatz zu bisherigen experimentellen
Funden und theoretischen Überlegungen – ebenfalls spontane zweidimensionale kollineare
Multi-Q Zustände auf Nanometerskala in hexagonalen Fe/Rh Filmen mit unterschiedlicher
Stapelfolge und Dicke auf der Ir(111) Oberfläche hervorrufen können. Diese Systeme wurden von
Kooperationspartnern mittels spinpolarisierter Rastertunnelmikroskopie [engl. spin-polarized
scanning tunneling microscopy (SP-STM)] untersucht, wobei deren exakte magnetische Struktur
allerdings basierend allein auf den experimentellen Messungen bis jetzt nicht identifiziert
werden konnte. DFT in Verbindung mit einem atomistischen Spinmodell führt die Entstehung
der beobachteten komplexen Spinstrukturen nun auf die Konkurrenz zwischen frustriertem
Heisenberg-Austausch und HOI Termen bei gleichzeitig schwacher DMI zurück. Insbesondere
die 3-Spin-Wechselwirkung spielt eine Schlüsselrolle bei der Stabilisierung kollinearer hexago-
naler Multi-Q Zustände.
Derselbe Ansatz verdeutlicht, dass die Symmetrie und Kollinearität von Spingittern in Fe
Monolagen im direkten Kontakt mit der Ir(111) Oberfläche vom Zusammenspiel aus Heisenberg-
Austausch, HOI und DMI abhängt: während fcc-Fe das bekannte quadratische Nanoskyrmio-
nengitter als magnetischen Grundzustand aufweist, tritt in hcp-Fe ein hexagonaler Multi-Q
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Zustand mit nahezu kollinearer Anordnung der magnetischen Momente auf, welcher den oben
genannten hexagonalen Spinstrukturen in Fe/Rh Bilagen auf Ir(111) ähnelt.
Abschließend wird der Magnetismus einer Mn Doppel- sowie einer Mn/Fe Bilage auf Ir(111)
untersucht. Die hier vorgestellten DFT Rechnungen weisen auf eine starke antiferromagnetische
Interlagenaustauschkopplung in der Mn Doppellage sowie ein hohes Maß an Interlagenaus-
tauschfrustration in der Mn/Fe Bilage hin. Des Weiteren stellt sich für Mn/Mn/Ir(111) ein
nichtkollinearer 3Q Zustand in beiden magnetischen Lagen energetisch niedriger als der
entsprechende 1Q RW-AFM Zustand heraus, was ein Hinweis auf zusätzlich signifikante HOI
Beiträge in diesem System ist.



Abstract

In this thesis, density functional theory (DFT) calculations using the full potential linearized
augmented planewave and the projector augmented wave method in combination with an
atomistic spin model are employed to explore the effect of higher-order exchange interactions on
the magnetic ground state of ultrathin transition metal (TM) films on surfaces.
First, a systematic study of higher-order interactions (HOI) beyond the pairwise Heisenberg
exchange in magnetic trilayers comprising a single hexagonal Fe or Co layer sandwiched between
4d and 5d TM layers is presented. While for Fe based trilayers HOI terms can range on the
same order of magnitude as the Heisenberg exchange interaction, they turn out relatively
small for Co based systems. The trends obtained for freestanding trilayers serve as a basis to
understand HOI in ultrathin films on surfaces that are amenable to experiments. It is shown that
hcp-Rh/Fe/Rh(111) and hcp-Rh/Fe/Ir(111) exhibit the largest values for the biquadratic and the
three-site four spin interaction throughout our study with the latter causing the experimentally
observed transition of the magnetic ground state of Rh/Fe/Ir(111) from a spin spiral for fcc-
Rh/Fe to an uudd state for hcp-Rh/Fe. In addition, Ru/Fe/Ir(111) is suggested for experimental
research as first-principles calculations indicate not only a strong exchange frustration with a
row-wise antiferromagnetic (RW-AFM) ground state but also significant values for the HOI
terms and the Dzyaloshinskii-Moriya interaction (DMI).
Further DFT calculations show that – in contrast to previous experimental findings and theoretical
considerations – HOI can induce spontaneous nanoscale two-dimensional multi-Q states with
collinear spin structure in hexagonal Fe/Rh films with different stacking sequence and thickness
on the Ir(111) surface studied by experimental collaborators via spin-polarized scanning tunneling
microscopy (SP-STM). Up to now the exact magnetic structure of these systems could not be
identified based solely on experimental measurements. DFT combined with an atomistic spin
model now elucidates a competition of frustrated Heisenberg exchange and HOI as the driving
mechanism for the formation of the observed complex spin structures while the DMI is weak. In
particular, the three-site four spin interaction is found to play a key role for the stabilization of
collinear hexagonal multi-Q states.
The same approach further demonstrates that the interplay of pairwise Heisenberg exchange, HOI
and the DMI is responsible for the symmetry and collinearity of spin lattices in Fe monolayers
in direct contact with Ir(111): while for fcc-Fe the well-known square nanoskyrmion lattice is
obtained as the magnetic ground state, a hexagonal multi-Q state with nearly collinear magnetic
moments occurs in hcp-Fe similar to the above-mentioned hexagonal spin structures in Fe/Rh
bilayers.
Finally, the magnetism of a Mn double layer (DL) and a Mn/Fe bilayer on Ir(111) is studied. DFT
calculations point out strong antiferromagnetic interlayer exchange coupling for the Mn DL and
a large degree of interlayer exchange frustration for the Mn/Fe bilayer. In addition, DFT predicts
a non-collinear 3Q state to be lower in energy than the corresponding single-Q RW-AFM state in
the two magnetic layers of Mn/Mn/Ir(111) indicating significant HOI contributions for this
system.
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1 Introduction

Today’s information processing and data storage technologies based primarily on semiconductor
electronics rely on the use of charge currents which are inherently associated with losses and high
energy consumption. Although semiconductor electronics have made computers and mobile
phones continually smaller and more powerful, the end of the constant increased performance
and miniaturization of silicon chips is foreseeable. Hence, there are several reasons to give
some thought to an alternative. For this purpose, spintronics has been regarded as a promising
candidate for several years now. The beginning of this field of research is the discovery of the
giant magnetoresistance by Fert [1] and Grünberg [2] in the late 1980s for which they were
awarded the Nobel prize in Physics in 2007. Spintronics is based on the use of the electron
spin to transmit and store information and promises higher data processing speeds and better
integration of memory and logic while at the same time keeping the overall power consumption
low. For this type of future information technology, magnetic skyrmions, localized particle-like
topologically protected spin structures [3, 4], are predicted to be ideal candidates. The magnetic
texture of a skyrmion is characterized by spins which cover the entire unit sphere; projected
onto a plane, the respective magnetization points up in the centre of the whirling configuration
and then coherently rotates with the distance until the spins point downwards at the edge
(see Fig. 1.1 (b)). Such a spin structure represents a topological distinct state compared to the
topological trivial ferromagnetic state in which all moments are oriented parallel (see Fig. 1.1 (c)).
Currently, skyrmions are subject of intense research owing to their promising properties with
regard to probabilistic and neuromorphic computing [5–7], racetrack data storage [8–10], logic
devices [11] and qubits for quantum computing [12]. Especially their nanoscale size [13–15],
the possibility of manipulation by electric currents [8, 16] as well as their integer topological
charge [3, 16] resulting in enhanced stability against external pertubations turn skyrmions into
potential robust information carriers.

Skyrmion lattices were first reported in non-centrosymmetric bulk magnets of B20 materials
such as MnSi [17, 18]. The discovery of a nanoskyrmion lattice in an fcc-stacked Fe monolayer
(ML) on the Ir(111) surface [19] has further opened the door to a new class of systems: transition
metal (TM) interfaces. Besides being already used in many technology applications of the giant
magnetoresistance [20], such systems enable modification of magnetic interactions and thus also
the properties of skyrmions by varying the film composition and structure. Individual magnetic

1



2 Introduction

Figure 1.1. Comparison of magnetic field dependent spin-polarized scanning tunneling microscopy
(SP-STM) measurements with the corresponding magnetic structures of Pd/Fe/Ir(111). (a)-(c) sketches
of the spin spiral ground state at zero external field, the skyrmion lattice phase in an applied magnetic
field and the field-polarized (ferromagnetic) state at high external field, respectively. (d) SP-STM overview
of the sample without external magnetic field. (e) SP-STM image of the Pd/Fe bilayer at an applied
out-of-plane magnetic field of B = 1 T revealing the coexistence of spin spirals and skyrmions. (f) SP-STM
image of the skyrmion lattice phase at B = 1.4 T. (g) Ferromagnetic phase at B = 2 T; one single remaining
skyrmion is highlighted by a white circle. Figure taken from [13]. Reprinted with permission from AAAS.

skyrmions with the size of a few 100 down to only a few nanometers as desired for applications
could be stabilized in the field-polarized ferromagnetic (FM) background in a variety of TM
interfaces [13, 15, 18, 21–23].

For future spintronic devices expected to work at room temperature it is essential to understand
the magnetic interactions which control the stability of isolated skyrmions. In general, their
emergence is ascribed to the interplay of the pairwise Heisenberg exchange, the Dzyaloshinskii-
Moriya interaction (DMI) [24, 25] and the magnetocrystalline anisotropy energy. Both a broken
inversion symmetry as well as strong spin-orbit coupling (SOC) effects – present at interfaces
of TMs [26] – constitute necessary conditions for the occurrence of the DMI. In this kind of
atomic environment, the DMI can not only stabilize isolated skyrmions and skyrmion lattices
but also other types of non-collinear spin structures such as cycloidal spin spirals [26–28] and
Néel-type domain walls [29–32]. In the experimentally and theoretically well studied system of a
Pd overlayer grown on Fe/Ir(111) [13, 33, 34], the competition of the DMI favoring non-collinear
spin textures and the Heisenberg exchange promoting collinear alignment of the magnetic
moments induces a spin spiral state in zero external field (see Fig. 1.1 (a)); as revealed by
spin-polarized scanning tunneling microscopy (SP-STM) measurements (Figs. 1.1 (e)-(f)), a
transition to a skyrmion lattice phase occurs at finite magnetic field which eventually saturates to
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a field-polarized (ferromagnetic) state for rising external field (Fig. 1.1 (g)).

Recently, it has been shown that higher-order interactions (HOI) beyond the pairwise Heisenberg
exchange such as the biquadratic or the four-site four spin interaction arising from a fourth
order pertubation treatment of the Hubbard model for spin-1/2- particles [35, 36] can play
a key role for the stability of individual skyrmions at TM interfaces even in the absence of
DMI [37]. As demonstrated by a variety of combined experimental and theoretical studies,
higher-order exchange interactions can indeed trigger a plethora of further intriguing magnetic
states. As already indicated above, for such studies typically MLs of magnetic 3d TMs on non-
magnetic 4d and 5d TM surfaces being experimentally well accessible due to their pseudomorphic
growth [38,39] are chosen. Although systems of this type are not suitable for practical applications,
they enable the discovery and understanding of magnetic interactions at the microscopic level.
For instance, HOI were found responsible for inducing a conical spin spiral ground state in a Mn
double layer on W(110) [44]. HOI can also couple symmetry-equivalent pairs of spin spirals
resulting in the emergence of so-called multi-Q states. A prominent example is the complex
non-collinear triple-Q state – a three-dimensional spin structure on the two-dimensional (2D)
hexagonal lattice – which was predicted more than 20 years ago by Kurz et al. for Mn/Cu(111) [45]
and observed experimentally for the first time only recently in Mn/Re(0001) [40] (Fig. 1.2 (a)). As
shown by a detailed first-principles theory analysis [46], this multi-Q state is stabilized by the
interplay of frustrated HOI and recently proposed topological chiral-chiral interactions [47] in
the Mn ML. The emergence of the already mentioned square nanoskyrmion lattice discovered
as the magnetic ground state of an fcc-stacked Fe ML on Ir(111) (Fig. 1.2 (b)) can be further
ascribed to the interplay of a strong four-site four spin interaction and the DMI [19]. Note that
this mechanism of formation at zero external magnetic field is different compared to the one
presented for Pd/Fe/Ir(111) in which the skyrmion phase is induced by an applied magnetic
field.
Further evidence of higher-order exchange interactions is the collinear up-up-down-down
(uudd) state which was first predicted as the magnetic ground state for an Fe ML on the Rh(111)
surface [48, 49] based on density functional theory (DFT) in 2009 and verified experimentally in
2018 [42] (Fig. 1.2 (c)). However, the reason for its existence could not be explained within an
extended Heisenberg model including only the biquadratic and four-site four spin interaction for
a long time indicating the model to be incomplete. Only recently, a third term, the three-site four
spin interaction, has been motivated from a multiband Hubbard model needed to treat systems
with S ≥ 1 and hence 3d TMs such as Mn or Fe [50]. Finally, this interaction was identified as the
driving mechanism for the coupling of two counterpropagating 90◦ spin spirals to a collinear 2Q
uudd state in Fe/Rh(111) [42].
Growing a non-magnetic overlayer on the magnetic 3d TM films can lead to further interesting
magnetic phenomena related to HOI. For instance, in a Rh/Fe atomic bilayer on Ir(111) [43] the
magnetic ground state strongly depends on the stacking of the Rh overlayer. While for fcc-Rh/Fe
frustrated exchange interactions cause the formation of a spin spiral state, the competition of
HOI and the DMI favors a canted uudd state for hcp-Rh/Fe. However, up to now the origin of
the stacking dependence in terms of the involved HOI was not revealed. Previously, stacking
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(a) Mn/Re(0001) (b) fcc-Fe/Ir(111)

(c)  Fe/Rh(111) (d) hcp-Rh/Fe/Ir(111)

Figure 1.2. Comparison between complex magnetic states observed in experiments and their respec-
tive spin models predicted from theory for a selection of different ultrathin film systems containing
one magnetic layer. (a) Experimental spin-polarized scanning tunneling microscopy (SP-STM) image
of Mn/Re(0001) with an atom manipulation image shown as inset (left) and theoretically predicted
spin structure of the non-collinear 3Q state stabilized by a competition of higher-order and chiral-chiral
interactions (right). Left figure adapted and reprinted with permission from [40] (Copyright 2023 by the
American Physical Society), right figure taken from [41].(b) Experimental SP-STM image of fcc-Fe/Ir(111)
(left) and theoretically predicted square nanoskyrmion lattice stabilized by higher-order interactions
(HOI) and the Dzyaloshinskii-Moriya interaction (DMI) (right). The left inset of the experimental image
shows an SP-STM simulation of the nanoskyrmion, the right one a Fourier transform of the experimental
measurement. Figure adapted from [19]; reproduced with permission from Springer Nature. (c) Experi-
mental SP-STM image of Fe/Rh(111) and its theoretical explanation by means of an up-up-down-down
(uudd) state stabilized by HOI. Figure adapted and reprinted with permission from [42]; Copyright 2023
by the American Physical Society. (d) Experimental SP-STM image of hcp-Rh/Fe/Ir(111) (left) and its
theoretical explanation by means of a canted uudd state stabilized by HOI and DMI (right). Figure adapted
and reprinted with permission from [43]; Copyright 2023 by the American Physical Society.

dependent changes of the sign of the four-site four spin interaction have been discovered for a
Pd/Fe bilayer on Re(0001) as well [51].
Currently, the emergence of higher-order exchange interactions in another class of systems, in 2D
van der Waals (vdW) magnets, has also been reported. For instance, fourth-order terms were
found to contribute to the stabilization of both Néel- and Bloch-type skyrmions in a Fe3GeTe2

monolayer [52]. 2D Janus vdW magnets have been shown to exhibit various degrees of magnetic
frustration and isotropic HOI as well [53].

The goal of this thesis is to obtain a deeper understanding of higher-order exchange interactions
at TM interfaces. Although HOI have been revealed to play an important role for the formation
of a variety of intriguing magnetic ground states in Fe and Mn based ultrathin film systems as
exemplified above, they have often been neglected in the theoretical description of magnetic



Introduction 5

properties of complex spin structures up to now. In particular, magnetic systems have hardly
been investigated with regard to the possible existence of the newly proposed three-site four
spin interaction [50]. Following on from the systems mentioned above, this thesis presents a
first-principles density functional theory (DFT) study on complex collinear and non-collinear
spin structures in ultrathin film systems driven by exchange frustration and HOI.
As a first step, the theoretical background of DFT providing a way to solve the quantum many
body problem is introduced in chapter 2. One of the most accurate implementations within
DFT is the full potential linearized augmented planewave (FLAPW) method, the core of the
FLEUR code [54]. It is particularly suited to handle open structures such as surfaces as well as
the electronic and magnetic complexity including spin-orbit coupling of non-collinear spin
states. However, the treatment of non-collinear magnetism and SOC for multi-Q states and
skyrmion lattices, i.e. large magnetic unit cells, is computationally memory demanding for an
all-electron code. Therefore, the planewave based VASP code [55] is employed to solve this task.
Both methods are described in chapter 3. Chapter 4 subsequently deals with the atomistic spin
model needed to interpret the total energies obtained from DFT for various magnetic structures.

Following the theoretical foundations, the results of the calculations are presented in chapters 5
to 8. The initial motivation for this thesis was the fact that a systematic study about higher-order
interactions beyond the pairwise Heisenberg exchange at TM interfaces had been missing until
then. Although isolated nanometer skyrmions were also detected in Rh/Co/Ir(111) [15], HOI
constants which could possibly contribute to the stabilization mechanism of these particle-like
spin structures have previously not been considered for Co based systems. Still a more systematic
and profound analysis would clarify to what extent both this system as well as the Fe and
Mn based systems mentioned above can be regarded as special or if there are certain trends
suggesting which types of TM surfaces might exhibit large HOI terms. To shed light on this
question, chapter 5 deals with trends for HOI parameters in freestanding Fe and Co based
trilayers which serve as simplified models for more complex ultrathin film systems. Choosing
Rh/Fe/Ir, i.e. a trilayer corresponding to the film system Rh/Fe/Ir(111) [43], as a starting point, it
is systematically studied how HOI change not only with the band filling upon replacing Rh (Ir) by
other elements of the 4d (5d) series but also how they are influenced by different stackings of the
involved TMs. In order to investigate the effect of changing the TM with the intrinsic magnetic
moment, the central Fe layer is replaced by Co. Finally, the calculated trends are compared with
the results obtained for selected ultrathin film systems being experimentally accessible. A key
finding of this study (published in Ref. [I]) states that the recently proposed three-site four spin
interaction [50] causes the experimentally observed change of the magnetic ground state of
Rh/Fe/Ir(111) [43] from a spin spiral for fcc-Rh/Fe to an uudd state for hcp-Rh/Fe.

At the beginning of this thesis, puzzling SP-STM results for Fe/Rh bilayers on Ir(111) were
available. The corresponding experiments were performed by André Kubetzka and Kirsten
von Bergmann from the group of Prof. Wiesendanger at the University of Hamburg 1. The
magnetic ground state of Fe/Rh films shows a strong dependence on the stacking of the upper

1Institute for Nanostructure and Solid State Physics, University of Hamburg, Germany
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Figure 1.3. Spin-polarized scanning tunneling microscopy (SP-STM) measurements on Fe/Rh/Ir(111)
and hcp-Fe/Ir(111) as well as their corresponding proposed spin models. (a) Overview SP-STM image
of several sample areas for fcc-Fe/Rh and hcp-Fe/Rh on Ir(111) (left) and spin structure of an 27-atomic
hexagonal nanoskyrmion lattice (right; unit cell is indicated by dashed lines) which would be consistent
with the experimentally observed magnetic contrast. Left figure adapted from Ref. [II], right figure by
courtesy of André Kubetzka (University of Hamburg). (b) top left: SP-STM image of the hexagonal
magnetic state observed in an hcp-stacked Fe ML on Ir(111). bottom left: Simulated SP-STM topographic
image of the proposed 12-atomic nanoskyrmion lattice (spin structure shown in the middle) with an
out-of-plane magnetized tip. Right: Sketch of the three-site hopping mechanism of the DMI between
two Fe atoms and one Ir atom suggested to possibly contribute to the stabilization of the atomic-scale
hexagonal state. Reprinted with permission from [56]. Copyright 2023 American Chemical Society.

Fe layer: while the magnetic contrast for fcc-Fe is characterized by a stripe pattern, the images for
hcp-Fe exhibit an atomic-scale hexagonal superstructure as depicted in Fig. 1.3 (a). However,
neither the exact spin structure, i.e. the angles between pairs of nearest neighbor magnetic
moments, nor the magnetic interactions stabilizing it can be concluded from the measurements
alone hence requiring a complementary theoretical study to get access to this information. Due
to the proximity to fcc-Fe/Ir(111) hosting the non-collinear square nanoskyrmion lattice [19]
mentioned above, our experimental colleagues proposed a hexagonal nanoskyrmion lattice as
magnetic ground state for hcp-Fe (Fig. 1.3 (a) right). In chapter 6, first-principles calculations in
combination with an atomistic spin model are applied to demonstrate that the experimentally
observed spin structures in Fe/Rh films with different stacking sequence and thickness arise
due to the competition of frustrated Heisenberg exchange and HOI terms while the DMI is
weak. It is further shown that the hexagonal states do not represent non-collinear atomic-scale
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nanoskyrmion lattices contrary to initial expectations, but rather two-dimensional multi-Q states
with nearly collinear magnetic order. It is demonstrated that the three-site four spin interaction
plays a key role for the emergence of these novel spin structures (Ref. [II]).

Puzzled by these unexpected results, a closer look at an hcp-stacked Fe ML in direct contact with
the Ir(111) surface follows in chapter 7. In contrast to fcc-Fe/Ir(111), SP-STM measurements have
revealed a hexagonal spin structure with a period of about 1 nm at zero external field for this Fe
stacking which was interpreted as a hexagonal nanoskyrmion lattice. It was further speculated
that it is stabilized either by polarization effects of the Ir substrate or by a three-site hopping
mechanism of the DMI (see Fig. 1.3 (b)) [56]. However, a corresponding theoretical DFT study
has been missing up to now. In this thesis, applying the same first-principles based approach as
for Fe/Rh/Ir(111), we show that the experimentally observed hexagonal state does not resemble
a non-collinear skyrmion lattice, but turns out as a nearly collinear multi-Q state as well (Ref.
[III]).

New exciting spin textures are also expected to occur upon increasing the number of hexagonal
arranged magnetic layers since due to the atomic positions being shifted against each other
both the complexity of the structure as well as the magnetic phase space increases [57]. Hence,
triggered by experimental work from our collaborators at the University of Hamburg, we
investigate the magnetism of a Mn double layer (DL) and a Mn/Fe bilayer on Ir(111) in chapter 8.
While the former shows a magnetic contrast consistent with a row-wise antiferromagnetic
(RW-AFM) state in SP-STM measurements, the latter exhibits a four-atomic rectangular-shaped
magnetic unit cell with an hitherto unknown spin structure. Our DFT calculations predict a strong
antiferromagnetic (AFM) interlayer exchange coupling for the Mn DL and a strong interlayer
exchange frustration for the Mn/Fe bilayer. Surprisingly and in contrast to the experiments, a
non-collinear triple-Q state in each magnetic layer is found as the state of lowest energy for the
Mn DL indicating that HOI might play a significant role in this system.

Chapter 9 ultimately summarizes the complete thesis.
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2 Density functional theory

In order to calculate the total energy and the ground state properties of a quantum mechanical
system an approximate solution of the time-independent, non-relativistic Schrödinger equation

ĤΨi(x1, x2, ..., xN , R1, R2, RM) = EiΨi(x1, x2, ..., xN , R1, R2, RM) (2.1)

needs to be found. Here, Ĥ denotes the Hamilton operator for the specific many-particle system
consisting of M nuclei and N electrons. It represents the total energy of the system and contains
five contributions which are given in the compact form of atomic units for convenience 1:

Ĥ = −1
2

N

∑
i=1
∇2

i −
1
2

M

∑
A=1

1
MA
∇2

A −
N

∑
i=1

M

∑
A=1

ZA

riA
+

N

∑
i=1

N

∑
j>i

1
rij

+
M

∑
A=1

M

∑
B>A

ZAZB

RAB
(2.2)

While the first two terms describe the kinetic energy of the electrons and nuclei respectively,
the three remaining terms define both the attractive electrostatic Coulomb interaction between
the nuclei and the electrons as well as the repulsive parts of the potential arising from the
electron-electron and nucleus-nucleus interactions. The indices A and B denote the M nuclei,
i and j the N electrons of the system. rpq and Rpq define the distance between two electrons
and two nuclei, respectively. The wave function Ψi depending both on 3N spatial and N spin
coordinates of the electrons and 3M spatial coordinates of the nuclei contains all information
about the ith quantum state of the respective system. In the following, the electron degrees of
freedom are collectively renamed {xi}.
Since the nuclei are much heavier and hence move much slower than the electrons, their combined
dynamics can be decoupled which leads to a simplification of the molecular Schrödinger equation.
Within the framework of the so-called Born-Oppenheimer (BO) approximation the electrons are
considered as moving in the field of fixed nuclei whose kinetic energy becomes zero and the
potential energy of the nucleus-nucleus repulsion is reduced to a constant. As a consequence, the
complete Hamiltonian introduced in Eq. (2.2) turns into an electronic Hamiltonian parameterized

1When using the system of atomic units, the mass of the electron me, the modulus of its charge |e| and the reduced
Planck constant h̄ are set to unity.

9
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by the positions of the nuclei

Ĥel = −
1
2

N

∑
i=1
∇2

i −
N

∑
i=1

M

∑
A=1

ZA

riA
+

N

∑
i=1

N

∑
j>i

1
rij

= T̂ + V̂ + Ŵ. (2.3)

Now two universal contributions are left for the electronic Hamiltonian, the operators of the
kinetic energy T̂ and the repulsive Coulomb interaction Ŵ between the electrons, while the
attractive external potential V̂ depends on the system at hand. In principle the eigenvalue
problem

ĤelΨel = EelΨel (2.4)

can be solved for any molecule or solid-state body by determining the number of electrons and
the external potential which is defined by the coordinates and charges of all nuclei within the
system. This information then allows to set up the specific Hamilton operator and the application
of the variational principle

E0 ≤ min〈Ψtrial |Ĥel |Ψtrial〉 (2.5)

facilitates the computation of an approximated electronic wave function of the ground state
Ψ0 and the ground state energy E0. Here, Ψtrial describes an arbitrary complex wave function.
Finally, all ground state properties of the system can be calculated via the expectation value of a
particular observable represented by the appropriate operator Ô

〈Ô〉 = 〈Ψ0|Ô|Ψ0〉. (2.6)

This procedure can briefly be expressed as

{N, ZA, RA} ⇒ Ĥel ⇒ Ψ0 ⇒ E0 (and all other properties). (2.7)

Thus, the conventional approach in quantum mechanics is treating the wave function as a
central quantity to get access to all information about a specific state within the system at hand.
However, despite the simplification introduced by means of the BO approximation, the wave
function still remains unwieldy for any real solid due to its dependence on 4N variables and is
not even accessible from experiments.

In the following, the main ideas of density functional theory (DFT) as a way to solve the quantum
many body problem will be introduced. Instead of calculating all important properties of an
interacting many-particle system from the multi-dimensional electronic wave function, DFT uses
a different possibility by resorting to the electron density which only depends on three spatial
coordinates. The validity of this alternative approach was formerly established in 1964 by two
theorems of Hohenberg and Kohn [58]. Furthermore, it will be shown that the calculation of
the ground state properties of a complex interacting system can be replaced by computing the
respective features of a fictitious independent single-particle system by means of the Kohn-Sham
equations. In this context approximations to the exchange and correlation effects appearing
from the just mentioned substitution and causing little inaccuracies to the formally correct DFT
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will be introduced. To complete the chapter, the treatment of spin-polarized systems as well as
relativistic effects within DFT are presented. Further and more detailed information about DFT
can be found in references [59–64].

2.1 The electron density

The electron density being defined as the spin summed diagonal element of the reduced
one-particle density matrix is directly connected with the electronic wave function as follows:

n(r) = N ∑
σ∈↑,↓

∫
dx2...

∫
dxN |Ψ(x1, x2, ...xN)|2. (2.8)

In other words, the density matrix describes a sum over the spin coordinates of all electrons
linked with a multiple integral over all but one of the spatial variables. In contrast to the wave
function, the electron density is not only an observable and hence experimentally accessible
but also a non-negative function of only three spatial variables. Besides integrating to the total
number of electrons ∫

n(r)d3r1 = N (2.9)

the density exhibits a cusp at the positions of the nuclei and hence contains information about
their nuclear charges Z:

lim
riA→0

[
∂

∂r
+ 2ZA

]
n(r) = 0 (2.10)

Consequently, the electron density provides all necessary ingredients needed to determine the
non-universal external potential appearing in the electronic Hamiltonian presented in Eq. (2.3)
and thus in principle suffices to calculate all properties of a molecule or solid-state body.

2.2 Theorems of Hohenberg and Kohn

The first Hohenberg-Kohn theorem proves that the reasoning at the end of the previous section
for using the electron density as a central variable is indeed physically justified. For a non-
degenerate ground state the central statement of the first theorem from their 1964 paper can be
expressed as follows [58]:

The external potential V(r) for a system of interacting particles is to within a constant a unique functional
of the ground state electron density n0(r). Since the external potential fixes the electronic Hamiltonian to
within a constant energetic shift, the many-particle wave functions of the ground state and hence all
properties of the system are completely determined by the ground state electron density n0(r).

Following the terminology of Eq. (2.7) this fact can be summarized as

n0 ⇒ {N, ZA, RA} ⇒ Ĥel ⇒ Ψ0 ⇒ E0 (and all other properties). (2.11)
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Another useful property of the ground state density is expressed in the second Hohenberg-Kohn
theorem:

The exact ground state electron density n0(r) minimizes the functional of the total energy EV [n].

Hence, for any other arbitrary trial density n(r) the following estimation applies:

EV [n0] ≤ EV [n], (2.12)

with the energy functional EV [n] being split into system dependent and universally valid
contributions:

EV [n] = FHK[n] +
∫

d3rV(r)n(r) (2.13)

Here, the universal Hohenberg-Kohn functional FHK[n] contains the kinetic energy and the
electron-electron interaction

FHK[n] = T[n] + W[n] (2.14)

which are independent of N, ZA and RA.
Provided that all contributions of Eq. (2.13) are known, DFT is an exact representation of the
quantum mechanical many body problem by means of the electron density n(r). Minimizing
FHK[n] with respect to the electron density would allow for the computation of the exact ground
state density and other observables of interest for any system. However, the exact expressions for
both the kinetic energy T[n] and the electron-electron interaction W[n] of the interacting system
remain unknown due to correlation effects.

2.3 Kohn-Sham equations

In order to overcome the problem of determining the energy functional of interacting particles,
Kohn and Sham suggested to map the complete interacting system including the real external
potential onto a fictitious non-interacting system in which the particle motion occurs in an
effective potential described by a one-electron Hamiltonian [65]. This is done by splitting the
functional of the kinetic energy into two parts according to

T[n] = Ts[n] + Tc[n]. (2.15)

The first term represents the kinetic energy of non-interacting electrons providing the largest
contribution to the functional and the second one a small correction containing the unknown
correlation effects. Therefore, Ts[n] is expressed as a sum over single-particle orbitals ϕi(r) of a
non-interacting system with the same density as the real, interacting one

Ts[n] = −
1
2

N

∑
i=1
〈ϕi|∇2

i |ϕi〉. (2.16)
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At this point it has to be noted that naturally the non-interacting kinetic energy does not
equal the true kinetic energy of the interacting system even if both share the same density.
Taking this definition into account, the exact energy functional in Eq. (2.13) is divided into four
sub-functionals

EV [n] = T[n] + W[n] + V[n] = Ts[ϕi[n]] + EH [n] + V[n] + Exc[n]. (2.17)

Here, EH [n] denotes the electrostatic interaction of a charge density n(r) with itself and is hence
identified as the classical Hartree energy

EH [n] =
1
2

∫
d3r

∫
d3r′

n(r)n(r′)
|r− r′| . (2.18)

While the first three terms in Eq. (2.17) can usually be calculated explicitly, for Exc[n] consisting
of the differences T − Ts and the non-classical correction W − EH of the potential energy the
precise form remains unknown. Minimizing Eq. (2.17) with respect to the density under the
constraint of conservation of the particle number

δ

δn(r)
(EV [n]− µ

∫
n(r)d3r) = 0 (2.19)

results in the Kohn-Sham (KS) equations resembling single-particle Schrödinger-like equations
for a fictitious system of electrons moving in an effective potential:[

−1
2
∇2 + ve f f (r)

]
ϕi(r) = εi ϕi(r) (2.20)

The effective potential is defined as

ve f f (r) = v(r) + vH(r) + vxc(r) (2.21)

and contains the external potential v(r) set by the ions, the Hartree potential

vH(r) =
∫ n(r′)
|r− r′|d

3r′ (2.22)

and the exchange correlation potential

vxc(r) =
δExc[n]
δn(r)

. (2.23)

The density n(r) of the real interacting system is then obtained from the single-particle KS
orbitals in the following way:

n(r) =
N

∑
i=1

γi|ϕi(r)|2 (2.24)
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Figure 2.1. Schematic flow-chart
of a self-consistency cycle used
to determine the electron ground
state density by means of the KS
equations within the framework
of DFT. The effective potential is
calculated from a starting den-
sity n(0)(r) and inserted into the
KS single-particle equations. Once
they are solved and the Fermi en-
ergy has been computed, an out-
put density n(out)(r) is determined
from the occupied orbitals. De-
pending on the preset accuracy of
the self-consistency cycle, the elec-
tron density is said to be converged,
otherwise n(0)(r) and n(out)(r) are
merged to a new density used for
the next iteration. The figure has
been created based on [66].
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In this notation a possible degeneracy of spin is taken into account by counting the spatial wave
function twice and γi refers to the occupation number with γi = 1 for εi < µ, γi = 0 for εi > µ

and 0 ≤ γi ≤ 1 for εi = µ.

Since the effective potential defined in Eq. (2.21) depends on the electron density itself, the
solution of the KS equations requires an iterative proceeding. A typical schematic flow-chart of
a so-called self-consistency cycle is shown in Fig. 2.1: at the beginning the user provides the
atomic positions and hence the external potential for the DFT code which generates a starting
density based on the superposition of densities of non-interacting atoms. From this input the
effective potential ve f f (r) is constructed and inserted into the KS equations. They are then solved
by means of a suitable basis set expansion for the single-particle orbitals. For solid-state bodies
considered in this thesis this is done by exploiting the periodicity of the crystal via the Bloch
Theorem and diagonalizing the matrix of the KS Hamiltonian for every k-point in the irreducible
part of the Brillouin zone. The resulting eigenvalues are used to determine the Fermi energy.
Now an output density is constructed from the sum over all occupied single-particle KS
wavefunctions according to Eq. (2.24). If the difference between the initial and output density is
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smaller than a certain accuracy set by the user, the electron density is said to be converged. If
convergence is not achieved yet, both starting and output density are mixed to create a new
input for the next loop. The simplest, but also slowest mixing method is the so-called straight
mixing [66]

n(m+1)
in = (1− α)n(m)

in + αn(m)
out (2.25)

with α being the mixing parameter that needs to be chosen sufficiently small in order to reach
a stable converged state. Since in this thesis mostly systems with a large number of atoms
are studied, the just suggested way of mixing electron densities would require hundreds or
thousands of iterations. A much faster convergence of the self-consistency cycle can for example
be obtained via the Broyden [67, 68] or Pulay mixing [69] method.
In a further additional step the self-consistent solution can provide a basis for a structural
relaxation of the system, i.e. forces on the ions will be calculated which shift their positions
accordingly in search for the state of lowest energy. Using the Hellmann-Feynman theorem,
this is usually done by taking the partial derivative of the free energy with respect to the ionic
positions [70]. Based on their new coordinates the iterative cycle needs to be run through again.

2.4 Approximations for the exchange correlation functional

As already stated in the previous section, DFT would allow for the exact calculation of ground
state properties of a solid-state body if the contributions to the exchange correlation (xc) energy
functional Exc[n] would be known explicitly. However, as there does not exist an accurate
description of the non-classical electron-electron interaction and the correlation part of the kinetic
energy of an interacting system, the xc potential needs to be approximated. In the following
the two most commonly used approximations which are also employed in this thesis will be
introduced briefly.

The simplest and at the same time most successful approach is the local density approximation
(LDA) which was already included in the original paper by Kohn and Sham in 1965 [65]. The
idea of this model is to separate a system with inhomogeneous density into partial volumes at
certain positions and to approximate the xc energy at those positions with the one of the uniform
electron gas of equal, but constant density. This procedure is eventually carried out for each point
in space and the individual contributions are summed up. For systems without spin polarization
Exc[n] can be written in the following simple form

ELDA
xc [n] =

∫
n(r)εhom

xc (n(r))d3r, (2.26)

where εhom
xc is the xc energy per particle of the uniform electron gas. In the case of spin polarization

the LDA needs to be extended to the local spin density approximation (LSDA) which also
takes the magnetization density into account. Although this model system does not reproduce
any realistic situation in atoms or molecules characterized by rapidly varying densities, its
application in DFT is quite popular since the uniform electron gas is the only system for which
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the form of the exchange and correlation energy functionals can be calculated almost exactly.
This becomes comprehensible when εhom

xc from Eq. (2.26) is further split [59]:

εhom
xc (n(r)) = εhom

x (n(r)) + εhom
c (n(r)) (2.27)

The exchange part takes the analytical form

εx = −3
4

(3n(r)
π

) 3
2

(2.28)

derived by Bloch and Dirac in the 1920’s, while the correlation part εc can be computed very
accurately from numerical quantum Monte-Carlo simulations.
Despite its simplicity the LDA turns out relatively reliable in practice for the computation
of molecular properties like equilibrium structures and harmonic frequencies, but also for
properties of itinerant delocalized d electrons in magnetic systems [71]. For this reason the LDA
with the interpolation proposed by Vosko, Wilk and Nusair [72] is applied in most types of
calculations throughout this thesis. On the other hand, the approximation fails to work properly
with respect to binding energies which are typically overestimated [73]. As a consequence,
structural properties of thin films like the lattice constant turn out too small.

The generalized gradient approximation (GGA) offers a possibility to overcome the problem of
overbinding and hence allows for the structural optimization of the systems studied in this
thesis. In contrast to the LDA, the xc energy functional now also depends on the gradient of the
electron density and can be expressed by means of a function parameterized by the density and
the modulus of its gradient:

EGGA
xc [n] =

∫
d3r f (n(r), |∇n(r)|) (2.29)

Different types of GGA vary in the choice for the enhancement function f (n(r), |∇n(r)|).
Prominent examples are the functionals presented by Perdew, Burke and Ernzerhof (abbreviated
as PBE in this thesis) [74] as well as PW91 proposed by Perdew and Wang in 1991 [75].

2.5 Generalization to spin-polarized systems

While the previous description of DFT is valid for non-magnetic systems, an extension of the
method is required in order to handle complex magnetic structures that are in the focus of
interest in this thesis. To this, the magnetization density defined as m(r) = n↑(r)− n↓(r) with
n↑(r) and n↓(r) denoting the spin dependent electron densities is added to the Hohenberg-Kohn
theorem as a second fundamental variable. Hence, the variational principle for the spin-polarized
case reads [76]

E[n(r), m(r)] ≥ E[n0(r), m0(r)]. (2.30)
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The KS orbitals now take the form of two-component Pauli spinors [77]

ψi(r) =

(
ψ↑

i (r)
ψ↓

i (r)

)
(2.31)

and the electron and magnetization density are expressed as

n(r) =
N

∑
i
|ψi(r)|2 (2.32)

m(r) =
N

∑
i

ψ∗i (r)σψi(r) (2.33)

with the vector quantity σ including the three Pauli spin matrices. In a similar way to the
non-magnetic case the application of the variational principle results in KS equations which now
exhibit the form of Schrödinger-Pauli equations{

− 1
2
∇2 + ve f f (r) + σ · Be f f (r)

}
ψi(r) = εiψi(r). (2.34)

Besides the already known effective potential ve f f from Eq. (2.21) an additional effective magnetic
field consisting of two terms appears:

Be f f (r) = Bext(r) + Bxc(r) (2.35)

The first one is the external magnetic field, if present, the second one originates from the variation
of the xc energy with respect to the magnetization density

Bxc(r) =
δExc[n(r), m(r)]

δm(r)
. (2.36)

A second, but completely equivalent description of spin-polarized systems within DFT relies on
the density matrix which is in particular suitable to handle non-collinear magnetism. It is defined
as

n(r) =
1
2

n(r)12 + σ ·m(r) =
1
2

(
n(r) + mz(r) mx(r)− imy(r)

mx(r) + imy(r) n(r)−mz(r)

)
(2.37)

where 12 denotes the (2× 2) unity matrix. A similar representation can be given for the potential:

V(r) = V(r)12 + µBσ · B(r) =
(

V(r) + µBBz(r) µB(Bx(r)− iBy(r))
µB(Bx(r) + iBy(r)) V(r)− µBBz(r)

)
(2.38)

In the collinear case such as ferro- or antiferromagnetism the magnetization is aligned along one
particular direction. Without loss of generality this direction can be chosen along the z axis.
As a consequence, the off-diagonal elements of the potential matrix (Eq. (2.38)) vanish and
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the two components of the Pauli spinor in Eq. (2.31) decouple. Thus, the spin-up and -down
problem can be tackled independently similar to the non-magnetic case with the potentials
V↑ = V + µBBz and V↓ = V − µBBz. An advantage of this procedure is the requirement of much
less computational effort as compared to non-collinear arrangement of magnetic moments. In the
last-mentioned case the computational costs to diagonalize the Hamiltonian increase with the
third power of the number of basis functions.

2.6 Relativistic effects in density functional theory

Electrons moving in the vicinity of the nuclei are strongly influenced by the large gradient of the
potential and hence exhibit a high kinetic energy which necessitates the inclusion of relativistic
effects to correctly describe their behaviour. Within the framework of relativistic DFT, the KS
one-particle Hamiltonian in an electromagnetic field is given by [78]

HD = cαp + (β− 14)mc2 +
eh̄

2mc
βΣ · B− eV14. (2.39)

Here, V denotes the effective electrostatic potential felt by an electron due to its interaction with
both the nuclei as well as the other electrons. α=(αx,αy,αz) and β represent the Dirac matrices

α =

(
0 σ

σ 0

)
, β =

(
12 0
0 −12

)
, Σ =

(
σ 0
0 σ

)
(2.40)

acting on a four-component Dirac bispinor

Ψi(r) =

(
ϕi(r)
χi(r)

)
(2.41)

consisting of a large and small component ϕi(r) and χi(r). The multiple index i abbreviates the
Bloch vector k, the band index ν and the spin quantum number σ. Again, the components of σ

are the Pauli spin matrices. Furthermore, B specifies an effective magnetic field generated by the
exchange interaction of the electrons and other possible external fields, e the modulus of the
electric charge, p the momentum operator and 12 and 14 the (2× 2) and (4× 4) unity matrix,
respectively.
As the large and small component of the Dirac bispinor (Eq. (2.41)) are coupled via the matrix
α, solving the relativistic KS equations turns out much more difficult as compared to the
non-relativistic case. However, in the limiting case of slow valence electrons v2/c2 � 1 the
Dirac operator (Eq. (2.39)) can be expanded in a power series of v2/c2. Applying the Foldy-
Wouthuysen transformation subsequently results in a Schrödinger-like operator including
relativistic corrections on the order of O(1/c2). This well-known Pauli operator only acts on the
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large component of the bispinor and takes the form

HPauli =
p2

2m
− eV +

eh̄
2mc

σ · B− p4

8m3c2 +
eh̄

8m2c2∇ · E +
eh̄2

4m2c2 σ · (E× p). (2.42)

The first and second contribution describe the kinetic and the electrostatic potential energy,
respectively, and hence form the non-relativistic part of the Hamiltonian. Apart from the third
term depicting a magnetic moment

µ = − eh̄
2mc

σ = −µBσ = −gµBS, (2.43)

interacting with the effective magnetic field, the fourth and fifth term do not depend on the
spin and, in addition to the first two contributions, represent the scalar-relativistic approximated
Hamiltonian [79]. To be more precise, the fourth term in Eq. (2.42) is a relativistic correction term
due to the kinematic mass enhancement, while the fifth summand is identified as the Darwin
term arising from rapid oscillatory motions of the electron on the order of the Compton wave
length λC=h̄/mc. Consequently, the position operator does not possess sharp eigenfunctions, but
the electron is smeared over the length of λC instead and hence responds sensitively to electric
fields.
The last term of the Pauli Hamiltonian in Eq. (2.42) finally describes the spin-orbit coupling
(SOC)HSOC which originates from the interaction of the electronic spin with the magnetic field
arising from the circular current of the orbital motion of the electron around the nucleus. Since
this orbital movement is associated with the crystal lattice via the electric potential of the ions, a
coupling between spin space and the crystal lattice emerges which is the origin of magnetic
phenomena such as the magnetocrystalline anisotropy.
The effect of SOC is particularly noticeable in the vicinity of the nuclei where the kinetic energy
of the electrons and the gradient of the potential is the largest. Approximating the potential as a
spherical one in this region, V(r) ' V(r), the corresponding electric field is given by

E(r) = −∇V(r) = −dV
dr

r
r

. (2.44)

Inserting this relation into the SOC Hamiltonian, i.e. the last term of Eq. (2.42), yields

HSOC = − eh̄2

4m2c2
1
r

dV
dr

σ · (r× p) (2.45)

= − eh̄2

2m2c2
1
r

dV
dr

L · S (2.46)

= ξ(r)L · S. (2.47)

L represents the operator of the angular momentum, while ξ(r) is the SOC constant as a function
of the radial distance r from the position of the nucleus. For models often an effective or averaged
coupling strength ξ is sufficent though. According to the eigenfunctions of an electron in the
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spherical region around the nucleus, the expectation value of the SOC operator can be divided
into a matrix element of the position and the (2× 2) spin space. The radial part of the matrix
element in position space which determines the strength of the SOC can be estimated from the
scalar-relativistic approximation. Assuming the Coulomb potential to be V(r)=−Ze/r and the
radial functions as non-relativistic, Rnl(r) ∝ rl with l terming the angular momentum quantum
number, the SOC constant can be expressed as

ξnl ∝
〈

nl|1
r

Z
r2 |nl

〉
∝ Z ·

(Z3

a3
B

) 1
n3l2 . (2.48)

It becomes evident that the strength of SOC scales with the fourth order of the atomic number Z.
For 3d transition metals (TM) such as Mn and Fe with a small atomic number, ξnl is on the order
of 50 meV [80].



3 Solution of the Kohn-Sham
equations

The previous chapter served as an overview of the basic concepts of DFT, especially with
regard to the KS equations which replace the complex many body problem by the dynamics of
non-interacting electrons in an effective potential and hence present a much simpler single-
particle problem. In the following, two different approaches for solving these equations will
be introduced. On the one hand the full potential linearized augmented planewave (FLAPW)
method [81, 82] which is implemented in the FLEUR code [54] will be considered in greater detail,
on the other hand an understanding of the basic principles of the projector augmented wave
(PAW) method [83], the core of the VASP code [55], will be given. Further and more detailed
information about the two mentioned methods in particular and the solution of the KS equations
in general can be found, for example, in references [64, 77, 84–86].

DFT based electronic structure methods are categorized according to the representation used for
the density, potential and, most crucial, the KS orbitals. An appropiate selection is necessary
in order to minimize the computational effort while maintaining sufficient accuracy at the
same time. Most approaches for solving the KS equations in solid-state physics, including the
two above-mentioned methods employed in this thesis, resort to a basis set expansion for the
single-particle orbitals [84]. In this case they are expressed as a linear combination

ϕi(r) = ∑
α

ciαφα(r), (3.1)

with φα(r) being the respective basis functions and ciα the expansion coefficients. Once the basis
is chosen, these coefficients are the only remaining variables of the problem which have to be
determined for the occupied orbitals minimizing the total energy. Inserting Eq. (3.1) into the
eigenvalue problem of Eq. (2.20), one obtains the matrix eigenvalue equation

(H− εiS)ci = 0, (3.2)

where the matrix H represents the KS Hamiltonian within the selected basis and S the overlap
matrix arising from the non-orthogonality of the basis functions at different atoms. Eq. (3.2) is a

21
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generalized eigenvalue problem and hence the KS equations need to be solved by diagonalizing the
matrix (H− εiS).

3.1 The Bloch Theorem

In this thesis, magnetic structures in crystalline solids are the subject of interest. For a large
number of particles the Bloch theorem [87] enables a calculational access to their electronic
properties by exploiting the periodicity of the potential.
Assuming the nuclear cores to be arranged periodically within an ideal crystal, an electron
moves in a potential V(r) exhibiting the same periodicity as the corresponding Bravais lattice.
Thus, the condition

V(r + R) = V(r) (3.3)

is satisfied for all vectors R of the Bravais lattice. In real space the vector R is defined as

R = n1a1 + n2a2 + n3a3, ni ∈ Z (3.4)

with ai denoting the basis vectors of the unit cell. Besides declaring the crystal momentum k a
good quantum number, the Bloch theorem states that the single-particle wave functions are
invariant upon the translation of a lattice vector R just like the external potential and in doing so
only deviate by a phase factor

ϕk(r + R) = eik·Rϕk(r). (3.5)

Thus, the probability density |ϕk(r)|2 remains unchanged. The general solution compatible with
these boundary conditions consists of a complex plane wave multiplied by a periodic Bloch
function uk(r),

ϕk(r) = eik·ruk(r) (3.6)

with uk having the same periodicity as the atomic structure of the crystal, i.e. uk(r + R)=uk(r).
The same applies to the Bloch function in reciprocal space. Consequently, it suffices considering
wave vectors only within the first Brillouin zone (BZ) in order to obtain all solutions for the
single-particle KS equations. Every vector k outside of the first BZ can be mapped back via a
reciprocal lattice vector.

3.2 Choice of a suitable basis set

As mentioned at the beginning of this section, finding an appropiate basis set for the expansion of
the KS orbitals represents a crucial step towards the computation of the ground state properties
of an interacting many-particle system. According to the Bloch theorem, plane waves appearing
as the solution of the Schrödinger equation for a constant, external potential provide a first
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ansatz. Within this basis the KS orbitals read as

ϕ(r) = ∑
|k+G|≤kmax

ciei(k+G), (3.7)

with k being the Bloch vector and G the reciprocal lattice vector. As the scalar products of
plane waves return plane waves again, derivatives like the electron density can be expressed by
plane waves as well. Furthermore, this basis set is a reasonable choice for DFT based electronic
structure methods since they can be implemented easily due to their simplicity, form a system of
orthogonal functions and represent eigenfunctions of the momentum operator. In addition, plane
waves can be transferred efficiently from reciprocal to real space via fast Fourier transform (FFT)
thereby allowing for an effective feasibility of the matrix diagonalization of many operators. In
theory, an infinite number of plane waves would be necessary to correctly describe the properties
of the respective system under study; however, for practical applications a cutoff parameter
|k + G| ≤ kmax indicating the amount of considered plane waves has to be chosen in order to
avoid an excessive computational effort for sufficient accuracy of the respective calculation. In
general, the choice of kmax has to be made in such a way that the balance between computational
effort and error turns out reasonable.

In a crystal the oscillatory behaviour of the electronic wave function strongly depends on the
proximity towards the nucleus. Close to the atomic core the electrons possess a high kinetic
energy due to the Coulomb potential varying as ∝ 1

r which leads to a rapid oscillation of the
wave function in this area. Hence, a large number of plane waves, i.e. a high cutoff parameter
kmax, is needed for an accurate description of the KS orbitals. In contrast, far away from the
nucleus the kinetic energy of the electrons is small and the wave function exhibits long-range
oscillations, thereby behaving rather smoothly. As a consequence, electrons near the core and
those moving in the valence region need to be treated differently within the framework of DFT.
In principle there are two possibilites to tackle this problem: on the one hand, the usage of
pseudopotentials allows to avoid the large oscillations of the wave function near the nucleus and
therefore less basis functions for a suitable approximation are needed. On the other hand, the
space can be divided into two regions in which different types of basis sets are used.

3.3 The FLAPW method

While the PAW method is based on pseudopotentials, the FLEUR code resorts to the full potential
linearized augmented planewave (FLAPW) method which relies on the decomposition of
space to correctly describe the electronic wave function throughout the whole crystal. In the
following, the underlying principles of this method as well as its peculiarities concerning the
FLEUR implementation will be introduced by means of its predecessors, the APW and LAPW
method.
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Figure 3.1. Division of space in the APW
method. The volume of the crystal is divided
into two regions, the interstitial region (IR) in
which the potential is approximated as constant
and non-overlapping muffin tin (MT) spheres
centered at the positions of the nuclei. Inside
the MT spheres the potential is assumed to
be spherically symmetric. The figure is taken
from [88].

3.3.1 Augmented Planewave Method

The idea of dividing space into two distinct regions to reproduce the wave functions correctly
throughout the crystal was first proposed by Slater in 1937 [89]. The exact approach is shown in
Fig. 3.1: there are non-overlapping spheres, the so-called muffin tins (MT), centered around each
atomic site in which the potential is approximated as spherically symmetric. In between the
muffin tins the interstitial region remains where the potential is set to a constant value. These
restrictions on the potential are referred to as shape approximations. As already mentioned
before, plane waves represent the solution of the Schrödinger equation for a constant potential,
while spherical harmonics times a radial function are known to solve the partial differential
equation for a spherical potential as occuring in the hydrogen atom, for example. Thus, the
planewave basis set for the KS orbitals in Eq. (3.7) is extended in the following way [77]:

ϕG(k, r) =

ei(G+k)·r interstitial region

∑
lm

AµG
L (k)ul(r)YL(r̂) muffin tin µ

(3.8)

Here, again k denotes the Bloch vector and G a reciprocal lattice vector, while the abbreviation L
includes the angular momentum quantum number l and the magnetic quantum number m. The
coefficients AµG

L (k) are determined from the continuity condition for the wave functions at the
boundary of the MT spheres. The functions ul are solutions of the radial Schrödinger equation

[
− d2

dr2 +
l(l + 1)

r2 + V(r)− El

]
rul(r) = 0. (3.9)

with El terming an energy parameter and V(r) the spherical component of the potential.
Although the APW method provides a set of continuous basis functions for the whole space,
several problems arise. One disadvantage is the missing variational freedom with regard to the
energy parameters El which have to be set to the corresponding band energies in order to achieve
an accurate description of the system. At the same time the ul depend on the band energies
resulting in a nonlinear problem as they cannot be obtained by a simple diagonalization of the
Hamiltonian matrix. Another difficulty when applying the APW is the asymptotic problem
for infinitesimal small ul at the boundary of the muffin tin spheres. In this case the continuity
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condition cannot be satisfied leading to a decoupling of the basis functions.

3.3.2 Linearized Augmented Planewave Method

In order to overcome the problems of the APW method, a linearization of the basis set was
suggested by Andersen [90] as well as Koelling and Arbman [91]. This is done by taking
into account the energy derivative of the radial solution of the Schrödinger equation u̇l(r) =
∂ul(ε, r)/∂ε stemming from a Taylor expansion of ul around El

ul(ε, r) = ul(El , r) + (ε− El)u̇l(El , r) +O[(ε− El)
2], (3.10)

where O[(ε− El)
2] depicts errors that enter the wave functions quadratically. By virtue of the

variational principle the error in the calculated band energies drops to the order of O[(ε− El)
4]

which is why the linearization works well for a large energy range.
The basis set of the LAPW method is given by [77]

ϕG(k, r) =

ei(G+k)·r interstitial region

∑
L
[AµG

L (k)ul(r) + BµG
L (k)u̇l(r)]YL(r̂) muffin tin µ

(3.11)

In comparison to the APW method, the additional coefficients BµG
L appear which are obtained by

the constraint that not only the basis functions inside the MT spheres but also their derivatives
match continuously with the plane waves in the interstitial region. This is schematically shown
in Fig. 3.2. In the non-relativistic case u̇l is calculated by taking the energy derivative of Eq. (3.9)

[
− d2

dr2 +
l(l + 1)

r2 + V(r)− El

]
ru̇l(r) = rul(r). (3.12)

Consequently, the construction of the LAPW basis solves the most important problems of its
predecessor, the APW method. Since the continuity condition for the wave functions at the
MT sphere boundary can always be satisfied – in general ul, its radial derivative and u̇l will
not be zero at the same time –, the asymptotic problem vanishes. Moreover, the El do not have
to be set to the band energies anymore thereby allowing for a single diagonalization of the
Hamiltonian matrix in order to determine the energies. As the LAPW basis also provides large
variational freedom, it opens up the possibility to extend the potential inside the MT spheres
with non-spherical contributions. Hence, it sets the corner stone for the FLAPW method.
On the other hand, the additional variational freedom leads to a drawback of the LAPW method:
due to the enlarged number of basis functions required to achieve the same accuracy level in
convergence as the APW method the computational effort inceases.

3.3.3 Full Potential Linearized Augmented Planewave Method

For close-packed metal systems the LAPW method applying shape-approximations to the
potential – spherically symmetric inside the MT spheres and constant in the interstitial region –
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Figure 3.2. Sketch of an LAPW basis function
depending on the distance to the nucleus. Not
only the radial solution of the Schrödinger equa-
tion ul , but also its energy derivative u̇l is con-
tinuous at the MT sphere boundary. The figure
is taken from [88].

offers an accurate description. However, in the case of open structures such as surfaces, which
are the subject of interest in this thesis, the approach fails. The FLAPW method [81, 82] provides
a way of circumventing this restriction by including a warped potential in the interstitial region
and modulations by non-spherical terms inside the MT spheres:

V(r) =


∑
G

VG
I eiGr interstitial region

∑
L

VL
MT(r)YL(r̂) muffin tin

(3.13)

The charge density ρ(r) associated with the electron density via ρ(r) = −en(r) is represented in
analogy to the potential:

ρ(r) =


∑
G

ρG
I eiGr interstitial region

∑
L

ρL
MT(r)YL(r̂) muffin tin

(3.14)

As already mentioned before, the FLAPW method is implemented in the FLEUR code [54]. Since
in this thesis film systems modelling magnetic interfaces and surfaces are being investigated, the
implementation of the film geometry in the program will be introduced briefly in the following
subsection.

3.3.4 Film systems within FLAPW

The surface of a solid-state body represents a break of the three-dimensional translational
symmetry of the crystal along one direction resulting in a two-dimensional (2D) description of
symmetries and Bloch vectors. Hence, when considering this semi-infinite problem perpendicular
to the surface, the basis set introduced previously for the (F)LAPW method needs to be extended
in order to take a third region into account, the vacuum [92].
The FLAPW method as implemented in the FLEUR code approximates surfaces by thin films with
a thickness of typically 10 to 15 atomic layers depending on the system at hand. According to
Fig. 3.3, space is separated into three distinct regions, the already known MT spheres and the
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Figure 3.3. Unit cell geometry for film calculations
in FLEUR. The space is divided in three distinct re-
gions: the already known MT spheres around the
atomic nuclei, the interstitial region extending from
−D

2 to D
2 along the z-direction and the vacuum re-

gion stretching from these boundaries up to infinity.
The figure is taken from [77].

interstitial and the newly introduced vacuum region. In contrast to the bulk, the periodicity of
the unit cell is now restricted to a 2D plane (without loss of generality this can be the xy plane).
While the basis set inside the MT spheres remains unchanged as compared to the bulk case, the
interstitial region is confined along the z-direction stretching from −D

2 to D
2 . As the periodicity

perpendicular to the film surface is lost, the unit cell ranges over ±∞. These adaptions of the
computational setup necessitate a modification of the planewave basis set in the interstitial
region as follows

ϕG‖G⊥(k‖, r) = ei(G‖+k‖)·r‖eiG⊥z with G⊥ =
2πn

D̃
. (3.15)

Here, G‖ and k‖ represent the 2D wave and Bloch vectors parallel to the film, whereas r‖ is the
parallel component of r and G⊥ the wave vector perpendicular to the film needed to describe the
interstitial region in z direction. G⊥ is not defined in terms of D, but D̃ (see Fig. 3.3) with D̃ > D
in order to obtain more variational freedom.
The basis functions for the vacuum region are constructed in the same way as the ones for the
MT spheres. They are composed of plane waves parallel to the film and a z dependent function
uG||(k||, z) solving the corresponding one-dimensional Schrödinger equation

{
− h̄2

2m
∂2

∂z2 +
h̄2

2m
(G|| + k||)

2 + V0(z)− Evac

}
uG||(k||, z) = 0. (3.16)

Evac and V0(z) denote the vacuum energy parameter and the planar averaged part of the vacuum
potential, respectively. The energy derivative u̇G||(k||, z) needed to secure the continuity condition
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at the vacuum boundary is obtained by deriving Eq. (3.16) with respect to the energy

{
− h̄2

2m
∂2

∂z2 +
h̄2

2m
(G|| + k||)

2 + V0(z)− Evac

}
u̇G||(k||, z) = uG||(k||, z). (3.17)

The basis functions for the vacuum region then read as

ϕG‖G⊥(k‖, r) =
(

AG‖G⊥(k||)uG||(k||, z) + BG‖G⊥(k||)u̇G||(k||, z)
)

ei(G‖+k‖)r‖ . (3.18)

Similar to the case of the MT spheres, the coefficients AG‖G⊥(k||) and BG‖G⊥(k||) ensure that the
functions are continuous and differentiable at the vacuum boundary. As the vacuum contains
less basis functions than the interstitial region, its basis set provides a smaller variational freedom
compared to the latter. To eliminate this discrepancy and hence allow for an increased variational
freedom, the single energy parameter Evac is replaced by a whole series of parameters covering
an energy region

Ei
vac = Evac −

h̄2

2m
G2
⊥. (3.19)

This enhancement leads to G⊥ dependent basis functions uG||,G⊥(k||, z).
In summary, the basis set used for film calculations with the FLAPW method is given by [77]

ϕG||G⊥(k||, r) =



ei(G||+k||)r||eiG⊥z interstitial region{
AG||G⊥(k||)uG||(k||, z)

+BG||G⊥(k||)u̇G||(k||, z)
}

ei(G||+k||)r|| vacuum

∑
L
[AµG

L (k)ul(r) + BµG
L (k)u̇l(r)]YL(r̂) muffin tin µ

(3.20)

3.3.5 Scalar-relativistic approximation in FLAPW

The FLAPW method as implemented in FLEUR makes use of some approximations to treat
relativistic effects efficiently. One of these approximations is the scalar-relativistic approximation
as introduced in Sec. 2.6 which neglects the Hamiltonian of spin-orbit coupling in the Pauli
operator and hence enables a decoupling of spin and spatial coordinates. If all four components
of the relativistic Dirac bispinor would need to be expanded in terms of the FLAPW basis and
treated with the same accuracy, this would result in a basis set consisting of four times as many
functions as in the non-relativistic case. The computation time required for the Hamiltonian
diagonalization would increase by a factor of 64 as the numerical effort scales with the matrix
dimension to the power of three. However, in most cases resorting to the scalar-relativistic
approximation is sufficient since the corresponding Hamiltonian is much larger than the SOC
Hamiltonian. Another advantage coming along with this simplification is that both spin-up and
-down contributions become decoupled allowing for a separate treatment of the two channels
and hence again leading to less computational effort. To be more precise, the numerical effort
ultimately equals the one needed in spin-polarized non-relativistic calculations.
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As already mentioned in Sec. 2.6, relativistic effects become mostly important in the vicinity of
the nuclei where the kinetic energy of the electrons is large. This circumstance justifies the choice
of a relativistic description for the wave functions inside the MT spheres, while the interstitial
region as well as the vacuum continue being treated non-relativistically. Consequently, the
solutions of the radial Schrödinger equation ul(r) and their derivatives u̇l(r) must be replaced
by the corresponding solutions of the relativistic radial Schrödinger equation gl(r) and φl(r) as
well as their derivatives ġl(r) and φ̇l(r) in the FLAPW basis functions within the MT spheres.
These considerations lead to the scalar-relativistic FLAPW basis set

ϕG||G⊥(k||, r) =



ei(G||+k||)r||eiG⊥z interstitial region{
AG||G⊥(k||)uG||(k||, z)

+BG||G⊥(k||)u̇G||(k||, z)
}

ei(G||+k||)r|| vacuum

∑
L

{
AG

L (k)

(
gl(r)

φl(r)

)
+ BG

L (k)

(
ġl(r)

φ̇l(r)

)}
YL(r̂) muffin tin

(3.21)

The complete derivation of this formalism can be found in Ref. [77].

3.3.6 Spin spirals and the generalized Bloch Theorem

Apart from the well-known highly symmetric collinear ferromagnetic (FM) and antiferromagnetic
(AFM) state, spin spirals represent an important category of relevant spin structures in search
of the magnetic ground state of a system. In a spin spiral the magnetic moments rotate by a
constant angle from lattice site to lattice site along the propagation direction of a reciprocal lattice
vector q. With Ri denoting the position of the ith atom in real space, the rotation angle between
two spins is given by

ϕi = q ·Ri (3.22)

and the direction of the magnetic moment is written as

Mi = M

cos(ϕi) sin(θ)
sin(ϕi) sin(θ)

cos(θ)

 . (3.23)

Besides the spin spiral vector q whose sign determines the rotational sense of the structure,
the rotation axis and the cone angle θ referring to the relative angular adjustment between the
magnetic moment and the rotation axis uniquely characterize a spin spiral. By way of illustration,
Fig. 3.4 depicts four spin spiral states with the upper two revealing their rotation axis to be
oriented perpendicular to the propagation direction q of the spiral and the lower ones aligned
along q. In each case the upper (lower) spin spiral exhibits a cone angle of θ = π/4 (θ = π/2)
between the direction of the magnetic moments depicted by green arrows and the rotation axis.
The former structures are referred to as conical spin spirals, while the latter ones are called
flat spin spirals. With a huge variety of possible cone angles θ and spin spiral vectors q, these
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Figure 3.4. Four examples of spin spiral states with different cone angles θ. For the upper two spin
structures the rotation axis is oriented perpendicular and for the lower two aligned parallel to the spin
spiral vector q which determines the propagation direction. In both cases spin spirals with a cone angle of
θ = π/4 (upper one) and θ = π/2 (lower one) between the direction of the magnetic moments (depicted by
green arrows) and the rotation axis are shown. The figure is taken from [77].

non-collinear spin states cover a large part of the magnetic phase space and hence allow to
investigate tendencies in magnetic systems by calculating the energy dispersion for q vectors
along the high symmetry directions of the first Brillouin zone (BZ).
Neglecting SOC, the real space and spin coordinate frame are completely decoupled and
hence the angle between the spin spiral vector q and the rotation axis is irrelevant. In this case
the energies of spin spiral states only depend on the angle ϕ between neighboring magnetic
moments. Consequently, the two pairs of conical and flat spin spirals shown in Fig. 3.4 are each
energetically degenerate.

As spin spirals break the translational symmetry of the lattice in the direction of q, the Bloch
theorem as presented in Sec. 3.1 could only be applied to these non-collinear structures by
using the magnetic unit cell resulting in extremely time consuming calculations due to the large
number of atoms as compared to the chemical unit cell. Thus, an extension of the Bloch theorem
is essential.
Considering homogeneous spin spirals without SOC, it turns out that all atoms of the structure
are equivalent since each magnetic moment is equal in magnitude and hence exposed to the
same local environment as its neighbor. This equivalence would vanish upon the inclusion of
SOC which couples lattice and spin as the angle between the local moment and the lattice differs
from site to site. However, in case of the scalar-relativistic approximation the only term changing
along the lattice sites is the xc field Bxc introduced in Sec. 2.5. Thus, a generalized translation
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combining a translation of the lattice and a spin rotation by the angle ϕ = q ·Ri can be applied
to the scalar-relativisic HamiltonianH which satisfies the relation

H(r + Ri) = U(q ·Ri)H(r)U†(q ·Ri). (3.24)

In this step the translational symmetry of the lattice is preserved. Without loss of generality the
rotation axis can be chosen to point along the z direction in absence of SOC. The spin-1/2-rotation
matrix then takes the form

U(q ·Ri) =

(
e−iϕ/2 0

0 eiϕ/2

)
. (3.25)

In analogy to the Bloch theorem, the eigenstates of the scalar-relativistic Hamiltonian can be
chosen such that

U(−q ·Ri)ψ(k, r + Ri) = eik·Ri ψ(k, r), (3.26)

which represents the formulation of the generalized Bloch theorem [93]. The exact form of the
eigenstates is given by

ψ(k, r) = eik·r
(

e−iq·r/2u↑(k, r)
e+iq·r/2u↓(k, r)

)
. (3.27)

Compared to Eq. (3.6) describing only a real-space translation by means of the term eik·r, here an
additional spin dependent phase factor associated with the rotation around the z axis appears.
The translational periodicity of the functions u↑↓(k, r) is decisive for the implementation of
spin spirals into the FLAPW method which relies on plane waves and Fourier Transforms. The
generalized Bloch theorem now enables the self-consistent calculation of spin spiral energy
dispersions within the scalar-relativistic approximation by restricting to the chemical unit cell
and the first BZ.

3.3.7 Treatment of spin-orbit coupling effects

As pointed out in the previous subsection, the generalized Bloch theorem can only be employed
to calculate the energies of spin spiral states as long as SOC is neglected. The coupling between
the spin structure and the lattice would again break the translational symmetry thereby leading to
large supercell structures containing the periodicity of the spin structure and hence dramatically
increasing computational expense. In order to take SOC into account for the self-consistently
calculated spin spiral states, the SOC operator from Eq. (2.47) can be treated as a pertubation
of the scalar-relativistic Hamiltonian as it typically contributes a relatively small effect on the
total energy compared to the latter one [94]. Within first-order pertubation theory, the change in
energy due to SOC can be approximated by the expectation value

∆ESOC = 〈ψ0,ν|HSOC|ψ0,ν〉 (3.28)

of the SOC Hamiltonian and the self-consistently determined unperturbed spin spiral states ψ0,ν

with band index ν of the scalar-relativistic Hamiltonian. As first-order pertubation theory does
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not require the construction of new wave functions, this approach is uncomplicated with regard
to the generalized Bloch Theorem. If the calculation of the energy change due to the pertubation
(Eq. (3.28)) was necessary with every step of the iterative cycle, the numerical effort would be
unreasonably large. However, applying Andersen’s force theorem [95–97] to an already known
self-consistent solution, this complication is avoided since only one iteration suffices to estimate
the change in total energy.
Consider the known self-consistent solution of the unperturbed system

H0[n0, m0]ψ0,ν = ε0,νψ0,ν (3.29)

and the respective total energy E0. In case a small pertubation is added, the change in energy can
be well approximated by a sum over all occupied states

E− E0 ≈
occ

∑
ν

εft,ν −
occ

∑
ν

ε0,ν (3.30)

according to the force theorem, with E denoting the total energy in presence of the pertubation
and {εft,ν} the spectrum of the perturbed HamiltonianH0 +HSOC which is constructed from the
unperturbed electron and magnetization density

(H0 +HSOC)[n0, m0]ψft,ν = εft,νψft,ν. (3.31)

Thus, having solved this secular equation once, the energy difference between an initial and a
slightly perturbed state can be evaluated from a sum of the single particle eigenvalues of the two
states. At this point it has to be pointed out again that the force theorem can only be applied in
case of small pertubations of the scalar-relativistic Hamiltonian.

The proceeding described above cannot be used to calculate the magnetocrystalline anisotropy
energy (MAE) since the expectation values from Eq. (3.28) vanish for states with collinear
magnetic order. Instead, this SOC effect is obtained from the so-called second variation method [98]
followed by the application of the force theorem. The idea behind this proceeding is that the
eigenfunctions of the scalar-relativistic Hamiltonian provide a more efficient basis set for the
variational treatment of the relativistic Hamiltonian than the original LAPW basis functions.
Consequently, less eigenfunctions are needed to build a suitable basis without causing large
errors. Here, the starting point is a collinear calculation without SOC from which the scalar-
relativistic eigenvectors for the two spin channels are determined [99]. The large component of
the wave function (Dirac bispinor) ϕkν(r) is then expanded in the following way [100]

ϕkν(r) =
2NS

∑
ν′σ′

Cν
kν′σ′ψkν′σ′(r) (3.32)

with NS denoting the number of basis functions per spin and the expansion coefficients Cν
kν′σ′

being multiplied with the Pauli spinor belonging to σ′. They are calculated from the second
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eigenvalue problem
2NS

∑
ν′′σ′′
〈kν′σ′|H|kν′′σ′′〉Cν

kν′′σ′′ = εkνCν
kν′σ′ . (3.33)

As the SOC contribution only yields a small effect in comparison to the scalar-relativistic
Hamiltonian, the off-diagonal elements arising from the mixture of the two spin channels are
neglected and the overlap matrix remains diagonal consisting of the scalar-relativistic eigenvalues
and elements from SOC. As a result the magnetization of the system at hand remains oriented
along one direction only. In this thesis, the approach is used to compute the total energies of
collinear states with two different configurations of the magnetization: either parallel (in-plane)
or perpendicular (out-of-plane) to the film plane. Unless otherwise noted, the force theorem is
employed subsequently as described above. The energy difference between the in-plane and
out-of-plane magnetized state finally yields the contribution of the MAE.

3.4 The PAW method

In this section the basic principles of the projector augmented wave (PAW) method as developed
by Blöchl in 1994 [83] will be presented. In contrast to the FLAPW method relying on the
decomposition of space to correctly describe the electronic wave function throughout the
whole crystal, the PAW method resorts to the formal simplicity of plane waves exploited in the
pseudopotential ansatz. However, in a wider context the PAW method can be recognized as a
generalization of the APW method granting access to the whole all-electron (AE) wave function
and for this reason combines aspects of the two mentioned approaches into a unified electronic
structure method [101].

3.4.1 Pseudopotentials

Electrons moving in the atomic region near the nucleus and those contributing actively to the
chemical bonding exhibit an opposite behaviour which is reflected in the varying frequency
of the oscillations of the wave function as described earlier. In general, the core electrons are
strongly bound to the nucleus and barely respond to motions of the valence electrons which
is why they can in principle be regarded as fixed or ’frozen’. On the other hand, the wave
functions of the valence electrons are flexible and react strongly to changes of the environment.
This observation legitimates the pseudopotential approximation allowing to eliminate the
computationally intensive core electrons from the actual calculation and to avoid the quick
oscillations of the valence electron wave functions closer to the nucleus [102]. As shown in
Fig. 3.5, the real Coulomb potential characterized by its 1/r dependence is replaced by a less steep
pseudopotential whose ground state pseudo wave function matches the true AE wave function
outside a certain cutoff radius rc. The pseudo wave function itself is quite smooth and can be
well described by using only few Fourier modes thereby making plane waves a simple and
efficient basis for their representation. As the core states are considered as fixed in an atomic
reference configuration during the solution of the KS equations for the valence electrons which is
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Figure 3.5. Schematic representation
of the pseudopotential concept. The
strongly oscillating AE wave function
ϕ(r) in the Coulomb potential V(r) near
the nucleus is replaced by a nodeless
pseudo wave function ϕPS(r) associated
with a pseudopotential. Both the real
and pseudo wave function as well as the
potentials match above a certain cutoff
radius rc. The figure is taken from [84].

referred to as the frozen core approximation, they need to be ”pre”calculated relativistically during
the construction of the pseudopotential [86]. This means that a large part of the complexity
of the problem is shifted from the calculation itself to the generation of the pseudopotential.
Furthermore, the drawback of the method is that all information on the complete wave function
and the charge density near the nucleus is lost which can influence the computation of properties
like hyperfine parameters or electric field gradients. Although the pseudopotential approach
yields accurate results for a large variety of systems, it cannot be guaranteed that the outcome is
similar to that of an AE calculation if used in a molecule or solid. This is due to the fact that the
pseudopotential is constructed only for the isolated atom, yet in a crystal the potential clearly
differs from this simplified environment.

3.4.2 Basic principles of the Projector Augmented Wave Method

The fundamental idea of the PAW method is a linear transformation mapping the true AE wave
function with its complete nodal structure onto a smooth, numerically convenient auxiliary
wave function that can be well represented by a planewave basis set. In the following, the
transformation is denominated as τ, the single-particle KS wave function as |Ψn〉 and the
auxiliary wave function as |Ψ̃n〉with the index n corresponding to a one-particle state comprising
a band index, a k-point and a spin index. Acting as a linear mapping, the transformation rule

|Ψn〉 = τ|Ψ̃n〉 (3.34)

preserves the nodal structure of the true AE KS wave function. Once the transformation is
known, physical quantities can be calculated via the expectation value of an arbitrary operator A
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which may be expressed by either the true or the auxiliary wave function

〈A〉 = ∑
n

fn〈Ψn|A|Ψn〉 = ∑
n

fn〈Ψ̃n|τ† Aτ|Ψ̃n〉. (3.35)

Here, fn describes the occupation of the nth band. Thus, when using auxiliary wave functions,
transformed operators Ã = τ† Aτ need to be applied. The KS equations can be written in a short
form within the framework of this formalism as well:

τ†Hτ|Ψ̃n〉 = τ†τ|Ψ̃n〉εn (3.36)

This is a time-independent Schrödinger-like equation with an overlap operator τ†τ.

Provided that the transformation only modifies the physically relevant AE wave function inside
a so-called augmentation sphere ΩR enclosing the atomic region and hence AE and auxiliary wave
functions coincide outside of ΩR, τ can be expressed as identity plus a sum of local atom-centered
contributions SR which add up the differences between the true and auxiliary wave function for
each atom

τ = 1 + ∑
R

SR. (3.37)

The PAW augmentation region ΩR corresponds to the muffin tin sphere around the nucleus in
the (F)LAPW method or to the core region in the pseudopotential method.
The true KS wave function can now be locally expanded in terms of AE partial waves |Φi〉 within
the augmentation spheres. One possible choice for these basis functions are radial solutions of
the Schrödinger equation for the isolated atom, a choosing quite similar to the one in APW-based
methods within the muffin tin spheres. However, this basis set is still difficult to treat numerically
due to the nodal structure of its individual components:

Ψ(r) = ∑
i∈R

Φi(r)ci within ΩR (3.38)

The index i abbreviates an atomic site R, the angular momentum quantum numbers L = (l, m)

and an additional index distinguishing partial waves of same L on the same site. It is necessary
to mention that the set of partial waves |Φi〉 comprises only valence states that are orthogonal to
the core wave functions. The latter are treated differently within the PAW method as they are not
assumed to spread out into the neighboring atoms.
The same transformation τ converting the true AE and computationally convenient auxiliary
wave funtions into each other can be employed to map the AE partial waves onto auxiliary
partial waves |Φ̃i〉:

|Φi〉 = (1 + SR)|Φ̃i〉 for i ∈ R (3.39)

In this case there is no sum over atom-centered contributions SR as each atom has to be considered
individually. Rewriting the previous equation in the following way,

SR|Φ̃i〉 = |Φi〉 − |Φ̃i〉, (3.40)
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Figure 3.6. Projector functions for
the chlorine atom. At the top two
s-type projector functions are dis-
played, two of p-type in the middle
and one of d-type at the bottom.
The figure is taken from [101] and
reproduced with permission from
Springer Nature.

defines the local contribution to the transformation operator for a specific choice of both types of
partial waves. The choice of the auxiliary partial wave functions depends on the position in
space: outside the augmentation spheres they are pairwise identical to their AE partial wave
counterparts:

|Φi〉 = |Φ̃i〉 for i ∈ R and outside ΩR (3.41)

However, inside the augmentation region, the auxiliary wave function can be expanded locally
into the auxiliary partial waves since they can be chosen in such a way that they form a basis:

Ψ̃(r) = ∑
i∈R

Φ̃i(r)ci within ΩR (3.42)

Up to now, the coefficients ci appearing in Eq. (3.38) and (3.42) and hence being identical in both
expansions still need to be determined. If a set of projector functions | p̃i〉 is selected orthonormal
to the auxiliary partial waves, i.e. 〈 p̃i|Φ̃j〉 = δij, then the coefficients may be represented by linear
functionals of the auxiliary wave functions. To be more precise, they turn out as scalar products
between the projector function and the auxiliary wave function:

ci = 〈 p̃i|Ψ̃〉 (3.43)

The projector functions probe the local character of the auxiliary wave function within the
PAW sphere, have the angular momentum character of their respective partial waves and are
calculated as a radial function times spherical harmonics, but are transformed into the same
representation as the auxiliary wave function afterwards (plane waves in this case). Examples of
projector functions are illustrated in Fig. 3.6.
Combining Eq. (3.43) with Eq. (3.42) yields the condition ∑i∈R |Φ̃i〉〈 p̃i| = 1 within the augmen-
tation sphere ΩR. Applying the local contribution of the transformation operator SR to any
auxiliary wave function by using the just derived condition, it follows that

SR|Ψ̃〉 = ∑
i∈R

SR|Φ̃i〉〈 p̃i|Ψ̃〉 = ∑
i∈R

(|Φi〉 − |Φ̃i〉)〈 p̃i|Ψ̃〉, (3.44)
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where in the last step Eq. (3.40) has been utilized. Hence, the transformation operator is given by

τ = 1 + ∑
R

SR = 1 + ∑
i∈R

(|Φi〉 − |Φ̃i〉)〈 p̃i|. (3.45)

Inserting this expression into Eq. (3.34), the true AE wave function is finally written as the
following sum of three terms:

|Ψ〉 = |Ψ̃〉+ ∑
i
(|Φi〉 − |Φ̃i〉)〈 p̃i|Ψ̃〉. (3.46)

This decomposition of the single-particle KS wave function close to an atom can be interpreted
as follows: the true AE wave function |Ψ〉 which shows rapid oscillations near the nuclei is
described by a sum of (1) an auxiliary wave function |Ψ̃〉 which is smooth everywhere and a
steep function having the correct nodal structure (2) defined only within each augmentation
sphere, i.e. the expansion into AE partial waves |Φi〉. From the latter the smooth part |Φ̃i〉 (3)
defined only within the augmentation sphere is eventually subtracted. However, far from the
atom, the partial waves are pairwise identical (see Eq. (3.41)) leaving the auxiliary wave function
equal to the true AE wave function in Eq. (3.46).
Fig. 3.7 shows the decomposition of the true AE KS wave function inside the augmentation
sphere according to Eq. (3.46) for the example of the bonding p-σ state of the Cl2 molecule.

Figure 3.7. Graphical representation of the decomposition of the bonding p-σ state of the Cl2
molecule into its two (auxiliary) partial waves acoording to Eq. (3.46). In the PAW method the AE
single-particle KS wave function Ψ (left) is written as the sum of a smooth auxiliary wave function Ψ̃ (first
contribution on the right side of the equation) and an expansion into AE partial waves Φi within the
augmentation sphere (middle term) from which is subtracted the smooth part of the auxiliary partial
waves Φ̃i only within the spheres (last term). The figure is taken from [64].

The core states |Ψc〉 can be split into three contributions similar to the valence wave functions: an
auxiliary core wave function |Ψ̃c〉 which matches the true core state outside the augmentation
sphere and acts as a smooth extension inside, an AE core partial wave |Φc

i 〉 and an auxiliary core
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partial wave |Φ̃c
i 〉. The latter two are represented by radial functions times spherical harmonics.

Hence, the expression for the core state is given by

|Ψc〉 = |Ψ̃c〉+ |Φc〉 − |Φ̃c〉. (3.47)

In comparison to the valence states, the projector functions are missing since the coefficients
ci are always set to unity. Despite being introduced as an AE method at the beginning of this
section, the PAW method implemented in the VASP code exploits the frozen core approximation
which originally constitutes a characteristic of the pseudopotential approach as mentioned
earlier. However, in principle it is also possible to implement the core states in such a way that
they adapt to the instantaneous potential.
Owing to the frozen core approximation and the fact that the important quantities of the
PAW transformation – projector functions and (auxiliary) partial waves – are being calculated
beforehand and provided with the respective VASP distribution for every element, the code
is extremely useful to compute the electronic ground state properties of large unit cells with
non-collinear magnetic order containing up to 200 atoms. In contrast to the pseudopotential
method, the PAW approach leads to accurate results for the properties of real magnetic systems
and at the same time allows for less time-consuming calculations as compared to the FLAPW
method.

The decomposition of the valence wave function within the PAW method as presented in
Eq. (3.46) can be transferred to further relevant quantities such as expectation values of operators
and the charge density. It is necessary to be able to express observable quantities as the expectation
values of the auxiliary wave functions since they act as the variational parameters instead of
the AE wave functions. The modified representation of the wave function thus necessitates a
transformation of the operators into auxiliary operators. Exploiting both Eq. (3.35) and (3.45)
as well as the completeness relation ∑i∈R |Φ̃i〉〈 p̃i| = 1 within the PAW sphere ΩR, quasilocal
operators like the kinetic energy or the real-space projection operator |r〉〈r| have the following
form:

Ã = τ† Aτ = A + ∑
i,j
| p̃i〉(〈Φi|A|Φj〉 − 〈Φ̃i|A|Φ̃j〉)〈 p̃j|. (3.48)

The first term describes an operator that has to be applied directly on the auxiliary wave function
while the remaining two comprise the projectors and the expectation value of the operator both
between the AE as well as the auxiliary partial waves.
Based on Eq. (3.48) the charge density at a point r in space is obtained by the expectation value of
the real-space projection operator as

n(r) = ñ(r) + n1(r)− ñ1(r), (3.49)

with
ñ(r) = ∑

n
fn〈Ψ̃n|r〉〈r|Ψ̃n〉, (3.50)
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Figure 3.8. Supercell geometry for film
calculations in VASP. Sideview sketch of a
bilayer film system consisting of one mag-
netic Fe and one non-magnetic layer (de-
picted in red and dark-gray color, respec-
tively). The supercell geometry requires
periodic boundary conditions for all three
directions in space leading to an infinite
continuation of the unit cell in z direc-
tion. The thickness of the vacuum layer
(depicted in light gray) between repeating
atomic slabs has to be chosen large enough
in order to avoid their interactions. The
figure is taken from [103].

n1(r) = ∑
n,(i,j)

fn〈Ψ̃n| p̃i〉〈Φi|r〉〈r|Φj〉〈 p̃j|Ψ̃n〉 (3.51)

and
ñ1(r) = ∑

n,(i,j)
fn〈Ψ̃n| p̃i〉〈Φ̃i|r〉〈r|Φ̃j〉〈 p̃j|Ψ̃n〉. (3.52)

These expressions also contain the contributions of the (auxiliary) core densities which are not
written explicitly at this point for the sake of clarity. Further details concerning the representation
of relevant quantities within the PAW method can be found in Ref. [83].

At the end of this section one further difference between the FLEUR and the VASP code needs to
be mentioned. While the former resorts to the partition of space and consequently different basis
sets to describe the properties of thin film systems modelling surfaces as presented in Sec. 3.3.4,
the latter relies on the implementation of the so-called supercell geometry. In this approach the
lost periodicity perpendicular to the surface is reintroduced using periodically repeating films
in the direction of the break of the translational symmetry (without loss of generality this can
again be the z direction). In between these atomic slabs a sufficient large vacuum layer has to be
inserted in order to avoid interactions between atoms of different unit cells (see Fig. 3.8). Here, in
general a distance of 24 Å suffices to keep interactions negligible. Consequently, the supercell
approach allows to continue the unit cell consisting of a thin atomic film and a vacuum layer
indefinitely not only in the plane but also in z direction.
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4 Models of magnetism

In the previous chapters, the concept of DFT as well as different approaches to solve the KS
equations for a solid-state body were presented. While the corresponding ab initio calculations are
ideally suited to determine properties of interest such as total energies of different (non-)collinear
magnetic structures and hence the possible ground state of the system at hand, magnetic
moments or the density of states (DOS), they allow no conclusions to be drawn about the
underlying physical phenomena, especially the predominant interactions. Hence, in order to
interpret and explain the results of DFT calculations, model concepts which can be derived from
rather simple assumptions and are very popular for the description of magnetic systems need
to be employed. Therefore, the current chapter introduces the models of magnetism that are
important for this thesis.

4.1 Stoner model

The emergence of itinerant ferromagnetism can be explained by means of the Stoner model [104]
which ascribes the magnetization in solids to the competition between the exchange interaction
represented by the exchange integral I and the kinetic energy represented by the DOS n(EF)

at the Fermi energy EF. The central question to be addressed is under which circumstance a
collective arrangement of magnetic moments and hence a spontaneous magnetization of the
system turns out energetically favourable in comparison to the non-spinpolarized case.
To start the derivation of the Stoner criterion, it is recognized that the magnetization density
m(r) = |m(r)| of solids is usually a much smaller quantity than the electron density n(r).
Therefore, the exchange correlation (xc) energy εxc(n(r), m(r)) can be expanded into a Taylor
series with respect to m

n and is further rewritten as [77]

V±xc (r) ≈ V0
xc(r)∓m(r)Ṽxc(r). (4.1)

Here, V0
xc(r) denotes the non-magnetic xc potential, while the second term Ṽxc(r) which is

associated with the magnetic field Bxc is spin-dependent and has the same strength for both spin
channels. However, the majority spins (+) are attracted and the minority spins (-) are repelled

41
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leading to a respective rise and lowering of the potential which is approximated as

V±xc (r) = V0
xc(r)∓

1
2

IM (4.2)

with M referring to the total magnetic moment per atom and Ṽxc(r) being substituted by the
exchange integral I named Stoner parameter. As the constant shift∓ 1

2 IM does not alter the spatial
shape of the potential, the solutions of the KS equations remain unchanged, i.e. ψ±i (r) = ψ0

i (r),
but the single particle eigenvalues εi are adjusted in the same way as the potential:

ε±i = ε0
i ∓

1
2

IM (4.3)

As a consequence, the band structure is spin-split, but the shape of the bands remains unaltered.
Simultaneously, the constant shift ∓ 1

2 IM affects the local spin densities of states n±(ε) resulting
in an exchange splitting:

n±(ε) = n0(ε± 1
2

IM) (4.4)

Hence, increasing occupation numbers of the majority channel are linked to an increasing
magnetization of the system, while the occupation numbers of the minority spin channel are
decreasing at the same time. At first sight this process looks unfavourable due to the cost of
kinetic energy for the majority band, but then again the exchange interaction leads to a reduction
of the potential energy thereby outweighing this cost.
From Eq. (4.4) a criterion for the existence of ferromagnetism in solids can be obtained. The
number of electrons N and the total magnetic moment per atom M are given by the integration
of the DOS over all occupied states up to the Fermi energy EF:

N =
∫

ε<EF

(
n0(ε +

1
2

IM) + n0(ε− 1
2

IM)
)

dε (4.5)

M =
∫

ε<EF

(
n0(ε +

1
2

IM)− n0(ε− 1
2

IM)
)

dε (4.6)

Assuming charge neutrality, the first equation can be utilized to determine the Fermi energy as a
function of the magnetization, i.e. EF = EF(M), if the non-magnetic DOS n0 and the number of
electrons N are known. In that case the second equation for M turns into a nonlinear problem
that has to be solved self-consistently:

M = F(M) =
∫

ε<EF(M)

(
n0(ε +

1
2

IM)− n0(ε− 1
2

IM)
)

dε (4.7)

For n0 > 0 the function F(M) satisfies the following conditions:

• F(0) = 0

• F(M) = −F(−M)
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• F(±∞) = ±M∞

• F′(M) > 0

M∞ denotes the saturation magnetization for the case of full spin-polarization meaning that all
majority spin states are occupied and the minority states are empty. Eq. (4.7) possesses solutions
with a non-vanishing magnetization in case the slope of F(M) at M = 0 is larger than one.
Deriving Eq. (4.7) with respect to M and setting M equal to zero in the resulting expression
finally yields the Stoner criterion for ferromagnetism:

F′(0) = In0(EF) > 1. (4.8)

It becomes apparent that a spontaneous magnetization of the respective system without applying
an external field is more stable than the paramagnetic solution if both the exchange integral I
and the non-magnetic local density of states (LDOS) n0(EF) at the Fermi energy are large.
Concentrating on the d electrons as relevant source of itinerant magnetism, the LDOS scales
approximately proportional to the inverse of the band width [77]. Hence, reducing the band
width stabilizes a possible ferromagnetic ground state. In the single-atom limit the band width
converges to zero, the Stoner criterion is always satisfied and the magnetic moments will form
according to Hund’s rule. Fe, Ni and Co are the only bulk materials fulfilling the Stoner criterion.
Another parameter playing an important role for the band width is the coordination number.
Reducing this quantity leads to less hybridization between the d bands and consequently to band
narrowing. Thus it becomes clear that surfaces show a stronger tendency towards magnetism
than their corresponding bulk analoga and even transition metals (TMs) which are non-magnetic
in their bulk phase can become magnetic at surfaces.

4.2 Atomistic spin model

Often the determination of the magnetic ground state of a system represents a non-trivial problem
as competing interactions between neighboring atoms lead to exchange frustration resulting in a
broad spectrum of possible spin structures. Hence, it seems appropiate to discuss the magnetism
of complex spin structures within the framework of model Hamiltonians comprising several
magnetic interactions which are well-known for contributing to the ground state in solid-state
bodies. In this thesis, this is done by mapping total DFT energy calculations to an extended
classical Heisenberg model. A description of magnetic moments by classical vectors can be
applied to systems with itinerant magnetism in which the d electrons are strongly localized
at discrete lattice sites. In addition, the moments need to be large enough (on the order of
2− 3µB) and their magnitude must not change along the lattice sites, i.e. Mi = M2 for all i.
Unless otherwise noted, the model Hamiltonian of the extended classical Heisenberg model as
used throughout this thesis is given by:

H = Hexc +Hbiquadr +H4-Spin +H3-Spin +HDMI +Hani (4.9)



44 Models of magnetism

Hexc denotes the largest energy contribution for the magnetic state of a system, the pairwise
Heisenberg exchange interaction, while the subsequent three summands represent the bi-
quadratic, the four-site four spin and the three-site four spin interaction, respectively. They are
collectively termed higher-order exchange interactions (HOIs) in the following. The last two
contributions, HDMI and Hani, describe effects arising from SOC, the Dzyaloshinskii-Moriya
interaction (DMI) and the magnetocrystalline anisotropy energy (MAE), respectively. These six
Hamiltonians will be discussed separately in the next subsections.

4.2.1 Heisenberg exchange interaction

The Hamilton operator of the pairwise Heisenberg exchange interaction is given by

Hexc = −∑
ij

Jij(mi ·mj), (4.10)

where Jij denotes the exchange integral between two normalized magnetic moments mi and mj

located at lattice sites i and j 1 and the double sum runs over all magnetic atoms in the system2.
This bilinear type of exchange interaction can be derived from a second order pertubation
expansion of the Hubbard model for spin 1/2-particles in case the Coulomb repulsion U is large
compared to the hopping parameter t of electrons between adjacent lattice sites [36, 105]. The
exchange integral Jij is of quantum-mechanical origin and can be attributed to both the Pauli
principle as well as the Coulomb interaction. Its sign determines whether a parallel orientation,
i.e. a ferromagnetic (FM) coupling (Jij > 0), or an antiparallel ordering, i.e. an antiferromagnetic
(AFM) coupling (Jij < 0) between two moments mi and mj is realized. As the exchange integral
is isotropic, all neighboring spins with the same distance from a reference atom can be merged
into shells interacting with the same exchange constant.
This situation is illustrated in Fig. 4.1 by means of the two-dimensional (2D) hexagonal lattice
which serves as the basic crystal structure for the film systems investigated in this thesis.
Considering the blue central atom, the pairwise exchange interaction with its six nearest
neighbors depicted in red color can be characterized by the same constant J1. The same is true
for the next (green atoms) and third nearest neighbors (purple atoms) which interact with the
blue reference atom via J2 and J3, respectively. In case of J1 > 0 and J2 < 0 (but with a similar
strength as J1), i.e. the nearest neighbors (red atoms) prefer a parallel alignment of their magnetic
moments with the ones of both the blue reference atom as well as the green atoms of the second
shell while the latter favor their spins to be oriented antiparallel with respect to the central atom,
a collinear arrangement is not possible anymore. Instead, exchange frustration arises leading to a
tilting of the magnetic moments. This can be the origin of (complex) non-collinear spin structures
such as spin spirals.

1The relation between magnetic moment and spin is given by m = −gµBS. In the following, the magnetic moment
will thus also be referred to as spin.

2Note that we restrict the discussion of the single interactions entering the extended classical Heisenberg model to
magnetic monolayers for the time being. Later on in chapter 8, a model for the pairwise Heisenberg exchange for two
interacting hexagonal magnetic layers will be introduced.
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Figure 4.1. Schematic representation of the
pairwise Heisenberg exchange interaction
on a two-dimensional hexagonal lattice.
Due to the exchange interaction being
isotropic, spins with the same distance from
the central atom (blue) can be summarized
in shells interacting with the same exchange
constant Ji where the index i now denotes
the respective shell. For example, the nearest
neighbors (red) of the blue centered atom
possess the exchange integral J1, while the
next nearest neighbors (green) interact with
the central atom via J2.

As magnetic phenomena are investigated on periodic lattices throughout this work, it turns
out reasonable to express the spins located at lattice sites i in terms of their discrete Fourier
components [77]:

Mi = ∑
q

MqeiqRi (4.11)

Replacing the localized magnetic moments by their Fourier components in the Heisenberg
Hamiltonian, Eq. (4.10), and transforming the resulting expression further, yields the formulation
for the Heisenberg exchange interaction on the reciprocal lattice:

Hexc = −NM2 J(q) (4.12)

Here, N describes the number of lattice sites corresponding to the real-space coordinates Ri and
J(q) the Fourier transform of the exchange integral defined as

J(q) = ∑
δ

Jδe−iqRδ (4.13)

with Rδ = Rj −Ri. q denotes the reciprocal spin spiral vector as introduced in Sec. 3.3.6. Now it
can be shown that the general solutions of the classical Heisenberg model on a periodic Bravais
lattice are given by helical spin structures [77]:

Mi = 2
(

RQ cos(Q ·Ri)− IQ sin(Q ·Ri)
)

(4.14)

AsHexc does not contain terms with SOC, the real and imaginary part of the spin RQ and IQ,
respectively, can be regarded as vectors spanning the xy plane. Hence, the spins rotate from
lattice site to lattice site around the z axis in the direction of Q. Such a spin structure corresponds
to the case of a flat spin spiral with a cone angle of θ = 90◦ between the rotation axis and the
magnetic moment (see second spin spiral from the top in Fig. 3.4).
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At this point it has to be noted that due to the symmetry of the Heisenberg exchange interaction
the energies of left- (−q) and right-rotating (+q) spin spirals with the same angle ϕ between
neighboring magnetic moments are degenerate. Since the dot product of two spins in Eq. (4.10)
can be rewritten in terms of the cosine of their relative angle ϕi = q ·Ri and cosine is an even
function, it becomes clear that the sign of q is irrelevant for the energy term.
In order to obtain the pairwise exchange constants via DFT, one can now calculate the energy

RWAFM
RWAFM

90° spin
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90° spin
spiral

Spin spiral 
along ΓM Spin spiral 

along ΓK

Néel state

FM state

q
x

q
y

Figure 4.2. Sketch of the 2D hexagonal Brillouin zone (BZ) with a selection of possible flat spin spiral
states occuring in a magnetic monolayer (ML). The high symmetry directions whose q values are utilized
to determine the pairwise Heisenberg exchange constants as well as the irreducible part of the hexagonal
BZ (encircled in black) are marked in red color. The most important spin spiral states are visualized with
an arrow pointing at their respective q value. The images of the spin structures have been created with a
program written by T. Drevelow.

dispersion E(q) of flat spin spirals without SOC along the high symmetry directions ΓM and
ΓKM of the 2D hexagonal Brillouin zone (BZ) and map the results to the classical Heisenberg
model given by Eq. (4.10). Fig. 4.2 shows a selection of important spin spiral states along these
two paths: at the center of the 2D BZ, i.e. at q = 0 represented by the Γ-point, the FM state with
a relative angle of ϕ = 0◦ between neighboring moment occurs, whereas at the M-point the
row-wise antiferromagnetic (RW-AFM) state (ϕ = 180◦) and at the K-point the Néel state with
angles of 120◦ between adjacent moments can be found. Moreover, there are two possibilities for
a 90◦ spin spiral which will become relevant for the construction of multi-Q states: at q=± 1

2 ΓM
and q=± 3

4 ΓK.



4.2 Atomistic spin model 47

In order to be able to ultimately map the DFT calculated energy dispersion to the pairwise
Heisenberg exchange, an analytical expression of Eq. (4.10), i.e. a fitting function including
a specific number of nearest neighbor shells, is required. As shown in [77], the dot product
between two spins can be rewritten as follows:

mi ·mj = M2 cos(q · (Ri −Rj)) (4.15)

Hence, a sum of the atomic positions of each shell with respect to the position of a reference atom
needs to be computed. Since the influence of the pairwise exchange decreases upon increasing the
distance between two magnetic moments, only neighbors up to the eighth shell are considered
for the fitting function used throughout this thesis (see Fig. 4.3). With the spin spiral vector

Reference position for calculation of fitting
function for the intralayer exchange

Different orders of NN spins
(shown up to 8th)

i=1

i=2

i=3
i=4

i=5
i=6

i=7
i=8

Figure 4.3. Illustration of circular rings of nearest neighbors up to the 8th order for one reference
atom on the hexagonal lattice of a magnetic monolayer. By summarizing over the relative positions of
the atoms of the ith shell and making use of Eq. (4.15), an analytical expression of the pairwise Heisenberg
exchange given by Eq. (4.10) can be obtained which is then used to fit the DFT calculated energy dispersion
of a magnetic monolayer.

taking the form

q =
2π

a
(qx, qy)

T, (4.16)

the evaluation of Eq. (4.15) and (4.10) yields the analytical expression of the Heisenberg exchange
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interaction for a magnetic monolayer which is also referred to as intralayer exchange:

Eexc =− J1

[
2 cos(2πqx) + 4 cos(πqx) cos(π

√
3qy)

]
− J2

[
2 cos(2π

√
3qy) + 4 cos(3πqx) cos(π

√
3qy)

]
− J3

[
2 cos(4πqx) + 4 cos(2πqx) cos(2π

√
3qy)

]
− J4

[
4 cos(πqx) cos(3π

√
3qy) + 4 cos(4πqx) cos(2π

√
3qy) + 4 cos(5πqx) cos(π

√
3qy)

]
− J5

[
2 cos(6πqx) + 4 cos(3πqx) cos(3π

√
3qy)

]
− J6

[
2 cos(4π

√
3qy) + 4 cos(6πqx) cos(2π

√
3qy)

]
− J7

[
4 cos(2πqx) cos(4π

√
3qy) + 4 cos(5πqx) cos(3π

√
3qy) + 4 cos(7πqx) cos(π

√
3qy)

]
− J8

[
2 cos(8πqx) + 4 cos(4πqx) cos(4π

√
3qy)

]
(4.17)

Note that this fitting function can only be applied to flat spin spirals with a cone angle of
θ = π/2 between the magnetic moments and the rotation axis. For other choices of θ the energy is
modified by the factor sin(θ).

4.2.2 Higher-order exchange interactions

In itinerant 3d TMs, the sole application of the pairwise Heisenberg model does not always result
in the correct magnetic ground state due to its limitation as a localized spin model. Interactions
beyond the pairwise Heisenberg exchange arise upon including higher-order terms in the
pertubative expansion of the Hubbard model. The fourth order pertubation treatment for spin
1/2-particles (in absence of SOC the third order vanishes) yields two further terms, the two-site
four spin (biquadratic) and the four-site four spin interaction [35, 36]. In addition to these two, a
three-site four spin interaction has recently been proposed for systems exhibiting a spin S ≥ 1
based on a multi-band Hubbard model [50]. It is expected to play a role in TMs such as Co, Fe or
Mn with magnetic moments on the order of 2 to 3 µB. These so-called higher-order exchange
interactions (HOIs) which are typically about one order of magnitude smaller than the first
Heisenberg constant J1 will be briefly presented below.

The biquadratic interaction arises from the hopping of electrons between two lattice sites i and
j as i→ j→ i→ j→ i. The corresponding Hamiltonian is given by

Hbiquadr = −∑
ij

Bij(mi ·mj)
2 (4.18)

with the biquadratic exchange parameter Bij denoting the coupling strength between the two
involved magnetic moments. As seen in Fig. 4.4 (a), there are six nearest-neighbor pairs for this
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isotropic type of interaction on the hexagonal lattice along the lines of the nearest-neighbor
Heisenberg exchange constant J1.

Figure 4.4. Illustration of higher-order exchange interactions (HOIs) for a magnetic ML on the 2D
hexagonal lattice. (a) Minimal hopping paths (marked by dashed lines) for the biquadratic interaction
denoted by its respective strength B1, the three-site four spin (Y1) and the four-site four spin interaction
(K1). While for the latter two out of 12 possible diamond shaped paths are depicted in light blue color, one
out of the six possible triangles for Y1 is illustrated in orange color. (b) Formation of a collinear uudd
state from the superposition of two counterpropagating 90◦ spin spirals. (c) Sketch of the 2D hexagonal
BZ with the two possible positions of q values for 90◦ spin spirals forming the uudd states (at q=± 1

2 ΓM
and q=± 3

4 ΓK) as well as the position of the non-collinear 3Q state resulting from the superposition of q
vectors at three symmetry equivalent M-points. Images of the respective spin structures within their
four-atomic unit cells are also shown.

In contrast to the biquadratic exchange involving only two lattice sites, the second term from
fourth order pertubation theory allows an electron hopping over four lattice sites as i→ j→ k→
l → i resulting in closed hopping paths taking the shape of a diamond on the hexagonal lattice
within the nearest-neighbor (NN) approximation. In Fig. 4.4 (a) two different types of diamond
shaped paths are depicted in light blue color – one only includes three nearest neighbors (red
atoms) with respect to the blue reference atom, the other comprises two nearest neighbors and
one second nearest neighbor (green atom). Each type contains six diamonds which yields a total
of 12 possible hopping paths. Characterized by the four-site four spin exchange parameter Kijkl ,
the Hamiltonian is expressed as

H4-Spin = −∑
ijkl

Kijkl [(mi ·mj)(mk ·ml) + (mi ·ml)(mj ·mk)− (mi ·mk)(mj ·ml)]. (4.19)
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Here, direct exchange between two spins is denoted by the scalar product (mi ·mj), while the
individual contributions of the sum describe permutations of the four involved lattice sites.

In analogy to the four-site equivalent, the three-site four spin interaction leads to triangle
shaped hopping paths for an electron over the three lattice sites in the sequence i→ j→ k→ i.
For the hexagonal lattice of a magnetic monolayer there are six possibilities with respect to a
reference atom within the NN approximation; one of them is highlighted in orange color in
Fig. 4.4 (a). The corresponding Hamiltonian is given by

H3-Spin = −∑
ijk

Yijk[(mi ·mj)(mj ·mk) + (mj ·mi)(mi ·mk) + (mi ·mk)(mk ·mj)] (4.20)

with Yijk describing the strength of the three-site four spin interaction.

Since the HOI terms arise from fourth order pertubation theory and the hopping parameter
t of the Hubbard model depends mainly on the distance between the involved atoms, they
are treated within the NN approximation on magnetic monolayers (MLs) in a first step. The
respective constants are referred to as B1, K1 and Y1 in the following. Later an extension to
next-nearest neighbors for a single magnetic layer, i.e. B2, K2 and Y2, will be proposed.

Although the just presented HOI terms are usually one order of magnitude smaller than the
conventional pairwise Heisenberg exchange as stated earlier, they can play a crucial role for
the formation of the magnetic ground state in strongly frustrated systems. In such cases often
spin spirals arise as states of lowest energy. A superposition of these non-collinear uniaxial
magnetic structures (also named 1Q or single-Q states) with symmetry-equivalent q vectors
leads to the emergence of so-called multi-Q states. If only pairwise Heisenberg exchange is taken
into account, these superposition states are energetically degenerate with their building blocks.
One important example for a multi-Q state is the collinear up-up-down-down (uudd or double-
row wise antiferromagnetic) state [49] generated from a superposition of two 90◦ spin spirals
with opposite rotational sense (see Fig. 4.4 (b)). As mentioned in the previous subsection, there
are two possible positions of q values for a 90◦ spin spiral in the 2D hexagonal BZ, at q=± 1

2 ΓM
and q=± 3

4 ΓK (Fig. 4.4 (c)). A third multi-Q state, the three-dimensional non-collinear triple-Q
or 3Q state [45], originates from a superposition of q vectors at three different M-points of the
hexagonal BZ (see Fig. 4.4 (c)).

The energetic degeneracy between the 1Q and multi-Q states existing within the model of
pairwise Heisenberg exchange is lifted by the HOI terms. The respective exchange parameters
within the NN approximation can be calculated by solving the following system of coupled
equations [50]:

∆EM = E3Q − EM,1Q =
16
3
(2K1 + B1 −Y1) (4.21)

∆E 1
2 ΓM = Euudd, M

2
− E M

2 ,1Q = 4(2K1 − B1 −Y1) (4.22)

∆E 3
4 ΓK = Euudd, 3K

4
− E 3K

4 ,1Q = 4(2K1 − B1 + Y1) (4.23)
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In this thesis, the total energies of the uudd states, Euudd, M
2

and Euudd, 3K
4

, as well as the energy
of the triple-Q state, E3Q, are evaluated via DFT in their corresponding four-atomic unit cells
per layer as shown in Fig. 4.4(c)). On the other hand, the total energies of the 1Q states, EM,1Q,
E M

2 ,1Q and E 3K
4 ,1Q, are computed within the chemical unit cell by exploiting the generalized Bloch

theorem as described in Sec. 3.3.6.

At this point it needs to be mentioned that the calculated HOI terms modify the first three
Heisenberg exchange constants Ji obtained from fits of the DFT spin spiral energy dispersion
without SOC since their energy contributions to E(q) have the same analytical expression. Along
the lines of the pairwise Heisenberg exchange, the Hamiltonians of the four-spin interactions
Eq. (4.18), (4.19) and (4.20) can be evaluated for the involved lattice sites of the respective hopping
paths partially illustrated in Fig. 4.4 (a) by means of Eq. (4.15). The adapted values of J′i are then
found to be given by [37]:

J′1 = J1 −Y1 (4.24)

J′2 = J2 −Y1 (4.25)

J′3 = J3 −
1
2

B1 (4.26)

In contrast to the biquadratic and three-site four spin term, the four-site four spin interaction
constant K1 does not alter any Heisenberg exchange parameter due to its constant value of
−12K1 being independent of the spin spiral vector.

4.2.3 Dzyaloshinskii-Moriya interaction

While the conventional Heisenberg model describes the symmetric part of the exchange in-
teraction, the Dzyaloshinskii-Moriya interaction (DMI) [24, 25] represents its antisymmetric
contribution. Both SOC as well as an inversion-asymmetric environment – for instance provided
by surfaces appearing in thin film calculations performed for the thesis at hand – are crucial for
the occurrence of this relativistic effect. The Hamiltonian of the DMI is described by the vector
product between two moments of the magnetic layer multiplied by the DM vector D:

HDMI = −∑
ij

Dij · (mi ×mj) (4.27)

Dij characterizes the strength and the direction of the DMI which generally depends on the
symmetry of the particular system. In contrast to the Heisenberg Hamiltonian, the DMI prefers
canted spin structures due to the sine of the vector product being largest for an enclosed angle of
90◦ between the involved spins. From Eq. (4.27) it becomes also clear that the DMI is sensitive to
the rotational direction of spin structures owing to the anticommutativity of the cross product
thereby lifting the energetic degeneracy of left- and right-rotating spin spirals in the Heisenberg
model and favoring a well-defined rotational sense dependent on the sign of D instead. This is
exemplified in Fig. 4.5 (a) where the left spin configuration has a lower energy compared to the
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right one despite both being tilted by the same angle. However, for the left structure the vector
chirality

C = mi ×mj (4.28)

acting as a rotation axis is oriented parallel with respect to the DM vector thereby minimizing

(a)
(b)

(c)

Figure 4.5. Illustration of the Dzyaloshinskii-Moriya interaction (DMI). (a) shows each two magnetic
atoms (red) interacting with a non-magnetic element (blue) of a heavy metal substrate exhibiting a large
SOC. As a result of the inversion-asymmetric environment, the DMI arises lifting the energetic degeneracy
between both configurations existing in the conventional Heisenberg model and favoring one rotational
sense over the other depending on the sign of the DM vector Dij. (b) depicts three pairs of spin spirals
differing in the direction of their rotation axis R with regard to the propagation direction q and the surface
normal. The two spirals of each pair connected by a mirror plane (orange) vary in their rotational sense.
(c) presents the same spin structures as (b), but now the inversion symmetry is broken due to a surface
being added. Only the right pair of spin spirals is left experiencing an influence of the DMI. Figure (a) is
taken from [106], (b) and (c) from [99].

the Hamiltonian from Eq. (4.27). In general, for a positive (negative) value of the vector chirality,
i.e. C > 0 (C < 0), the respective spin spiral is called right-(left-)rotating [107].

For thin magnetic films placed on non-magnetic heavy metal substrates with large SOC, the
direction of the DM vector Dij can be approximated by the Levy-Fert rule as follows [108]

Dij = D
∑
k

Rki ×Rkj

|∑
k

Rki ×Rkj|
, (4.29)

where Rki and Rkj are the vectors between the non-magnetic element k and the magnetic atoms
i,j.

The reason why broken inversion symmetry is a necessary ingredient for the DMI to occur
can be understood from Figs. 4.5 (b) and (c): here, three pairs of spin spirals are shown which
differ in the direction of their rotation axis R (this vector is identical to the chirality defined in
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Eq. (4.28)) with respect to the propagation direction q and the surface normal, one pair of helical
spirals with R||q (left) and two pairs of cycloidal structures with R ⊥ q. The two spin spirals of
each pair vary in their rotational sense. The situation depicted in Fig. 4.5 (b) corresponds to a
freestanding magnetic system, e.g. a magnetic ML exhibiting inversion symmetry. In this case,
the two spirals of different rotational sense of each pair are energetically degenerate and the
respective components of the DM vector Dij vanish since each left spiral is a mirror image of
its corresponding right spiral with respect to a mirror plane (illustrated in orange). However,
adding a substrate below the magnetic system (see Fig. 4.5 (c)) breaks the mirror symmetry for
the pair of spin spirals on the outer right (rotation axis R perpendicular to both q and the surface
normal), while the two pairs on the left remain unaffected and thus energetically degenerate.
Hence, for the right configuration a component of Dij along the rotation axis of the spirals is
possible leading to a preference for cycloidal structures by the DMI.

4.2.4 Magnetocrystalline anisotropy

Despite the Heisenberg exchange interaction being isotropic, real magnetic materials typically
show anisotropic behaviour by favoring a certain crystallographic direction for their magnetiza-
tion. While the energies of the two collinear spin structures shown in Fig. 4.6 do not differ in
consideration of the pairwise Heisenberg exchange, the magnetocrystalline anisotropy energy
(MAE) lifts the energetic degeneracy between states with a magnetization perpendicular (left)
and parallel (right) to the film plane.
Besides the magnetocrystalline anisotropy arising from SOC just like the DMI, there is also a
contribution of the shape anisotropy originating from the classical long-range dipole-dipole
interaction. This type of magnetic anisotropy depends on the geometry of the solid-state body
and can usually be neglected in ultrathin film systems as investigated in this thesis since it is
small compared to the MAE.
The general expression of the MAE is given by [109]

Hani = −∑
i

mi ·Ki ·mi (4.30)

with Ki representing the tensor of anisotropy determining its strength as well as the direction
of minimal and maximal energy. Perfect thin films can be described by an uniaxial anisotropy
Hamiltonian which is expressed by means of the normal vector of the surface n as

Hani = −∑
i

Ki(n ·mi)
2. (4.31)

If the uniaxial anisotropy constant is defined as Ki = E⊥MAE − E‖MAE, a negative (positive) sign of
Ki denotes an out-of-plane (in-plane) easy magnetization axis, i.e. the respective system prefers
its magnetization to be aligned perpendicular (parallel) to the film plane.
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Figure 4.6. Illustration of the effect mechanism
of the magnetocrystalline anisotropy. Consider-
ing solely pairwise Heisenberg exchange, the two
collinear magnetic states exhibiting a magnetiza-
tion perpendicular (left) and parallel (right) to the
surface are energetically degenerate. The MAE lifts
this degeneracy by favoring one crystallographic
axis over the other. The figure is taken from [110].

4.3 Tersoff-Hamann model

The majority of DFT calculations performed for this thesis has been motivated by experimental
observations made by our collaborators at the University of Hamburg. In general, their measure-
ments are realized using spin-polarized scanning tunneling microscopy (SP-STM) [111, 112]. In
order to be able to compare and interpret the experimental results based on ab initio calculations,
a theoretical model of the STM is essential. To this, a short description of the functioning of an
STM as well as the most important expression for the differential conductivity in the spectroscopy
mode which can be derived from the tunneling formalism of Bardeen [113] will be given below.
A more detailed mathematical description and derivation of the central equations can be found,
for example, in [114].

The working principle of an STM allowing the imaging of surfaces on the atomic scale in real
space is based on the quantum-mechanical effect of tunneling permitting an electron with a
certain kinetic energy Ekin to penetrate a classically forbidden region with a potential Epot > Ekin.
In this case, the potential barrier separating the metal probe tip of an STM from the sample under
investigation is induced by the vacuum (see Fig. 4.7 (a)). The tip can be moved by means of an
attached piezoelectric element which contracts or expands in three dimensions upon applying a
voltage. If the distance between tip and sample amounts to only a few Å, the current flow I
through the vacuum is weak due to its exponential decay and only slight overlap of the electronic
wave function of both electrodes and vanishes on average. However, the application of a small
bias voltage V between the two electrodes results in a raising of the Fermi level of the sample
with respect to that of the tip which yields a net tunneling current I(V) carried only by electrons
within a small range around the Fermi energy EF. Just like the electronic wave functions, I(V)

depends exponentially on the distance d between tip and sample:

I(d, V) ∝ Ve−2κd with κ =

√
2m|E|

h̄2 (4.32)

Here, κ denotes the decay constant, m the electron mass and E the energy of the electronic state
participating in the tunneling process. For states at the Fermi level, E corresponds to the work
function which is defined as the minimum energy required to remove an electron from the
bulk to a point in the vacuum. With most metals revealing typical values of 4 to 5 eV for this
quantity, the decay constant is on the order of 1 Å−1. Hence, the tunneling current exhibits a high



4.3 Tersoff-Hamann model 55

sensitivity to vertical height changes of the sample topography. For example, already one Å
increases or decreases the tunneling current by almost one order of magnitude. From Eq. (4.32) it
becomes also clear that the outmost tip atom which is closest to the surface mainly contributes to
the tunneling process.

Figure 4.7. Schematic representation of spin-polarized tunneling with SP-STM. (a) depicts the geom-
etry of the experimental setup consisting of the sample with a specific magnetization direction MS and the
magnetic STM tip with magnetization axis MT . Usually, the two magnetization directions are not oriented
parallel. (b) shows the spin-polarized DOS of both the tip and the sample. Assuming spin conservation,
majority (↑) electrons from occupied states of the tip can tunnel into unoccupied states of the sample with
equal spin character. The same tunneling process is possible for minority (↓) electrons. The figure is taken
from [114].

Using the Tersoff-Hamann model [115] which approximates the generally unknown electronic
structure of the STM tip as a single atom with an s orbital as wave function, both an expression
for the tunneling current as well as the differential conductivity within the framework of the
tunneling Hamiltonian formalism of Bardeen [113] can be derived. In the limit of small bias
voltages the result is given by

dI
dV

(RT, V) ∝ nTnS(RT, ES
F + eV). (4.33)

Therefore, the differential conductance which can be measured experimentally in the spectroscopy
mode of the STM is proportional to the LDOS of the sample nS(RT, ES

F + eV) at the tip position
RT and hence in the vacuum. In this way spectroscopy images of a sample can be directly
compared with the vacuum LDOS of the respective system obtained via DFT calculations.

The current flow between two magnetic electrodes further enables an experimental study of
magnetism on the atomic scale. In case the STM tip exhibits a spin-polarization, i.e. the DOS of
the majority channel differs from the one of the minority channel, the local spin-polarization of
the substrate becomes accessible. This idea of spin-polarized STM is depicted in Figs. 4.7 (a)
and (b); assuming spin conservation during the tunneling process, electrons from the occupied
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spin-up (majority) states of the tip can only tunnel into unoccupied states of the sample with
identical spin character. The same applies to the minority electrons. A parallel alignment of the
magnetization directions of the two electrodes leads to a different tunnel current in comparison
to an antiparallel orientation which is known as the tunneling magnetic resistance (TMR)
effect. Within an extension of the Tersoff-Hamann model to spin-polarized STM, the differential
conductivity consists of a non-spin-polarized part and a spin-polarized contribution:

dI
dV

(RT, θ, V) ∝ (nTnS(RT, ES
F + eV) + mT ·mS(RT, ES

F + eV)) (4.34)

In addition to Eq. (4.33), a term depending on the angle between the magnetization vector mT of
the tip and the sample mS occurs.

Both the expression for the differential conductance dI/dV in Eq. (4.34) as well as the associated
spin-polarized tunneling current I require the exact information about the spin-dependent
electronic structure in the vacuum. Even with the simplified assumptions of the Tersoff-Hamann
model, simulations of the spin-polarized vacuum LDOS for large complex, non-collinear magnetic
structures such as skyrmions or multi-Q states turn out extremely difficult or at least quite
time-consuming within the framework of first-principles calculations. Hence, another method
allowing for the calculation of SP-STM images of arbitrary nanostructures with complex magnetic
order without the accurate knowledge of the electronic structure is desirable.

The approach suggested in [116] relies on two other simplifying assumptions: on the one hand,
the spin-dependent LDOS of the surface atoms can be specified with reference to their local
magnetization direction rotated by a certain angle with respect to the tip magnetization êT.
Secondly, the LDOS of each surface atom contributes to the tunneling current of the STM tip
in the vacuum with a spherical tail of an atomic wave function which is approximated by an
exponential decay. In the limit of low bias voltage, the LDOS of the sample at the Fermi energy is
then given by

nS(RT, EF) = ∑
α

(n↑α + n↓α) exp(−2κ|RT −Rα|), (4.35)

with the sum running over all surface atoms α at the positions Rα and n↑α and n↓α denoting the
majority and minority DOS of a surface atom α at the Fermi level, respectively. κ represents the
decay constant as defined in Eq. (4.32).
The local magnetization DOS is expressed as

êTm(RT, EF) = ∑
α

(n↑α − n↓α) cos θα exp(−2κ|RT −Rα|), (4.36)

where the angle θα refers to the rotation of the local magnetization axis at atom α with respect to
the tip magnetization direction êT.
Assuming the electronic structure of all surface atoms to be the same, the spin-polarized tunneling
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current takes the following form

I(RT) ∝ ∑
α

[1 + PTPS cos θα] exp(−2κ|RT −Rα|). (4.37)

Here, the factors PT,S = (n↑T,S − n↓T,S)/(n
↑
T,S + n↓T,S) introduce the spin-polarization of the tip

and sample, respectively. The product of both defining the effective spin-polarization Peff of the
system remains the only unknown parameter of this simple model.
Within this approach it is also possible to derive a relation between constant-current and
constant-height STM images3 and to calculate quantitative values of the corrugation amplitude,
i.e. the maximum variation of the tip-sample distance. The change of the vertical tip position ∆z
as a function of the lateral tip position r‖ is calculated as

∆z(r‖) = −
∆I(r‖, z0)

dI0/dz(z0)
=

∆I(r‖, z0)

2κ I0(z0)
. (4.38)

z0 describes an average tip-sample distance at which the tunneling current can be divided
into a constant part I0(z0) and a small lateral component ∆I(r‖, z0) representing the features or
corrugation of the surface.

3In an STM experiment while scanning the sample surface with a tip there are two modes of operation, the
constant-height and the constant-current mode. The first one requires the vertical position z of the tip to be held
constant during the scanning process in which the changing tunnel current between tip and sample is detected.
On the other hand, in the constant-current mode the vertical position of the tip is adjusted during the experiment
providing a constant tunnel current between the two electrodes at every lateral position.
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5 Higher-order exchange interactions
in transition metal trilayers

In the past, the well-known classical Heisenberg model characterized by the pairwise exchange
interaction of magnetic moments has turned out to be successful in describing the properties
of a plethora of itinerant magnetic systems, especially for those in which the nearest neighbor
interaction constant J1 dominates over the rest of further distant pairs. However, in systems
exhibiting a competition of exchange interactions between different shells of neighbors, i.e. the
exchange constant of next- or third nearest neighbors is on the same order of magnitude as
J1, frustration effects occur giving rise to a multitude of possible (complex) spin structures. In
such cases, a correct description of magnetic properties of itinerant magnets relying exclusively
on the classical Heisenberg Hamiltonian can fail. Spin interactions beyond the conventional
Heisenberg exchange can be motivated from a pertubative expansion of the spin-1/2 Hubbard
model. As mentioned in the previous chapter, these are the two-site four spin (biquadratic)
and the four-site four spin interaction [35, 36]. Recently it has been shown that a three-site four
spin term additionally appears for systems with a spin S ≥ 1 [50]. This higher-order exchange
parameter is expected to play a role in 3d transition metals (TMs) such as Co, Fe and Mn with
moments on the order of 2 to 3 µB.

In this chapter, we apply density functional theory (DFT) calculations to investigate the modifi-
cation of both pairwise Heisenberg as well as higher-order exchange constants at TM interfaces
(published in Ref. [I]). To this, we consider freestanding trilayers composed of a single hexagonal
magnetic layer, Fe or Co, sandwiched between 4d and 5d TM layers. Such structurally simple
systems allow for an observation of certain magnetic trends which also apply to more complex
ultrathin film systems. In addition, the electronic and magnetic properties of three atomic layers
can be computed much faster thereby allowing systematic studies. Choosing Rh/Fe/Ir which
serves as a simplified model of the film system Rh/Fe/Ir(111) exhibiting a stacking dependent
change of the magnetic ground state [43] as a starting point, we systematically study how the
Heisenberg exchange constants and the HOI change not only with the band filling as Rh (Ir) is
replaced by other elements of the 4d (5d) series (see Fig. 5.1) but also how they are affected by
different stackings of the involved TMs. Increasing or decreasing the 4d (5d) band filling enables
to influence the hybridization with the 3d Fe states and hence by means of altering the electronic
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Figure 5.1. Schematic flow-chart of the study of higher-order exchange interactions (HOI) in TM tri-
layers. Starting from Rh/Fe/Ir which serves as a simplified version of the film system Rh/Fe/Ir(111),
either the upper Rh layer is replaced by another 4d TM or the lower Ir layer by another 5d TM. Also
symmetric 4d/Fe/4d trilayers are investigated to facilitate the understanding of trends in the respective
asymmetric trilayers. Lastly, Co is substituted for the central Fe layer to study the effect of changing the
TM with the intrinsic magnetic moment.

structure also the magnetic interactions. Furthermore, trends for HOI parameters are calculated
for the case that the central 3d Fe atomic layer is replaced by Co. Finally, the values obtained for
the biquadratic exchange, the four-site four spin term and the three-site four spin interaction
strength within the nearest-neighbor (NN) approximation of the trilayers are compared with
values calculated for selected ultrathin film systems which are experimentally accessible.

5.1 Computational details

For this systematic first-principles DFT study about HOI at TM interfaces we have resorted both
to the full-potential linearized augmented planewave (FLAPW) method [81, 82] as implemented
in the FLEUR code [54] as well as the projected augmented wave method [83, 117] as incorporated
in the VASP code [55]. Exchange correlation effects were taken into account using the local density
approximation (LDA) with the interpolation developed by Vosko, Wilk and Nusair (VWN) [72].
This choice was made since the LDA has turned out successful in explaining the magnetic
ground states of several ultrathin film systems [19, 27, 43, 44, 51]. Hardrat et al. have obtained
similar trends for the magnetic ground state in Fe MLs on TM surfaces by applying the GGA
potential [49].

Structural setup Since the stacking dependent magnetic ground state of the film system
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dIr d4d-Fe dFe-Ir

fcc-4d/Fe/Ir 2.70 1.97 2.07
hcp-4d/Fe/Ir 2.70 1.97 2.06

dIr d5d-Fe dFe-Rh

fcc-5d/Fe/Rh 2.70 1.97 2.07
dRh d4d-Fe dFe-4d

fcc-4d/Fe/4d 2.72 2.22 2.22
dIr d4d-Co dCo-Ir

fcc-4d/Co/Ir 2.70 2.06 2.15

Table 5.1. In-plane lattice constants and re-
laxed interlayer distances taken from the
respective film calculations for all trilayer
systems investigated in this chapter (given
in Å). The theoretical LDA in-plane lattice
constant of Ir dIr is taken from [33], the in-
plane lattice constant of Rh dRh from [118],
relaxed interlayer distances for Fe based tri-
layers from [43] and for Co based trilayers
from [15]. For symmetric 4d/Fe/4d systems
the unrelaxed interlayer distance of Rh bulk
has been chosen. Table reprinted with per-
mission from Ref. [I]; Copyright 2023 by the
American Physical Society.

Rh/Fe/Ir(111) has mainly triggered our investigation about HOI, we have chosen the theoretical
LDA in-plane lattice constant of Ir amounting to dIr=2.70 Å [33] as a basis for all trilayer and film
systems. Since only the change of the 4d or 5d TM element should be reflected in the trends of our
trilayer calculations, the interlayer distances are fixed to the determined values of Rh/Fe/Ir(111)
as well (see Table 5.1). The 4d TM Rh is replaced by Tc, Ru and Pd from the same atomic row,
while besides the 5d element Ir also Re, Os and Pt are regarded. In a similar way the relaxed
geometric structure of Rh/Co/Ir(111) [15] is used to compute the exchange constants for Co
based trilayers. Furthermore, the calculations of the properties of symmetric 4d/Fe/4d systems
are based on the in-plane lattice constant of Rh, i.e. 2.72 Å [118], and the unrelaxed interlayer
distances of the Rh bulk (see Table 5.1).

Energy dispersion and multi-Q states We have applied the FLAPW method to compute both
the spin spiral energy dispersions as well as the total energies of the collinear uudd states for all
Fe and Co based trilayers. Here, self-consistent calculations for flat spin spirals in the chemical
unit cell per layer within the scalar-relativistic approximation were performed by making use of
the generalized Bloch Theorem [77]. The muffin tin radii were set to 2.23 a.u. for the central
magnetic elements Fe and Co, whereas a slightly larger value of 2.31 a.u. has been adjusted for
the 4d and 5d atomic layers. The number of k-points amounts to 1936 in the full 2D BZ and a
large cutoff kmax=4.1 a.u.−1 for the basis functions was taken in order to guarantee convergence.
Apart from the number of k-points, the same settings have been chosen to calculate the total
energies of the uudd states within their four-atomic unit cells per layer (see Fig. 4.4 in Sec. 4.2.2).
In order to be able to evaluate the HOI accurately according to Eq. (4.21)-(4.23), the density of the
k-meshes must approximately match the one of the respective spin spiral calculation; thus, the
number of k-points for the uudd state along ΓM direction amounts to 168 in the irreducible part
of the first BZ and to 336 for the uudd state along ΓK direction.
In case of the Co based trilayers, the energy differences between the non-collinear 3Q and the
RW-AFM state have been computed via the FLEUR code as well by applying exactly one quarter
of the number of k-points set for the corresponding spin spiral calculation, namely 484 k-points
in the full 2D BZ.
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On the other hand, for the Fe based trilayers we resorted to the VASP code to evaluate the total
energies of the 3Q and the RW-AFM state on a 28×28×1 Γ-centered k-point mesh. The energy
cutoff was set to the standard value as provided by the respective POTCAR potential file for
all calculations. At the end of this chapter in Sec. 5.5 we validate this approach of combining
two different DFT codes to determine the HOI constants for Fe based trilayers by means of
convergence tests for a selection of systems.
Inverting Eq. (4.21)-(4.23) finally yields a direct way of calculating the HOI terms within the NN
approximation from the energy differences between the single- and multi-Q states:

B1 =
3

32
∆EM −

1
8

∆E 1
2 ΓM (5.1)

Y1 =
1
8
(∆E 3

4 ΓK − ∆E 1
2 ΓM) (5.2)

K1 =
3

64
∆EM +

1
16

∆E 3
4 ΓK (5.3)

Film systems Ultimately, the NN HOI constants have been calculated as well for film systems
accessible to experimental studies. For Pd/Fe/Ir(111) and Rh/Fe/Ir(111) we resorted to the
results of the energy dispersion published in [33, 43]. While the energies of the two uudd states
for both stackings of the Rh overlayer of Rh/Fe/Ir(111) had already been calculated before [43]
and hence only the 3Q state was missing (computed additionally via FLEUR in this work), for
Pd/Fe/Ir(111) all three multi-Q states were still needed (also calculated via FLEUR on the same
geometry as in the cited reference). In contrast, for fcc- and hcp-Rh/Fe/Rh(111) we had to
start from scratch, i.e. we first relaxed the film structure and – based on the relaxed interlayer
distances – employed the FLEUR code to compute both the energies of single-Q spin spiral as well
as the two uudd states for asymmetric films with nine Rh substrate layers. The energy differences
between the 3Q and the RW-AFM state were obtained by means of the VASP code.
For the Co based system Rh/Co/Ir(111) we could resort to the results of the energy dispersion
published in [15] as well, while only the three multi-Q states were still required and hence
calculated via FLEUR on the same geometrical setup as in the cited source. The relaxed interlayer
distances of fcc-Pd/Co/Ir(111) were taken from [41] and used to compute its energy dispersion
and multi-Q states via the FLEUR code (asymmetric film containing nine Ir substrate layers). For
all multi-Q states the same k-point meshes and energy cutoffs as for the freestanding trilayers
were chosen.

In addition to Ref. [I], the experimentally accessible film system Ru/Fe/Ir(111) with both
stackings of the Ru overlayer is considered in this thesis due to the respective trilayer exhibiting
a RW-AFM ground state which might be of special interest with regard to AFM skyrmions.
In this case, the GGA in-plane lattice constant of Ir amounting to dIr=2.75 Å [119] serves as a
basis for all calculations. Structural optimizations were carried out via VASP both within the
one-atomic unit cell of the FM state as well as the two-atomic cell of the RW-AFM state by using
a symmetric film comprising nine Ir layers and one Ru/Fe bilayer on each side. In order to
obtain results modeling a realistic surface, not only the z coordinates of Ru and Fe were relaxed,
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but also the ones of the first and second Ir layer. The energy cutoff was set to 400 eV in these
calculations and a 15×15×1 Γ-centered k-point mesh was chosen while the PBE GGA exchange
correlation potential [74] was applied. After the relaxation the RW-AFM state turned out to be
energetically lower than the FM state by 18 meV for fcc-Ru and 45 meV for hcp-Ru. For this
reason the interlayer distances of the former were set for the subsequent calculations of the
electronic and magnetic properties of the two systems. The exact values for fcc-Ru/Fe/Ir(111)
(hcp-Ru) are given by: dRuFe=1.92 Å (1.91 Å), dFeIr1=2.09 Å (2.08 Å), dIr1Ir2=2.26 Å (2.26 Å) and
dIr2Ir3=2.22 Å (2.22 Å), while the bulk value of Ir amounts to 2.25 Å.
Finally, the FLEUR code was employed to compute the energies of single- and multi-Q states of
Ru/Fe/Ir(111). Here, an asymmetric slab with nine Ir layers was chosen and self-consistent
calculations for spin spirals in the chemical unit cell within the scalar-relativistic approximation
were performed by exploiting the generalized Bloch Theorem. The energy contribution from the
DMI for every spin spiral state was calculated from the respective selfconsistent result upon the
inclusion of spin-orbit coupling in first order pertubation theory [94]. Both the muffin tin radii as
well as the energy cutoff parameter kmax were set to the same values as in the Ru/Fe/Ir trilayer
calculation. While the k-point meshes for the three multi-Q states also remained unchanged
compared to those used for the trilayers, the number of k-points for the spin spirals was increased
to 2025 in the full 2D BZ1. In all these calculations exchange correlations effects were taken into
account by means of the LDA potential with the interpolation proposed by Vosko, Wilk and
Nusair (VWN) [72].

5.2 Fe based trilayers

In this section, the results on the Heisenberg exchange and HOI parameters obtained for trilayers
with Fe as the central magnetic element will be presented. Starting from the element-wise and
structurally symmetric 4d/Fe/4d trilayers, the influence of the band filling of the enclosing 4d
atomic layer on the 3d Fe states already becomes apparent. The corresponding findings can
be transferred to the more complex asymmetric 4d/Fe/Ir and 5d/Fe/Rh trilayers which are
isoelectronic in case the same number of d electrons occupies the shells of the 4d and 5d TM. As
in the ultrathin film system Rh/Fe/Ir(111) a stacking dependent change of the magnetic ground
state occurs and its associated trilayer Rh/Fe/Ir is chosen as reference, both fcc- and hcp-stacking
of the 4d element in 4d/Fe/Ir trilayers are taken into account. Ultimately, the obtained values
for the Heisenberg exchange and HOI constants of the Fe based trilayers are compared with
experimental and theoretical results for the respective film systems.

5.2.1 Symmetric 4d/Fe/4d trilayers

Fig. 5.2 shows the energy dispersion of flat spin spirals neglecting SOC of all four investigated
symmetric fcc-4d/Fe/4d trilayers. One notices immediately that Pd/Fe/Pd exhibits a prototypical

1The reason for increasing the number of k-points was a switch to a more recent version of the FLEUR code which
requires odd k-meshes for hexagonal lattices due to the associated higher accuracy.
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Figure 5.2. Energy dispersion E(q) of flat
cycloidal spin spirals calculated via DFT
along the two high symmetry directions of
the 2D BZ for symmetric fcc-4d/Fe/4d trilay-
ers. Filled circles represent total DFT energies,
while solid lines show a fit to the Heisenberg
exchange interaction beyond nearest neigh-
bors. The energies of the uudd (↑↑↓↓) states
and the 3Q state are denoted as empty dia-
monds and squares at the q values of their
constituting single-Q states, respectively. Fig-
ure reprinted with permission from Ref. [I];
Copyright 2023 by the American Physical So-
ciety.

4d

fcc-4d

3Q

FM behaviour as the state with a collinear parallel alignment of neighboring magnetic moments
at the Γ-point (FM state) represents a global energy minimum and the dispersion rises rapidly
with increasing absolute values for q along both high symmetry directions of the hexagonal 2D
BZ. Both the RW-AFM state at the BZ boundary (M-point) as well as the Néel state at the K-point
are energetically unfavourable by more than 200 meV/Fe atom with respect to the FM state.
The situation changes remarkably upon removing one electron from the shell of the adjacent 4d
atomic layers: in case of Rh/Fe/Rh not only the energies of the RW-AFM and the Néel state drop
by 140 meV/Fe atom but also spin spiral energy minima along both high symmetry directions
arise leaving the FM state at the Γ-point as a local energy maximum. Removing further electrons
from the 4d shell results in a different behaviour of the energy dispersion again. In comparison to
Rh/Fe/Rh, the FM state exhibits the lowest energy among all single-Q states for the Ru/Fe/Ru
and the Tc/Fe/Tc trilayer. The dispersions of the last two systems also resemble each other in
appearance.

In Fig. 5.2 the energies of the three multi-Q states with respect to the FM state are depicted as
well at the q values of the respective single-Q states. With the exception of Rh/Fe/Rh, their
energies do not deviate much from the spin spiral energy dispersion indicating that HOI do not
play a significant role for Fe trilayers with enclosing Pd, Ru and Tc atomic layers. Moreover, none
of the investigated systems possesses a multi-Q state as magnetic structure of lowest energy. This
can be changed by choosing the hcp stacking sequence for the Rh/Fe/Rh trilayer as seen in
Fig. 5.3: although the energies of the three multi-Q states with respect to the FM reference are on
the same order of magnitude for both stackings of the Rh overlayer, the uudd state along ΓM
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3Q

Rh

   Rh

Figure 5.3. Energy dispersion E(q) of flat
cycloidal spin spirals calculated via DFT
along the two high symmetry directions of
the 2D BZ for Rh/Fe/Rh trilayers. Filled cir-
cles represent total DFT energies, while solid
lines show a fit to the Heisenberg exchange
interaction beyond nearest neighbors. The en-
ergies of the uudd (↑↑↓↓) states and the 3Q
state are denoted as empty diamonds and
squares at the q values of their constituting
single-Q states, respectively. Figure adapted
and reprinted with permission from Ref. [I];
Copyright 2023 by the American Physical So-
ciety.

4d/Fe/4d m4d mFe m4d

Tc/Fe/Tc −0.08 +2.20 −0.08
Ru/Fe/Ru −0.35 +2.34 −0.35
Rh/Fe/Rh +0.33 +3.02 +0.33
Pd/Fe/Pd +0.30 +3.05 +0.30

Table 5.2. Magnetic moments of the sym-
metric fcc-4d/Fe/4d trilayers. All values are
given for the ferromagnetic state in units of
µB. Table reprinted with permission from
Ref. [I]; Copyright 2023 by the American
Physical Society.

direction becomes energetically most favourable for hcp-Rh/Fe/Rh due to its energy dispersion
being shifted upwards compared to fcc-Rh.

Next, the effect of the hybridization on the magnetic moments of the symmetric 4d/Fe/4d
trilayers is discussed. Both the moments of the magnetic Fe layer and the non-magnetic 4d
elements are listed in Table 5.2. As the trilayers are structurally symmetric, the differences
observed in the Fe moments can only be ascribed to the changing hybridization between the 3d
and 4d states arising because of two reasons. On the one hand, the 4d bands of the circumjacent
layers are shifted to lower energies along the course of the atomic row. On the other hand,
the overlap between the 4d and 3d orbitals gets reduced as the nuclear number of the former
increases at the same time. The reduction occurs due to the screening of the nuclear Coulomb
potential by the 4d electrons not being perfect which causes a decrease of the extent of the 4d
orbitals. Both effects result in a rise of the Fe magnetic moment with the 4d band filling. From
Table 5.2 it becomes also clear that the magnitude of the induced magnetic moments of the 4d
TM layers can be quite remarkable as they exhibit a large spin susceptibility. For Tc and Ru an
AFM coupling with the central Fe atom occurs, while Rh and Pd prefer a FM alignment.
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Fig. 5.4 (a) finally shows the trend of the pairwise Heisenberg exchange constants for fcc-
4d/Fe/4d trilayers up to the third nearest neighbor as extracted from fitting the DFT energy
dispersion in Fig. 5.22. Thus, they are not modified by HOI terms according to Eq. (4.24)-(4.26),
but still contain their contributions. However, as it has been checked, the overall trend would not
change if the adapted values were displayed instead. The most striking feature appearing in
Fig. 5.4 (a) is the linear slope of the NN exchange constant J1 from Ru/Fe/Ru to Pd/Fe/Pd
which is in good agreement with the increasing energy difference between the FM and the
RW-AFM state observed in Fig. 5.2. In case of Ru/Fe/Ru and Tc/Fe/Tc all exchange parameters
are similar and on the same order of magnitude consistent with the flat course of the energy
dispersion. The reason for the spin spiral minima occuring for the Rh/Fe/Rh trilayer can be
attributed to the negative sign of J2 and J3 mediating an AFM coupling which competes with a
FM NN exchange constant J1. Hence, this system exhibits strong exchange frustration. In Fig. 5.4
(a) also the values for the Heisenberg exchange constants of the hcp stacking of the Rh/Fe/Rh
trilayer are plotted. Compared to fcc-Rh, J1 is by 4 meV smaller and J2 reduced by a factor of 2
which is caused by the more shallow minima of the energy dispersion (see Fig. 5.3). In case of
Pd/Fe/Pd the FM NN exchange constant J1 is by a factor of 8 larger than the AFM coupled J2

and J3 and hence dominates the system resulting in the observed FM ground state.

4d

   4d

4d

   4d

Figure 5.4. Trends for Heisenberg exchange constants and HOI parameters in symmetric 4d/Fe/4d
trilayers. (a) Trend for the Heisenberg exchange constants up to the third nearest neighbor without
modification by HOI terms. The magnetic moment of the central Fe atom is also denoted for each trilayer.
(b) Comparison of the trend for the biquadratic term B1, the three-site four spin interaction strength Y1
and the four-site four spin interaction constant K1. The lines connecting the data points serve as a guide to
the eye. The exact numerical values of the HOI are published in Ref. [I]. Figure reprinted with permission
from Ref. [I]; Copyright 2023 by the American Physical Society.

The trends obtained for the Heisenberg exchange interaction in trilayers agree well with previous
DFT calculations for Fe MLs on fcc(111) and hcp(0001) surfaces of 4d and 5d TMs published
in [49]. In that work it has been demonstrated that the NN exchange coupling of Fe changes
gradually from AFM for Fe MLs on Tc(0001), Re(0001), Ru(0001) and Os(0001) to FM on Rh(111),

2At this point it has to be noted that the fitting of the energy dispersion was done by including eight to eleven
neighbors. However, for the analysis we restrict ourselves to considering only the first three nearest neighbors as the
influence of further distant pairs usually decreases quickly.
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Ir(111), Pd(111) and Pt(111). To be more precise, in that case J1 increases with the filling of the d
band. As we do not consider trilayers in hcp stacking of the circumjacent Tc and Ru element,
no AFM behaviour of J1 is observed at the beginning of the series in our investigation (see
Fig. 5.4 (a)). However, the same explanation as given in [49] and which has already been used to
elucidate the rise of the Fe magnetic moment with increasing number of electrons in the d shell
can be applied here: the calculated trend for J1 originates from the hybridization between the
3d Fe bands and the 4d bands of the surrounding non-magnetic layers which varies with the
occupation of electrons.

Finally, Fig. 5.4 (b) depicts the HOI constants of the symmetric 4d/Fe/4d trilayers. While the
biquadratic term B1 shows the same behaviour as the NN Heisenberg exchange constant J1 and
the three-site four spin interaction strength Y1 follows a similar trend as J3, the four-site four
spin interaction constant K1 exhibits a prominent maximum for Rh/Fe/Rh. Here, it has to be
noted that the HOI parameters are smaller than J1 for all four systems, but they can be of similar
strength as J2 and J3. Choosing again an hcp stacking for the latter trilayer yields remarkable
values of about 4 meV for the biquadratic and the three-site four spin term thereby topping even
the value of K1. Thus, the stacking sequence has a significant impact on the HOI, whereas the
Heisenberg exchange constants are not affected that much by this geometrical change. From
the observations in Fig. 5.4 (b) we hence conclude that all three HOI terms contribute to the
lowering of the uudd state along ΓM direction with respect to the constituting 90◦ spin spiral in
the hcp-Rh/Fe/Rh trilayer. Interestingly, we could verify this change of the magnetic ground
state from a spin spiral for fcc-Rh to an uudd state for hcp-Rh for the respective film system
Rh/Fe/Rh(111) (not shown here) which additionally demonstrates that the trends found for
simplified models can indeed be transferred to more complicated systems.

5.2.2 Asymmetric 4d/Fe/Ir and 5d/Fe/Rh trilayers

In the next step we turn our focus to asymmetric Fe based trilayers for which Rh/Fe/Ir serves as
a reference due to its corresponding ultrathin film system showing a stacking dependent change
of the magnetic ground state [43] and thereby initiating our study on HOI trends. Fig. 5.5 presents
the energy dispersion of 4d/Fe/Ir and their respective isoelectronic 5d/Fe/Rh trilayers. With the
exception of Ru/Fe/Ir and its isoelectronic counterpart Os/Fe/Rh for which the RW-AFM state
at the M-point is lowest in energy, all trilayers exhibit a single-Q spin spiral ground state which is
a sign of competing exchange interactions in these systems. Independent of the chosen 4d or 5d
overlayer, actually deep spin spiral energy minima occur along both high symmetry directions of
the 2D BZ with their absolute values of q belonging to a period of about λ ≈ 1.03 nm – a value
similar to the one found in the dispersion of the symmetric Rh/Fe/Rh trilayer (see Fig. 5.2).
This observation can be attributed to the hybridization at the Fe/Rh or the isoelectronic Fe/Ir
interface. In case of 5d/Fe/Rh trilayers, the maximum depth of the energy minima amounts to
35 meV/Fe atom below the FM reference which exceeds the respective minima of the 4d/Fe/Ir
trilayers by 12 meV/Fe atom. From Fig. 5.5 it is also evident that for these model systems all
three multi-Q states are energetically unfavourable with respect to their corresponding spin
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spiral states. The only exception is Tc/Fe/Ir for which the uudd state along ΓK direction gains a
small amount of energy relative to the constituting 90◦ single-Q state.

3Q

fcc-4d

(a)

3Q

fcc-5d

Fe

Rh

(b)

Figure 5.5. Energy dispersion E(q) of flat cycloidal spin spirals calculated via DFT along the two
high symmetry directions of the 2D BZ for (a) fcc-4d/Fe/Ir and (b) fcc-5d/Fe/Rh trilayers. Filled circles
represent total DFT energies, while solid lines show a fit to the Heisenberg exchange interaction beyond
nearest neighbors. The energies of the uudd (↑↑↓↓) states and the 3Q state are denoted as empty diamonds
and squares at the q values of their constituting single-Q states, respectively. Figure reprinted with
permission from Ref. [I]; Copyright 2023 by the American Physical Society.

In Sec. 4.2 the range of validity for the application of the classical Heisenberg model to the
description of itinerant magnetic systems was given. We have checked the mentioned basic
conditions for our trilayers and realized that the magnetic moments of the Fe atoms indeed
fulfill them in most cases. From our DFT calculations the Fe moments turn out just slightly
deviant of about 6% from those of the FM state and hence nearly independent of the q value
and the spin state. However, the magnetic moments of both Ru/Fe/Ir and Os/Fe/Rh differ
by up to 17% from the FM state along the high symmetry directions of the BZ which requires
the inclusion of the Stoner energy for the fitting procedure of the energy dispersion. Hence,
the energies obtained via DFT for these two trilayers (see Fig. 5.5) have been shifted by the
expression 1

2 I(M(q)−M(0))2 where I denotes the Stoner parameter taking a value of 420 meV
for Fe [120] and M(0) the Fe moment at the Γ-point.

Before considering the trends of Heisenberg exchange and HOI parameters in asymmetric Fe
based trilayers, the local density of states for the example of 4d/Fe/Ir trilayers in the FM state is
shown in Fig. 5.6. Here, similar as in the case of the Fe magnetic moments (cf. Sec. 5.2.1) the
varying hybridization as a result of the changing band filling becomes apparent. Taking a closer
look at the upper panels, one notices that the Fermi energy shifts from the center to the end of
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the bands of the 4d overlayer upon moving through the series from Tc to Pd. In turn, this altering
occupation of the 4d band influences the 3d LDOS of the central Fe layer which is illustrated in
the middle panels. While the minority spin channel does not show greater modifications along
the series, the majority Fe bands are subject to large changes in the vicinity of the Fermi energy.
For example, in the Ru/Fe/Ir and the Rh/Fe/Ir trilayer one clearly recognizes a double peak
structure appearing in the majority channel of both the 4d element as well as the magnetic Fe
directly at the Fermi level. This hybridization effect is absent at the respective energetic positions
in Tc/Fe/Ir and Pd/Fe/Ir which exemplifies that the exchange interactions are considerably
modified.

Figure 5.6. Local density of states (LDOS) of fcc-4d/Fe/Ir trilayers in the FM state. The upper panels
depict the LDOS of the 4d overlayer, the middle panels the LDOS of the Fe layer, and the lower panels that
of the Ir layer. Majority and minority spin channels are represented in green and red color, respectively.
Figure reprinted with permission from Ref. [I]; Copyright 2023 by the American Physical Society.

The trends for both Heisenberg and higher-order exchange interactions of asymmetric Fe based
trilayers are displayed in Fig. 5.7. Here, the pairwise nearest-neighbor exchange constant J1

follows a similar trend as in the case of symmetric 4d/Fe/4d trilayers (cf. Fig. 5.4 (a)), i.e. it rises
with increasing occupation of both the 4d as well as the 5d shell (see Fig. 5.7 (a)). However, the
maximum values of J1 are only half as large as those found for the symmetric systems which can
be ascribed to stronger hybridization due to the usage of smaller relaxed interlayer distances
for the isoelectronic trilayers. It is also clearly visible that the curves for J1 of both types of
trilayers are nearly congruent. The same applies each to the next and third nearest neighbor
constant J2 and J3. In contrast to J1 mediating a FM coupling in all cases, J2 is characterized by
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an AFM behaviour and J3 even undergoes a change of sign in the middle of the series. Hence,
our conclusion drawn from the analysis of the energy dispersion is verified – the asymmetric
trilayers represent strongly exchange frustrated systems. In Fig. 5.7 (a) the magnetic moment of
the central Fe atom is also denoted for each trilayer. For an overlayer from the beginning of the
4d series the Fe moment takes remarkably reduced values of 1.70 µB which can be explained
based on the variation of the majority spin LDOS as discussed above (cf. Fig. 5.6).

Figure 5.7. Trends for Heisenberg exchange constants and HOI parameters in 4d/Fe/Ir and 5d/Fe/Rh
trilayers. (a) Trend for the Heisenberg exchange constants up to the third nearest neighbor without
modification by HOI terms. The magnetic moment of the central Fe atom is also denoted for each trilayer.
(b) Comparison of the trend for the biquadratic term B1 (dotted line), the three-site four spin interaction
strength Y1 (solid line) and the four-site four spin interaction constant K1 (dashed line). Blue (red) color
refers to 4d/Fe/Ir (5d/Fe/Rh) trilayers. The lines connecting the data points serve as a guide to the eye.
The exact numerical values of the HOI are published in Ref. [I]. Figure reprinted with permission from
Ref. [I]; Copyright 2023 by the American Physical Society.

Lastly, Fig. 5.7 (b) depicts the HOI parameter trend of isoelectronic Fe based trilayers which takes
a slightly different course than the one calculated for the pairwise Heisenberg exchange. While
the three-site four spin term Y1 experiences a change of sign between Tc/Fe/Ir (Re/Fe/Rh)
and Ru/Fe/Ir (Os/Fe/Rh) and then takes a nearly constant value of about 1 meV, both the
biquadratic and four-site four spin interaction constant only display positive values rising with
increasing occupation of the 4d and 5d band, respectively. Their maximum values (3.9 meV for
Pd/Fe/Ir) are higher than the ones of Y1 (1.7 meV for Os/Fe/Rh) as well. Also for this parameter
set the curves for 4d/Fe/Ir and 5d/Fe/Rh trilayers do not differ much.

To complete this subsection, we analyze the influence of the stacking sequence of the atomic
layers on the exchange constants by means of the 4d/Fe/Ir trilayer series. In the next subsection,
the respective ultrathin film systems Ru/Fe/Ir(111), Rh/Fe/Ir(111) and Pd/Fe/Ir(111) of which
the latter two have already been investigated experimentally [13, 43, 121–123] will be included in
the comparative study.
An overview of the energy dispersion of hcp-4d/Fe/Ir trilayers is shown in Fig. 5.8. In contrast
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3Q

hcp-4d

Figure 5.8. Energy dispersion E(q) of flat
cycloidal spin spirals calculated via DFT
along the two high symmetry directions of
the 2D BZ for hcp-4d/Fe/Ir trilayers. Filled
circles represent total DFT energies, while
solid lines show a fit to the Heisenberg ex-
change interaction beyond nearest neighbors.
The energies of the uudd (↑↑↓↓) states and the
3Q state are denoted as empty diamonds and
squares at the q values of their constituting
single-Q states, respectively. Figure reprinted
with permission from Ref. [I]; Copyright 2023
by the American Physical Society.

to fcc-Pd/Fe/Ir, the corresponding trilayer with an hcp stacking of the Pd overlayer possesses
the FM state at the Γ-point as magnetic ground state. This collinear state also represents the state
of lowest energy for the symmetric Pd/Fe/Pd trilayer (cf. Fig. 5.2), however for hcp-Pd/Fe/Ir
the exchange frustration is much stronger as the energy difference between the FM and the
RW-AFM state is reduced to 75 meV/Fe atom and the dispersion is flattened out in the vicinity
of the Γ-point. Just like in case of its fcc stacked counterpart, for hcp-Ru/Fe/Ir the RW-AFM
state at the M-point is lowest in energy. Similar to the symmetric hcp-Rh/Fe/Rh trilayer (cf.
Fig. 5.3), in hcp-Rh/Fe/Ir an uudd state along ΓM direction turns out energetically lower than
the corresponding 90◦ spin spiral and represents the magnetic ground state as well. Thus, these
two trilayers are the only ones among all studied systems that exhibit a multi-Q ground state.

The comparison of the trends of pairwise Heisenberg exchange and HOI parameters between
fcc- and hcp-4d/Fe/Ir trilayers is illustrated in Fig. 5.9. J1 exhibits the same qualitative behaviour
for both stackings sequences, namely it increases with rising occupation of the adjacent 4d shell
(see Figs. 5.9 (a) and (b)). However, only for hcp stacked systems the coupling constant changes
from AFM to FM in the middle of the series similar to the trend calculated for Fe MLs in hcp
stacking on the Ir(111) surface [49]3. Contrary to J1, both the second and third nearest neighbor
exchange constant, J2 and J3, decrease along the series for the two types of stacking ending up in
an AFM coupling of the Pd/Fe/Ir trilayer. For J2 this effect is less pronounced in hcp trilayers
with values ranging between 0.4 meV for Ru and −2.0 meV for Pd than in fcc stacked systems

3There are no data points available for the hcp-Tc/Fe/Ir trilayer since we were unable to converge the respective
DFT calculations.
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where J2 covers a larger order of magnitude of about 5.5 meV. The very reverse applies to J3;
here, the values for hcp stacking vary over a larger order of magnitude as compared to the case
of fcc-4d/Fe/Ir trilayers.
In contrast to the Heisenberg exchange, the trend of HOI parameters differs significantly between

fcc-4d hcp-4d

fcc-4d hcp-4d

Figure 5.9. Comparison of Heisenberg exchange constants and HOI parameters in fcc- and hcp-
4d/Fe/Ir trilayers and ultrathin film systems. (a,b) Trend for the Heisenberg exchange constants up
to the third nearest neighbor without modification by HOI terms. (c,d) Comparison of the trend for the
biquadratic term B1, the three-site four spin interaction strength Y1 and the four-site four spin interaction
constant K1. The values for the respective film systems are plotted as open circles. The lines connecting the
data points serve as a guide to the eye. The exact numerical values of the HOI are published in Ref. [I].
Figure reprinted with permission from Ref. [I] and extended subsequently by the data for Ru/Fe/Ir(111);
Copyright 2023 by the American Physical Society.

fcc and hcp stacked trilayers (see Figs. 5.9 (c) and (d)). In particular, the biquadratic and three-site
four spin interaction strength, B1 and Y1, show larger values in hcp stacking throughout the series
peaking in 5.6 meV and 5.3 meV, respectively, in case of hcp-Rh/Fe/Ir. With K1 representing the
smallest HOI term for this system (about 3 meV), the former two can be regarded as responsible
for the preference of an uudd-ΓM state as the magnetic ground state in the hcp-Rh/Fe/Ir trilayer
(cf. Fig. 5.8). This assumption is also confirmed by the exact energy difference between the uudd
and its corresponding 90◦ spin spiral state given by ∆E 1

2 ΓM = 4(2K1 − B1 −Y1) (cf. Eq. (4.21)-
(4.23)). It becomes clear that the multi-Q state is promoted over the 1Q state due to the positive
sign of the large biquadratic and three-site four spin interaction exceeding the contribution of the
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film system K1 B1 Y1

fcc-Ru/Fe/Ir(111) 1.74 2.58 0.60
hcp-Ru/Fe/Ir(111) 1.26 2.47 1.73
fcc-Rh/Fe/Ir(111) 2.48 3.33 −0.85
hcp-Rh/Fe/Ir(111) 1.88 4.14 3.84
fcc-Pd/Fe/Ir(111) 2.79 3.38 2.15
hcp-Pd/Fe/Ir(111) 2.41 1.57 2.15
fcc-Rh/Fe/Rh(111) 3.18 2.79 1.11
hcp-Rh/Fe/Rh(111) 2.48 5.88 5.12
fcc-Fe/Ir(111) −1.28 −0.24 0.24
hcp-Fe/Rh(111) 0.10 3.40 4.00
fcc-Rh/Co/Ir(111) −0.58 1.79 −0.96
hcp-Rh/Co/Ir(111) −1.01 0.34 −1.55
fcc-Pd/Co/Ir(111) −1.41 1.60 −1.39

Table 5.3. Higher-order exchange constants K1,
B1 and Y1 for ultrathin film systems (given in
meV/Fe atom). The values for the HOI parameters
of fcc-Fe/Ir(111) and hcp-Fe/Rh(111) are taken
from [42]. Table reprinted with permission from
Ref. [I] and extended subsequently by the data for
Ru/Fe/Ir(111); Copyright 2023 by the American
Physical Society.

weaker positive four-site term K1.

5.2.3 Comparison with film systems

In a final step the results for Fe based trilayers are compared with those obtained for ultrathin
film systems. Taking again a look at Figs. 5.9 (a) and (b), one sees that in the film systems
Ru/Fe/Ir(111), Rh/Fe/Ir(111) and Pd/Fe/Ir(111) all three Heisenberg exchange constants follow
the same trend as in the respective trilayers independent of the stacking sequence. The only
exception is fcc-Ru/Fe/Ir(111) for which J1 mediates an AFM instead of FM coupling compared
to the fcc-Ru/Fe/Ir trilayer. The conformity of the trends reveals that the magnetic exchange
interaction of the central Fe layer is governed by the hybridization at the inferface with the 4d
TM layers.

The statement on the agreement of the trends can be further extended to the HOI terms as
shown in Figs. 5.9 (c) and (d). Apart from their values being slightly different, the three film
systems clearly exhibit the same trend as their simplified versions which again justifies our
assumption that the electronic and magnetic properties of complex systems are already well
described by much simpler trilayers. This becomes mostly apparent for the HOI parameters
of hcp-Rh/Fe/Ir(111) which show a striking maximum on both the biquadratic and three-site
four spin interaction constant as mentioned before for the corresponding trilayer. Although
their values are slightly smaller in case of the film system, they still top the ones obtained for
fcc-Rh/Fe/Ir(111). Here, especially the change of sign and large increase of the three-site four
spin term Y1 for hcp-Rh is noteworthy as this difference in the HOI parameters explains the
experimentally observed transition of the magnetic ground state from a spin spiral (single-Q) for
fcc-Rh to the uudd-ΓM (2Q) state for hcp-Rh stacking according to ∆E 1

2 ΓM = 4(2K1 − B1 −Y1)

(cf. Eq. (4.21)-(4.23)) (see also Table 5.3 for exact values).
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The three-site four spin interaction has also been identified as an important driving mechanism
for the occurrence of an uudd state as the magnetic state of lowest energy in hcp-Fe/Rh(111) [42].
While K1 turns out to be vanishingly small for this system, both B1 and Y1 are of similar strength
with maximum values of 4 meV [42] (see Table 5.3). On the other hand, fcc-Fe/Ir(111) which
shows a square nanoskyrmion lattice as magnetic ground state [19] is characterized by very small
values of B1 and Y1, while K1 has been calculated as the dominant HOI term with a negative
sign according to [42]. Along with the DMI it represents the most important ingredient for the
stabilization of the non-collinear spin structure.
In both stackings of the Pd overlayer of Pd/Fe/Ir(111) a spin spiral state has been observed
experimentally at zero field [13, 122]. The application of an external magnetic field leads to
the emergence of a skyrmion lattice though and in the field-polarized state isolated magnetic
skyrmions become metastable [13,33]. As demonstrated in [37], the four-site four spin interaction
strength K1 can play a decisive role for the stability of skyrmions. In case K1 exhibits a positive
sign as for the Pd/Fe/Ir(111) film systems (see Table 5.3), the energy barriers stabilizing
individual topological spin structures are enhanced by about 40 to 60 times K1.

From Fig. 5.5 and 5.8 an AFM trend for trilayers in both fcc and hcp stacking of the 4d overlayer
becomes visible as the occupation number of the 4d shell decreases from Pd to Ru. Since the
Ru/Fe/Ir trilayer finally exhibits the RW-AFM state at the M-point as state of lowest energy
among all spin spirals and the associated ultrathin film system is additionally accessible to
experimental measurements just like Rh/Fe/Ir(111) and Pd/Fe/Ir(111) mentioned earlier, a
more detailed look at Ru/Fe/Ir(111) will be taken in the following.

Fig. 5.10 (a) shows the energy dispersion of flat cycloidal spin spirals neglecting spin-orbit
coupling effects calculated via DFT for Ru/Fe/Ir(111). The curve for an hcp stacking of the Ru
overlayer follows the same qualitative behaviour as the one obtained for the corresponding
trilayer (cf. Fig. 5.8). There are two local maxima with a height of about 20 meV/Fe atom for spin
spirals with q values belonging to a period of λ ≈ 1.1− 1.25 nm along both high symmetry
directions of the 2D BZ. The Néel state at the K-point represents a local minimum, while the
RW-AFM state at the BZ boundary is lowest in energy among all single-Q states. In contrast to
hcp-Ru, the energy dispersion for fcc-Ru/Fe/Ir(111) deviates from the one of the associated
simplified model in some aspects which becomes mostly apparent by means of the curve
progression at the K-point (cf. Fig. 5.5 and Fig. 5.10 (a)). Otherwise, the dispersion resembles the
one of hcp-Ru with two local maxima of strongly reduced height occurring along both high
symmetry directions of the BZ and being shifted closer to the Γ-point to smaller absolute values
of q. For this system, the RW-AFM state at the M-point turns out to be energetically lowest as
well which is again consistent with the result of the trilayer calculation. The observed behaviour
originates from a small antiferromagnetic NN Heisenberg exchange constant competing with
ferromagnetic interactions of second and third nearest neighbors (see Table 5.4).
As visible from Fig. 5.10 (a) as well, the energies of the three multi-Q states along ΓKM direction
differ by a sizeable amount of up to +30 meV/Fe atom from their corresponding spin spiral
states resulting in significant values for the HOI terms (cf. Table 5.3). While the biquadratic term
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Figure 5.10. Energy dispersion E(q) of flat cy-
cloidal spin spirals calculated via DFT along
the two high symmetry directions of the 2D BZ
for the ultrathin film system Ru/Fe/Ir(111). (a)
Filled circles mark scalar-relativistic total DFT en-
ergies, while solid lines show a fit to the Heisen-
berg exchange interaction beyond nearest neigh-
bors. The energies of the uudd (↑↑↓↓) states and
the 3Q state are denoted as empty diamonds
and squares at the q values of their constituting
single-Q states, respectively (blue color refers to
fcc-Ru, black color to hcp-Ru). (b) Total DMI con-
tributions for all q values of both Ru stackings.
The solid lines running through the DFT values of
the total DMI denote a fit to the Dzyaloshinskii-
Moriya interaction. EDM < 0(> 0): preference of
right-(left-)rotating spin spirals.

B1 takes the largest values of up to nearly 2.60 meV in case of fcc-Ru and both K1 as well as B1

only vary by at most 0.5 meV between the two Ru stackings, the three-site four spin interaction
strength Y1 for hcp-Ru turns out by 1.1 meV larger than for an fcc stacking of Ru.

In Fig. 5.10 (b) the total DMI contributions of all spin spiral states (EDM) with q values along
the high symmetry directions of the hexagonal BZ are plotted with respect to right-rotating
spiraling structures4. Hence, for EDM < 0 right-rotating spirals are energetically favored, while
for EDM > 0 they are energetically penalized leading to a preference of left-rotating spin
structures. The solid lines connecting the DFT data points denote a fit to the Hamiltonian of
the Dzyaloshinskii-Moriya interaction presented in Sec. 4.2.3. Apart from the path between
K and M, left-rotating spin spirals are energetically preferred in both Ru/Fe/Ir(111) systems.
While the total DMI turns out vanishingly small for fcc-Ru, the contributions for hcp-Ru are
significant showing a linear curve progression around the Γ-point and a parabolic behaviour
near the M-point. These observations agree well with the absolute values of the DM vectors Di

obtained from the fitting procedure which are listed in Table 5.4 as well. It becomes obvious that
the magnitude of D1 reaches one third of the NN Heisenberg exchange constant J1 in case of
hcp-Ru/Fe/Ir(111).

4We did not consider the DMI contributions for trilayers since in case of only one Ir layer artificial and unrealistic
large values of the DM parameters occur in most cases.
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film system J1 J2 J3 D1 D2 D3 Ku
fcc-Ru/Fe/Ir(111) −1.74 −0.30 0.68 −0.17 0.14 −0.24 1.35
hcp-Ru/Fe/Ir(111) −3.27 0.80 1.89 −1.11 −0.12 −0.35 0.84

Table 5.4. Magnetic interaction constants calculated via DFT for fcc- and hcp-Ru/Fe/Ir(111) (given in
meV/Fe atom). Heisenberg exchange constants for ith neighboring spin (Ji) as extracted from fitting the
respective spin spiral energy dispersion neglecting HOIs, Dzyaloshinskii-Moriya interaction constants (Di)
and uniaxial magnetocrystalline anisotropy energy (MAE) constant (Ku). Note that the fitting of the energy
dispersion was done by including eight neighbors for the Heisenberg exchange. J > 0 (J < 0) represents
FM (AFM) coupling, D > 0 (D < 0) the preference of right-(left-)rotating spin spirals and a positive value
of Ku denotes an in-plane easy magnetization axis. The MAE was determined self-consistently by adding
SOC to the RW-AFM state in the two-atomic unit cell using the relaxed interlayer distances and the same
computational parameters as for the spin spirals given in Sec. 5.1. The values for the HOI terms of both
stackings of the Ru overlayer are listed in Table 5.3.

In order to get a deeper insight into the differences of the DMI occurring between both systems,
the layer-resolved contributions of Ru, Fe and the first Ir layer are illustrated in Figs. 5.11 (a) and
(b). While the contributions of Ru and Fe are of similar strength for the two systems with the
former (latter) favoring a counterclockwise (clockwise) rotational sense, the contributions of
the first Ir layer of fcc-Ru are opposite (clockwise) to the ones of the Ru layer thereby nearly
cancelling each other and leading to a negligible total DMI. In hcp-Ru/Fe/Ir(111) on the other
hand, the effect of the first Ir layer remains barely noticeable allowing the Ru layer to dominate
the curve of the total DMI.
Besides the DMI, the two film systems also show remarkable differences with respect to the
magnetic moments of the Fe layer. For both fcc- and hcp-Ru/Fe/Ir(111) the moments of each
spin spiral state for Ru, Fe and the first Ir layer are depicted in Figs. 5.11 (c) and (d), respectively.
In fcc-Ru, the magnetic moments of Fe deviate from the value of the FM state mFM ≈ 2.06 µB

by at most 7% thereby being nearly independent of the q value and hence fulfilling the basic
condition of the classical Heisenberg model. For Ru a spin-polarization by the Fe layer becomes
evident as the curve for the magnetic moments follows approximately the one of Fe exhibiting a
minimum around the Γ-point. However, in hcp-Ru the magnetic Fe moments of the spin spiral
states are not only smaller than for the fcc Ru stacking, but they also differ significantly by at
most 17% from the value of the FM state mFM ≈ 1.75 µB leading to a hollow-like behaviour of the
curve around the Γ-point. At the same time the Ru and Ir contributions are of similar strength as
in the fcc system. This observation raises the question whether the classical Heisenberg model
suffices to describe the properties of hcp-Ru/Fe/Ir(111) correctly. The inclusion of the Stoner
criterion within the energy dispersion (see Fig. 5.10 (a)) as it was done for the respective trilayer
would simply result in a further stabilization of the RW-AFM state.

In summary, Ru/Fe/Ir(111) represents a strongly exchange frustrated system exhibiting the
RW-AFM state as state of lowest energy among all investigated spin structures until now. Recent
calculations of phase diagrams of a minimal Heisenberg model comprising pairwise exchange,
DMI and MAE [124] shows that the combination of the respective exchange constants found
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Figure 5.11. Dzyaloshinskii-Moriya interaction and magnetic moments calculated via DFT along the
two high symmetry directions of the 2D BZ for the ultrathin film system Ru/Fe/Ir(111). (a,b) Total DMI
for right-rotating (clockwise) spin spirals (black filled circles) and layer-resolved contributions. While the
solid lines running through the DFT values of the total DMI denote a fit to the Dzyaloshinskii-Moriya
interaction, the dashed lines connecting the contributions of the topmost three atomic layers serve as a
guide to the eye. EDM < 0 (> 0): preference of right-(left-)rotating spin spirals. (c,d) Magnetic moments of
the topmost three atomic layers. Here, the dashed lines between the DFT data points serve as a guide to
the eye as well.

for Ru/Fe/Ir(111) might allow the existence of antiferromagnetic skyrmions in the system.
However, according to the calculated phase diagrams, the existence of these topological spin
structures requires an out-of-plane anisotropy in Ru/Fe/Ir(111) for the present combination of
Ji and Di. So far, the DFT calculations performed in this work – based on a film thickness of 9
Ir layers – indicate an in-plane anisotropy (see Table 5.4). Therefore, a further step would be
to check this small quantity with a higher number of substrate layers. Furthermore, in [124]
HOI terms were not taken into account for the calculation of the phase diagrams; yet, these
parameters take significant values for both Ru stackings as well which leads to the question
whether there could exist other types of metastable spin states in this system.

5.3 Co based trilayers

The recent observation of skyrmions in zero magnetic field in atomic Rh/Co bilayers on the
Ir(111) surface [15] has triggered our investigation of fcc-4d/Co/Ir trilayers which are generated
from the Fe based systems by substituting the central magnetic layer.
We start again with the presentation of the energy dispersion of flat spin spirals computed
along both high symmetry directions of the hexagonal BZ (Fig. 5.12). Unlike the Fe based
trilayers, exchange frustration effects do not become noticeable by means of energy minima in the
dispersion (cf. Fig. 5.5 (a)) but in very flat curves around the Γ-point. Compared to the 4d/Fe/Ir
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Figure 5.12. Energy dispersion E(q) of flat
cycloidal spin spirals calculated via DFT
along the two high symmetry directions of
the 2D BZ for fcc-4d/Co/Ir trilayers. Filled
circles represent total DFT energies, while
solid lines show a fit to the Heisenberg ex-
change interaction beyond nearest neighbors.
The energies of the uudd (↑↑↓↓) states and the
3Q state are denoted as empty diamonds and
squares at the q values of their constituting
single-Q states, respectively. Figure reprinted
with permission from Ref. [I]; Copyright 2023
by the American Physical Society.
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systems, Co based trilayers are characterized by a stronger FM NN Heisenberg exchange constant
which can be inferred from the large energy difference between the FM state at the Γ-point and
the RW-AFM state at the BZ boundary amounting to 200 meV/Co atom in case of Rh/Co/Ir and
Pd/Co/Ir. These results agree well with the trend calculated for ultrathin 4d/Co/Ir(111) film
systems [41]. The Co based trilayers also show a qualitatively different behaviour concerning
the position of the multi-Q states: here, the two uudd states are energetically lower than their
constituting 90◦ spin spirals, whereas in case of trilayers with Fe as the central magnetic element
the respective energy differences are positive (cf. Fig. 5.5 (a)).

The spin-resolved local density of states for the 4d/Co/Ir trilayers in the FM state is shown
in Fig. 5.13. Similar hybridization effects associated with the changing band filling of the 4d
overlayer as for the Fe based trilayers become visible. As one moves through the series from Tc
to Pd and hence increases the occupation number, the 4d majority spin states are shifted to lower
energies. In case of the Tc and Ru overlayer, the hybridization between the 4d and 3d Co states of
the majority channel transposes the latter above the Fermi energy resulting in a strong reduction
of the band splitting and thus also the Co magnetic moment (cf. Fig. 5.14 (a)). Co sandwiched
between Tc and Ir only exhibits a small moment of 1.07 µB. Moreover, several hybrid states
between all three atom types can be recognized by means of peaks in the vicinity of the Fermi
level which emerge at the same energetic position in all three trilayers. As seen in Fig. 5.12, the
energy dispersion for Tc/Co/Ir and Ru/Co/Ir differs significantly from the one calculated for
Rh and Pd overlayers; the origin of this deviation can be found in the strong hybridization as
described above.
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In agreement with the large energy difference between the FM and RW-AFM state observed
in Fig. 5.12, both Rh/Co/Ir and Pd/Co/Ir as well as the corresponding film systems exhibit
huge values of up to 26.4 meV for the NN Heisenberg exchange constant J1 (see Fig. 5.14 (a)).
Consistent with the energy dispersion and based on strong hybridization, J1 is considerably
reduced to 6.8 meV for the Tc/Co/Ir trilayer. Nonetheless, overall the FM exchange coupling
between nearest neighbors is clearly stronger than for the respective trilayers with Fe as the
central magnetic element.
Contrary to the dominant FM NN exchange constant J1, both the next- and third nearest neighbor
Heisenberg parameter, J2 and J3, not only mediate an AFM coupling in most cases but also show
considerably smaller values. J2 barely protrudes the zero line for the ultrathin film systems,

Figure 5.13. Local density of states (LDOS) of the fcc-4d/Co/Ir trilayers in the FM state. The upper
panels depict the LDOS of the 4d overlayer, the middle panels the LDOS of the Co layer and the lower
panels that of the Ir layer. Majority and minority spin channels are represented in green and red color,
respectively. Figure reprinted with permission from Ref. [I]; Copyright 2023 by the American Physical
Society.

while its maximum value amounts to −1.5 meV for the Rh/Co/Ir trilayer. In case of J3, the
maximum value of −4.6 meV is also found for Rh/Co/Ir. In exactly the same way as for the Fe
based systems, Fig. 5.14 (a) clearly reveals the trend of the Heisenberg exchange constants to be
identical in trilayer and ultrathin film systems after replacing the magnetic element with Co.
Fig. 5.14 (a) also depicts the magnetic Co moment for each trilayer. In accordance with Hund’s
rule they turn out to be smaller than the ones of the corresponding Fe based trilayers. As already
mentioned before, the increased 3d− 4d hybridization at the beginning of the series leads to a
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significant reduction of the Co moment up to nearly 1 µB in case of the Tc overlayer.

Taking a closer look at the HOI terms of Co based trilayers and film systems in Fig. 5.14 (b)
and Table 5.3, one realizes that the trend of Y1, K1 and B1 is similar up to Rh/Co/Ir. The three
parameters nearly remain constant with B1 exhibiting the largest values of about 1.5 meV, while
both K1 and Y1 almost vanish in the case of a Tc and Ru overlayer. Only at the end of the series,
for Pd/Co/Ir, significant values of up to −1.6 meV arise for K1.
The trend of the two film systems Rh/Co/Ir(111) and Pd/Co/Ir(111) is found to be similar to

fcc-4d fcc-4d

Figure 5.14. Trends for Heisenberg exchange constants and HOI parameters in both 4d/Co/Ir trilayers
and corresponding film systems. (a) Trend for the Heisenberg exchange constants up to the third nearest
neighbor without modification by HOI terms. The magnetic moment of the central Co atom is also
denoted for each trilayer. (b) Comparison of the trend for the biquadratic term B1, the three-site four
spin interaction strength Y1 and the four-site four spin interaction constant K1. Values for trilayers (film
systems) are denoted by filled (open) circles. The lines connecting the data points serve as a guide to the
eye. The exact numerical values of the HOI are published in Ref. [I]. Figure reprinted with permission
from Ref. [I]; Copyright 2023 by the American Physical Society.

the one of the respective trilayers with K1 (B1) showing negative (positive) values. A comparison
of the HOI terms for two different stackings of the upper Rh layer in Rh/Co/Ir(111) reveals a
negative value for the four-site four spin interaction strength which is nearly twice as large for
hcp-Rh as compared to fcc-Rh (see Table 5.3). On the other hand, the biquadratic term B1 turns
out five times larger in fcc-Rh. According to theoretical investigations, the negative value of K1

lowers the stability of skyrmions [37] which is consistent with experimental observations of them
being metastable in the system at zero magnetic field [15, 125].

5.4 Conclusion

In this chapter, we have systematically studied higher-order exchange interactions beyond the
pairwise Heisenberg exchange in TM trilayers with a central Fe or Co element based on density
functional theory calculations. For the purposes of our investigation we have analyzed the
dependence of the biquadratic, the three-site and four-site four spin interaction not only on the
band filling of the 4d and 5d atomic overlayers but also on their stacking order.
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While for Fe based trilayers the HOI terms can take values on the same order of magnitude as
the pairwise Heisenberg exchange, our calculations indicate relatively small HOI for Co based
trilayers.
The trends obtained for freestanding trilayers provide a basis for understanding HOI in ultrathin
film systems on surfaces which are amenable to experimental research. Consistent with the
results for the hcp-Rh/Fe/Ir and the hcp-Rh/Fe/Rh trilayer, the corresponding film systems
show the largest values for the biquadratic and the three-site four spin interaction strength
throughout our study. We identified the latter to be responsible for the experimentally observed
transition of the magnetic ground of Rh/Fe/Ir(111) from a spin spiral for fcc-Rh to an uudd state
for hcp-Rh. A similar stacking dependent change of the magnetic ground state is predicted for
Rh/Fe/Rh(111) from our calculations.
Both for Pd/Fe/Ir trilayers and the respective film system Pd/Fe/Ir(111) we discovered large
positive values for the four-site four spin interaction resulting in an enhanced stability of
magnetic skyrmions. On the other hand, for Rh/Co/Ir(111) the sign of K1 turns out negative
which leads to a reduced stability of topological spin structures being metastable in this film at
zero magnetic field.
Finally, we suggest Ru/Fe/Ir(111) as a further interesting candidate for experimental research.
Our DFT calculations reveal this system to be not only strongly exchange frustrated with a RW-
AFM ground state but to also exhibit significant values for the HOI terms which could potentially
contribute to the stabilization of other metastable spin structures such as antiferromagnetic
skyrmions.
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5.5 Test calculations

The description of the computational methods in Sec. 5.1 might have raised the question how
reliable a combined approach of two different DFT codes turns out for calculating the HOI terms
of trilayers and film systems. Here, we present the range of validity for using a mixture of the
all-electron FLAPW method as implemented in FLEUR and the PAW method incorporated in
VASP which relies on pseudopotentials to compute the trends of HOI constants. To this, we have
chosen two systems from the Fe and Co based series in each case which have already been
investigated by means of experiments [13, 15, 43, 121–123].

System Kmix
1 KFLEUR

1 Bmix
1 BFLEUR

1 Y1
Rh/Fe/Ir 3.33 3.71 2.59 3.35 0.84
Pd/Fe/Ir 3.87 4.30 2.62 3.49 1.29
fcc-Rh/Fe/Ir(111) 2.12 2.48 2.60 3.33 −0.85
hcp-Rh/Fe/Ir(111) 1.94 1.88 4.27 4.14 3.84
Rh/Co/Ir −1.15 −0.88 0.98 1.54 0.12
Pd/Co/Ir −1.75 −1.61 0.15 0.43 −0.73
fcc-Rh/Co/Ir(111) −0.79 −0.58 1.38 1.79 −0.96
fcc-Pd/Co/Ir(111) −1.53 −1.41 1.36 1.60 −1.39

Table 5.5. HOI terms for selected trilayer and film systems calculated using different DFT codes
(given in meV/Fe atom). Comparison of the HOI constants K1 and B1 for a selection of fcc stacked
trilayer and film systems obtained from a a mixture of FLEUR (uudd states, single-Q states) and VASP (3Q
states) denoted by the superscript ’mix’ and FLEUR only. For Y1 only one value is given in each case as this
parameter is evaluated from the energy difference between the two uudd and their respective spin spiral
states which have only been calculated via FLEUR. Table reprinted with permission from Ref.[I]; Copyright
2023 by the American Physical Society.

Referring to Eq. (4.21)-(4.23), we have calculated the energy differences between the two uudd and
their associated 90◦ spin spiral states, ∆E 1

2 ΓM and ∆E 3
4 ΓK, via FLEUR in all cases. However, for the

energy difference between the 3Q and the RW-AFM state, ∆EM, which requires a non-collinear
calculation there was the option to choose either FLEUR or the computationally less demanding
VASP code. Consequently, according to Eq. (5.1)-(5.3) we obtained two sets of HOI parameters for
each trilayer and film system: one set was computed using only the energy differences from
FLEUR (the corresponding values are denoted by the superscript FLEUR in Table 5.5), the second
one contains ∆E 1

2 ΓM and ∆E 3
4 ΓK from FLEUR and ∆EM from VASP (indicated by the superscript

’mix’ in Table 5.5). The values for the three-site four spin interaction strength Y1 are identical for
both parameter sets due to the fact that they are evaluated from the energy differences between
the two uudd and their respective spin spiral states.

As visible from Table 5.5, the values for the biquadratic and the four-site four spin term change
depending on the chosen approach. In the case of Fe based trilayers, K1 turns out by about
10% larger for the FLAPW method (KFLEUR

1 ) than for the mixed procedure (Kmix
1 ) with its sign

remaining the same in both sets. The same applies to the biquadratic term B1 although the FLEUR



5.5 Test calculations 83

values exceed the ones for the mixed method by about 20% in this case. A similar behaviour is
observed for the parameter set belonging to the film system Rh/Fe/Ir(111). Despite these small
deviations, we consider the mixed approach as a reliable way of calculating the HOI parameters
for Fe based systems especially because there is a clear trend visible with regard to the order of
magnitude for the variation from Table 5.5. Hence, we used this approach for the other Fe based
trilayers as well.

For the two trilayers with Co as the central magnetic element the situation is a bit more involved.
Though the sign of K1 and B1 matches in both approaches, the relative differences are larger
and no clear trend can be deduced. For example, in Rh/Co/Ir the divergence of B1 amounts
to 36% between the two methods, in Pd/Co/Ir even to 65% with the values calculated from
FLEUR turning out larger compared to the mixed approach (see Table 5.5). Interestingly, for Co
based film systems the differences are smaller. In case of fcc-Rh/Co/Ir(111), K1 (B1) varies by
36% (23%) between the two approaches, whereas the respective deviations amount to only 9%
and 15% for fcc-Pd/Co/Ir(111). Therefore, we conclude that in principle the combined method
of FLEUR and VASP represents an acceptable and computationally less time-consuming way of
calculating trends of HOI parameters in Co based film systems. However, as the deviations
for the corresponding trilayers are too large and the results are desired to be consistent from
a computational point of view, we employed the FLEUR code to compute all required energy
differences.
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6 Nanoscale collinear multi-Q states
driven by higher-order interactions

As seen in the previous chapter, spin spiral ground states can arise in simple model systems due
to a competition of magnetic interactions. While for the trilayers we only considered frustrated
pairwise Heisenberg exchange, in ultrathin film systems on heavy metal substrates usually also
contributions from the DMI play a role for the emergence of these one-dimensionally modulated
magnetic states. We also noticed that in some cases higher-order terms can favor superposition
states – so-called multi-Q states – over their respective building blocks, the single-Q spin spiral
states.

Apart from the already introduced collinear uudd states and the non-collinear triple-Q state,
the expression ’multi-Q’ state refers in a more general way to complex, often two-dimensional
periodic magnetic structures that are typically non-collinear and non-coplanar [126]. Currently,
they are not only in the focus of interest with respect to skyrmion lattices [16, 17, 19] and systems
exhibiting a high degree of exchange frustration [126–130], but they can also show extraordinary
transport properties like a large anomalous or topological Hall effect [16, 130, 131]. While the
triple-Q state is one of the few exact multi-Q states being energetically degenerate with its
constituting spin spiral states upon neglecting HOI and having the same magnetic moment
at every lattice site, this does not represent an intrinsic property of a multi-Q state in general.
Instead, the majority of such superposition states does not possess a constant magnetic moment
for every atom within the unit cell which consequently requires the inclusion of additional
Q-vectors, so-called higher harmonics, for their construction.
Aside from higher-order interactions, multi-Q states can also be induced by applied magnetic
fields [126–130]. One example is the hexagonal skyrmion lattice [13, 17, 18] formed by three
symmetry-equivalent spin spirals with unique rotational sense and type depending on the
system-specific DMI. On the other hand, the skyrmion lattice observed experimentally in an Fe
ML on Ir(111) is stabilized at zero external field by HOI and the DMI [19]. Recently there has
been a report on a combination of HOI and magnetic field being the origin for a square skyrmion
lattice state in a centrosymmetric tetragonal magnet with vanishing DMI [132–134]. Despite
this existing plethora of multi-Q states and skyrmion lattices, a deeper understanding which
types are possible due to the interplay of frustrated Heisenberg exchange, HOI terms and DMI is

85
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still lacking. In order to answer this scientific question, combined experimental and theoretical
research on specific material systems represents an ideal approach.

In this chapter, we explore Fe/Rh atomic bilayers grown pseudomorphically on the Ir(111)
surface. Our findings were published in Ref. [II]. Spin-polarized scanning tunneling microscopy
(SP-STM) experiments performed by our experimental colleagues at the University of Hamburg
reveal a variety of competing magnetic phases in these systems. Depending on the Fe stacking
and the number of Rh layers both uniaxial and hexagonal nanoscale magnetic spin textures are
observed in zero magnetic field. First-principles calculations combined with an atomistic spin
model elucidate a competition of frustrated Heisenberg exchange and higher-order interactions
as the driving mechanism for the formation of different magnetic ground states. In particular, the
three-site four spin interaction [50] is found to not only stabilize uniaxial magnetic states such
as the uudd state but also spontaneous atomic-scale hexagonal spin textures. Unexpectedly, in
these systems which are characterized by a weak DMI the hexagonal states do not appear as
non-collinear skyrmion lattices, but can be specified as two-dimensionally modulated collinear
multi-Q states, a new class of magnetic order.

6.1 Experimental observations

The experiments on Fe/Rh bilayers on Ir(111) were performed by André Kubetzka and Kirsten
von Bergmann in the group of Prof. Roland Wiesendanger at the University of Hamburg1. In the
following, a summary about the results of their SP-STM measurements will be given. For more
information on the sample preparation and assignment of the layers see Ref. [II].

In Fig. 6.1 (a) an overview SP-STM image with the two different Fe stackings on single fcc-stacked
Rh layers (named Rh1) on the Ir(111) surface is presented. Independent of the stacking, the Fe
ML areas on Rh exhibit nanoscale superstructures arising from the magnetic texture. Fig. 6.1 (b)
shows constant-current data for the areas of fcc-Fe/Rh1 which are marked by red filled circles in
Fig. 6.1 (a). One can observe uniaxial magnetic superstructures consisting of stripes running
perpendicular to the close-packed atomic rows. They exist in all three rotational domains of the
hexagonal lattice and the stripe width corresponds to roughly five atomic rows, i.e. the structures
are not strictly commensurate with the atomic lattice. In addition, a slight substructure on the
stripes can be seen. Applying an external magnetic field of B = 5 T has no influence on the
magnetic texture. Since the three rotational domains further display similar magnetic corrugation
amplitudes, the origin of the magnetic contrast can be mainly attributed to out-of-plane sample
magnetization components.
For the two hcp-Fe/Rh1 islands marked by purple filled circles in Fig. 6.1 (a) and shown in
greater detail in Fig. 6.1 (c) a different situation emerges. In this case, a hexagonal magnetic
superstructure for which two inversional domains are possible can be identified. An external
magnetic field of 5 T leads to a switching of one domain leaving only areas with bright dots

1Institute for Nanostructure and Solid State Physics, University of Hamburg, Jungiusstraße 11a, 20355 Hamburg,
Germany
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Figure 6.1. Spin-polarized scanning tun-
neling microscopy measurements on
Fe/Rh1/Ir(111). a Overview SP-STM im-
age of several sample areas for fcc- and
hcp-Fe stacking on single fcc-stacked Rh
layers (partially differentiated constant-current
data).b,c Constant-current images without and
with external applied magnetic field of B = 5 T
for both fcc- and hcp-Fe/Rh1 island as indicated
in the overview image. d Constant-current
images of an hcp-Fe/Rh1 sample area without
and with atomic resolution. The measurements
parameters are as follows: a,b,c, U = +50 mV,
I = 1 nA; d, U = +34 mV, I = 5.3 nA, B = −4 T;
all: T = 4.2 K and Cr-bulk tip sensitive to the
out-of-plane sample magnetization components;
the height range of the images is given in pm.
The figure has been adapted from Ref. [II].

visible (right image). Fig. 6.1 (d) illustrates again an hcp-Fe/Rh1 sample area imaged without
and with atomic resolution during the application of the magnetic field. The constant-current
image with atomic resolution reveals the hexagonal magnetic state to be incommensurate with
the underlying lattice, but well representable by a magnetic unit cell containing 27 atoms.

Next an overview SP-STM image for Fe MLs on double fcc-stacked Rh layers (named Rh2) on
Ir(111) is presented in Fig. 6.2 (a). Again an uniaxial and a hexagonal magnetic state can be
observed for the two different Fe stackings. In contrast to the previously presented Fe/Rh1, the
stacking sequence of Fe cannot be determined very accurately from the experiment in this case.
Hence, for the time being they are referred to as a-Fe/Rh2 and b-Fe/Rh2, respectively, and an
exact assignment is carried out later based on the results of the corresponding DFT calculations.
Similar to fcc-Fe/Rh1, the uniaxial state of a-Fe/Rh2 exists in its three possible rotational
domains (see Fig. 6.2 (b)) with sharp transitions between them. Again all of them display
the same magnetic contrast leading to the conclusion that mainly out-of-plane magnetization
components contribute to the pattern of the constant-current image. As inferred from atomic
resolution data, the magnetic state is strictly commensurate with a periodicity of four atomic
rows corresponding to a distance of 0.94 nm. This value matches the period of a 90◦ spin spiral
or an uudd state. In order to rule one of the two possibilities out, our experimental colleagues
performed another measurement on the respective sample area for a bias voltage of only a few
mV above the Fermi energy (see right image of Fig. 6.2 (b)). The closer view reveals the observed
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Figure 6.2. Spin-polarized scanning tunneling
microscopy measurements on Fe/Rh2/Ir(111). a
Overview SP-STM image of both Fe stackings on
double fcc-stacked Rh layers on Ir(111) (partially
differentiated constant-current data). b, Constant-
current images of the a-Fe/Rh2 island indicated
in the overview image; the two insets show calcu-
lated SP-STM images based on the local vacuum
density of states of the uudd state with different
spin-polarization of the tip, see Sec. 6.3.2 for de-
tails. c, Constant-current images of a b-Fe/Rh2
island before and after moving the central ad-
sorbed cluster; the island in the bottom right
of the overview image is presented, it is rotated
with respect to the overview image. The measure-
ments parameters are as follows: a, U = +15 mV,
I = 3.3 nA; b, left U = +41 mV, I = 2.8 nA, right
U = +4 mV, I = 5.1 nA; c, left U = +10 mV,
I = 3.3 nA, right U = +11 mV, I = 2.0 nA, inset
U = +34 mV, I = 5.3 nA; all: B = −4 T, T = 4.2 K
and Cr-bulk tip sensitive to the out-of-plane sam-
ple magnetization components; the height range
of the images is given in pm. The figure has been
adapted from Ref. [II].

stripes to have only a distance of two atomic rows. Spin-resolved vacuum density of states
calculations for this system depicted as insets in Fig. 6.2 (b) (see Sec. 6.3.2 for further information)
demonstrate that these varying appearances of a magnetic state in SP-STM measurements are
characteristic for an uudd state.
Lastly, Fig. 6.2 (c) shows two constant-current images of a b-Fe/Rh2 island with a hexagonal
magnetic superstructure; the difference between the two is the adsorbed cluster near the center
of the island which gets moved with the tip and hence changes the details of the magnetic
texture. The white lines and diamonds in the right image indicate two different rotations of
the hexagonal superstructure and the atomic resolution data of the inset reveals 19 atoms per
surface unit cell. It is rotated by an angle of ±36.65◦ with respect to the atomic lattice and the
length of its lattice vectors amounts to 1.18 nm. For experimental measurements on magnetic
superstructures of Fe MLs on hcp-Rh monolayers, on different Rh double layers (DLs) and on a
Rh triple layer see Ref. [II].

In conclusion, from the experiments one can very accurately determine the size and the symmetry
of the different magnetic states down to the atomic scale, but not the details of the exact spin
arrangement within the respective unit cell, e.g. the angles between nearest neighbor moment
pairs, due to many additional factors contributing to the tunnel current besides the tunnel
magnetoresistance effect being the basis for SP-STM. However, as shown in Fig. A.7 of Appendix
A, from measurements with Fe coated W tips typically sensitive to the in-plane magnetization of
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System dFeRh dRhIr dIrIr

fcc-Fe/Rh/Ir(111) 2.087 2.276 2.252
hcp-Fe/Rh/Ir(111) 2.079 2.258 2.258
System dFeRh dRhRh dRhIr

fcc-Fe/Rh/Rh/Ir(111) 2.076 2.272 2.224
hcp-Fe/Rh/Rh/Ir(111) 2.046 2.230 2.220

Table 6.1. Relaxed interlayer distances for
Fe/n-Rh/Ir(111) systems (given in Å). Relaxed
structural parameters for Fe/Rh/Ir(111) and
Fe/Rh/Rh/Ir(111) in the FM state and for both
stackings of the Fe ML. Structural optimizations
have been carried out with the FLEUR code by
means of a symmetric slab with 9 Ir substrate
layers and one Fe/Rh bilayer (Fe/Rh/Rh trilayer)
on each side of the film. Table published in the
supplemental material of Ref. [II].

the sample without external field one can deduce that the observed spin structures in Fe MLs on
Rh1 and Rh2 on Ir(111) are dominantly out-of-plane.

6.2 Computational details

For this study we used a combination of the full-potential linearized augmented planewave
(FLAPW) method as implemented in the FLEUR code [54] and the projected augmented wave
(PAW) method as incorporated in the VASP code [55] to compute the total energies of the magnetic
states of interest. All calculations are based on the theoretical LDA in-plane lattice constant of Ir
which amounts to aIr=2.70 Å [33]. Exchange correlation effects are included by using the local
density approximation with the interpolation proposed by Vosko, Wilk and Nusair (VWN) [72].

Structural optimization The structural relaxations for the four systems were performed in the
FM state using a symmetric film with nine layers of Ir(111) and a Fe/Rh bilayer (Fe/Rh/Rh
trilayer) on both sides of the film2. The initial interlayer distances were set to the equilibrium
lattice parameter of the Ir bulk which takes a value of dIr-bulk=2.20 Å. In these FLEUR calculations
the cutoff for the basis functions was chosen as kmax=4.1 a.u.−1, 90 k-points in the irreducible
wedge of the hexagonal 2D Brillouin zone (BZ) were used and a mixed LDA-GGA exchange
correlation potential as described in [135] was applied. The muffin tin radii were set to 2.31 a.u.
for Rh and Ir, whereas a slightly smaller value of 2.23 a.u. was adjusted for the Fe atom. Only the
z coordinates of the Fe layer, both Rh layers and the first Ir layer were allowed to relax, while the
Ir layers in the middle of the film were kept fixed to the Ir bulk value. The resulting interlayer
distances are presented in Table 6.1.

Spin spiral calculations Using the interlayer distances of the structural optimization, we self-
consistently performed spin spiral calculations without SOC in the chemical unit cell by exploiting
the generalized Bloch Theorem [77] implemented in the FLEUR code. Keeping in mind that for
this study also the total energies of multi-Q states, i.e. the already known two uudd states and
the 3Q state, and of non-collinear spin structures in large supercells are needed, one has to
choose the film thickness accordingly beforehand so the calculations remain computationally

2Note that in the following the film system with the Fe/Rh bilayer (Fe/Rh/Rh trilayer) on Ir(111) is either referred
to as Fe/Rh1/Ir(111) (Fe/Rh2/Ir(111)) in accordance with the experimental nomenclature or explicitly written as
Fe/Rh/Ir(111) (Fe/Rh/Rh/Ir(111)).
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feasible. Hence, we have used asymmetric films with four (five) Ir layers for Fe/Rh/Rh/Ir(111)
(Fe/Rh/Ir(111)) for all calculations in this chapter. For the spin spirals the number of k-points
amounts to 1936 in the full 2D BZ and a large cutoff kmax=4.1 a.u.−1 for the basis functions is
taken in order to guarantee convergence. The muffin tin radii are set to the same values as in the
structural relaxation. The energy contribution due to SOC is calculated in first-order pertubation
theory for every previously self-consistently computed spin spiral state associated with a certain
q value [94].
The MAE was obtained by including SOC on the FM state [98] using the force theorem for
asymmetric Fe/Rh/Ir(111) films containing 15 Ir substrate layers and performing self-consistent
calculations for asymmetric Fe/Rh/Rh/Ir(111) films with nine Ir substrate layers. In both
proceedings the cutoff parameter kmax was increased to 4.3 a.u.−1 in order to get accurate results
for this typically very small quantity. The number of k-points was chosen equal to the one of
the spin spiral calculations described above. In all cases the spin quantization axis with SOC
was applied perpendicular (E⊥) and parallel (E‖) to the film plane and the uniaxial anisotropy
constant was determined as Ku = E⊥ − E‖.

HOI parameters In order to obtain the higher-order exchange constants within the nearest-
neighbor (NN) approximation for the four film systems, we resorted again to the following set
of coupled equations [50] which was already used for the trilayer calculations in the previous
chapter:

∆EM = E3Q − EM,1Q =
16
3
(2K1 + B1 −Y1) (6.1)

∆E 1
2 ΓM = Euudd, M

2
− E M

2 ,1Q = 4(2K1 − B1 −Y1) (6.2)

∆E 3
4 ΓK = Euudd, 3K

4
− E 3K

4 ,1Q = 4(2K1 − B1 + Y1) (6.3)

Just like the energies of the spin spiral states, EM,1Q, E M
2 ,1Q and E 3K

4 ,1Q, the energies of the two
collinear uudd states, Euudd, M

2
and Euudd, 3K

4
, as well as for the non-collinear non-coplanar 3Q

state, E3Q, were calculated via FLEUR. For the first two, the FM state was chosen as reference,
whereas the RW-AFM state was picked for the triple-Q state. At this point it is crucial to use the
same number of substrate layers for both single- and multi-Q states as the energies of the latter
are shifted simultaneously with the ones of the spin spirals upon varying the film thickness. Both
the cutoff for the basis functions kmax as well as the muffin tin radii for the atoms were chosen
consistently with those of the spin spiral calculations. Due to the four-atomic unit cells per layer
of the three prototypical multi-Q states only the number of k-points changes; for the uudd state
along ΓM direction we applied 168 k-points in the irreducible part of the BZ, 336 for the uudd
state along ΓK direction and 242 for the triple-Q state.

Skyrmion lattices and mosaic states In order to investigate the experimentally observed
hexagonal magnetic structures containing up to 27 atoms per surface unit cell and hence 189
atoms in total from theory side, we resorted to the VASP code applying the same structural
parameters as in the FLEUR calculations and the local density approximation for the exchange
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and correlation part of the potential. The energy cutoff was set to 300 eV in all calculations.
Due to the different number of atoms and sizes of the unit cells only the k-meshes used for the
computation of the total energies of the magnetic states differ. At this point only the names of
the respective structures as well as the number of k-points are mentioned, while more detailed
information on the construction and the nomenclature will be given in Sec. 6.3.2.
The total energy of the collinear 4.67-atom state along ΓM direction was calculated within
its 14-atomic commensurate magnetic unit cell on a 7×22×1 Monkhorst-Pack (MP) k-point
mesh. The 2D BZ of the hexagonal 12:15-mosaic (MS) state and of the corresponding 27-atomic
hexagonal skyrmion lattice (SkX) was sampled by 5×15×1 k-points. The same k-mesh was
applied to calculate the energies of spin states for the continuous transformation of the 12:15-MS
into the 27-SkX state. For the hexagonal 7:12-MS state as well as the corresponding 19-atomic
hexagonal SkX we used 11×11×1 k-points. The density of the k-meshes for these states was
chosen in such a way that it corresponds to roughly 1/14, 1/27 and 1/19 of the spin spiral
calculations in accordance with the number of Fe atoms within the surface unit cell. The total
energy of the 15-atomic square SkX and the corresponding 7:8-MS state was calculated on a
Γ-centered mesh of 10×20×1 k-points. The total energies for spin states along the transformation
path of the collinear uudd state into the 90◦ spin spiral were calculated on a 14×44×1 MP k-point
mesh within the 4-atomic unit cell per layer of the uudd state. For the 4u4d state along ΓM (ΓK)
direction we used a 11×33×1 (17×21×1) MP k-point mesh.
The total energies of the skyrmion lattices as well as the energies of the magnetic states along the
geodesic path from the collinear 12:15-MS into the corresponding 27-SkX (from the collinear
uudd state into the 90◦ spin spiral) were computed self-consistently using the constrained local
moment approach with fixed direction of every magnetic moment in the unit cell and only
allowing their magnitudes to relax. Based on these results, spin-orbit coupling effects were added
within a subsequent non-self-consistent calculation in which the converged charge density was
kept constant.

6.3 First-principles calculations

In order to understand the experimentally observed magnetic ground states and to shed light on
the responsible magnetic interactions, we present the results of our first-principles electronic
structure theory calculations in the following subsections.

6.3.1 Energy dispersion of spin spirals

We start by discussing the energy dispersion E(q) of flat spin spirals for all four experimentally
studied systems, i.e. the fcc- and hcp-stacked Fe MLs on Rh mono- and double layers in fcc
stacking on Ir(111) (see Fig. 6.3). As spin spirals characterized by a q vector of the 2D hexagonal
BZ represent the general solution of the classical Heisenberg model on a periodic lattice, they
allow to scan a large part of the magnetic phase space and to obtain relevant exchange interaction
parameters. The energy dispersions of the four systems resemble each other in appearance.
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Figure 6.3. DFT total energies for various spin structures in Fe/n-Rh/Ir(111) systems. Energy dispersion
E(q) of flat cycloidal spin spirals calculated via DFT along the two high symmetry directions of the
two-dimensional Brillouin zone for a fcc-Fe/Rh/Ir(111), b hcp-Fe/Rh/Ir(111), c fcc-Fe/Rh/Rh/Ir(111)
and d hcp-Fe/Rh/Rh/Ir(111). Black circles represent total DFT energies including spin-orbit coupling
(SOC) effects, i.e. the DMI and MAE, while black lines show a fit to the Heisenberg model including the
contributions of the DMI and MAE. The DFT total energies of a variety of spin structures discussed in the
main text and shown in f-o are denoted at the q values of the respective 1Q states. f-o Sketches of the
considered spin structures with their magnetic unit cells being indicated by dashed lines. The figure has
been adapted from Ref. [II].
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The FM state at the Γ-point represents a local energy maximum in all cases and spin spiral
minima occur along both high symmetry directions of the 2D BZ. For the two systems with
only one Rh spacer layer (see Figs. 6.3 (a) and (b)) their periods amount to λ = 1.9− 1.1 nm
(q = |q| ≈ 0.14− 0.25× 2π/a). In fcc-Fe/Rh/Ir(111) these energy minima are considerably
deeper compared to the hcp-Fe/Rh bilayer on Ir(111). Both the RW-AFM state at the M-point
as well as the Néel state at the K-point are energetically unfavourable by 35 to 42 meV/Fe
atom with respect to the FM state. This behaviour originates from a small FM nearest-neighbor
Heisenberg exchange constant with maximum values of about 6 meV competing with AFM
interactions of second and third nearest neighbors (see Table 6.2). A fit to the contributions of the
DMI for all spin spiral states (shown in Fig. 6.14 in Sec. 6.8) reveals a minor influence of this SOC
effect on the two systems with the DM parameter D1 between nearest neighbors representing the
dominant part and favoring a clockwise rotation of spin structures. As also shown in Table 6.2,
the frustration of the DMI remains small in contrast to the large degree of frustration found for
the pairwise Heisenberg exchange.

Table 6.2. Magnetic interaction constants calculated via DFT for fcc- and hcp-stacked Fe MLs on Rh
mono- and double layers (Rh1 and Rh2) on Ir(111). Heisenberg exchange constants Ji as extracted
from fitting the respective spin spiral energy dispersion E(q), i.e. without modification by HOI terms,
Dzyaloshinskii-Moriya interaction (DMI) constants Di and uniaxial magnetocrystalline anisotropy
energy constant Ku for Fe/Rh1/Ir(111) and Fe/Rh2/Ir(111). J > 0 (J < 0) represents ferromagnetic
(antiferromagnetic) order, D > 0 (D < 0) clockwise (counterclockwise) rotation and a negative value of
Ku denotes an out-of-plane easy magnetization axis. All values are given in meV.

Parameter fcc-Fe/Rh1 hcp-Fe/Rh1 fcc-Fe/Rh2 hcp-Fe/Rh2
J1 +6.37 +5.14 +4.87 +3.06
J2 −1.50 −0.78 −1.65 −0.93
J3 −1.81 −1.84 −2.20 −2.04
J4 +0.17 +0.39 +0.03 +0.19
J5 −0.02 +0.00 −0.02 −0.03
J6 +0.11 −0.05 +0.07 −0.02
J7 −0.30 −0.17 −0.26 −0.16
J8 +0.20 −0.03 +0.09 −0.05
J9 +0.09 +0.16 +0.00 +0.09
J10 −0.28 −0.06 −0.22 −0.05
J11 +0.03 +0.03 −0.01 +0.01
D1 +0.42 +0.71 +0.58 +0.57
D2 −0.04 +0.01 −0.15 −0.10
D3 +0.21 +0.03 −0.01 −0.06
D4 −0.03 +0.04 −0.04 +0.00
D5 +0.09 +0.04 −0.01 +0.00
Ku −0.49 −0.18 −0.98 −0.87

Turning our focus to the Fe/Rh2 systems, we see that the exchange frustration even turns out
stronger compared to Fe/Rh1 which becomes apparent in deeper spin spiral energy minima being
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shifted to larger values of q and a reduced energy difference between the RW-AFM state at the BZ
boundary and the FM state at the Γ-point (see Figs. 6.3 (c) and (d)). This observation is confirmed
by the values for the Heisenberg exchange constants extracted from fitting the respective energy
dispersions and listed in the last two columns of Table 6.2. Especially for hcp-Fe/Rh2 the
exchange frustation becomes manifest in the nearest and third nearest neighbor constant, J1

and J3, with about +3 and −2 meV being on the same order of magnitude, respectively, but
exhibiting opposite sign. However, the strength and sign of the first DM parameter D1 is similar
to the one calculated for the systems with only one Rh spacer layer.

6.3.2 Multi-Q states

The experimental observation of an uudd state as well as two-dimensionally modulated states
indicates that one has to go beyond the spin spiral energy dispersion to look for the states of
lowest energy and that higher-order interactions might play a role for the ground state formation
in these systems. To obtain the values for the HOI within the NN approximation we calculate the
energies of the three prototypical multi-Q states which are energetically degenerate with their
constituting single-Q states if only Heisenberg exchange is taken into account. These are the
two collinear uudd states and the non-collinear 3Q state (see Figs. 6.3 (f)-(h)). Taking again a
look at the energy dispersions of the four film systems, one notices that the uudd state along
ΓM direction is much lower in energy than its associated 90◦ spin spiral in all cases, while the
opposite applies to the uudd state along ΓK direction. For the two systems with the fcc-stacked
Fe ML, the 3Q state turns out to be energetically unfavourable with respect to the RW-AFM
state at the M-point, whereas for hcp-Fe on a Rh mono- and double layer it is well below the
respective 1Q state (see Figs. 6.3 (a)-(d)).

System B1 Y1 K1 ∆Euudd
M/2

∆Euudd
3K/4

∆E3Q
M

fcc-Fe/Rh1/Ir(111) 2.86 4.31 1.30 −18.28 16.20 6.16
hcp-Fe/Rh1/Ir(111) 2.26 4.65 0.85 −20.78 16.35 −3.64
fcc-Fe/Rh2/Ir(111) 2.84 4.45 1.07 −20.54 15.02 2.87
hcp-Fe/Rh2/Ir(111) 2.53 4.74 0.56 −24.57 13.34 −5.81

Table 6.3. Higher-order exchange constants for Fe/n-Rh/Ir(111) systems. Four-site four spin (K1), bi-
quadratic (B1) and three-site four spin interaction (Y1) constants for Fe MLs on Rh mono- and double layers
in fcc stacking on Ir(111) calculated according to Eq. (6.1)-(6.3). ∆E denotes the energy difference between
the multi-Q and the corresponding single-Q spin spiral state, respectively i.e., ∆Euudd

M/2
= Euudd

M/2
− E1Q

M/2
,

∆Euudd
3K/4

= Euudd
3K/4
− E1Q

3K/4
and ∆E3Q

M
= E3Q

M
− E1Q

M
. All values are given in meV. Table adapted from the

supplemental material of Ref. [II].

Plugging the exact numerical values for the large energy differences into the set of coupled
equations (Eq. (6.1)-(6.3)) yields the values for the three HOI terms which are listed in Table 6.3
for all four systems. While the four-site four spin interaction strength K1 represents the smallest
parameter with a maximum value of 1.30 meV in case of fcc-Fe/Rh1, the three-site four spin
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Figure 6.4. Sketch of the 2D BZ with
the three Q-vectors used to construct a
hexagonal SkX. In this case a hexagonal
SkX along the ΓM direction is obtained;
for the case described in the text, i.e. an
SkX built from spin spiral vectors along
the three equivalent ΓK directions of the
2D BZ, the Q-vectors need to be rotated
by an angle of θ = 30◦.

interaction constant Y1 turns out exceptionally large with up to nearly 5 meV. Just like K1 and Y1,
the biquadratic term B1 is not only of positive sign and considerable strength but also ranges on
the same order of magnitude in all four systems. These findings confirm that HOI beyond the
pairwise Heisenberg exchange indeed play an important role in Fe/n-Rh/Ir(111).

The experimentally observed hexagonal magnetic states with unit cells on the order of a
nanometer have motivated us to construct hexagonal skyrmion lattices (SkX) and calculate their
energies via DFT. Here, the normalized magnetic moment mα

i at lattice site Ri of a single spin
spiral with spiral vector Qα is expressed as follows

mα
i =

(
ez cos (Qα ·Ri)−

Qα

|Qα|
sin (Qα ·Ri)

)
, (6.4)

with ez denoting the unit vector along the z direction perpendicular to the surface. The spin
structure of the hexagonal SkX is then formed by the normalized superposition of three symmetry-
equivalent cycloidal spin spirals Q1, Q2 and Q3 of equal length exhibiting an angle of 120◦ with
respect to each other (see Fig. 6.4):

mSkX
i =

m1
i + m2

i + m3
i

|m1
i + m2

i + m3
i |

. (6.5)

Besides the length of the Q-vectors, it is also possible to vary their rotation by an angle θ with
respect to the high symmetry directions of the 2D BZ. In our DFT calculations we constrain
the directions of the magnetic moments as given by the construction of the SkX, while their
magnitudes are obtained self-consistently. At this point it is important to mention that contrary
to the three prototypical multi-Q states described earlier the hexagonal SkX are expected to differ
from their constituting single-Q states with regard to the exchange energy in the absence of
higher-order interactions. Such discrepancies arise due to the construction formula given by
Eq. (6.5) in which the normalization procedure causes additional components in the Fourier
spectrum, so-called higher harmonics.
By projecting the magnetic moments of a hexagonal SkX onto the z axis perpendicular to the film
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we obtain fully collinear states with moments pointing only up or down along the out-of-plane
direction of the surface:

mMS
i =

(mSkX
i · ez)

|mSkX
i · ez|

ez (6.6)

In the following, we refer to these collinear analogues as mosaic (MS) states. Similar to the
hexagonal multi-Q states one can construct collinear counterparts of cycloidal spin spiral states
m1Q

i :

mcol
i =

(m1Q
i · ez)

|m1Q
i · ez|

ez (6.7)

The first considered hexagonal SkX contains 27 atoms in the surface unit cell consistent with
the experimentally observed state for hcp-Fe/Rh1 and is named 27-SkX (see Fig. 6.3 (i)). It is
obtained by choosing the spin spiral vectors along the three equivalent ΓK directions of the 2D
BZ with a period of 4.5 nearest-neighbor distances, i.e. q ≈ 0.22× 2π/a. For both stackings of the
Fe ML on Rh1/Ir(111) such a state turns out energetically lower than the corresponding 1Q state
(see red open hexagons in Figs. 6.3 (a) and (b)). The inclusion of spin-orbit coupling, i.e. the DMI
and magnetocrystalline anisotropy energy (MAE), only leads to a further small energy gain
of 3.3 meV (depicted by a maroon open hexagon in Fig. 6.3 (b)) owing to the moderate SOC
coupling strength of the 4d element Rh (cf. left two columns of Table 6.2). Here, the symmetry of
the interfacial DMI only favors Néel-type SkX, whereas Bloch-type SkX are not affected by this
magnetic interaction.
A similar scenario emerges for the hexagonal SkX containing 19 atoms in the surface unit
cell which is constructed in an analogous manner with slightly larger q vectors based on the
experimental observations for one stacking of the Fe ML on Rh2/Ir(111) (Fig. 6.3 (k)). Figs. 6.3 (c)
and (d) demonstrate that the inclusion of SOC even has less impact on the energy of this 19-SkX
as compared to the case of the 27-SkX in Fe/Rh1 since the influence of the heavy Ir substrate is
further reduced. Our DFT calculations reveal the magnitude of the magnetic moments in these
states to be about 2.8 µB per Fe atom and varying by less than 5% in good agreement with the
Stoner exchange penalizing larger modulations of the moments. Moreover, both the 27-SkX as
well as the 19-SkX possess a non-vanishing magnetic moment per unit cell amounting to about
14 µB for the former and about 9.8 µB for the last-mentioned. This result would be consistent
with the experimental findings on the 27-atomic state of hcp-Fe/Rh1 exhibiting two inversional
domains in zero field of which one is switched upon the application of an external magnetic field.

Up to now only uniaxial spin spirals and their superposition states, most of which show a non-
collinear spin texture, have been taken into account. However, as the origin of the experimentally
observed contrasts could already be mainly ascribed to out-of-plane sample magnetization
components, collinear spin arrangements would also be able to explain the SP-STM images. To
address this possibility of fully collinear magnetic order, we investigate uniaxial and hexagonal
collinear states that are derived from their non-collinear analogue by taking only their normalized
z components according to Eq. (6.6) and (6.7). In this way not only the 90◦ spin spirals transform
into uudd states, but also arbitrary spin spirals result in collinear states like the one with a
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4.67-atomic period shown in Fig. 6.3 (m) and associated with the magnetic superstructure
observed in fcc-Fe/Rh1/Ir(111). Following the same procedure for the 27-SkX, we obtain a
12:15-MS state with 12 moments pointing in one direction and 15 pointing into the opposite
(see Figs. 6.3 (i) and (j)). For both stackings of the Fe ML on Rh1/Ir(111) the collinear uudd,
the uniaxial 4.67-atom and the hexagonal 12:15-MS state turn out significantly lower in energy
compared to their non-collinear counterparts (see filled blue and purple squares as well as red
filled hexagons in Fig. 6.3 (a) and (b), respectively). The same is true for the hexagonal 7:12-MS
state in the Fe/Rh2 systems; in this case the energy gap between the collinear state and the
corresponding non-collinear 19-SkX is even more strongly pronounced.
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Figure 6.5. (SP)-STM images calculated via DFT for the uudd- 1
2 ΓM state of fcc-Fe/Rh2/Ir(111). a SP-

STM image at 3 Å above the surface for a tip spin polarization of 0.5 and b STM image for a non-spin-
polarized tip in the energy range [EF,EF+0.05 eV]. The calculations have been performed via FLEUR
based on the spin-polarized generalization [136] of the Tersoff-Hamann model [115]. The red (blue)
circles with upward (downward) pointing arrows denote Fe atoms with the respective magnetization
direction while yellow (orange) circles depict atoms of the first (second) Rh layer as counted from the film
surface. For better visualization, the magnetization components of the Fe atoms are drawn in-plane; in the
corresponding DFT calculation they are pointing along the out-of-plane easy magnetization direction
instead. Note that both a and b show a quadrupled image of the magnetic unit cell (indicated by dashed
lines). Figure published in the supplemental material of Ref. [II].

For interest we have further considered the square nanoskyrmion lattice (squ. SkX) confirmed as
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the magnetic ground state of fcc-Fe/Ir(111) [19] that is constructed from a superposition of two q
vectors enclosing an angle of 90◦ and its collinear equivalent, the 7:8-MS state (Figs. 6.3 (n) and
(o)). Interestingly, for this symmetry the opposite effect as observed for the hexagonal states
occurs, namely the non-collinear spin lattice gains energy with respect to the collinear MS state
in all four systems (see filled and open lime green diamonds in Figs. 6.3 (a)-(d)).

Summarizing our DFT calculations up to this point, we have found a variety of complex
collinear and non-collinear spin structures competing on the energetic level in the four strongly
exchange frustrated Fe/n-Rh/Ir(111) systems. For both Fe/Rh1 as well as Fe/Rh2 we find
a preference of collinear magnetic order. According to our first-principles calculations, fcc-
Fe/Rh1/Ir(111) exhibits an uniaxial collinear 4.67-atomic state as magnetic ground state, while
hcp-Fe/Rh1/Ir(111) possesses a collinear hexagonal 12:15-MS state as state of lowest energy.
These findings are able to explain the corresponding experimental measurements presented in
Sec. 6.1 from which previously no conclusions about details of the exact spin arrangement in the
respective unit cell could be drawn.
As seen from Figs. 6.3 (c) and (d), the situation remains a bit less clear for the Fe/Rh2 system
in which the uudd- 1

2 ΓM state seems to be the ground state for both Fe stackings. However, in
hcp-Fe/Rh2 the collinear hexagonal 7:12-MS is much closer in energy to the uudd state than in
fcc-Fe/Rh2. Furthermore, Table 6.6 demonstrates that the 7:12-MS and the uudd- 1

2 ΓM state turn
out to be energetically degenerate in case of hcp-Fe/Rh2 upon calculating the energy of the latter
by means of the VASP code as well 3, while the 7:12-MS of the fcc-Fe/Rh2 system still remains 2
meV higher in energy than the uudd state (see Sec. 6.8). For this reason we conclude that the
previously denoted b-Fe (a-Fe) on the Rh DL on Ir(111) corresponds to hcp-Fe (fcc-Fe). Fig. 6.5
shows a DFT calculated (SP)-STM image of the uudd- 1

2 ΓM state of fcc-Fe/Rh2/Ir(111) at a height
of 3 Å above the surface. The different appearances of the magnetic state depending on the tip
spin polarization agree well with the experimentally obtained SP-STM images in a small energy
window above the Fermi energy (cf. Fig. 6.2 (b)).

6.4 Atomistic spin model

In order to obtain a deeper insight into the magnetic interactions determining the total DFT
energies of different spin structures in Fe/n-Rh/Ir(111) we have applied an atomistic spin model
given by

H = − ∑
ij

Jij(mi ·mj)−∑
ij

Dij(mi ×mj)−∑
i

Ku(mz
i )

2 − ∑
<ij>

B1(mi ·mj)
2

− ∑
<ijk>

Y1[(mi ·mj)(mj ·mk) + (mj ·mi)(mi ·mk) + (mi ·mk)(mk ·mj)]

− ∑
<ijkl>

K1[(mi ·mj)(mk ·ml) + (mi ·ml)(mj ·mk)− (mi ·mk)(mj ·ml)]. (6.8)

3Note that the energies of the uudd states in Fig. 6.3 are computed via FLEUR, while the energies of the hexagonal
states are obtained by means of the VASP code.
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Here, mi = Mi/Mi denotes the normalized magnetic moment at lattice site i, Jij the pairwise
Heisenberg exchange constants, Dij the vectors of the DMI and Ku the uniaxial magnetocrystalline
anisotropy constant as introduced before. In this case, the summation on the HOI energy
contributions by B1, Y1 and K1 is again restricted to nearest neighbors as suggested in [50] and
indicated by < .. >. All interaction constants have been determined from DFT using the FLEUR
code and are listed in Table 6.2 and 6.3, respectively.
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Figure 6.6. Comparison of spin model vs. DFT energies for selected magnetic states. a,b, Upper panels
show DFT total energies with respect to the FM reference for hcp-Fe/Rh1/Ir(111) and hcp-Fe/Rh2/Ir(111)
(red squares; violet dots include SOC), respectively, and energies obtained via the atomistic spin model
(black circles) using DFT parameters for the magnetic interactions. The top axis denotes non-collinear spin
structures and the lower axis the corresponding collinear states. The lower panels show the decomposition
of the total energy into the contributions from the Heisenberg exchange, the biquadratic interaction, the
three-site four spin (3-Spin) and the four-site four spin interaction (4-Spin). Filled (open) circles represent
collinear (non-collinear) states. For the calculation of the total energies in the spin model the DMI and
MAE were taken into account, but not shown here. The lines connecting the data points serve as a guide
to the eye. Figure adapted from Ref. [II].

Fig. 6.6 shows the energies of selected magnetic states for hcp-Fe on Rh1 and Rh2 on Ir(111) cal-
culated based on the atomistic spin model (see Fig. A.1 in Appendix A for Fe in fcc-stacking). The
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states are arranged in such a way that collinear (uudd or MS, see bottom axis) and corresponding
non-collinear (spin spiral or SkX, see top axis) magnetic states can be directly compared. The
colored blocks depict magnetic structures which are constructed from the same values of the
spin spiral vector. One immediately sees that the trend of the DFT energies is captured by the
spin model apart from the square nanoskyrmion lattice (red and black symbols in top panels in
Fig. 6.6).
While the small quantitative deviations for the hexagonal MS and SkX states in both systems
might occur due to the restriction to NN HOI, the discrepancies observed for the square SkX
cannot be explained by the same assumption since the trend between DFT and spin model clearly
diverges at this point. Moreover, the spin model fails to correctly predict the hexagonal magnetic
ground states for hcp-Fe/Rh1 and hcp-Fe/Rh2; instead the uudd state turns out energetically
lowest for the two systems. However, as already seen in the spin spiral dispersion (Fig. 6.3 (b)),
the energy differences between the chosen states are quite small in case of hcp-Fe/Rh1/Ir(111).

Despite the spin model not matching the DFT values completely, it can still be used to understand
the preference for collinear magnetic order in our systems by decomposing its total energies
into the single interaction contributions (lower panels of Fig. 6.6). Here it becomes clear that
in case of exact multi-Q states such as the uudd state along ΓM direction the energy of the
pairwise Heisenberg exchange interaction equals the one of the corresponding spin spiral state
(90◦-1Q-ΓM) and any total energy difference originates from HOI terms. Also other states with
the same set of Q-vectors, such as the pair of non-collinear 77◦-1Q-ΓM spin spiral and the
collinear 4.67-atom state, or the 40◦-1Q-ΓK spin spiral, the 27-SkX and the 12:15-MS state are
nearly energetically degenerate with respect to the exchange term. Small differences arise only
because they do not represent true superposition states of symmetry-equivalent spin spirals
but also contain higher harmonic components according to the construction formula given by
Eq. (6.5) and (6.6).
In the lower panels of Fig. 6.6 one notices as well that the exchange contribution to the total
energy is largest among all considered interactions, but its variation between the chosen states is
quite small and on the order of 15 meV/Fe atom at most. In contrast, the three-site four spin
interaction causes large energy differences of up to 25 meV/Fe atom between the states and
further promotes collinear over non-collinear structures with a clear preference for hexagonal
spin arrangement (filled and open green data points, respectively). On the other hand, both the
biquadratic and the four-site four spin interaction vary on an energy scale of about 10 meV/Fe
atom and nearly compensate each other for every state. Hence, the three-site four spin interaction
strength remains as the dominating parameter of the trend in total energy and its interplay with
the Heisenberg exchange is decisive for the magnetic ground state of the hcp-stacked Fe MLs on
Rh1 and Rh2 on Ir(111). A similar picture emerges for the Fe MLs in fcc-stacking as the DFT
interaction parameters do not differ much (cf. Fig. A.1 in Appendix A).

The atomistic spin model also allows to investigate under which conditions collinear hexagonal
multi-Q states which have not appeared in the literature so far can become the ground state of a
system. To this, we have computed the energies of SkX and MS states as a function of the length
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Figure 6.7. Energy contributions to SkX
and MS states obtained in the atomistic
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Inset Sketch of the 2D BZ with the three Q-
vectors Q1, Q2 and Q3 used to construct SkX
states along the ΓM direction; to obtain SkX
states for the ΓK direction the Q-vectors need
to be rotated by an angle of θ = 30◦. Figure
published in Ref. [II].

of the constituting Q-vectors via the atomistic spin model supplied with the DFT parameters of
hcp-Fe/Rh2/Ir(111). Fig. 6.7 illustrates the total energies of the respective spin structures (black
solid and dashed lines) with their Q-vectors chosen along the two high symmetry directions of
the 2D BZ similar to the previously presented spin spiral dispersion. The shape of the curve of
the non-collinear SkX energy dispersion resembles the one of the 1Q states. The contributions
of the Heisenberg exchange (dashed purple) and the three-site four spin interaction (dashed
green) are approximately mirrored at the Γ-point. We have found a similar behaviour for
hcp-Fe/Rh1/Ir(111) for which the individual energy contributions do not differ significantly
due to the DFT interaction parameters being on the same order of magnitude (see Fig. A.4 in
Appendix A).
In contrast to the parabolic shape of the Heisenberg exchange and 3-Spin energies of SkX states,
the corresponding contributions of the MS states disperse linearly in the vicinity of the Γ-point
leading to their energetic preference for Q < 0.5× 2π/a. Therefore, the resulting minima of the
total energy along both high symmetry directions represent collinear MS states arising from the
varying interplay of frustrated exchange and three-site four spin interaction for non-collinear
and collinear multi-Q states. Fig. 6.7 also shows that the experimentally observed hexagonal
magnetic states are close to the energy minimum along ΓK calculated by the atomistic spin
model. The 7:12-MS state even matches the minimum directly in accordance with the DFT results
predicting collinear magnetic order.
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6.5 Extension of the atomistic spin model to NNN HOI terms

Since the atomistic spin model presented in the previous section does not reproduce the total
DFT energies of the hexagonal and square spin lattice states quite well, the question arises
whether an extension of the model by next-nearest neighbor (NNN) HOI terms can lead to a
better agreement with the results of the first-principles calculations. However, both studies about
NNN HOI on the hexagonal atomic lattice as well as procedures for calculating these terms are
missing so far.
Hence, in order to obtain the values for the biquadratic, three-site four spin and four-site four

Figure 6.8. Illustration of minimal hopping paths for next-nearest neighbor (NNN) HOI terms on the
hexagonal lattice of a magnetic monolayer. a depicts the six possible hopping paths for the biquadratic
interaction between a reference atom i and its second nearest neighbors j; the six paths are associated
with a common parameter B2 and marked by dashed orange lines. b shows three out of 18 possible
triangular shaped hopping paths for the three-site four spin interaction taking NNN atomic sites into
account for a reference atom i; the 18 hopping paths can be divided into three distinct categories with each
containing six triangles; the corresponding constant is denoted by Y2. c illustrates two hopping paths over
the diagonal of the 12 possible diamonds (marked by green and orange double-headed arrows) of the
four-site four spin interaction; the respective NNN HOI term is referred to as K2.

spin interaction for next-nearest neighbors named B2, Y2 and K2 in the following (see Fig. 6.8 for
hopping paths), we tested the most obvious approach which simply consists of extending the
set of coupled equations given by Eq. (6.1)-(6.3). Since three additional parameters need to be
calculated, the energy differences of three other magnetic states with respect to some reference
state are required so the system of equations does not become overdetermined. To this, we
chose arbitrarily two collinear 4u4d states and the 7:8-MS state. While the latter has already been
introduced in the previous section (see Fig. 6.3 (o) for magnetic structure), the former two are
pictured in Fig. 6.9 within their 8-atomic unit cell per layer. They are named in analogy to the
uudd states and contain quadruple rows of parallel spins. However, in contrast to the uudd states,
the 4u4d states do not represent true superposition states and therefore they are not energetically
degenerate with spin spirals of the same q value in the absence of HOI terms. The 1Q states
corresponding to the q values of the 4u4d states (q=± 1

4 ΓM and q=± 3
8 ΓK) are 45◦ spin spirals.

Calculating the energy differences between the true multi-Q and their respective single-Q states,
∆E 1

2 ΓM = Euudd, M
2
− E M

2 ,1Q, ∆E 3
4 ΓK = Euudd, 3K

4
− E 3K

4 ,1Q and ∆EM = E3Q − EM,1Q, the 4u4d states
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a

b

4u4d-ΓM

4u4d-ΓK

Figure 6.9. Sketches of the collinear 4u4d
states with their magnetic unit cells. The
4u4d states are named in analogy to the
two uudd states; instead of double rows
of parallel spins, they comprise quadru-
ple rows. The period of the 4u4d states is
located at q=± 1

4 ΓM and q=± 3
8 ΓK, respec-

tively, and the corresponding 1Q states
are 45◦ spin spirals. However, in contrast
to the uudd states, the two 4u4d states do
not represent true superposition states and
they are not energetically degenerate with
their respective spin spirals in the absence
of HOI. Balls illustrate magnetic atoms
and red (blue) color denotes the up (down)
out-of-plane magnetization component.

and 45◦ spin spirals, ∆E 1
4 ΓM = E4u4d, M

4
− E M

4 ,1Q and ∆E 3
8 ΓK = E4u4d, 3K

8
− E 3K

8 ,1Q, and the 7:8-MS
and the FM state, ∆E7:8-MS, yields the following extended set of coupled equations obtained from
the atomistic spin model taking HOI beyond nearest neighbors into account:

∆E 1
2 ΓM = 8K1 − 8K2 − 4B1 − 4B2 − 4Y1 − 4Y2 (6.9)

∆E 3
4 ΓK = 8K1 − 8K2 − 4B1 − 4B2 + 4Y1 + 4Y2 (6.10)

∆EM =
32
3

K1 +
32
3

K2 +
16
3

B1 +
16
3

B2 −
16
3

Y1 − 16Y2 (6.11)

∆E 1
4 ΓM = ∆EJi

1
4 ΓM

+ 4K1 − 4K2 − 2B1 − 4B2 +
( 8√

2
− 6
)

Y1 +
( 16√

2
− 14

)
Y2 (6.12)

∆E 3
8 ΓK = ∆EJi

3
8 ΓK

+ 12K1 − 4K2 − 4B1 − 2B2 − 2Y1 +
( 8√

2
− 10

)
Y2 (6.13)

∆E7:8-MS = ∆EJi
7:8-MS +

32
3

K1 +
32
3

K2 + 0B1 + 0B2 +
48
5

Y1 + 33.07Y2 (6.14)

In contrast to the true multi-Q states, the equations for the two 4u4d states and the 7:8-MS
comprise contributions from the Heisenberg exchange parameters as well which are given by the
following expressions:

∆EJi
1
4 ΓM

=
5
6

J1 +
5
6

J2 −
5
6

J5 −
5
3

J9 −
5
6

J11 (6.15)

∆EJi
3
8 ΓK

=
5
6

J1 −
5
6

J2 −
5
6

J5 +
5
3

J9 −
5
6

J11 (6.16)

∆EJi
7:8-MS =

24
5

J1 + 6.93J2 + 7.47J3 + 14.93J4 +
32
5

J5 (6.17)

+5.87J6 + 8.53J7 +
24
5

J8 +
32
3

J9 +
32
3

J10 +
16
3

J11 (6.18)
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Note that also the NNN HOI terms modify the Heisenberg exchange constants Ji obtained from
fits of the DFT energy dispersion without SOC due to their respective analytical expressions to
E(q) being identical. The Hamiltonians of the biquadratic and the three-site four spin interaction
including NNN atomic sites as exemplified in Figs. 6.8 (a) and (b) were already evaluated by
means of Eq. (4.15) in [103]. While for the latter the same Hamilton operator as for the NN HOI
terms can be applied, the contribution of the four-site four spin interaction to NNN HOI needs to
be taken into account using an additional diagonal term of the form [50]:

H4-Spin-diag = − ∑
<ijkl>diag

K2(mi ·mk)(mj ·ml) (6.19)

As illustrated in Fig. 6.8 (c), this corresponds to a bow-tie-shaped loop comprising one NNN- and
one NN-hopping event over the diagonals of each diamond. Evaluating also the dot products
between spins involved in this hopping process according to Eq. (4.15), the complete relation
between the adapted values J′i and the values Ji extracted from DFT is found to be given by the
following expressions:

J1 = J′1 + Y1 + 3Y2 (6.20)

J2 = J′2 + Y1 + Y2 (6.21)

J3 = J′3 +
1
2

B1 + 2K2 (6.22)

J4 = J′4 + Y2 (6.23)

J5 = J′5 (6.24)

J6 = J′6 +
1
2

B2 (6.25)

J7 = J′7 (6.26)

J8 = J′8 (6.27)

J9 = J′9 (6.28)

J10 = J′10 (6.29)

J11 = J′11 (6.30)

At this point it is important to mention that the NNN four-site four spin interaction constant K2

is found to alter the third-nearest neighbor Heisenberg exchange parameter J3 contrary to K1

which is independent of the spin spiral vector.

Using the Fe/Rh1/Ir(111) system as an example, we solved the extended set of coupled
equations (6.9)-(6.14) by supplying the required energy differences for both Fe stackings listed
in Table 6.4. Partially, the results are quite surprising; for instance, the biquadratic term for
nearest neighbors, B1, turns out unexpectedly large with values of more than 6 meV, while the
respective NNN parameter B2 ranges on the same order of magnitude as B1 calculated from the
original shorter system of equations comprising only energy differences of multi-Q states (cf.
Table 6.3). In contrast, the sum of Y1 and Y2 matches exactly the three-site four spin interaction
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System ∆Euudd
M/2

∆Euudd
3K/4

∆E3Q
M

∆E4u4d
M/4

∆E4u4d
3K/8

∆E7:8-MS

fcc-Fe/Rh1/Ir(111) −18.28 16.20 6.16 −8.21 −4.77 −7.84
hcp-Fe/Rh1/Ir(111) −20.78 16.35 −3.64 −12.76 −9.40 −5.13

B1 B2 Y1 Y2 K1 K2

fcc-Fe/Rh1/Ir(111) 6.36 2.19 4.67 −0.36 1.12 −3.02
hcp-Fe/Rh1/Ir(111) 5.50 2.40 4.43 0.22 0.96 −2.71

Table 6.4. Higher-order exchange interactions beyond nearest neighbors calculated for Fe/Rh1/Ir(111).
Energy differences ∆E between multi-Q and corresponding single-Q states, 4u4d states and respective 45◦

spin spirals and the 7:8-MS and FM state obtained from DFT and supplied to the extended set of coupled
equations (6.9)-(6.14). B1 (B2) denotes the biquadratic interaction strength for nearest (next-nearest)
neighbors, Y1 (Y2) the three-site four spin interaction for nearest (next-nearest) neighbors and K1 (K2) the
four-site four spin interaction for nearest (next-nearest) neighbors. All values are given in meV.

strength Y1 obtained from the original set of coupled equations before, i.e. upon going beyond
nearest neighbors the previously calculated value of Y1 splits into two contributions with the
one containing further distant pairs of spins, Y2, being much lower in magnitude. Table 6.4
additionally shows that the NN four-site four spin interaction strength K1 for both Fe stackings
almost remains unaffected by the extension of the system of equations; however, K2 surprisingly
turns out remarkably larger than K1 and is of negative sign as well.

Plugging the newly obtained values for the NN and NNN HOI terms as well as the adapted
Heisenberg exchange constants into the atomistic spin model, one can again calculate the energies
for the selection of magnetic states as in Sec. 6.4 and compare the values with the ones from
DFT. The upper panels of Fig. 6.10 demonstrate that this approach only partially leads to a
better agreement between spin model and first-principles calculations for Fe/Rh1/Ir(111). While
the energies of the collinear spin structures, the 4.67-atom, the hexagonal 12:15-MS and the
square 7:8-MS state (which was actually used to determine the parameters), now almost perfectly
coincide with the DFT values 4, the deviation for the non-collinear spin lattices has become
much larger than before (cf. Fig. 6.6). This discrepancy is more strongly pronounced for the
square as compared to the hexagonal nanoskyrmion lattice. The reason why the trend for the
last-mentioned states diverges to such an extent can be mainly ascribed to the large contributions
of the two biquadratic terms exhibiting a positive sign and therefore penalizing non-collinear
magnetic order (see middle and lower panels of Fig. 6.10). Moreover, the contributions from the
biquadratic and four-site four spin interaction do not add up to zero energy difference between
different states anymore.

We have also tested other magnetic states both of collinear as well as non-collinear order for the
extension of the set of coupled equations. However, in all cases the biquadratic term B1 takes
large nonphysical values thereby leading to a worse description of energies of non-collinear spin

4Note that within this approach the DFT energy of the collinear 4u4d state along ΓM-direction is also very well
described by the atomistic spin model. The same applies to the 4u4d-ΓK state which is not displayed in Fig. 6.10. If
only NN HOI are taken into account, the absolute numbers obtained from the spin model do not match the DFT
values of the two states, but the trend of their energies is reflected accordingly.
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Figure 6.10. Comparison of DFT energies vs. spin model including next-nearest neighbor (NNN) HOI
terms for selected magnetic states of Fe/Rh1/Ir(111). Upper panels show DFT total energies with respect
to the FM reference for a fcc- and b hcp-Fe/Rh1/Ir(111) (red squares), respectively, and energies obtained
via the atomistic spin model (black circles) extended by next-nearest neighbor (NNN) HOI terms. The top
axis denotes non-collinear spin structures and the lower axis the corresponding collinear states. The middle
panels show the decomposition of the total energy into the contributions from the Heisenberg exchange,
the biquadratic interaction (B1), the three-site four spin (Y1) and the four-site four spin interaction (K1)
for nearest neighbors. The lower pannels show the respective contributions from the NNN HOI terms
denoted by the subscript ’2’. For the calculation of the total energies in the spin model the DMI and MAE
were taken into account, but not shown here. The lines connecting the data points serve as a guide to the
eye.
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lattices in the atomistic spin model. Additionally, depending on the chosen magnetic states for
the system of equations, the sign and order of magnitude of Y2 and K2 strongly varies resulting
in an unreliable approach for the calculation of NNN HOI terms. Hence, other methods for
the determination of these parameters need to be developed. One possibility, the so-called
pseudoinverse method, is discussed in chapter 7; however, within the scope of this thesis its
application is limited to NN HOI.

a

b

c

d

e

f

g

h

15% canting

 12:15-MS

   27-SkX

12:15-MS 27-SkX

Figure 6.11. Analysis of the degree of collinearity of the 12:15-MS state in hcp-Fe/Rh1/Ir(111). Total
energies of magnetic states along the geodesic path in spin space from the collinear 12:15-MS state into
the non-collinear 27-SkX a without and b with spin-orbit coupling. Black and purple data points are
obtained via DFT and via the atomistic spin model, respectively. The relative polar angle θ is defined for
every atom in the unit cell as θ(x)=θ0 + x(θ f − θ0) with x ∈ [0, 1] where the value x = 0 is chosen for
the collinear 12:15-MS state (red filled circle) and x = 1 for the non-collinear hexagonal 27-SkX (green
filled circle). θ f refers to the final value of every magnetic moment in the 27-SkX, whereas θ0 is set to
0◦ for upward pointing moments (180◦ for downward pointing moments). The in-plane angles φ of
the atoms are not changed with the variation of θ, but kept fixed to the values of the 27-SkX. The solid
lines connecting the DFT and spin model data points serve as a guide to the eye. c-e Sketches of the
12-15 MS state, the energetically lowest 15% canted 12:15-MS state and the 27-SkX followed by f-h the
corresponding simulated SP-STM images of the same area with a tip magnetization in −z direction and
50% spin polarization at a height of 6 Å (simulations performed based on the model described in [116]).
The figure has been adapted from Ref. [II].
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6.6 Degree of collinearity of spin textures

In the last step of our theoretical study on Fe/n-Rh/Ir(111) systems we tested the degree of
collinearity for both the hexagonal 12:15-MS as well as the uudd state by performing suitable
DFT calculations and comparing the results with those obtained via the atomistic spin model
comprising only the more reliable NN HOI terms.

To this, we have first calculated via DFT the total energies of magnetic states in which the
moments rotate continuously from the 12:15-MS state to the 27-SkX of hcp-Fe/Rh1/Ir(111).
Focusing on the energy contributions neglecting SOC depicted in Fig. 6.11 (a), one notices the
perfectly collinear 12:15-MS state to be energetically lowest along the geodesic path in spin
space5. The same applies to the corresponding results obtained from the atomistic spin model;
however, in this case the total energy rises even more quickly compared to the DFT curve and
the energy difference between the non-collinear 27-SkX and the 12-15 MS state turns out nearly
twice as large. Upon the inclusion of SOC (see Fig. 6.11 (b)), the energy difference to the 27-SkX
decreases both in DFT and in the spin model and a small energy minimum is found close to
the collinear 12:15-MS state. In our DFT (spin model) calculation this 15% (4%) canted state
(see inset) gains 0.27 (0.08) meV/Fe atom with respect to the collinear state. Referring to the
DFT minimum, the canting corresponds to only 4◦ to 11◦ of the magnetic moments from the z
direction. Hence, the degree of non-collinearity is very small.

From the atomistic spin model the reason for the formation of the energetic minimum can be
understood although it fails to exactly reproduce the DFT value. As the decomposition of the
total energy from the spin model presented in Fig. A.6 of Appendix A demonstrates, the slightly
canted state is a consequence of the competition between the DMI favoring non-collinearity
and the more quickly increasing contributions of the large positive biquadratic and three-site
four spin interaction that prefer collinear magnetic order. A similar effect was reported to be
responsible for the emergence of a slightly canted uudd state in a Fe ML sandwiched between a
Rh overlayer and the Ir(111) surface [43].

We have further simulated SP-STM images for the hexagonal states of interest based on the
simplified model of the spin-polarized tunneling current described in Sec. 4.3 [116]. For an
out-of-plane magnetized tip (see Figs. 6.11 (f)-(h)), both the non-collinear 27-SkX as well as the
energetically lowest 15% canted state and the fully collinear 12:15-MS state show a hexagonal
magnetic contrast. However, only the latter exhibit triangular shapes thereby breaking the
six-fold symmetry in accordance with the experimentally observed magnetic superstructure for
hcp-Fe/Rh1/Ir(111) (cf. right image with atomic resolution in Fig 6.1 (d)).

For the uudd-1
2 ΓM state we obtained a similar result regarding the degree of collinearity.

Fig. 6.12 shows a comparison between the atomistic spin model and DFT for a continuous
transformation of the uudd state into the 90◦ clockwise (anticlockwise) spin spiral calculated for

5The implied energy minimum of -0.003 meV for a 2% canted structure showing up in the inset can be attributed
to DFT inaccuracies.
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fcc-Fe/Rh1/Ir(111). Although this multi-Q state is actually confirmed as the magnetic ground
state for fcc-Fe on Rh2/Ir(111), the results presented here for the system with only one Rh
interlayer can easily be transferred since the Heisenberg exchange and HOI constants as well
as the DMI parameters are on the same order of magnitude. The inset of Fig. 6.12 (a) reveals a

Figure 6.12. Comparison between atomistic spin model and DFT for the transformation of the uudd-
1
2 ΓM state into the 90◦ spin spiral calculated for fcc-Fe/Rh/Ir(111). Continuous transformation of the
uudd state into the 90◦ clockwise (anticlockwise) spin spiral with (red data points) and without (black
data points) spin-orbit coupling effects computed via a the atomistic spin model and b via DFT. The
canting angle α measures the deviation from the easy out-of-plane magnetization axis; hence, the uudd
state corresponds to α=0◦ and the 90◦ spin spiral to α=45◦. Negative values of the tilt angle α refer to an
anticlockwise rotation of the magnetic moments. The lines connecting the data points serve as a guide to
the eye. Figure published in the supplemental material of Ref. [II].

tiny energy minimum of −0.03 meV/Fe atom at a canting angle of 2α = 2◦ in the spin model
calculation. It is caused by the weak DMI favoring clockwise spin canting in this system. One also
notices that the exchange energy contribution along the transformation path does not depend on
the canting angle α, i.e. neglecting SOC, left- and right-rotating spin structures are energetically
degenerate. The shallow energy minimum calculated via the atomistic spin model is even too
small to be resolved by the corresponding DFT calculation (see Fig. 6.12 (b)); here, the fully
collinear uudd state remains energetically lowest both with and without taking SOC into account.
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Interestingly, in contrast to the atomistic spin model, in DFT one can observe some anticlockwise
rotating spin structures with SOC being lower in energy than their scalar-relativistic sources.
This might be due to the fact that the exchange correlation potential does not only contain the
DMI, but also other effects arising from SOC.

6.7 Conclusion

In this chapter, we have presented a detailed combined experimental and theoretical study on a
Fe ML in contact with Rh exhibiting a variety of complex zero-field nanoscale spin structures
depending on the stacking of the magnetic layer and the number of Rh layers. They arise in these
two-dimensional itinerant magnets due to the subtle interplay of frustrated Heisenberg exchange
and higher-order terms with a large positive three-site four spin interaction [50] turning out to
be the decisive parameter in stabilizing not only uniaxial states such as the uudd state but also
spontaneous atomic-scale hexagonal spin textures. In contrast to the DMI favoring non-collinear
magnetic order and playing a minor role for Fe/Rh interfaces on Ir(111) owing to the weak
spin-orbit coupling strength of the 4d TM Rh, the three-site four spin interaction promotes
collinear spin states in the Fe ML. As a result, both the uniaxial magnetic structures in fcc-stacked
Fe as well as the hexagonal spin textures observed for Fe in hcp-stacking show at most a small
non-collinearity with canting angles of a few degrees as inferred from DFT and atomistic spin
model calculations.
Contrary to our expectations, the discovered hexagonal magnetic states do not bear a resemblance
to non-collinear skyrmion lattices, but can be identified as two-dimensionally modulated collinear
multi-Q states and hence as a new class of magnetic order. In view of their nanoscale size we
anticipate these novel magnetic structures to possess interesting transport properties to be
uncovered by future work.
Finally, an attempt of extending the established method of calculating the higher-order exchange
constants within the NN approximation [50] by additional arbitrarily chosen states in order to
get access to the NNN HOI terms of Fe/n-Rh/Ir(111) has unfortunately not been successful. As
the biquadratic terms turn out nonphysical with large positive values within this approach,
the energies of non-collinear square and hexagonal spin lattices are completely overestimated
by the atomistic spin model. Moreover, as demonstrated in this chapter as well, the spin
model comprising only NN HOI constants computed from the energy differences of the three
prototypical multi-Q states already reaches its limit for the description of square nanoskyrmion
lattices. Hence, another method is required to also capture their DFT energies correctly which
will be discussed in the next chapter dealing with Fe MLs in direct contact with the Ir(111)
surface.



6.8 Test calculations 111

6.8 Test calculations

In the previous sections, results were presented for the case that the substrate consists of 5 (4) Ir
layers for modeling Fe/Rh bilayers (Fe/Rh/Rh trilayers) on Ir(111)6. In this section, the results
on the energy dispersion and HOI constants are briefly compared with those obtained from
calculations comprising 9 Ir layers.

Fig. 6.13 shows a comparison of the energy dispersion for all four Fe/n-Rh/Ir(111) systems both
with and without SOC for a substrate thickness of 9 and 5 (4) Ir layers. It becomes clear that the
dispersions do not change qualitatively upon increasing the number of substrate layers, but the
depth of the spin spiral minima is reduced. At the same time the energy difference between the
FM state at the Γ-point and the RW-AFM state at the BZ boundary increases compared to the
respective calculations with 5 (4) Ir layers leading to larger values of up to 8.40 meV for the NN
Heisenberg exchange constant J1. However, as the second and third-nearest neighbors are still
found to mediate an AFM coupling of considerable strength, our previous statements concerning
the degree of frustration in these systems remains the same. For exact values of the pairwise
exchange constants see Ref. [II].

Fig. 6.14 further demonstrates that the DMI is even quantitatively in good agreement for the two
substrate thicknesses. A layer-resolved decomposition of the DMI contributions for the case of 9
Ir substrate layers is presented in Fig. 6.15 for all four investigated systems. For both stackings of
the Fe ML on Rh1/Ir(111) the marginal frustration of this SOC effect becomes apparent by means
of the arched curve progression which is dominated by the Ir layers in the vicinity of the Γ-point.
On the other hand, for the Fe ML in contact with the Rh DL the contributions of Ir favoring
a counterclockwise rotation of spin spirals and both Fe and Rh promoting clockwise rotation
nearly compensate around the center of the BZ thereby resulting in a vanishing of the total DMI
for small values of q.

Table 6.5 lists both the energy differences of the three prototypical multi-Q states with respect
to their corresponding single-Q spin spiral states as well as the NN HOI constants computed
from the set of coupled equations given by Eq. (6.1)-(6.3) for different number of Ir substrate
layers of the Fe/Rh1/Ir(111) system. Also with regard to this aspect it becomes obvious that
5 Ir layers suffice to obtain HOI parameters on the correct order of magnitude. Alhough the
energy differences slightly differ upon varying the substrate thickness, the exchange constants
themselves are not altered much.

From Fig. 6.3 (d), i.e. the DFT calculated energy dispersion of hcp-Fe/2Rh/Ir(111), the experi-
mentally observed magnetic ground state containing 19 atoms in the surface unit cell could
not be confirmed properly from theory side. Hence, in order to eliminate this uncertainty we
ran another test calculation for the energetically lowest uudd- 1

2 ΓM state (both by FLEUR and
VASP) and the hexagonal MS states by increasing the substrate thickness from 4 to 5 Ir layers.

6Note that this choice was made to keep calculations on the non-collinear hexagonal and square lattice states
containing roughly up to 190 atoms in the whole unit cell computationally feasible. For a direct comparison of total
DFT energies it is essential to use the same number of substrate layers for both spin spiral and multi-Q states.
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Figure 6.13. Comparison of energy dispersions of Fe/n-Rh/Ir(111) systems for varying number of Ir
substrate layers. a Energy dispersion E(q) of flat cycloidal spin spirals for fcc-Fe/Rh/Ir(111), b hcp-
Fe/Rh/Ir(111), c fcc-Fe/Rh/Rh/Ir(111) and d hcp-Fe/Rh/Rh/Ir(111) calculated via DFT along the
two high symmetry directions of the 2D BZ. Blue (black) circles denote scalar-relativistic DFT energies,
whereas the blue (black) lines represent a fit to the Heisenberg model for a substrate thickness of 9 (5 for
Fe/Rh/Ir(111) and 4 for Fe/Rh/Rh/Ir(111)) Ir layers. Green (red) circles indicate DFT energies including
the effect of spin-orbit coupling (SOC), i.e. the DMI and MAE, while green (red) lines represent the fit to
the Heisenberg model shifted by the effects of SOC for a substrate thickness of 9 (5 for Fe/Rh/Ir(111) and
4 for Fe/Rh/Rh/Ir(111)) Ir layers. Figure published in the supplemental material of Ref. [II].
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Figure 6.14. Energy contributions for spin spiral states due to spin-orbit coupling (SOC) for Fe/n-
Rh/Ir(111) systems with varying number of Ir substrate layers. a Energy contributions from SOC,
∆ESOC(q), to the energy dispersion of spin spirals for fcc-Fe/Rh/Ir(111), b hcp-Fe/Rh/Ir(111), c fcc-
Fe/Rh/Rh/Ir(111) and d hcp-Fe/Rh/Rh/Ir(111) computed via DFT along the two high symmetry
directions of the 2D BZ. Black circles denote DFT energies, whereas the black filled (dashed) lines represent
a fit to the the Dzyaloshinskii-Moriya interaction (DMI) for a substrate thickness of 9 (5 for Fe/Rh/Ir(111)
and 4 for Fe/Rh/Rh/Ir(111)) Ir layers. EDM < 0 (> 0): preference of right-(left-)rotating spin spirals.
Figure published in the supplemental material of Ref. [II].

System K1 B1 Y1 ∆Euudd
M/2

∆Euudd
3K/4

∆E3Q
M

fcc-Fe/Rh1/Ir(111)
1.30
1.05

2.86
2.74

4.31
4.20

−18.28
−19.38

16.20
14.24

6.16
3.38

hcp-Fe/Rh1/Ir(111)
0.85
0.75

2.26
2.72

4.65
4.48

−20.78
−22.75

16.35
13.09

−3.64
−1.36

Table 6.5. Comparison of higher-order exchange constants for varying Ir substrate layers of
Fe/Rh1/Ir(111). Four-site four spin (K1), biquadratic (B1) and three-site four spin interaction (Y1) constants
for Fe MLs on Rh MLs in fcc stacking on Ir(111) calculated according to Eq. (6.1)-(6.3). ∆E denotes the
energy difference between the multi-Q and the corresponding single-Q spin spiral state, respectively, i.e.,
∆Euudd

M/2
= Euudd

M/2
− E1Q

M/2
, ∆Euudd

3K/4
= Euudd

3K/4
− E1Q

3K/4
and ∆E3Q

M
= E3Q

M
− E1Q

M
. For both Fe stackings the upper

(lower) line lists the values obtained from a FLEUR calculation with 5 (9) Ir layers. All values are given in
meV. Table adapted from the supplemental material of Ref. [II].

The resulting energies with respect to the FM state are listed in Table 6.6 for both Fe stackings
on Rh2/Ir(111). One sees that the energies for the uudd- 1

2 ΓM state still differ by up to 3 meV
between FLEUR and VASP for an Ir substrate composed of only 4 layers, but they reduce to 0.7
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Figure 6.15. Comparison of layer-resolved energy contributions to spin spiral states due to spin-orbit
coupling (SOC) of Fe/n-Rh/Ir(111) systems comprising 9 Ir substrate layers. a Layer-resolved SOC
energy contributions, ∆ESOC(q), for fcc-Fe/Rh/Ir(111), b hcp-Fe/Rh/Ir(111), c fcc-Fe/Rh/Rh/Ir(111) and
d hcp-Fe/Rh/Rh/Ir(111) computed via DFT along the two high symmetry directions of the 2D BZ. Black
circles denote total DFT energies, whereas the black filled lines represent a fit to the Dzyaloshinskii-Moriya
interaction (DMI). The dashed lines connecting the data points for Fe (red), Rh (green) and the sum of the
Ir layers (blue) serve as a guide to the eye. EDM < 0 (> 0): preference of right-(left-)rotating spin spirals.
Figure published in the supplemental material of Ref. [II].

meV by increasing the layer thickness to 5 and can hence be regarded as identical. Likewise the
hexagonal 12:15- and 7:12-MS state remain almost energetically degenerate and move closer to
the uudd state upon increasing the substrate thickness. Taking the values calculated from the
VASP code, in case of hcp-Fe/Rh2/Ir(111) the energy gap between uudd and hexagonal 7:12-MS
state is finally reduced to about 1.3 meV/Fe atom.

System number of Ir layers uudd- 1
2 ΓM (FLEUR) uudd- 1

2 ΓM (VASP) 12:15-MS 7:12-MS

fcc-Fe
4
5

−34.12
−23.06

−31.53
−23.79

−29.85
−21.09

−29.60
−21.69

hcp-Fe
4
5

−32.75
−27.35

−29.54
−26.85

−29.82
−25.75

−29.72
−25.48

Table 6.6. DFT energies of uudd- 1
2 ΓM and hexagonal MS states for varying Ir substrate layers of

Fe/Rh2/Ir(111). Comparison of DFT energies for the uudd- 1
2 ΓM state (FLEUR and VASP), hexagonal 12:15-

MS (VASP) and 7:12-MS state (VASP) for both stackings of the Fe ML on Rh2/Ir(111) in case of 4 and 5 Ir
substrate layers. All energies are given with respect to the FM state in meV/Fe atom. Table published in
the supplemental material of Ref. [II].



7 Nanoscale square and hexagonal
skyrmion lattices in Fe/Ir(111)

In the previous chapter, we have seen how the three-site four spin interaction [50] can lead to
the formation of two-dimensional (2D) nearly collinear multi-Q states exhibiting a hexagonal
magnetic unit cell in hcp-stacked Fe MLs on a Rh mono- and double layer on Ir(111) in zero
magnetic field. These unexpected findings have motivated us to additionally take a closer
look at a single Fe ML in hcp-stacking on Ir(111), i.e. without Rh spacer layers, for which
experimental measurements are already available, but a first-principles study has been missing
so far. Spin-polarized scanning tunneling microscopy (SP-STM) has revealed a commensurate
hexagonal spin structure with 12 atoms in the surface unit cell as the magnetic ground state for
this system which was interpreted based on the experimental data as a nanoskyrmion lattice [56].
The emergence of the observed hexagonal state has been attributed to the magnetic interactions
between the Fe atoms and the Ir substrate originating either from polarization effects or the
Dzyaloshinskii-Moriya interaction (DMI). In contrast, the stabilization of a spontaneous square
nanoskyrmion lattice in an Fe ML grown in fcc stacking on the Ir(111) surface in zero external
field was explained by the interplay of the DMI and the four-site four spin interaction [19].

In the following, we explore the Fe ML in both fcc and hcp stacking on Ir(111) by applying
first-principles calculations based on DFT. In accordance with previous work [19], the well-
known non-collinear square nanoskyrmion lattice is confirmed as the magnetic ground state for
fcc-Fe/Ir(111) by our computations. Along the lines of the systems comprising Rh interlayers,
a hexagonal multi-Q state with nearly collinear magnetic moments surprisingly turns out
to be lower in energy than the non-collinear hexagonal skyrmion lattice proposed based on
experiments for hcp-Fe/Ir(111) [56]. By mapping total DFT energies of a variety of complex
magnetic structures to an atomistic spin model we reveal the interplay of pairwise Heisenberg
exchange, Dzyaloshinskii-Moriya interaction and higher-order exchange interactions (HOI) to be
responsible for the symmetry and the degree of collinearity of the respective spin lattice. In this
context we also present a new approach of calculating nearest-neighbor HOI constants which we
do not only apply to the Fe MLs in direct contact with the Ir(111) substrate but also exemplarily
to hcp-Fe/Rh2/Ir(111) from the previous chapter. Our findings were published in Ref. [III].
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Table 7.1. Relaxed interlayer distances for
Fe/Ir(111) (given in Å). Relaxed structural
parameters for both stackings of the Fe ML
on Ir(111) in the ferromagnetic (FM) state
for the LDA as well as the GGA lattice con-
stant of Ir. Structural optimizations have
been carried out with the VASP code by
means of a symmetric slab with 9 Ir sub-
strate layers and one Fe ML on each side of
the film. Table published in the supplemen-
tal material of Ref. [III].

System aIr,LDA dFeIr1 dIr1Ir2 dIr2Ir3

fcc-Fe/Ir(111)LDA 2.70 2.10 2.29 2.26
hcp-Fe/Ir(111)LDA 2.70 2.08 2.27 2.27

aIr,GGA dFeIr1 dIr1Ir2 dIr2Ir3

hcp-Fe/Ir(111)GGA 2.75 2.05 2.24 2.23

7.1 Computational details

For this study we again performed density functional theory (DFT) calculations using a combi-
nation of the full-potential linearized augmented planewave (FLAPW) method as implemented
in the FLEUR code [54] and the projected augmented wave (PAW) method as implemented in the
VASP code [55] to compute the total energies of a variety of complex collinear and non-collinear
magnetic states and hence also the magnetic interactions.

Structural optimization Taking the in-plane lattice constant of Ir determined within the local
density approximation (LDA) to the exchange correlation functional amounting to 2.70 Å [33]
as a basis, we first performed a structural relaxation for fcc- and hcp-Fe/Ir(111) via the VASP
code. For hcp-Fe/Ir(111) we carried out an additional geometry optimization based on the GGA
in-plane lattice constant of Ir taking a value of 2.75 Å [119]. For every relaxation a symmetric film
consisting of nine Ir layers and one Fe ML on each side and the one-atomic unit cell of the FM
state was used. The initial interlayer distances were set to the equilibrium lattice parameter of the
Ir bulk which amounts to 2.20 Å in case of the LDA lattice constant and to 2.25 Å for the GGA
in-plane lattice constant. Only the z coordinates of the Fe ML and the first two Ir substrate layers
were allowed to relax, while the five Ir layers in the middle of the film were kept fixed to the Ir
bulk value. In these calculations the energy cutoff was set to 400 eV and a 15×15×1 Γ-centered
k-point mesh was applied while the PW91 exchange correlation (xc) potential was chosen for
the LDA reference configuration on the LDA Ir lattice constant. On the other hand, the PBE xc
potential was used for the relaxation based on the GGA Ir lattice constant. The relaxed interlayer
distances resulting from these calculations are listed in Table 7.1 for both Fe stackings.

Spin spiral energy dispersion and uudd states Applying the interlayer distances of the struc-
tural optimization, we performed self-consistent calculations for spin spirals in the chemical unit
cell within the scalar-relativistic approximation by exploiting the generalized Bloch Theorem
implemented in the FLEUR code [77]. For this type of calculation an asymmetric film with nine Ir
layers and one Fe ML was chosen. The muffin tin radius was set to 2.23 a.u. for the magnetic Fe,
whereas a slightly larger value of 2.31 a.u. was adjusted for Ir. The number of k-points amounts
to 1936 in the full 2D BZ and a large cutoff of kmax=4.1 a.u.−1 was chosen in order to guarantee
convergence of the basis functions. Starting from the self-consistent results for the spin spirals,
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the energy contributions due to the DMI were calculated by including spin-orbit coupling
in first-order pertubation theory [94]. In contrast to the antisymmetric part of the exchange
interaction, the MAE was obtained self-consistently by adding SOC to the FM state [98]. Here,
the number of Ir layers was increased to 15 and the cutoff parameter kmax to 4.3 a.u.−1 in order to
obtain accurate results for the small quantity. For both Fe stackings the spin quantization axis
with SOC was applied perpendicular (E⊥) and parallel (E‖) to the film plane and the uniaxial
anisotropy constant was determined as Ku = E⊥ − E‖.
The energies of the two collinear uudd states with respect to the FM reference were computed in
a four-atomic unit cell per layer on the same geometry as the spin spirals. The cutoff for the
basis functions kmax as well as the muffin tin radii were chosen identical to those of the energy
dispersion E(q). Only the number of k-points is adapted due to the smaller size of the Brillouin
zone (BZ) in reciprocal space: for the uudd state along ΓM direction 168 k-points in the irreducible
part of the BZ were chosen, while 336 were applied for the uudd state along ΓK direction.
In these calculations exchange correlation effects were included by using the LDA potential with
the interpolation proposed by Vosko, Wilk and Nusair (VWN) [72].

Skyrmion lattices and MS states In order to investigate large square and hexagonal magnetic
unit cells with non-collinear spin arrangement containing up to 190 atoms in total by means of
DFT, we again resorted to the VASP code applying the same relaxed interlayer distances as in
the associated FLEUR calculations and the LDA VWN potential [72]. The energy cutoff was set
to 300 eV in all cases. The total energies of the 7:8-mosaic1 (MS) state and the corresponding
square skyrmion lattice (SkX) were calculated within their 15-atomic magnetic unit cell on a
Γ-centered mesh of 10×20×1 k-points. The same k-mesh was applied to compute the energies
of non-collinear spin states along the transformation path from the collinear 7:8-MS state into
the non-collinear square SkX of fcc-Fe/Ir(111). The 2D BZ of the hexagonal 3:9-MS state, its
respective 12-atomic hexagonal SkX and the continuous transformation of spin states between
the two extrema was sampled by a 8×24×1 Γ-centered k-point mesh. For the hexagonal 7:12-MS
state as well as the corresponding 19-atomic SkX we used 11×11×1 k-points while a 15×15×1
Monkhorst-Pack (MP) k-mesh was chosen for the non-collinear 3Q state. The density of the
k-meshes for the just mentioned states was selected in such a way that it corresponds to roughly
1/15, 1/12, 1/19 and 1/4 of the spin spiral calculations, respectively, in agreement with the
number of Fe atoms within the surface unit cell. The calculations along the geodesic path for the
15-atomic square (12-atomic hexagonal) lattice were performed for fcc-Fe/Ir(111) (hcp-Fe/Ir(111))
using the LDA (GGA) lattice constant of Ir.
The total energies of the skyrmion lattices as well as the energies of the magnetic states along the
geodesic paths from the collinear MS into the respective SkX were computed self-consistently by
means of the constrained local moment approach with fixed directions of the magnetic moments
and only allowing their magnitudes to relax. Based on these results, SOC effects were added in
subsequent non-selfconsistent calculations in which the converged charge density was kept
constant.

1For more detailed information on the construction and the nomenclature see Sec. 7.2.
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7.2 Energy dispersion of spin spirals
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Figure 7.1. DFT total energies for various spin structures in Fe/Ir(111). Energy dispersion E(q) of flat
cycloidal spin spirals obtained via DFT along the two high symmetry directions of the two-dimensional
Brillouin zone for (a) fcc-Fe/Ir(111) and (b) hcp-Fe/Ir(111) using the geometric structure of the LDA Ir
lattice constant. Black (grey) circles represent total DFT energies without (including) spin-orbit coupling
(SOC) effects, i.e. the DMI and MAE, while black (grey) lines show a fit to the Heisenberg model neglecting
(including) the contributions of the DMI and MAE. The DFT total energies of a variety of additional
spin structures presented in the main text are denoted at the q values of the respective 1Q states. Figure
published in Ref. [III].

In the first step we discuss the energy dispersion E(q) of flat spin spirals for both stackings
of the Fe ML on Ir(111) which is shown in Fig. 7.1 for the geometric structure of the LDA Ir
lattice constant2. For both systems a large exchange frustration becomes apparent; in case of
fcc-Fe/Ir(111) the FM state at the Γ-point is a local energy maximum and there are energy minima
with a depth of 2 to 4 meV/Fe atom for spin spirals with wave lengths of λ = 1.9− 1.7 nm
(q = |q| ≈ 0.14− 0.16× 2π/a) along both high symmetry directions of the 2D BZ (Fig. 7.1 (a)).
Both the RW-AFM state at the BZ boundary as well as the Néel state at the K-point are by 33 to
37 meV/Fe atom higher in energy than the FM state. For hcp-Fe/Ir(111) the situation is similar,
however in this case no spin spiral minima occur and instead the dispersion is quite flat around
the centre of the BZ (Fig. 7.1 (b)). Mapping the DFT results to the Heisenberg model of pairwise
exchange reveals the origin of the observed behaviour: as seen in Table 7.2, the two systems
are characterized by a small FM nearest-neighbor exchange constant with maximum values of
about 5.5 meV which competes with AFM interactions of second and third nearest neighbors.

2In Appendix B we demonstrate that our conclusions on the magnetic ground state of hcp-Fe/Ir(111) are
independent of the choice of the structural relaxation parameters based on the GGA or LDA Ir in-plane lattice
constant.
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Parameter fcc-Fe/Ir(111)LDA hcp-Fe/Ir(111)LDA

J1 +5.46 +4.36
J2 −1.35 −0.70
J3 −1.24 −1.51
J4 +0.09 +0.27
J5 +0.31 +0.31
J6 +0.00 −0.02
J7 −0.23 −0.21
J8 +0.14 +0.17
D1 +1.25 +1.20
D2 −0.28 −0.14
D3 −0.21 −0.29
D4 +0.00 +0.07
D5 −0.01 −0.02
Ku −1.44 −0.83

Table 7.2. Magnetic interaction constants
calculated via DFT using the geometric
structure of the LDA Ir lattice constant for
fcc- and hcp-stacked Fe MLs on Ir(111).
Heisenberg exchange constants Ji as ex-
tracted from fitting the respective spin spi-
ral energy dispersion E(q), i.e. without
modification by HOI terms, Dzyaloshinskii-
Moriya interaction (DMI) constants Di and
uniaxial magnetocrystalline anisotropy en-
ergy constant Ku for fcc- and hcp-Fe/Ir(111).
J > 0 (J < 0) represents ferromagnetic
(antiferromagnetic) order, D > 0 (D < 0)
clockwise (counterclockwise) rotation and
a negative value of Ku denotes an out-of-
plane easy magnetization axis. All values
are given in meV.

Hence, the ratio and sign of the pairwise exchange constants are similar to those obtained for
Fe/n-Rh/Ir(111) (cf. Table 6.2 in Sec. 6.3.1).
As already mentioned in Sec. 3.3.6, the direction of a magnetic moment at lattice site Ri in a flat
spin spiral with a specific wave vector q is given by Mi=M(cos(q ·Ri), sin(q ·Ri), 0) with M
denoting the size of the magnetic moment. From our DFT calculations we found this value to be
MFe ≈ 2.66 µB for hcp-Fe/Ir(111) and ≈ 2.72 µB for fcc-Fe/Ir(111) and quite stable upon the
variation of the q vector thereby fulfilling a basic condition of the classical Heisenberg model.
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Figure 7.2. Energy contributions for spin spiral states due to spin-orbit coupling (SOC) for Fe/Ir(111).
Energy contributions from the DMI to the energy dispersion of spin spirals for (a) fcc-Fe/Ir(111) and
(b) hcp-Fe/Ir(111) computed via DFT along the two high symmetry directions of the 2D BZ using
the geometric structure of the LDA Ir lattice constant. Black circles denote DFT energies, whereas the
black filled lines represent a fit to the Dzyaloshinskii-Moriya interaction. EDM < 0 (> 0): preference of
right-(left-)rotating spin spirals. Figure published in the supplemental material of Ref. [III].

Taking spin-orbit coupling effects, i.e. the DMI and MAE, into account for the energy dispersion
leads to a further stabilization of the already existing spin spiral minima in fcc-Fe/Ir(111) and
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the generation of new minima in hcp-Fe/Ir(111) for cycloidal spin spirals with a period of
λ = 1.9− 1.2 nm (q = |q| ≈ 0.14− 0.22× 2π/a) and a depth of up to 2.6 meV/Fe atom. The
exact energy contributions of the DMI for all spin spiral states are displayed in Fig. 7.2. Just
like in case of the systems with Rh interlayers, this SOC effect turns out to prefer cycloidal spin
structures of clockwise rotational sense. However, due to the missing screening effect of the 4d
Rh layer, the Ir substrate with a large SOC constant dominates the present Fe/Ir(111) system
resulting in a NN DMI strength of about 1.2 meV/Fe atom which is two times larger than the
respective values calculated for Fe/n-Rh/Ir(111) (cf. Table 6.2 in Sec. 6.3.1). For this reason the
DMI plays a more important role for Fe MLs in direct contact with Ir(111).

Turning our focus to the three prototypical multi-Q states which are energetically degenerate
with their corresponding spin spiral (1Q) states within the Heisenberg model, we find that for
both Fe stackings the collinear uudd state along ΓM direction is energetically favored over all
single-Q states (see filled blue squares in Fig. 7.1). On the contrary, both the uudd-ΓK as well as
the non-collinear 3Q state can be excluded as the magnetic ground state for both Fe stackings as
they are on the order of 30 to 40 meV/Fe atom higher in energy than the FM state. The energy
differences between the uudd states and their constituting 90◦ spin spirals amount to values of 21
meV/Fe atom at most indicating significant higher-order exchange contributions.

In order to go beyond the spin spiral energy dispersion as well as the prototypical multi-Q
states and to search for the experimentally observed square and hexagonal spin lattices instead,
we have further taken the square nanoskyrmion lattice (squ. SkX) observed as the magnetic
ground state for fcc-Fe/Ir(111) [19] into account. The spin structure which is constructed from a
superposition of two q vectors of equal length exhibiting an angle of 90◦ with respect to each
other is illustrated in Fig. 7.3 (a). Neglecting SOC, this state turns out almost degenerate in energy
with the uudd-ΓM state (see open olive-green diamonds in Fig. 7.1), however, the inclusion of
SOC lowers its energy by 2.2 meV/Fe atom in case of fcc-Fe and by 1.5 meV/Fe atom for hcp-Fe.
Taking only the normalized z component of the SkX according to Eq. (6.6), the non-collinear spin
state transforms into a fully collinear structure with seven moments pointing in one and eight
pointing into the opposite direction along the out-of-plane direction of the surface (Fig. 7.3 (b)).
For both Fe stackings this 7:8-MS state [119] is clearly higher in energy than the corresponding
squ. SkX as indicated by filled olive-green diamonds in Fig. 7.1.

In the next step we focus on the hexagonal magnetic states. Skyrmion lattices of this symmetry
can be constructed from a normalized superposition of three symmetry-equivalent cycloidal spin
spirals of same length and with angles of 120◦ with respect to each other as shown in Sec. 6.3.2 of
the previous chapter. Using the same construction formula (cf. Eq. (6.5)), the hexagonal 12-atomic
nanoskyrmion lattice proposed as the magnetic ground state of hcp-Fe/Ir(111) [56] and illustrated
in Fig. 7.3 (c) is obtained by choosing the q vectors along the three symmetry-equivalent ΓK
directions of the 2D BZ with a period of three nearest-neighbor distances. For both stackings of
the Fe ML on Ir(111) the total DFT energy of this hexagonal 12-SkX (without and including SOC)
turns out lower than the spin spiral minimum, but significantly higher than the energy of the
squ. SkX (see maroon and dark-red open hexagons in Fig. 7.1). Surprisingly, at this point the
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Figure 7.3. Sketches of square and hexagonal multi-Q states considered for Fe/Ir(111). (a) illustrates
the square nanoskyrmion lattice observed as the magnetic ground state of fcc-Fe/Ir(111) [19] and (b) the
corresponding collinear 7:8-MS state. (c) depicts the hexagonal 12-atomic skyrmion lattice proposed as the
magnetic ground state of hcp-Fe/Ir(111) [56] and (d) the respective collinear 3:9-MS. (e) presents the
hexagonal 19-atomic skyrmion lattice and (f) the corresponding collinear 7:12-MS state emerging as the
magnetic ground state in hcp-Fe/Rh2/Ir(111) as shown in the previous chapter. Spheres illustrate Fe atoms
and arrows the direction of their magnetic moments with red (blue) denoting the up (down) out-of-plane
component. Insets show the Fourier transform of the spin structures in the hexagonal Brillouin zone and
the two (three) Q vectors from which the square (hexagonal) skyrmion lattices are constructed. Figure
published in Ref. [III].

same effect as reported for the hexagonal magnetic states in hcp-Fe/n-Rh/Ir(111) (cf. Sec. 6.3.2)
can be observed for the two Fe stackings in direct contact with Ir(111): the collinear counterpart
of the 12-SkX, the hexagonal 3:9-MS state (see Fig. 7.3 (d)), gains energy with respect to its
corresponding non-collinear spin structure as indicated by filled maroon hexagons in Fig. 7.1.
This trend is even more strongly pronounced in hcp-Fe/Ir(111) bringing its energy close to both
the uudd-ΓM state and the squ. SkX.

Since a hexagonal magnetic state with 19 atoms in the surface unit cell was identified as the
ground state of hcp-Fe/Rh2/Ir(111) (cf. Sec. 6.1), we have considered both the non-collinear
19-SkX as well as the respective 7:12-MS state introduced in the previous chapter and displayed in
Figs. 7.3 (e) and (f) for the present Fe/Ir(111) system. Here, a similar scenario as described above
for the 12-atomic hexagonal states emerges, namely the collinear spin structure is energetically
preferred over its non-collinear analogue (open and filled blue hexagons in Fig. 7.1). In case of
hcp-Fe/Ir(111) the 7:12-MS state is even lower in energy than the uudd state, the 3:9-MS and the
squ. SkX.
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Figure 7.4. Sketches of the hexago-
nal on-top-states considered for hcp-
Fe/Ir(111). (a) The hexagonal non-
collinear on-top-state with 12 atoms in the
surface unit cell is obtained by placing
the point of constructive superposition
of the three constituting spin spirals, i.e.
the maximum out-of-plane magnetiza-
tion, on top of one single Fe atom. It
was proposed as a model for the spin
structure of the magnetic ground state
for hcp-Fe/Ir(111) as well [56]. (b) illus-
trates its respective collinear analogue,
the 7:5-MS state. Spheres illustrate Fe
atoms and arrows the direction of their
magnetic moments with red (blue) de-
noting the up (down) out-of-plane com-
ponent. The 12-atomic unit cell is indi-
cated by dashed lines in both sketches.
Figure published in the supplemental
material of Ref. [III].
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In view of the SP-STM experiments which have revealed a magnetic structure with 12 atoms per
unit cell for this Fe stacking [56], consistent with the 3:9-MS state or the 12-SkX, this DFT result
appears a bit surprising. However, taking again a look at the energy scale of Fig. 7.1 (b), one
realizes that it actually ranges on the order of less than 3 meV for the above-mentioned magnetic
states of interest, i.e. they are all very close in energy. Moreover, the trend favoring a collinear
hexagonal rather than a non-collinear square spin lattice in hcp-Fe/Ir(111) is clearly expressed by
the DFT calculation, while the non-collinear squ. SkX turns out as the state of lowest energy for
fcc-Fe/Ir(111) in good agreement with previous work [19].

In this context, we want to discuss one aspect from the experimental work [56] in more detail.
In [56] actually two possibilities were mentioned to map the hexagonal 12-atomic skyrmion
lattice to the hexagonal atomic Fe lattice resulting in two different symmetry-inequivalent
magnetic states: the point of constructive superposition of the three constituting spin spirals, i.e.
the maximum out-of-plane magnetization, can either be placed on top of one single Fe atom
or in the centre of a triangle between three Fe atoms. With the first approach one obtains a
so-called on-top-state corresponding to a hexagonal 7:5-MS state in the fully collinear version
(see Fig. 7.4), whereas the second method leads to a hollow-state which has been presented as
the 12-SkX (and its corresponding collinear counterpart, the 3:9-MS state) up to now. Based on
the experimental measurements the on-top-state was excluded as the magnetic ground state of
hcp-Fe/Ir(111) [56]. These findings are indeed supported by our DFT calculations which were
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(a)

(b)

Figure 7.5. Sketches of the two possi-
ble hollow-states of the collinear 3:9-MS
state in hcp-Fe/Ir(111). Illustration of the
two possibilities to place the hollow-state
relative to the atomic lattice: in (a) an
Ir atom is located below the center of a
downward pointing triangle of Fe atoms,
in (b) no Ir atom is present in the center
of an upward pointing Fe atom triangle.
Large red (blue) spheres illustrate Fe atoms
with up (down) out-of-plane magnetiza-
tion component, while the smaller grey
spheres represent Ir atoms of the first sub-
strate layer. The atomic positions of lower
Ir layers are not shown due to reasons
of visual clarity. Figure published in the
supplemental material of Ref. [III].

performed on the basis of the GGA lattice constant of Ir in this case3; while we found the 7:5-MS
to be higher in energy by 9 meV/Fe atom with respect to the 3:9-MS state, the two corresponding
non-collinear on-top and hollow SkX turn out almost energetically degenerate both without and
with the inclusion of SOC (see last column of Table 7.4 for exact values). Note that this result is
a strong indication of the collinearity of the hexagonal spin structure since the non-collinear
on-top-state was found to be inconsistent with the experimental data. The energy gain in DFT
only occurs for the hollow-state upon taking the possibility of a collinear MS state into account
which matches the experimental measurements.

In addition, in [56] two ways of placing the hollow-state (12-SkX) with respect to the atomic
lattice were discussed: the maximum out-of-plane magnetization of the three spin spirals can be
positioned in the center of a down- or an upward pointing triangle of Fe atoms. For the first case
this leads to an Ir atom being located below the centre of a Fe triangle as shown in Fig. 7.5 (a),
in the second case there is no such atom of the substrate present as demonstrated in Fig. 7.5
(b). Taking only magnetic interactions between the Fe atoms into account, these two states are
energetically degenerate, however in the experiments only the hollow-state state with an upward
pointing triangle of Fe atoms is observed. For this reason it was speculated whether the obvious
lifting of the energetic degeneracy could arise due to a three-site hopping mechanism of the DMI
or the varying induced spin-polarization of the Ir substrate [56]. As in our DFT calculations the
collinear 3:9-MS state has turned out to be lower in energy than the non-collinear 12-SkX, we

3There was actually no specific reason for choosing the GGA in-plane lattice constant of Ir for these test calculations.
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have only investigated the two possible collinear hollow-states from theory side. As expected, our
DFT calculations confirm that both states are indeed very close in energy with the hollow-state
exhibiting the downward pointing Fe atom triangle (Fig. 7.5 (a)) being only 0.37 meV/Fe atom
energetically lower than the other hollow-state.

7.3 Atomistic spin model

In order to elucidate the microscopic origin promoting a collinear hexagonal MS state in hcp-
Fe/Ir(111) and a non-collinear square nanoskyrmion lattice in fcc-Fe/Ir(111), we have studied
the atomistic spin model given by

H = − ∑
ij

Jij(mi ·mj)−∑
ij

Dij(mi ×mj)−∑
i

Ku(mz
i )

2 − ∑
<ij>

B1(mi ·mj)
2

− ∑
<ijk>

Y1[(mi ·mj)(mj ·mk) + (mj ·mi)(mi ·mk) + (mi ·mk)(mk ·mj)]

− ∑
<ijkl>

K1[(mi ·mj)(mk ·ml) + (mi ·ml)(mj ·mk)− (mi ·mk)(mj ·ml)] (7.1)

with the same magnetic interaction contributions as the model applied to Fe/n-Rh/Ir(111) (cf.
Sec. 6.4). Similar to the systems comprising Rh spacer layers, all interaction constants appearing
in Eq. (7.1) have been determined from DFT total energies. The pairwise Heisenberg exchange
constants Jij, the absolute values of the DMI vectors Dij and the uniaxial magnetocrystalline
anisotropy constant Ku for the two Fe stackings in direct contact with Ir(111) are listed in
Table 7.2. At this point it has to be noted again that the first three Heisenberg exchange constants,
J1 to J3, extracted from a fit of the DFT energy dispersion need to be modified according to
Eq. (4.24)-(4.26) when inserted into the atomistic spin model since the higher-order exchange
interactions contribute to the energies of spin spirals. For these terms treated within the nearest-
neighbor approximation in Eq. (7.1), the biquadratic, three-site four spin and the four-site four
spin interaction described by their coupling strengths B1, Y1 and K1, respectively, two different
approaches have been considered for the present system which are presented in the following.

7.3.1 Higher-order interactions from multi-Q method

Up to now we have resorted to the established method of calculating the NN HOI constants for
both the transition metal trilayers presented in chapter 5 as well as the Fe/n-Rh/Ir(111) film
systems discussed in chapter 6. It is based on evaluating the set of coupled equations [50]

∆EM = E3Q − EM,1Q =
16
3
(2K1 + B1 −Y1) (7.2)

∆E 1
2 ΓM = Euudd, M

2
− E M

2 ,1Q = 4(2K1 − B1 −Y1) (7.3)

∆E 3
4 ΓK = Euudd, 3K

4
− E 3K

4 ,1Q = 4(2K1 − B1 + Y1) (7.4)
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Figure 7.6. Comparison of spin model vs.
DFT energies for selected magnetic states in
fcc- and hcp-stacked Fe MLs on Ir(111). Up-
per panels show DFT total energies with re-
spect to the FM reference (red squares) and
energies obtained via the atomistic spin model
(black circles) using interaction parameters
calculated from DFT; in this case the NN
HOI constants have been determined from
the multi-Q method, i.e. from the set of cou-
pled equations presented in [50]. The top axis
denotes non-collinear spin structures and the
lower axis the corresponding collinear states.
The lower panels show the decomposition of
the total energy into the contributions from
the Heisenberg exchange, the biquadratic in-
teraction, the three-site four spin (3-Spin) and
the four-site four spin interaction (4-Spin).
Filled (open) circles represent collinear (non-
collinear) states. For the calculation of the total
energies in the spin model the DMI and MAE
were taken into account, but not shown here.
The lines connecting the data points serve as
a guide to the eye. Figure published in the
supplemental material of Ref. [III].

containing the total DFT energy differences of the three prototypical multi-Q states, the two
collinear uudd states and the non-collinear 3Q state, with respect to their constituting 1Q spin
spiral states. Therefore, as from now we refer to this approach as ’multi-Q method’. As already
mentioned before, the energy differences ∆EM, ∆E 1

2 ΓM and ∆E 3
4 ΓK turn out quite large for

Fe/Ir(111) which is indicated in Fig. 7.1. Plugging the exact numerical values for the energy
differences of the multi-Q states of the two Fe/Ir(111) systems into the set of coupled equations
yields indeed considerable values for the HOI terms which are listed in the lower lines of the last
three columns of Table 7.3. Similar as in Fe/Rh(111) [42] and Fe/n-Rh/Ir(111), the three-site four
spin interaction strength Y1 represents the largest parameter with positive values on the order of
4 meV. Just like in case of the systems with Rh spacer layers, the biquadratic term B1 turns out
quite large as well with a positive sign and maximum values of 2.7 meV, whereas the four-site
four spin interaction strength K1 remains insignificant among the three HOI constants.

Fig. 7.6 shows the energies of the energetically lowest spin states in Fe/Ir(111) calculated based
on the atomistic spin model using the NN HOI parameters obtained from the multi-Q method
and the appropriately modified Heisenberg exchange constants. Again, the states are arranged
in such a way that a direct comparison between collinear (uudd and MS states on the bottom
axis) and non-collinear (90◦ spin spiral and SkX on the top axis) magnetic states is possible.
Surprisingly, one notices immediately that this time the DFT values (red squares in the upper
panels) for both the collinear MS states as well as for the non-collinear SkX do not match the
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spin model values (black filled circles) at all, i.e. the trend between DFT and spin model is
clearly different. Moreover, the application of this parameter set obviously fails to correctly
reproduce the hexagonal magnetic ground state of hcp-Fe/Ir(111) and the square nanoskyrmion
lattice of fcc-Fe/Ir(111); instead the uudd state is predicted as the state of lowest energy for the
two systems. With the help of the lower panels of Fig. 7.6 presenting the decomposition of the
total energy into the single interaction contributions the reason for the observed discrepancy
for the non-collinear spin structures is quickly found: it is mainly a result of the biquadratic
and three-site four spin interaction exhibiting a positive sign and hence favoring a collinear
arrangement of the magnetic moments. In contrast, the mismatch for the collinear hexagonal MS
states which are promoted by the three-site four spin interaction as already noticed earlier can be
explained with the rising contributions of the pairwise exchange interaction with respect to their
non-collinear analogues.
Thus, while the multi-Q method was suitable to correctly describe the collinear hexagonal
magnetic ground states of hcp-stacked Fe MLs on a Rh mono- and double layer on Ir(111), it fails
to reproduce suitable values matching with the DFT results for the experimentally observed spin
structures in Fe/Ir(111).

7.3.2 Higher-order interactions from pseudoinverse method

The apparent failure of the multi-Q method of obtaining an atomistic spin model comprising NN
HOI terms that are suitable to explain the DFT energies of Fe/Ir(111) has motivated us to probe
another approach. One problem of the established method might be the energetically high-lying
uudd state along ΓK direction and the 3Q state entering the set of coupled equations (7.2)-(7.4).
As we are looking for the states of lowest energy in the two systems, magnetic structures that are
located high above the FM reference might not represent an appropriate choice to describe the
energy landscape in the vicinity of the true magnetic ground state. Hence, our new approach
instead relies on the DFT total energies of the energetically lowest states which are evaluated by
means of the so-called ’pseudoinverse method’ described in the following paragraph.

Within the framework of the atomistic spin model, the energy Ei of a magnetic state i is given by
a linear combination of the well-known interaction parameters P = {Pj} = (J1, ..., Jn, B1, Y1, K1)

T

with SOC contributions being neglected. Consequently, Ei can be calculated via a scalar product
Ei = Xi · P with the weights Xij containing each contribution of the parameters for a specific
magnetic state and the parameter vector P comprising all material-specific information. Assuming
the DFT energies EDFT

i to differ from the predicted energies by a normally distributed random
value εi, one ends up with a linear fitting problem. For multiple states i it can be written as the
following matrix equation

EDFT = X · P + ε (7.5)

and the interaction parameters Pi can be estimated from the equation

P =
(

XT · X
)−1
· XT · EDFT, (7.6)
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with (XT ·X)−1 ·XT denoting the pseudoinverse of X. In the following, the pseudoinverse is used
to compute a least square fit to an overdetermined system of linear equations that would lack a
solution otherwise.

Table 7.3. Higher-order exchange constants calculated via two different approaches for Fe/Ir(111).
Modified Heisenberg exchange constants (J′i ), i.e. taking the effect of the HOI into account as given by
Eq. (4.24)-(4.26), and HOI constants calculated via DFT for both stackings of the Fe ML on Ir(111) (using
the geometric structure of the LDA Ir lattice constant). Note that only the first three exchange constants
need to be adapted within the NN approximation of the HOIs while J4 to J8 remain as listed in Table 7.2.
The biquadratic (B1), four-site four spin (K1) and three-site four spin (Y1) interaction strength for nearest
neighbors are listed in the last three columns. For every system the upper line lists the modified exchange
and HOI parameters obtained from the pseudoinverse (PI) method while the lower one shows the values
computed from the set of coupled equations (multi-Q). All values are given in meV. Table adapted from
Ref. [III].

System Method J′1 J′2 J′3 B1 K1 Y1

fcc-Fe/Ir(111)LDA
PI

multi-Q
2.99
1.32

−3.82
−5.49

−0.26
−2.60

−1.97
2.71

−2.22
0.90

2.47
4.14

hcp-Fe/Ir(111)LDA
PI

multi-Q
2.04
0.22

−3.02
−4.84

−0.62
−2.69

−1.79
2.36

−2.32
0.59

2.32
4.14

To become more precise with respect to Fe/Ir(111), we have chosen the energies of the uudd
state along ΓM direction, the 7:8-MS state and the respective square SkX as well as the 3:9-MS
state, the 7:12-MS state, the 12-atomic SkX and the 19-atomic SkX for the energy vector EDFT of
Eq. (7.5). As seen from Fig. 7.1, these seven spin structures are located well below the FM state
and all other single-Q states of the two systems. For the selected states the total energy of the
FM state, EFM, is set as the reference. Now the task is to construct an overdetermined system
of equations in which the known DFT energies of seven states but only three unknown HOI
parameters enter. To this, the contributions of both the pairwise Heisenberg exchange including
up to eight nearest neighbors and the HOI terms were determined from the atomistic spin model.
For example, the scalar product E = X · P for the uudd-ΓM state explicitly reads as

∆EΓM
uudd = Euudd, M

2
− EFM = 4J

′
1 + 8J

′
2 + 8J

′
3+

16J4 + 4J5 + 8J6 + 8J7 + 8K1 + 8Y1.
(7.7)

Considering the conversion between the Heisenberg exchange constants Ji from the fit of the
DFT energy dispersion and the adapted J

′
i according to Eq. (4.24)-(4.26) and moving the known

quantities to the left side, the final equation for the uudd state is given by

∆EΓM
uudd − 4J1 − 8J2 − 8J3 − 16J4 − 4J5 − 8J6

−8J7 = −4Y1 − 4B1 + 8K1.
(7.8)

Following the same procedure for the six other states, one finally arrives at the overdetermined
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system of equations which can be transformed into the matrix equation (7.5):

∆EΓM
uudd − 4J1 − 8J2 − 8J3 − 16J4 − 4J5 − 8J6 − 8J7

= −4Y1 − 4B1 + 8K1

∆E7:8-MS − 4.8J1 − 6.93J2 − 7.47J3 − 14.93J4 − 6.4J5 − 5.87J6 − 8.53J7 − 4.8J8

= −2.13Y1 − 3.74B1 + 10.67K1

∆Esqu.SkX − 4.08J1 − 7.51J2 − 7.92J3 − 15.41J4 − 6.39J5 − 5.59J6 − 9.02J7 − 4.08J8

= −1.44Y1 + 0.19B1 + 9.07K1

∆E3:9-MS − 4J1 − 6J2 − 6J3 − 8J4 − 6J5 − 0J6 − 8J7 − 6J8

= −2Y1 − 3B1 + 12K1

∆E12-SkX − 4.98J1 − 7.67J2 − 8.41J3 − 9.97J4 − 7.67J5 − 0J6 − 9.97J7 − 8.41J8

= −0.23Y1 + 0.45B1 + 7.93K1

∆E7:12-MS − 3.79J1 − 6.32J2 − 7.58J3 − 13.89J4 − 7.58J5 − 3.79J6 − 10.11J7 − 6.32J8

= −2.53Y1 − 3.79B1 + 10.11K1

∆E19-SkX − 3.58J1 − 6.93J2 − 7.87J3 − 14.80J4 − 7.87J5 − 3.58J6 − 10.51J7 − 6.93J8

= −0.12Y1 + 0.32B1 + 4.63K1

(7.9)

Having inserted both the known DFT values for the energy differences as well as the Heisenberg
exchange constants obtained from the fit of the spin spiral energy dispersion, the application
of Eq. (7.6) yields the three NN HOI constants via the pseudoinverse. The respective values
describing the energy landscape of fcc- and hcp-Fe/Ir(111) in the best way are listed in the upper
lines of the last three columns of Table 7.3.
For the three-site four spin interaction only the strength turns out smaller as compared to the
calculation based on the three prototypical multi-Q states, while the sign remains the same. On
the other hand, the biquadratic term B1 and the four-site four spin interaction parameter K1

become negative. For the latter the order of magnitude changes drastically as well. Apart from
the magnitude of the newly calculated HOI constants, their signs are now consistent with the
result given for fcc-Fe/Ir(111) in previous work [19, 42] (cf. Table 5.3 in Sec. 5.2.3).

Fig. 7.7 demonstrates that the parameter set obtained from the pseudoinverse method finally
provides a good description of the DFT total energies of the energetically lowest states by means
of the atomistic spin model. Despite small quantitative deviations, now the trend of the DFT
energies of all magnetic states is captured by the spin model (red and black symbols in the
top panels). In accordance with DFT, the collinear hexagonal 3:9-MS and 7:12-MS states are
energetically favored over their non-collinear SkX counterparts, whereas the non-collinear
square SkX turns out lower in energy than its collinear analogon, the 7:8-MS state. In particular,
using the new parameter set the spin model correctly reproduces the squ. SkX as the magnetic
ground state of fcc-Fe/Ir(111). In contrast, for hcp-Fe/Ir(111) the experimentally found 12-atomic
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Figure 7.7. Comparison of spin model vs.
DFT energies for selected magnetic states in
fcc- and hcp-stacked Fe MLs on Ir(111). Up-
per panels show DFT total energies with re-
spect to the FM reference (red squares) and
energies obtained via the atomistic spin model
(black circles) with interaction parameters cal-
culated from DFT; here, the NN HOI con-
stants have been determined using the pseu-
doinverse method. The top axis denotes non-
collinear spin structures and the lower axis
the corresponding collinear states. The lower
panels show the decomposition of the total
energy into the contributions from the Heisen-
berg exchange, the biquadratic interaction, the
three-site four spin (3-Spin) and the four-site
four spin interaction (4-Spin). Filled (open) cir-
cles represent collinear (non-collinear) states.
For the calculation of the total energies in the
spin model the DMI and MAE were taken
into account, but not shown here. The lines
connecting the data points serve as a guide to
the eye. Figure published in Ref. [III].

hexagonal spin structure is not correctly predicted as the state of lowest energy. One reason for
this discrepancy could be the small energy difference between the involved states as observed
in Fig. 7.1 (b) revealing a limitation of the atomistic spin model or other types of magnetic
interactions which are not taken into account at this point.

Decomposing the total energy from the spin model into the single interaction contributions as
shown in the lower panels of Fig. 7.7 helps to understand why differences between hexagonal and
square skyrmion lattices occur. In contrast to the positive sign of the biquadratic term calculated
from the multi-Q method in Sec. 7.3.1, the negative sign of this interaction strength obtained
from the pseudoinverse favors non-collinear over collinear spin arrangement. Then again, the
three-site four spin interaction which continues exhibiting a positive sign prefers collinear
hexagonal spin lattices in agreement with previous findings for the stabilization mechanism of
collinear hexagonal multi-Q states in Fe/n-Rh/Ir(111) (cf. chapter 6). The four-site four spin
interaction is of similar strength as the three-site term, but of negative sign (see Table 7.3). In
accordance with previous work on fcc-Fe/Ir(111) [19], it thus causes a coupling of spin spiral to
multi-Q states. As seen from Fig. 7.7, the uudd-ΓM state is preferred by about 20 meV/Fe atom
over the 90◦-1Q-ΓM state and a similar energy gain is found for SkX and MS over spin spiral
states.

At this point another advantage of the atomistic spin model employing the parameter set
obtained from the pseudoinverse method needs to be mentioned. At the end of Sec. 7.2 the
DFT results concerning hexagonal collinear and non-collinear on-top and hollow-states were
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Table 7.4. Comparison of total energies of hexagonal MS and their corresponding SkX states calculated
via DFT (EDFT) and the atomistic spin model (Emodel

total ) using NN HOI constants from the pseudoinverse
method for hcp-Fe/Ir(111). For every magnetic structure the decomposition of the total energy from
the spin model into the single interaction contributions (apart from the MAE) is listed: the summarized
pairwise Heisenberg exchange of eight nearest neighbor shells (Eex), the DMI of nearest neighbors (EDMI),
the biquadratic (Ebiq), the four-site four spin (E4−Spin) and the three-site four spin (E3−Spin) interaction.
The DFT results were obtained based on the GGA lattice constant of Ir and contain the effect of spin-orbit
coupling in case of the two 12-atomic SkX states. All values are given in meV/Fe atom with respect to the
ferromagnetic state. Table published in the supplemental material of Ref. [III].

state Eex EDMI Ebiq E4−Spin E3−Spin Emodel
total EDFT

7:5-MS −16.72 0.00 0.00 −17.12 28.32 −5.52 −11.33
12-SkXon-top −20.46 −5.23 −4.45 −16.57 30.21 −16.53 −15.66
12-SkXhollow −21.24 −5.27 −4.70 −16.97 29.32 −18.91 −15.24
3:9-MS −16.37 0.00 0.00 −25.68 18.88 −23.17 −20.69

presented. In accordance with experimental measurements both the 12-atomic on-top SkX as well
as its collinear counterpart, the 7:5-MS state, could be excluded as the magnetic ground state of
hcp-Fe/Ir(111). As demonstrated in Table 7.4, these findings are well reflected by our atomistic
spin model. Although the DFT energy of the hexagonal 7:5-MS state was not used to determine
the NN HOI parameters of the system and for this reason obviously misses the value of the spin
model by about 6 meV/Fe atom, its energetic unfavorable position with respect to the 3:9-MS
state becomes clearly apparent in the spin model (seventh column of Table 7.4). A closer analysis
of the single interaction contributions reveals that the two hexagonal states are energetically
degenerate regarding the pairwise Heisenberg exchange, but both the three-site four spin and
the four-site four spin interaction promote the 3:9- over the 7:5-MS state. Moreover, the atomistic
spin model confirms the DFT result of the non-collinear on-top-state being lower in energy than
its collinear analogon in contrast to our general findings on hexagonal states. In this case the
energetic preference of the non-collinear spin structure is caused by the pairwise Heisenberg
exchange, the biquadratic interaction and the DMI. As further visible from Table 7.4, an energy
gain on the same order of magnitude caused by the respective exchange interactions occurs
for the non-collinear hollow-state. However, the three-site four spin and the four-site four spin
term lead to a much stronger energy gain in favor of the corresponding 3:9-MS. In contrast,
these two energy contributions are quite similar for the on-top-state and the 7:5-MS and therefore
the pairwise Heisenberg exchange, the biquadratic interaction and the DMI remain dominant
favoring the non-collinear spin structure. Note that just like in the DFT calculation the two
symmetry-inequivalent SkX states are also very close in energy in the atomistic spin model.

In the end, the question may arise to what extent the energies of the uudd-ΓK and the 3Q state
of Fe/Ir(111) are correctly described by the HOI constants obtained from the pseudoinverse
(see upper lines of the last three columns of Table 7.3). Inserting the respective parameter set
into the atomistic spin model reveals that their DFT energies are missed by up to 45 meV/Fe
atom. This result supports the assumption made at the beginning that their electronic structures
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apparently differ too much from that of the true magnetic ground state hence not being able to
describe the energetically lowest states correctly by means of the multi-Q method. A different
situation arises for the two collinear 4u4d states presented in Sec. 6.5; their DFT energies (not
listed here for Fe/Ir(111)) are close to those of the seven states entering the overdetermined
system of equations (7.9). Here, the differences between DFT and spin model amount to only 3 to
6 meV/Fe atom. An extension of the system of equations (7.9) by these two states only leads to a
change in the magnitude of the HOI terms, but not to a change in sign. In this case, the largest
change occurs for the three-site four spin term which increases from about 2.5 meV (cf. Table 7.3)
to roughly 4 meV due to the larger weighting of collinear states. However, adding the 4u4d states
to the overdetermined system of equations results in a worse quality of the least square fit to the
energetically lowest states via the pseudoinverse: the mean value of the differences between DFT
and spin model amounts to 2.36 meV (1.85 meV) for hcp-Fe/Ir(111) (fcc-Fe/Ir(111)) in case the
HOI parameter obtained via Eq. (7.9) are used, upon taking additionally the energies of the 4u4d
states into account a slightly larger deviation of 2.64 meV (2.62 meV) occurs. Consequently, when
using the pseudoinverse it makes sense to consider only those states in the fitting routine whose
energy landscape should be described properly in the atomistic spin model by means of the
respective exchange constants.

7.3.3 Application of the pseudoinverse method to hcp-Fe/Rh2/Ir(111)

The findings of the previous section might have raised the question why exactly the atomistic
spin model comprising nearest-neighbor higher-order exchange interactions calculated from the
established multi-Q method fails to reproduce the DFT energies of the energetically lowest states
in Fe/Ir(111), but worked quite well for the systems with Rh interlayers. As already mentioned,
one reason might be that the uudd-ΓK and the 3Q state entering the set of coupled equations
(7.2)-(7.4) are too high in energy to correctly capture the properties of the true magnetic ground
state itself or the magnetic structures which are energetically close to it. Another reason could
be the strong exchange frustration of Fe/Ir(111) causing the pairwise Heisenberg exchange
constants to be on the same order of magnitude as the NN HOI terms and hence representing a
limiting case of the atomistic spin model. However, taking again a look at Fig. 6.6 in Sec. 6.4
showing the comparison of spin model and DFT energies for selected magnetic states of hcp-Fe
on Rh1 and Rh2 on Ir(111), one realizes that the atomistic spin model with NN HOI terms
obtained from the multi-Q method is obviously not capable of reproducing the complete trend
between DFT and the extended Heisenberg model. As commented before, the trend for the
square SkX clearly diverges. In order to test to which extent the observed discrepancies can be
improved, we have applied the pseudoinverse method exemplarily to hcp-Fe/2Rh/Ir(111).

To obtain the values for the three NN HOI contants for the system with a Rh DL by means of
the pseudoinverse, we have resorted to the matrix equation (7.9) set up for Fe/Ir(111). As the
12-atomic SkX and the 3:9-MS state were not in the focus of interest in hcp-Fe/Rh2/Ir(111) and
hence their energies were not calculated via DFT, we have replaced the corresponding energy
differences with the ones for the hexagonal 12:15-MS and the 27-SkX. According to the atomistic



132 Nanoscale square and hexagonal skyrmion lattices in Fe/Ir(111)

Table 7.5. Higher-order exchange constants calculated via two different approaches for hcp-
Fe/Rh2/Ir(111). Modified Heisenberg exchange constants (J′i ), i.e. taking the effect of the HOI into
account as given by Eq. (4.24)-(4.26), and HOI constants calculated via DFT for hcp-Fe/Rh2/Ir(111). Note
that only the first three exchange constants need to be adapted within the NN approximation of the HOIs
while J4 to J11 remain as listed in Table 6.2. The biquadratic (B1), four-site four spin (K1) and three-site
four spin (Y1) interaction strength for nearest neighbors are listed in the last three columns. The upper line
lists the modified exchange and HOI parameters obtained from the pseudoinverse (PI) method while the
lower one shows the values computed from the set of coupled equations (multi-Q). Note that the latter are
also given in Table 6.3 of Sec. 6.3.2. All values are given in meV.

System Method J′1 J′2 J′3 B1 K1 Y1

hcp-Fe/Rh2/Ir(111)
PI

multi-Q
−0.90
−1.68

−4.89
−5.67

−1.47
−3.31

−1.15
2.53

−1.36
0.56

3.96
4.74

spin model the equations are given by

∆E12:15-MS − 3.56J1 − 6.22J2 − 7.11J3 − 14.22J4 − 8J5 − 6.22J6 − 14.22J7 − 7.11J8

= −2.67Y1 − 3.56B1 + 8.89K1

∆E27-SkX − 2.70J1 − 5.86J2 − 6.94J3 − 15.55J4 − 8.48J5 − 5.86J6 − 13.88J7 − 7.78J8

= 0.01Y1 + 0.23B1 + 2.80K1.

(7.10)

Inserting the DFT values for the energy differences of the involved magnetic states and the
Heisenberg exchange constants extracted from the energy dispersion into the full matrix equation
(7.5), the application of the pseudoinverse yields the NN HOI terms for hcp-Fe/Rh2/Ir(111)
which are listed in the upper lines of the last three columns of Table 7.5. Surprisingly, both the
biquadratic and four-site four spin term are now of negative sign, while they were computed to
be positive by means of the multi-Q method before. K1 turns out to be about 1 meV smaller
in comparison to the values computed for Fe/Ir(111). In contrast to B1 and K1, the sign and
magnitude of the three-site term Y1 remains stable upon the variation of the calculation approach.
While its strength is on the order of 2.3 to 2.5 meV in case of Fe MLs in direct contact with Ir(111)
(cf. Table 7.3), it ranges on the order of 4 meV for hcp-Fe on a Rh DL on Ir(111). Therefore, the
influence of the Rh spacer layer is now clearly captured in the HOI constants of both types of
systems, while this was not the case for the values calculated from the multi-Q method (cf. values
from the lower lines of the last three columns of Table 7.5 and 7.3).

Fig. 7.8 reveals the parameter set obtained from the pseudoinverse method to provide a much
better quantitative description of the DFT total energies of the magnetic states of interest in
hcp-Fe/Rh2/Ir(111) by means of the atomistic spin model (see top panel). Both the small
quantitative deviations for the hexagonal MS and SkX as well as the divergence of the trend for
the square spin lattice illustrated in Fig. 6.6 (b) of Sec. 6.4 are now eliminated.

The decomposition of the total energy into the single interaction contributions presented in the
lower panel of Fig. 7.8 demonstrates that the congruence of the DFT and spin model data for the
non-collinear square SkX is mainly caused by the negative values of the biquadratic and four-site
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Figure 7.8. Comparison of spin model vs.
DFT energies for selected magnetic states
in hcp-Fe/Rh2/Ir(111). Upper panels show
DFT total energies with respect to the FM ref-
erence (red squares) and energies obtained
via the atomistic spin model (black circles)
with interaction parameters calculated from
DFT; here, the NN HOI constants have been
determined using the pseudoinverse method.
The top axis denotes non-collinear spin struc-
tures and the lower axis the corresponding
collinear states. The lower panels show the
decomposition of the total energy into the
contributions from the Heisenberg exchange,
the biquadratic interaction, the three-site four
spin (3-Spin) and the four-site four spin inter-
action (4-Spin). For the calculation of the total
energies in the spin model the DMI and MAE
were taken into account, but not shown here.
The lines connecting the data points serve as
a guide to the eye.

four spin interaction. In contrast, the curves for both the three-site four spin interaction and
the pairwise Heisenberg exchange are nearly identical to those calculated from the NN HOI
constants obtained from the multi-Q method (cf. Fig. 6.6 (b)) apart from a slight shift in energy.
Hence, our conclusions drawn in Sec. 6.4 with respect to the stabilization mechanism of collinear
hexagonal states in the systems with Rh interlayers are still valid for the choice of the new HOI
parameter set. As the three-site term Y1 still represents the largest HOI constant and exhibits a
positive sign, it promotes collinear over non-collinear spin structures with a clear preference for
hexagonal arrangement of magnetic moments.

7.4 Non-collinear square vs. collinear hexagonal spin lattices

In the last step we want to employ the atomistic spin model comprising the HOI terms obtained
from the pseudoinverse method to understand why the square spin lattice of fcc-Fe/Ir(111)
exhibits non-collinear magnetic order while the hexagonal spin lattice of hcp-Fe/Ir(111) shows a
tendency towards collinear magnetism. To this, we have first performed DFT calculations for the
total energies of magnetic structures with their moments rotating continuously from the 7:8-MS
state to the square SkX and from the 3:9-MS state to the hexagonal 12-SkX, respectively. Focusing
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on the geodesic path in spin space for the square lattices of fcc-Fe/Ir(111) depicted in Fig. 7.9

(c)

(d)

(a)

(b)

Figure 7.9. Analysis of the degree of non-collinearity for skyrmion lattices of different symmetry.
Total energies of magnetic structures along the geodesic path in spin space from (a) the square 7:8-MS
state into the square SkX of fcc-Fe/Ir(111) and (c) the hexagonal 3:9-MS state into the hexagonal 12-SkX of
hcp-Fe/Ir(111). Red and black data points are calculated via DFT including SOC and via the atomistic
spin model, respectively. (b) and (d) depict the energy resolved contributions from the different magnetic
interactions comprised in the atomistic spin model. The relative polar angle θ is defined for every magnetic
moment in the unit cell as θ(x)=θ0 + x(θ f − θ0) with x ∈ [0, 1] where the value x = 0 is chosen for the
collinear MS and x = 1 for the non-collinear SkX in each case. θ f refers to the final value of every magnetic
moment in the respective SkX, whereas θ0 is set to 0◦ for upward pointing moments (180◦ for downward
pointing moments). The lines connecting the data points serve as a guide to the eye. Figure published in
Ref. [III].

(a), one immediately notices that the fully non-collinear skyrmion lattice represents a global
energy minimum (red data points). The results computed for the corresponding spin structures
by means of the atomistic spin model using the HOI constants obtained via the pseudoinverse
(black data points) agree excellently with the DFT values.
On the contrary, for the hexagonal 12-atomic state of hcp-Fe/Ir(111) shown in Fig. 7.9 (c) a similar
behaviour as previously reported for the hexagonal 27-atomic state of hcp-Fe/Rh1/Ir(111) (cf.
Sec. 6.6) can be observed: a small energy minimum arises close to the collinear 3:9-MS state in
both DFT and spin model calculation. Within DFT, the minimum corresponds to an 18% canted
state which gains 0.6 meV/Fe atom with respect to the 3:9-MS. However, the deviation from
the collinear state is equivalent to only 7◦ to 16◦ canting of the magnetic moments from the z
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Figure 7.10. SP-STM simulations for hexag-
onal spin states in hcp-Fe/Ir(111). (a)-(c)
Sketches of the 12-SkX, the energetically low-
est 18% canted 3:9-MS state according to
DFT and the collinear 3:9-MS state of hcp-
Fe/Ir(111) followed by the corresponding sim-
ulated SP-STM images of the same area with
a tip magnetization in +z and −z (out-of-
plane) direction with 50% spin polarization in
each case. The SP-STM simulations have been
performed based on the model described in
Ref. [116] at a height of 6 Å. Figure adapted
from the supplemental material of Ref. [III].

direction and hence the degree of non-collinearity turns out to be very small just like for the
energetically lowest 15% canted 12:15-MS state of hcp-Fe/Rh1/Ir(111) (cf. Fig. 6.11). Within the
spin model a similar trend of energy vs. canting occurs for the 12-atomic state of hcp-Fe/Ir(111),
but the quantitative deviations are larger than for the square spin lattice; here, the minimum
amounting to an energy gain of 0.5 meV/Fe atom emerges at only 10% canting.

The different behaviour of square and hexagonal skyrmion lattices can be understood by taking
a closer look at the energy resolved contributions from the different magnetic interactions
comprised in the atomistic spin model (Figs.7.9 (b) and (d)). For both symmetries the three-site
and four-site four spin interaction favor the respective collinear MS state, while the pairwise
Heisenberg exchange, the biquadratic interaction and the DMI prefer non-collinear SkX. How-
ever, quantitative differences in the contributions of the competing interactions can clearly be
recognized. For the square lattice the slope of the two four-spin interactions increases very slowly
along the geodesic path and the maximum value of the four-site term K1 amounts to roughly 5
meV/Fe atom at 80% canting. In contrast, the negative slope of the biquadratic term B1 increases
much faster reaching its maximum value of about −8 meV/Fe atom at 100% canting, i.e. the
SkX. As a consequence, the influence of the four-spin interactions remains weak for this type of
symmetry resulting in the fully non-collinear SkX to be energetically most favourable. On the
other hand, the slightly canted 3:9-MS state of hcp-Fe/Ir(111) arises due to the opposite effect: in
this case the rapidly increasing contributions of the four-spin interactions with maximum values
of up to 10 meV/Fe atom quickly exceed the ones of the Heisenberg and biquadratic exchange
and the DMI.
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We have further simulated SP-STM images of the hexagonal states of hcp-Fe/Ir(111) based on
the simplified model for the spin-polarized tunneling current described in Sec. 4.3 [116] in order
to directly compare our assumption of nearly collinear magnetic order with the experimental
measurements on the film system [56]. However, as illustrated in Fig. 7.10, for an out-of-plane
magnetized tip both the non-collinear 12-SkX and the nearly collinear 3:9-MS predicted as
the magnetic ground state based on DFT calculations in this thesis show a similar hexagonal
magnetic contrast. In contrast to the slightly canted 12:15-MS state of hcp-Fe/Rh1/Ir(111) (cf.
Fig. 6.11) which can be easily identified in experiments due to its triangular shape breaking the
six-fold symmetry of the hexagonal lattice, such an unambiguous experimental distinction is
probably not possible for the 12-atomic state of hcp-Fe/Ir(111).

7.5 Conclusion

In this chapter, we have presented a detailed study on Fe monolayers in fcc and hcp stacking
on the Ir(111) surface using density functional theory. While for fcc-Fe the well-known square
nanoskyrmion lattice [19] is confirmed as the magnetic ground state, for hcp-Fe the experimentally
observed hexagonal 12-atomic state does not resemble the originally proposed non-collinear
skyrmion lattice [56], but turns out as a slightly canted mosaic state similar to the hexagonal spin
structures in Fe/Rh layers on Ir(111).

Similar to the previously presented systems with Rh interlayers, the Fe MLs on Ir(111) are
characterized by a strong exchange frustration with the DMI additionally playing an important
role due to the direct contact of the magnetic layer and the heavy-metal substrate with a large
SOC. Concerning the symmetry of the considered skyrmion lattices, the same effect as reported
for Fe/n-Rh/Ir(111) is revealed by our DFT calculations: in case of the square spin lattice, the
non-collinear nanoskyrmion gains energy with respect to its collinear counterpart, the 7:8-MS
state, while the opposite applies to the hexagonal states, i.e. a collinear 3:9- or 7:12-MS state is
energetically favored over its corresponding hexagonal non-collinear analogue.

As the mapping of the DFT results for the magnetic states of interest to an atomistic spin model
with nearest-neighbor HOI constants obtained from the well-established multi-Q method [50]
failed for Fe/Ir(111), we introduced a new approach to calculate these fourth-order terms. The
application of the pseudoinverse method resorting to a least square fit to the energetically lowest
spin states of the system finally led to a good agreement between DFT and the predicted energies
from the extended Heisenberg model including the square lattices. Moreover, the sign of the
three NN HOI terms has turned out to be consistent with the result given for fcc-Fe/Ir(111) in
previous work [42].

In accordance with previous calculations presented in chapter 6, the three-site four spin term
Y1 still emerges as the dominant HOI parameter for hcp-Fe/Rh2/Ir(111) upon employing the
pseudoinverse method. While both its sign and magnitude remain unchanged compared to the
established multi-Q method, the biquadratic and four-site four spin term turn out negative by
means of the new approach. However, the newly obtained parameter set even leads to a better



7.5 Conclusion 137

agreement between DFT energies and the atomistic spin model without changing our previous
statements on the stabilization mechanism of hexagonal multi-Q states in hcp-Fe/n-Rh/Ir(111).

Applying the atomistic spin model with HOI constants determined from the pseudoinverse
method to Fe/Ir(111), the emergence of spin lattices with different symmetry (square or hexago-
nal) and degree of collinearity can be ascribed to quantitative differences in the contributions of
the competing magnetic interactions, especially the DMI and fourth-order terms, independent of
the strength of the respective interaction.
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8 Complex spin structures in
hexagonal magnetic double
layer films

In the previous chapters, ultrathin film systems comprising only one magnetic layer were in the
focus of interest. Using Fe monolayers on the Ir(111) surface as an example, we have shown that
such kinds of systems can exhibit intriguing magnetic ground states arising from the interplay of
frustrated Heisenberg exchange, DMI and higher-order terms. Not only an incommensurate
non-collinear square nanoskyrmion lattice on the underlying triangular atomic lattice was
revealed as the state of lowest energy in case of fcc-Fe, but also the possibility of a commensurate
hexagonal multi-Q state with nearly collinear magnetic moments was presented for the case of
hcp-Fe. However, the magnetic order and electronic structure beyond monolayers, i.e. magnetic
3d transition metal bi- and trilayers on surfaces, represents an interesting topic as well. They can
serve as model systems for complex spin structures in multilayers, which can contain magnetic
layers of similar thickness, and might be a basis to obtain first insights towards the impact of
higher-order exchange interactions in bulk systems.

In the following, we investigate both a simple Mn monolayer on the Ir(111) surface but also a
more complex Mn double layer and a Mn/Fe bilayer grown pseudomorphically on the same
substrate by means of first-principles calculations based on DFT. This theoretical study has
been triggered by experimental work from our collaborators at the University of Hamburg. Our
computations confirm the experimentally observed Néel state as the magnetic ground state
of Mn/Ir(111). Before presenting DFT results for the film systems with magnetic bilayers, the
mathematical treatment of spin spirals propagating in two interacting magnetic layers needs to
be introduced by extending the Hamiltonian of the pairwise Heisenberg exchange. For every
magnetic double layer we calculate and compare both intra- as well as interlayer Heisenberg
exchange of a freestanding trilayer, i.e. with the surface represented by only one Ir layer, and its
corresponding film system comprising nine Ir substrate layers. Within the scope of our DFT
study we show that Mn/Mn/Ir(111) exhibits a strong antiferromagnetic interlayer exchange
coupling with a RW-AFM state in each magnetic layer being the single-q state of lowest energy,
while Mn/Fe/Ir(111) is characterized by strong interlayer exchange frustration.

139
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8.1 Experimental measurements

(a) (b) (c)

Figure 8.1. Spin-polarized scanning tunneling microscopy measurements on Mn/Ir(111),
Mn/Mn/Ir(111) and Mn/Fe/Ir(111). (a) Constant-current topography image of the Néel state ob-
served on a Mn monolayer on Ir(111); bulk Cr tip, U = +3 mV, I = 87 nA, T = 4.2 K; image size: 8nm x
8nm. (b) Constant-current topography image of the RW-AFM state on a Mn double layer on Ir(111); bulk
Cr tip, U = +10 mV, I = 1 nA, T = 4.2 K; image size: 20nm x 20nm. (c) Constant-current topography
image of the unknown magnetic ground state exhibiting a four-atomic magnetic unit cell of rectangular
shape on a Mn/Fe bilayer on Ir(111); bulk Cr tip, U = +5 mV, I = 20 nA, T = 4.2 K; image size: 15nm x
15nm. Images by courtesy of Kirsten von Bergmann and André Kubetzka.

The experimental measurements were performed by Kirsten von Bergmann and André Kubetzka
in the laboratory of Prof. Roland Wiesendanger1. According to the experimental observations,
the magnetic Mn monolayer (ML) grows pseudomorphically mainly in hcp stacking on the
nonmagnetic Ir(111) surface and the spin-polarized scanning tunneling microscopy (SP-STM)
image displays a magnetic contrast which is compatible with the Néel state (see Fig. 8.1 (a)).
In contrast, the SP-STM image of the Mn double layer (DL) on Ir(111) exhibits a stripe pattern for
both fcc and hcp stacking of the Mn top layer which would be consistent with the magnetic
contrast of a RW-AFM state (Fig. 8.1 (b)). However, the spin structure in the two Mn layers
cannot be unambiguously deduced from the experiment. In addition, domain walls with a
hexagonal superstructure between rotational domains of the magnetic ground state structure
have been found.
The third system studied by our experimental colleagues is a Mn/Fe bilayer growing pseudo-
morphically on the Ir(111) surface as well. This system is promising for exhibiting intriguing
magnetic states since an fcc stacked Fe monolayer on Ir(111) hosts a non-collinear nanoskyrmion
lattice [19] stabilized by the DMI and HOI terms as demonstrated in the previous chapter. From
Fig. 8.1 (c) it becomes apparent that for the Mn/Fe bilayer on Ir(111) a four-atomic magnetic unit
cell of rectangular shape is observed in the experiment. However, the magnetic ground state
remains unclear in this case. In the upper part of the SP-STM image of Fig. 8.1 (c) an unusual
high resolution can be recognized. This phenomenon is caused by so-called atom manipulation
imaging in which an adatom of unknown species is located in the tunnel junction.

1Institute for Nanostructure and Solid State Physics, University of Hamburg, Jungiusstraße 11a, 20355 Hamburg,
Germany
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8.2 Computational details

In order to understand the experimentally observed magnetic ground states and to study
the magnetic exchange interactions of hexagonal magnetic bilayers on the Ir(111) surface, we
employed density functional theory (DFT) calculations using a combination of the full-potential
linearized augmented planewave (FLAPW) method as implemented in the FLEUR code [54]
and the projected augmented wave (PAW) method as implemented in the VASP code [55]. All
calculations are based on the GGA in-plane lattice constant of Ir which amounts to 2.75 Å [119].

System ∆EFM ∆ERW-AFM aIr,GGA dMnIr1 dIr1Ir2 dIr2Ir3
fcc-Mn/Ir(111) 360 30 2.75 2.076 2.282 2.213
hcp-Mn/Ir(111) 370 0 2.75 2.058 2.263 2.221

Table 8.1. Computational results for Mn/Ir(111) after structural optimization. Energy differences for
both stackings of the Mn layer in the FM state, ∆EFM, and the RW-AFM state, ∆ERW-AFM, with respect to
the energetically lowest state after relaxation, the RW-AFM state of hcp-Mn (given in meV/Mn atom). The
structural relaxation has been carried out with the VASP code (GGA PBE [74]) by means of a symmetric
slab with 9 Ir substrate layers and one Mn layer on each side of the film based on the GGA in-plane lattice
constant of Ir [119]. As the RW-AFM state turns out to be lower in energy than the FM state for both Mn
stackings, the relaxed interlayer distances of the former serving as a basis for further calculations on the
electronic and magnetic properties of the system are listed in the last three columns (given in Å).

Structural optimization Focusing first on the Mn monolayer (ML) on Ir(111), we performed
a structural relaxation for both fcc and hcp stacking of the magnetic layer via the VASP code
applying a symmetric film consisting of nine Ir layers and one Mn ML on each side. As, for
example, Mn MLs on the Re(0001) surface were shown to exhibit a strong antiferromagnetic
(AFM) behaviour [40], we not only considered the FM state within its one-atomic unit cell but
also the RW-AFM state within its two-atomic magnetic unit cell. The initial interlayer distances
were set to the equilibrium lattice parameter of the Ir bulk which takes a value of 2.25 Å. Only
the z coordinates of the Mn ML and the first two Ir substrate layers were taken into account for
the geometry optimization, while the five central Ir layers were kept fixed to the bulk value.
Moreover a large energy cutoff of 400 eV was chosen and a 15×15×1 Γ-centered k-point mesh
was applied for both magnetic unit cells, while exchange correlation effects were included by
means of the GGA PBE potential [74]. The results of the structural relaxation are summarized in
Table 8.1 for both Mn stackings. It becomes apparent that the RW-AFM state turns out to be
much lower in energy than the FM state for each stacking of the magnetic layer which is why the
relaxed interlayer distances of the former are applied for further calculations on the electronic
and magnetic properties of the two systems.

For the structural optimization of magnetic bilayers on Ir(111) we resorted to the same calcula-
tional parameters as described above for the Mn ML. According to experimental observations2,
the subsurface Mn layer of the Mn DL only grows in hcp stacking on the Ir(111) substrate,
whereas for the top Mn layer both stackings occur. In case of the Mn/Fe bilayer, the Fe layer is

2Kirsten von Bergmann, private communication
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Figure 8.2. Possible collinear
spin configurations for mag-
netic bilayers. Magnetic con-
figurations taken into account
for the structural optimiza-
tion of magnetic bilayers on
the Ir(111) surface: (a) the
FM state with parallel mag-
netic moments in both layers,
(b) the layered antiferromag-
netic (LAFM) state with mo-
ments oriented parallel within
one layer and antiparallel be-
tween the layers and (c) and
(d) two RW-AFM states with
an AFM structure realized
in each magnetic layer. The
magnetic unit cell used in
the respective calculation is
sketched by thin black lines.
Large (small) spheres repre-
sent the magnetic atoms of the
surface (subsurface) layer.

                       (a) FM                                                      (b) LAFM

(c) RW-AFM I                                                 (d) RW-AFM II

[110]

clearly recognized to grow pseudomorphically in fcc stacking on Ir(111), while for the upper Mn
layer only hcp stacking is possible. Nonetheless, we have also taken fcc-Mn/fcc-Fe/Ir(111) into
account for the geometry optimization as these types of calculations are not costly in terms of
time and computational resources.
In contrast to a magnetic ML on a non-magnetic substrate, the structural relaxation of a magnetic
bilayer needs to cover four collinear magnetic configurations which are illustrated in Fig. 8.2: the
FM state with parallel magnetic moments in both layers, the layered antiferromagnetic (LAFM)
state with magnetic moments oriented parallel within one layer and antiparallel between the two
layers and two RW-AFM states in which an AFM structure is realized in each magnetic layer;
the latter two differ by the alignment of spins between the two adjacent layers: they are either
aligned parallel (RW-AFM I) or antiparallel (RW-AFM II) along the ΓM-direction.

As shown in Figs. 8.3 (a) and (b), the two Mn DL systems prefer a parallel alignment of their
spins between the two layers along the ΓM-direction since the RW-AFM I state turns out as the
state of lowest energy among the four possible configurations. The RW-AFM II state (fcc-Mn:
∆E=+20 meV; hcp-Mn: ∆E=+30 meV) and the LAFM state (fcc-Mn: ∆E=+160 meV; hcp-Mn:
∆E=+150 meV) are higher in energy but still energetically more favourable than the FM state
(fcc-Mn: ∆E=+200 meV; hcp-Mn: ∆E=+240 meV). On the other hand, the two Mn/Fe bilayers
on Ir(111) favour an antiparallel alignment of spins between the two magnetic layers along
the ΓM-direction as the RW-AFM II is found to be energetically lowest (see Figs. 8.3 (c) and
(d)). Hence, the relaxed interlayer distances of the RW-AFM I state serve as a basis for further
calculations on the electronic and magnetic properties of the Mn DL on Ir(111), whereas the
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respective values of the RW-AFM II are used for subsequent calculations on the Mn/Fe bilayer
(see Table 8.2).

(a) (b)

(c) (d)

Mn
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Figure 8.3. Determination of the energetically lowest spin configuration in magnetic bilayers on
Ir(111) after structural relaxation. DFT calculated total energies of the structurally optimized LAFM and
the two RW-AFM states with respect to the FM reference state for the two Mn DL and Mn/Fe bilayers on
Ir(111). The magnetic moments of each state are listed in Table C.1 and C.2 of Appendix C, respectively.

Spin spiral energy dispersion Applying the interlayer distances of the structural optimization,
we self-consistently performed spin spiral calculations neglecting spin-orbit coupling (SOC) in
the chemical unit cell by exploiting the generalized Bloch Theorem [77] implemented in the FLEUR
code for the Mn ML, the Mn DL and the Mn/Fe bilayer on Ir(111). In these types of calculation,
exchange correlation effects were included by using the LDA potential with the interpolation
proposed by Vosko, Wilk and Nusair (VWN) [72]. Calculating the energy dispersion of spin
spirals for the latter two is a computationally much more demanding issue than for a single
magnetic layer. Instead of only one type of spin spiral calculation as for Mn/Ir(111) one has to
consider four sets of calculations now. In the first case, the spin spiral propagates only in the
upper Mn layer while the moments of the lower layer (Mn or Fe) are oriented perpendicular
to the plane in which the Mn spins rotate (see Fig. 8.4 (a)). In the second case, the spin spiral
propagates only in the lower magnetic layer, i.e. Mn or Fe, and the spins of the upper Mn layer
are oriented perpendicular to the plane in which the spins of the lower layer rotate, respectively
(Fig. 8.4 (b)). In these cases, no coupling between the magnetic layers occurs and the intralayer
exchange constants can be determined for each layer individually. However, in order to search for
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Table 8.2. Relaxed interlayer
distances for magnetic double
layer (DL) systems on Ir(111)
(given in Å). Relaxed structural
parameters for the Mn DL on
Ir(111) in the RW-AFM I state
and the Mn/Fe bilayer on Ir(111)
in the RW-AFM II state. Struc-
tural optimizations have been
carried out with the VASP code
(GGA PBE [74]) by means of a
symmetric slab with 9 Ir sub-
strate layers and one magnetic
bilayer on each side of the film
using the GGA Ir lattice con-
stant [119].

System dMn1Mn2 dMn2Ir1 dIr1Ir2 dIr2Ir3

fcc-Mn/hcp-Mn/Ir(111) 2.092 2.053 2.259 2.220
hcp-Mn/hcp-Mn/Ir(111) 2.060 2.043 2.265 2.222
System dMnFe dFeIr1 dIr1Ir2 dIr2Ir3

fcc-Mn/fcc-Fe/Ir(111) 1.966 2.043 2.267 2.219
hcp-Mn/fcc-Fe/Ir(111) 1.963 2.036 2.268 2.217

the possible ground states of the magnetic bilayers, one has to consider spin spirals propagating
in both magnetic layers which requires two further calculations. Here, both parallel (FM) as well
as antiparallel (AFM) alignment between the magnetic moments of the two layers is possible (see
Figs. 8.4 (c) and (d)).

Due to the complexity of the DFT calculations we first started to explore freestanding Mn/Mn/Ir
and Mn/Fe/Ir trilayers, i.e. by representing the surface by only one Ir layer, but taking the
interlayer distances from our relaxed film calculations. As demonstrated extensively in chapter 5,
such simple model systems provide insight into certain magnetic tendencies which also apply to
more complex ultrathin film systems. Moreover, we restricted the investigation of magnetic
bilayers to one stacking of the top Mn layer in each case; the experimentally observed hcp-
Mn/fcc-Fe/Ir(111) and hcp-Mn/hcp-Mn/Ir(111) for which the RW-AFM I state has turned out
lower in energy than for an fcc stacking of the upper Mn layer (cf. Fig. 8.3 (a) and (b))3.
Apart from the trilayers, asymmetric films consisting of nine Ir layers and one Mn ML (one Mn
DL or one Mn/Fe bilayer) were chosen for the calculation of spin spirals. The muffin tin radii
were set to 2.23 a.u. and 2.30 a.u. for the magnetic Fe and Mn, respectively, whereas a slightly
larger value of 2.31 a.u. was adjusted for the non-magnetic Ir. The number of k-points amounts to
1936 in the full 2D BZ and a large cutoff of kmax=4.1 a.u.−1 was chosen for every calculation in
order to ensure convergence with respect to the basis functions. Starting from the self-consistent
results for the spin spirals, the energy contributions due to the DMI were calculated by including
SOC in first-order pertubation theory [94]. For Mn/Ir(111) we have also determined the MAE
self-consistently by adding SOC to the RW-AFM state in the two-atomic unit cell [98]. Here, 1914
k-points in the full 2D BZ as well as the same energy cutoff as for the spin spiral calculations
were applied. The spin quantization axis with SOC was applied perpendicular (E⊥) and parallel
(E‖) to the film plane and the uniaxial anisotropy constant was computed as Ku = E⊥ − E‖.

3In the following the two mentioned film systems (trilayers) are only referred to as Mn/Mn/Ir(111) (Mn/Mn/Ir)
and Mn/Fe/Ir(111) (Mn/Fe/Ir) for the sake of brevity in most cases.
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(a)                                                  (b)

(c)                                                  (d)

side view

top view

side view

top view

Figure 8.4. Spin spiral configurations for the determination of the pairwise Heisenberg exchange in
hexagonal magnetic bilayers. In case of two interacting magnetic layers, four sets of calculation have to
be taken into account: as shown in the two top panels (a) and (b), the spiral either propagates only in the
upper (lower) magnetic layer while the moments of the lower (upper) layer are oriented perpendicular
to the plane in which the spins of the other layer rotate allowing for a separate determination of the
intralayer exchange constants of the individual magnetic layers. In order to obtain the interlayer exchange
parameters one has to further consider spin spirals propagating in both magnetic layers where parallel
(FM) as well as antiparallel (AFM) alignment between the magnetic moments of the layers is possible as
illustrated in the two lower panels (c) and (d). For every spin spiral setup the upper image section depicts
the side view, while the lower section shows the respective top view. The figure has been taken from [137]
and adapted.

Multi-Q states In order to obtain the energies of the three prototypical multi-Q states – the two
collinear uudd states and the non-collinear 3Q state – for Mn/Ir(111) and the two magnetic
bilayer systems we again used a combination of the FLEUR and the VASP code. Applying the
same geometry, xc functional, cutoff for the basis functions kmax and muffin tin radii as for the
spin spirals, we employed the former to compute the energies of the uudd states with respect to
the FM or AFM reference4 within their four-atomic unit cells per layer. As only the size of the
Brillouin zone (BZ) in reciprocal space changes, the number of k-points needs to be modified:
for the uudd state along ΓM (ΓK’) direction of the magnetic ML (bilayer) 168 k-points in the

4Note that for a magnetic bilayer both FM and AFM coupling of the layers is possible resulting in the emergence of
two uudd states for each coupling type; hence, the energies of the uudd states for FM coupling of the layers need to be
calculated with respect to the FM reference, while the energies of the uudd states for an AFM coupling of the layers
need to be given with regard to the LAFM state.
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Figure 8.5. Energy dispersion E(q) of
flat cycloidal spin spirals calculated
via DFT along the two high symmetry
directions of the 2D BZ for Mn/Ir(111).
(a) Filled circles mark scalar-relativistic
total DFT energies, while solid lines
show a fit to the Heisenberg exchange
interaction beyond nearest neighbors.
The energies of the uudd (↑↑↓↓) states
and the 3Q state are denoted as empty
diamonds and squares at the q values of
their constituting single-Q states, respec-
tively (black color refers to fcc-Mn, blue
color to hcp-Mn). (b) Total DMI contri-
butions for all q values of both Mn stack-
ings. The solid lines running through the
DFT values of the total DMI denote a fit
to the Dzyaloshinskii-Moriya interaction.
EDM < 0(> 0): preference of right-(left-
)rotating spin spirals.

(a)

(b)

3Q

irreducible part of the BZ were chosen, while 336 were applied for the uudd state along ΓK (ΓM’)
direction. For further information on the construction of the prototypical multi-Q states on the
hexagonal lattice of magnetic bilayers see Sec. 8.4.
For the calculation of the total energies of the non-collinear 3Q states of both the Mn ML and
bilayer on Ir(111) we resorted to the VASP code using the same relaxed interlayer distances as in
the associated FLEUR calculations and the LDA VWN potential [72]. The energy cutoff was set to
300 eV in all cases and the 2D BZ was sampled by a 15×15×1 Monkhorst-Pack (MP) k-mesh.

8.3 Higher-order exchange interactions in Mn/Ir(111)

In order to get access to the complex topic of magnetic bilayers, we first take a step back and
start with the discussion of the DFT results for the Mn ML on the Ir(111) substrate. The energy
dispersion E(q) of flat spin spirals neglecting SOC for both stackings of the Mn ML is presented
in Fig. 8.5 (a). Here, filled circles show the DFT calculated energies of the two systems, while
solid lines denote a fit to the Heisenberg exchange interaction beyond nearest neighbors. Upon
comparing the curves, one recognizes the same qualitative behavior for the two Mn stackings
with the RW-AFM state at the M-point being on the order of 300 meV lower in energy than the
FM state at the centre of the BZ thereby confirming our results obtained from the structural
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Parameter fcc-Mn/Ir(111) hcp-Mn/Ir(111)
J1 −31.22 −36.78
J2 −4.29 −4.47
J3 −1.72 −1.02
J4 −0.30 −0.18
J5 +0.00 +0.01
J6 −0.19 +0.01
J7 +0.08 +0.08
J8 +0.01 −0.10
D1 +2.77 +2.82
D2 +0.26 +0.44
D3 +0.27 +0.28
D4 −0.00 −0.02
D5 +0.04 −0.04
Ku +1.36 +1.69

Table 8.3. Magnetic interaction constants calcu-
lated via DFT for fcc- and hcp-stacked Mn MLs
on Ir(111). Heisenberg exchange constants for
ith neighboring spin Ji as extracted from fitting
the respective spin spiral energy dispersion E(q),
i.e. neglecting HOI terms, Dzyaloshinskii-Moriya
interaction (DMI) constants Di and uniaxial mag-
netocrystalline anisotropy energy constant Ku of
the RW-AFM state for fcc- and hcp-Mn/Ir(111).
J > 0 (J < 0) represents ferromagnetic (anti-
ferromagnetic) order, D > 0 (D < 0) clockwise
(counterclockwise) rotation and a positive value
of Ku denotes an in-plane easy magnetization axis.
All values are given in meV.

optimization. These energy dispersions reveal a strong AFM exchange coupling in the Mn ML
which is similar to the one reported for Mn MLs on the Re(0001) surface [40]. However, in
Mn/Ir(111) the single-Q state of lowest energy is the 120◦ Néel state at the K-point, while the
RW-AFM state at the M-point turns out to be higher by 11 meV/Mn atom for both stackings of
the magnetic layer (Fig. 8.5 (a)). In contrast, for Mn/Re(0001) the latter represents the energy
minimum in the phase space of spin spiral states.
These differences can be explained by means of the pairwise Heisenberg exchange constants
listed in Table 8.3 for Mn/Ir(111). In general, antiferromagnetic materials are subject to frustration
due to the geometry on the hexagonal lattice resulting in the emergence of the Néel state as
the state of lowest energy in case only J1 is present or J2 prefers AFM coupling as well with
a maximum strength of 1

8 J1 [77]. As visible from Table 8.3, the last-mentioned condition is
almost fulfilled for the present system with J2 taking a value of 0.14J1 in case of fcc-Mn and
0.12J1 in case of hcp-Mn. Hence, J1 mediating an AFM coupling between nearest neighbor
spins with a maximum strength of nearly −37 meV/Mn atom clearly remains the dominant
Heisenberg exchange parameter in both systems. The fact that the Néel and the RW-AFM state
are energetically very close in consideration of the scale of the energy dispersion (cf. Fig. 8.5 (a))
results from the above-mentioned condition being met only narrowly and J3 not being negligible
either. On the other hand, in Mn/Re(0001) the ratio between the AFM nearest and next-nearest
neighbor constant J1 and J2, respectively, ranges between 0.23 and 0.32 for the two Mn stackings
making the RW-AFM state energetically more favourable due to the exchange frustration [41].

Fig. 8.5 (b) further illustrates the DMI contributions for cycloidal spin spirals with q values along
the high symmetry directions of the hexagonal BZ in the Mn/Ir(111) film system. They are not
only on the same order of magnitude for the two Mn stackings but also reveal a preference for
right-rotating spin structures. Despite D1 taking large values of around 2.8 meV (see Table 8.3),
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these SOC contributions are only large in the vicinity of the FM state where the slope of the
dispersion is steep and (nearly) vanish for the Néel and the RW-AFM state at the K- and M-point,
respectively. Thus, the DMI does not have an impact on the Néel ground state in the films.
A similar scenario emerges for Mn films on Re(0001) for which the DMI mainly contributes to
spin spirals with q vectors close to the Γ-point thereby not affecting the RW-AFM ground state of
the systems [40].
Furthermore, as in Mn/Re(0001) [40], the Mn ML on Ir(111) prefers an easy in-plane magnetiza-
tion direction in the RW-AFM state with a magnetocrystalline anisotropy constant of up to 1.70
meV (see Table 8.3).

Turning our focus to the prototypical multi-Q states now, we find that the total energies of the
collinear uudd states and the non-collinear triple-Q state deviate significantly from those of
the respective single-q states (see Fig. 8.5 (a) and Table 8.4) which leads to large values of the
higher-order interaction constants according to the set of coupled equations (referred to as the
’multi-Q method’ in chapter 7) [50]:

∆EM = E3Q − EM,1Q =
16
3
(2K1 + B1 −Y1) (8.1)

∆E 1
2 ΓM = Euudd, M

2
− E M

2 ,1Q = 4(2K1 − B1 −Y1) (8.2)

∆E 3
4 ΓK = Euudd, 3K

4
− E 3K

4 ,1Q = 4(2K1 − B1 + Y1) (8.3)

Both the biquadratic term B1 and the three-site four spin interaction strength Y1 are on the
order of 3 meV, while the four-site term K1 turns out notably smaller with values of about 1
meV. However, all of them exhibit a negative sign similar to the HOI constants reported for
Mn/Re(0001) [40]. For the latter actually a frustration of HOIs which turn out comparably large
has been detected resulting in very small energy differences of less than 1 meV between the
RW-AFM and the 3Q state. As Table 8.4 shows, the respective energy differences are significantly
enhanced for Mn/Ir(111) with the 3Q state being energetically favored over the RW-AFM state.

System B1 Y1 K1 ∆E 1
2 ΓM ∆E 3

4 ΓK ∆EM

fcc-Mn/Ir(111) −3.19 −3.02 −1.22 +15.05 −9.08 −13.95
hcp-Mn/Ir(111) −3.19 −3.50 −0.89 +19.60 −8.36 −7.87

Table 8.4. DFT calculated higher-order exchange interactions for Mn/Ir(111). Four-site four spin (K1),
biquadratic (B1) and three-site four spin interaction (Y1) constants for Mn MLs on Ir(111) calculated
via the Multi-Q method according to Eq. (8.1)-(8.3). ∆E denotes the energy difference between the
multi-Q and the corresponding single-Q spin spiral state, respectively, i.e., ∆E 1

2 ΓM = E
uudd, M

2
− E M

2 ,1Q
,

∆E 3
4 ΓK = E

uudd, 3K
4
− E 3K

4 ,1Q
and ∆EM = E3Q − EM,1Q. All values are given in meV.

In summary, our calculations confirm the experimentally observed Néel state at the K-point to be
the magnetic ground state of hcp-Mn/Ir(111) which is dominated by strong AFM exchange
coupling. Although the non-collinear 3Q state at the M-point at the BZ boundary seems to be
energetically close (cf. Fig. 8.5 (a)), it is actually by 3 meV higher in energy.
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8.4 Heisenberg model for magnetic bilayers

As previously demonstrated in Sec. 8.2, the calculation of the pairwise Heisenberg exchange
parameters for two interacting magnetic layers represents a much more complicated issue than
for a single magnetic layer. The same applies to the DMI and the higher-order interaction terms.
However, in the following our discussion is restricted to the pairwise Heisenberg exchange
and the construction of the prototypical multi-Q states in hexagonal magnetic bilayers since
film systems with two or more magnetic layers give rise to a large number of possible HOI
constants due to the additional hopping paths for the four-site terms. While there are six nearest
neighbors available for a reference atom in a hexagonal magnetic ML (see Fig. 8.6 (a)), in
fcc-stacked magnetic DLs, i.e. with the atomic positions of the two layers being shifted against
each other, the same atom now possesses nine nearest neighbors, six in its original and three in
the other sublattice (Fig. 8.6 (b). The question which types of HOI might become relevant for the
description of the energy landscape obtained by DFT and if they contribute to the stabilization of
complex magnetic states in the bilayer system at hand cannot be answered that easily since the
established computational approaches applied to MLs would need to be extended which goes
beyond the scope of this thesis.

Taking two interacting magnetic layers into account, the Hamiltonian of the Heisenberg exchange
interaction from Eq. (4.10) needs to be extended as the unit cell now contains two different
magnetic moments mT

i and mB
i . Here, the index i refers to the respective unit cell, while the

index L ∈ {T, B} denotes the location of the moment either in the top or bottom magnetic layer
L = T and L = B, respectively. Both mT

i and mB
i interact with both spins of their own and the

other magnetic sublattice resulting in four terms for the isotropic exchange energy in the ith unit
cell [137]:

Ei = −
1
2 ∑

j 6=i
JTT
ij (mT

i ·mT
j )−

1
2 ∑

j 6=i
JBB
ij (mB

i ·mB
j )−

1
2 ∑

j
JTB
ij (mT

i ·mB
j )−

1
2 ∑

j
JBT
ij (mB

i ·mT
j ) (8.4)

The first two summands describe the interaction of the moments within the individual magnetic
layers and thus their contributions which usually differ in energy are referred to as intralayer
exchange. On the other hand, the two latter terms denote the interlayer exchange occurring
between the top and the bottom magnetic layer and vice versa. Owing to the symmetry of the
exchange parameters, i.e. JTB

ij = JBT
ij , and the commutativity of the dot product of the two spins

mT
i ·mB

j = mB
i ·mT

j , the two summands yield the same value.

Besides the expression of the Heisenberg exchange interaction also the general definition of the
direction of a magnetic moment in a spin spiral with a specific wave vector q given by Eq. (3.3.6)
needs to be adapted in case more than one magnetic layer is considered [137]:

ML
i = M

cos(ϕi) sin(θL)

sin(ϕi) sin(θL)

cos(θL)

 (8.5)
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Consequently, only the cone angle θL denoting the tilting of the moments with respect to the spin
rotation axis differs between the two layers.

As shown in Fig. 8.4, for a specific choice of the cone angle θT of the spin spiral in the top
magnetic layer and the respective angle θB of the moments in the bottom layer the contributions
of the intra- and interlayer exchange can be determined separately.
For θT = 90◦ and θB = 0◦ one obtains a flat spin spiral propagating only in the upper magnetic
layer, while the moments of the lower layer are oriented perpendicular to the rotation plane of
the overlying spin spiral making the dot product mT

i ·mB
j and hence the interlayer Heisenberg

exchange for the whole spin spiral setup vanish. With the intralayer exchange contribution of the
bottom magnetic layer remaining constant due to the parallel alignment of its spins only the
intralayer exchange of the top layer is left in Eq. (8.4). For the same reason, a spin spiral with the
cone angles θT = 0◦ and θB = 90◦, i.e. propagating only in the lower magnetic layer, is used to
solely calculate the intralayer exchange of the lower layer. Since in these two cases the distances
between neighboring spins are identical to those of the hexagonal magnetic ML, the contribution
of the intralayer exchange to the energy dispersion has the same analytical form which is given
by Eq. (4.17) in Sec. 4.2.1. This means that the intralayer Heisenberg exchange parameters of a
magnetic bilayer can be determined by means of the same fitting function as for a magnetic ML
and by choosing the spin spiral vectors along the high symmetry directions ΓM and ΓK of the 2D
hexagonal Brillouin zone (cf. Fig. 4.2 in Sec. 4.2.1).
In case a flat spin spiral propagates in both magnetic layers (cf. Figs. 8.4 (c) and (d)), i.e. for
θT = 90◦ and θB = 90◦, with the possibility of either FM or AFM alignment between the magnetic
moments of the two layers, both intra- as well as interlayer exchange contribute to the energy
dispersion. In order to extract only the part of the interlayer exchange from the two spin spiral
setups a few assumptions need to be made: first, the FM and AFM coupled spin spirals only
differ in that sense that the moments of the lower layer of the AFM setup are rotated by 180◦

around the z axis compared to those of the FM setup leading to a change of sign of the directions
of mB

i . Second, since the magnetic moments in the top layer point into the same direction for
both setups, the corresponding intralayer exchange remains the same. The respective quantity of
the bottom layer does not change either between the two coupling types of spin spirals as both
moments of the dot product mB

i ·mB
j are of negative sign which cancels out. The only change of

sign occurs for the interlayer exchange because only one magnetic moment of the dot product
mT

i ·mB
j experiences a change of sign. Taking these considerations into account, the contributions

to the energy dispersion of the FM and AFM coupled spin spirals shown in Figs. 8.4 (c) and (d)
can be expressed as follows:

EFM(q) = Eintra(q) + Einter(q)

EAFM(q) = Eintra(q)− Einter(q)
(8.6)

Hence, the curve of the interlayer exchange, denoted by E⊥(q) in the following, is calculated by
subtracting the DFT energy dispersion of the FM coupled spin spiral from the one of the AFM
coupled spiral.
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In contrast to the computation of the intralayer exchange using the energies of spin spirals
propagating only in one magnetic layer, the stacking sequence of magnetic bilayers becomes
relevant for calculating the dispersion of the interlayer exchange E⊥(q). In this thesis, only
the case of two magnetic layers with their atomic positions being shifted against each other in
the xy-plane is considered (see Fig. 8.6 (b)). Note that there would also be the possibility of an
hcp-stacking of the magnetic layers if they were separated by a third non-magnetic layer, i.e. the
positions of the spins would be directly on top of each other resulting in the same distances
of nearest neighbors as in a magnetic ML. In contrast to the stacking, the distance along z
direction between the layers does not matter as only spin spirals with q = (qx, qy, 0)T are being
investigated within the framework of this thesis.
As visible from Fig. 8.6 (b), the shift of the two atomic sublattices of the magnetic bilayer leads
to other distances between neighboring spins in adjacent layers than in the ML (Fig. 8.6 (a)).
Moreover, for the red central reference atom of the top magnetic layer only three nearest and
next-nearest neighbors in the bottom layer (depicted in black color and red and purple circular
rings, respectively) are left since the original rotational symmetry of the hexagonal ML around
the z axis is lost. Hence, in order to obtain the interlayer Heisenberg exchange constants from
the DFT energy dispersion a new fitting function needs to be calculated by evaluating the dot
product between two spins of different layers according to

mi ·mj = M2 cos(q · (Ri −Rj)). (8.7)

Proceeding in the same way as for the magnetic ML (cf. Sec. 4.2.1), the result for one spin of the
upper layer interacting with neighbors up to the eighth order in the lower layer is given by the
following expression:
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As already mentioned above, the lattice points of the second magnetic layer break the rotational
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RW-AFM I    RW-AFM II
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LAFM   FM  (120° shift)

Figure 8.6. Sketch of the enlarged 2D hexagonal symmetry zone in consideration of two magnetic
layers that have to be treated within the model of pairwise Heisenberg exchange and a selection of
magnetic states occuring at the new high symmetry points. (a) depicts the hexagonal atomic lattice
in real space for a magnetic monolayer; atomic positions with the same distance from the red central
atom are indicated by circular rings of different color. (b) shows the hexagonal lattice in real space for a
magnetic bilayer with the atomic positions of the two layers depicted in red and black color, respectively;
the distances between the central red atom and the atoms of the sublattice as well as the number of nearest
neighbors are different compared to those of the magnetic monolayer. (c) illustrates the enlarged 2D
hexagonal symmetry zone in reciprocal space which needs to be taken into account for the calculation of
spin spirals propagating in both magnetic layers. The spin structures occurring at the new high symmetry
points are visualized for the case of FM (blue frames) and AFM (red frames) coupling of the layers;
bold (faded) colors depict magnetic moments of the upper (lower) layer. The 2D BZ corresponding to
the atomic lattice of the magnetic monolayer is indicated by a faded hexagon. The images of the spin
structures have been created with a program written by T. Drevelow.

symmetry of the hexagonal magnetic ML in real space. From the atomic positions of both layers
a new symmetric lattice with a smaller hexagonal unit cell can be constructed. In reciprocal
space, the symmetry zone of spin spirals for such a so-called honeycomb lattice5 is extended by a
factor of

√
3 into all directions and rotated by 30◦ compared to the Brillouin zone of the original

hexagonal lattice which suffices to treat spin spirals for a magnetic ML. As a consequence, new

5Note that a honeycomb lattice does not represent a Bravais lattice since for the latter all lattice sites must be
equivalent and any vectors connecting the lattice sites need to be lattice vectors. However, the honeycomb lattice has a
two-atom basis.
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(a)

(b)

uudd ½ ΓM‘

uudd ¾ ΓK‘

FM coupling at Γ           AFM coupling at Γ

(c) 

3Q at M‘

Figure 8.7. Sketches of the prototypi-
cal multi-Q states on the hexagonal lat-
tice of a magnetic bilayer. The two uudd
states are defined and constructed in
analogy to those of the hexagonal mag-
netic monolayer: (a) the uudd state along
ΓM′ direction represents a superposition
of two counterpropagating 90◦ spin spi-
rals in each layer and it has the same
q value as the uudd-ΓK state of a mag-
netic monolayer. For both FM and AFM
coupling of spin spirals at the Γ-point
one uudd state is possible. (b) for the two
possible uudd states along ΓK′ the q val-
ues of the corresponding 90◦ spin spi-
rals are located outside the first BZ. (c) a
non-collinear 3Q state in each sublattice
is constructed from a superposition of
three RW-AFM states at the M′-points of
the enlarged symmetry zone. For each
spin structure the corresponding mag-
netic unit cell is indicated by thin black
lines. Bold (faded) colors depict magnetic
moments of the upper (lower) layer. Im-
ages by courtesy of T. Drevelow.

high symmetry points with new spin structures occur and the computational effort increases
significantly due to the larger amount of q values that need to be taken into account for the
energy dispersion E⊥(q) along the new high symmetry directions ΓM′ and ΓK′M′ (see Fig. 8.6
(c)). The type of coupling between the spin spirals propagating through the two magnetic layers
determines which spin structures occur at the high symmetry points: in case of FM coupling, the
FM state with parallel magnetic moments in both layers emerges at the Γ-point at the centre of
the symmetry zone, while it is the LAFM state for AFM coupled layers. On the other hand, at the
M′-points of the enlarged symmetry zone the RW-AFM I (RW-AFM II) state arises for layers that
are initialized with a FM (AFM) coupling at the Γ-point6. At the K′-point which corresponds to
the centre of the BZ of a magnetic ML we recover a FM or LAFM state in each layer, but the
magnetic moments are rotated by 120◦ between the sublattices. Moreover, at the old K-point of
the hexagonal BZ the Néel state is still present (not shown in Fig. 8.6 (c)).

Not only the magnetic phase space of bilayers is enlarged compared to the one of a magnetic
ML, but also the number of the prototypical multi-Q states increases. While there are two uudd
states and one triple-Q state possible for the magnetic ML, twice the number can be constructed
for a magnetic DL. Note that these states which are presented in the following cannot be used to

6Throughout this chapter, the term ’FM (AFM) coupling between the magnetic layers’ always refers to the alignment
of the magnetic moments at the Γ-point even if the coupling type turns antiferromagnetically (ferromagnetically) for
increasing values of q when the moments of one layer start rotating relative to the other.
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determine the HOI terms in a similar way as for magnetic MLs since there exists a large number
of possible constants and not every parameter might be important for the specific system at hand.
However, the magnitude of the energy differences between the multi-Q and their respective 1Q
states already provides an indication to the question if HOI terms are of significant size in the
Mn DL and the Mn/Fe bilayer as it can actually be shown that the prototypical multi-Q states of
magnetic bilayers are strictly degenerate with their corresponding spin spiral states regarding
the pairwise Heisenberg exchange just like their ML analogues.

All prototypical multi-Q states of magnetic DL systems are defined and constructed in analogy
to those of the magnetic ML. In the enlarged symmetry zone there are two q values representing
90◦ spin spirals in each layer from which a collinear uudd state can be constructed: at q=± 1

2 ΓM′

and q=± 3
4 ΓK′. While the first mentioned value of q corresponds to the one of the uudd-ΓK state

of a magnetic ML, the latter is located outside the first BZ (see Fig. 8.7 (a) and (b)). The resulting
uudd- 1

2 ΓM′ and uudd- 3
4 ΓK′ states for both FM as well as AFM coupling of the magnetic layers at

the Γ-point represent a combination of single-layer uudd states.
In a similar fashion the superposition of three RW-AFM I or II spin spiral states at the M′-point
leads to the formation of a non-collinear 3Q state for each coupling type (see Fig. 8.7 (c)). Here
it has to be pointed out that in case of a FM (AFM) coupling of the layers at the Γ-point the
magnetic moments of the lower layer are calculated as the opposite (direct) vector sum of the
moments of the upper layer.

8.5 Comparison between trilayer and film system - Mn/Mn/Ir(111)

Having presented the conceptual framework for the calculation of spin spirals and hence
also the pairwise Heisenberg exchange constants for two interacting magnetic layers in the
previous section, we now focus on the DFT results for the experimentally studied Mn DL and
Mn/Fe bilayer on the Ir(111) substrate. Starting with the former, we compare both intra- as
well as interlayer Heisenberg exchange of a freestanding hcp-Mn/hcp-Mn/Ir trilayer and its
corresponding film system hcp-Mn/hcp-Mn/Ir(111). From the energy dispersion of spin spirals
in both magnetic layers conclusions with regard to the magnetic ground state of the two systems
can additionally be drawn.

8.5.1 Intralayer exchange

Figs. 8.8 (a) and (b) depict the energy dispersion E(q) without SOC effects of flat spin spirals
propagating only in one magnetic layer in each case for the Mn/Mn/Ir trilayer and the respective
ultrathin film system. Similar to the trilayers presented in chapter 5 which only contained one
magnetic layer, the simple model of a Mn DL on one Ir layer captures the magnetic trend of
the more complex film system excellently. While there are barely differences apparent in the
dispersion of the top Mn layer, the bottom layer experiences some changes in the vicinity of
the Γ-point along both high symmetry directions of the 2D hexagonal BZ due to the modified
hybridization with the adjacent Ir substrate. However, the changing number of Ir layers has no
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impact on the energetically lowest single-q state of each magnetic layer: for the top Mn layer the
RW-AFM state at the M-point turns out as the energetically most favored state of the magnetic
phase space, whereas the bottom Mn layer in direct contact with Ir exhibits the Néel state similar
to the Mn ML on Ir(111) (cf. Fig. 8.5 (a)). As also visible from Figs. 8.8 (a) and (b), the two energy
dispersions of each system show a typical AFM behaviour with the FM state at the centre of the
BZ being by 130 to 240 meV higher in energy than the RW-AFM state at the BZ boundary.

(a) (b)

(c) (d)

top

bottom
top
bottom

Figure 8.8. DFT total energies for spin spirals propagating in the individual magnetic layers of a Mn
DL on Ir(111). Energy dispersion of flat spin spirals propagating only in one magnetic layer for (a)
a freestanding hcp-Mn/hcp-Mn/Ir trilayer and (b) for the corresponding film system hcp-Mn/hcp-
Mn/Ir(111) without spin-orbit coupling effects. Total DFT energies are marked by filled circles whereas
solid lines denote fits to the Heisenberg model beyond nearest neighbors. From these curves the intralayer
exchange can be calculated separately for each Mn layer. (c) and (d) DMI contributions for all q values
calculated in (a) and (b), respectively. The solid lines running through the DFT values denote a fit to the
DMI. EDM < 0(> 0): preference of right-(left-)rotating spin spirals.

The intralayer Heisenberg exchange constants obtained from a fit to the just discussed en-
ergy dispersions of the Mn/Mn/Ir trilayer and the corresponding film system are listed in
Table 8.5. While the ratio between the AFM nearest and next-nearest neighbor constant J1 and J2,
respectively, amounts to roughly 1/4 for each upper Mn layer thereby causing the formation
of a RW-AFM ground state, the AFM coupling constant J1 clearly represents the dominant
Heisenberg exchange parameter in the lower Mn layers hence leading to the emergence of the
Néel state due to the geometric frustration on the triangular lattice. The fact that J3 mediating a
FM coupling is of significant strength as well and even exceeds the value of J2 in case of the
Mn/Mn/Ir trilayer explains the rather shallow energy minimum for the Néel state at the K-point
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in Fig. 8.8 (a)).

Table 8.5. Intralayer magnetic interaction constants calculated via DFT for the hcp-Mn/hcp-Mn/Ir tri-
layer and the corresponding film system hcp-Mn/hcp-Mn/Ir(111). Comparison of intralayer Heisenberg
exchange constants Ji for ith neighboring spin and intralayer Dzyaloshinskii-Moriya interaction (DMI)
constants Di for hcp-Mn/hcp-Mn/Ir and hcp-Mn/hcp-Mn/Ir(111). The intralayer exchange parameters
have been determined individually for each Mn layer by means of a separate energy dispersion as
indicated in Fig. 8.8. The respective Mn layer is marked by bold letters. Possible intralayer HOI terms are
not taken into account here. J > 0 (J < 0) represents ferromagnetic (antiferromagnetic) order and D > 0
(D < 0) the preference of clockwise (counterclockwise) rotational sense. All values are given in meV.

Parameter Mn/Mn/Ir Mn/Mn/Ir(111) Mn/Mn/Ir Mn/Mn/Ir(111)
J1 −24.89 −23.37 −19.68 −18.91
J2 −5.74 −5.80 +1.12 +0.19
J3 +0.34 −0.74 +3.12 +0.46
J4 −0.28 −0.13 +0.61 +0.39
J5 +0.36 +0.17 +0.77 +0.52
J6 −0.23 −0.13 +0.13 +0.25
J7 +0.11 +0.15 −0.13 −0.06
J8 +0.22 +0.03 +0.22 +0.11
D1 +0.67 +0.33 +3.32 +1.82
D2 +0.03 +0.22 −1.38 −0.23
D3 +0.31 +0.11 +0.22 +0.12
D4 +0.07 +0.07 −0.05 −0.10
D5 +0.06 −0.06 −0.29 −0.26

Figs. 8.8 (c) and (d) further display the energy contributions of the intralayer DMI calculated
for all spin spiral states of the freestanding Mn/Mn/Ir trilayer and the Mn/Mn/Ir(111) film
system. Apart from the KM path, this SOC effect turns out to prefer cycloidal spin structures of
clockwise rotational sense in all considered Mn layers. It becomes apparent that the Mn layer in
direct contact with Ir experiences a larger impact of SOC as expected. As shown in Table 8.5, in
case of the film system its NN DMI constant D1 is more than five times larger than the one of
the topmost Mn layer. Fig. 8.8 (c) also demonstrates that for the trilayer unrealistic large DMI
contributions arise since the substrate consists of only one Ir layer thereby confirming our choice
not to consider the antisymmetric part of the exchange interaction for Fe and Co based trilayers
in chapter 5.

8.5.2 Interlayer exchange

While the energy dispersions of flat spin spirals propagating only in one layer of a magnetic
bilayer system are ideally suited to obtain an overview of the general magnetic trend in the
specific system at hand, they are not able to predict its possible ground state. In order to look for
the spin structures of lowest energy, the magnetism of both layers needs to be taken into account
which requires flat spin spirals in two layers at the same time.
A comparison of the DFT results for spin spirals propagating in both magnetic layers of the
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(a) (b)

(c) (d)

3Q

Figure 8.9. DFT total energies for spin spirals propagating in both magnetic layers of a Mn DL on
Ir(111). Energy dispersion of flat spin spirals propagating in both magnetic layers of (a) a freestanding
hcp-Mn/hcp-Mn/Ir trilayer and (b) the corresponding film system hcp-Mn/hcp-Mn/Ir(111). Two cases
are considered: FM (blue) and AFM (red) coupling between the two layers. Total DFT energies are marked
by filled circles of the respective color whereas solid lines denote fits to the Heisenberg model including
intra- and interlayer exchange. Note that the respective exchange constants given in Table 8.5 and 8.6 are
not determined from this fit; instead, it just serves as a guide to the eye. DFT energies including DMI are
indicated by light blue and purple filled circles, respectively. The energies of the uudd (↑↑↓↓) states and the
3Q state of hcp-Mn/hcp-Mn/Ir(111) are denoted as empty diamonds and squares at the q values of their
constituting single-q states for each coupling type. For every system the spin structure of the energetically
lowest single-q state is additionally shown; in case of hcp-Mn/hcp-Mn/Ir(111) also the structure of the
3Q state which is lower in energy than all spin spiral states is depicted. The magnetic moments of the spin
structures at the most important high symmetry points are listed in Table C.3 of Appendix C. (c) and (d)
DMI contributions for all q values calculated in (a) and (b), respectively. EDM < 0(> 0): preference of
right-(left-)rotating spin spirals. Images of the single-q states by courtesy of T. Drevelow.

freestanding Mn/Mn/Ir trilayer and the Mn DL on Ir(111) is depicted in Figs. 8.9 (a) and (b).
Here, total DFT energies are marked by circles of the respective color for FM and AFM coupling
of the layers at the Γ-point, while solid lines denote fits to the Heisenberg model including
both intra- and interlayer exchange. Note that the respective exchange parameters listed in
Table 8.5 and 8.6 are not determined from this fit; instead, it just serves as a guide to the eye.
All scalar-relativistically calculated energy contributions of the FM curves are shifted with
respect to the dispersion of the AFM coupled spin spirals by the interlayer exchange coupling
∆E = EAFM − EFM at the Γ-point.

Focusing first on the trilayer in Fig. 8.9 (a), one notices that ∆E takes a large negative value
of about 160 meV at the Γ-point indicating a strong AFM tendency in the system consistent
with previous findings. Neglecting SOC, the RW-AFM I state at the M′-point at the symmetry
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zone boundary represents a global energy minimum in the magnetic phase space. However,
the inclusion of the DMI for which the exact contributions are shown in Fig. 8.9 (c) changes
the situation by lowering the total energy of the AFM coupled spin spiral state at q ≈ 0.57 2π

a
along ΓK′M′ by 6 meV. This q value is located at the M-point of the original Brillouin zone of a
magnetic ML and hence corresponds to a RW-AFM state as well. However, in case of a magnetic
DL the magnetic moments of the two sublattices are rotated by 60◦ with respect to each other
resulting in collinear states within each layer, but an overall non-collinear RW-AFM state upon
taking both layers into account (see inset of Fig. 8.9 (a)). Finally, this rotated RW-AFM state in the
AFM initialized layers is by 4 meV lower than the RW-AFM I state of the FM coupled layers
leading to a competition in energy for the two spin structures.
Taking a closer look at the exact DMI contributions of the two coupling types in Fig. 8.9 (c), one
realizes that the values turn out unrealistically large again similar to the respective intralayer
calculation. The deviation between the two curves takes large values of up to 13 meV as well
indicating that the DMI between the layers might play a significant role for this system. However,
since the trilayer only serves as a simple model, we forewent to determine the respective
constants.

Turning our focus to the ultrathin film system Mn/Mn/Ir(111) (Fig. 8.9 (b)), we find that
increasing the number of Ir layers and hence changing the hybridization between the magnetic
bilayer and the non-magnetic substrate does not alter the qualitative course of the two energy
dispersions. The interlayer exchange coupling at the Γ-point remains strongly antiferromagnetic
and the RW-AFM I state is still the single-q state of lowest energy for the FM coupled layers.
However, in the film system the DMI is too weak to cause a significant energy gain of the
60◦ rotated RW-AFM state at the original M-point of the Brillouin zone. Hence, the substrate
thickness is obviously not decisive for the qualitative dispersion progression of the Mn DL,
but rather influences the exact energy contributions of the spin spiral states. DFT calculations
performed for a freestanding Mn bilayer [138] support this assumption: even without any
substrate the general trend found in Figs. 8.9 (a) and (b) is reflected in the energy dispersion of
FM and AFM coupled layers of a simple Mn DL, but in that case a 135◦ spin spiral at q ≈ 0.43 2π

a
along ΓK′M′ represents the global energy minimum [138].
Fig. 8.9 (d) further reveals that the maximum deviation between the DMI for a FM and an
AFM coupling of the layers in Mn/Mn/Ir(111) amounts to only 4 meV which indicates that the
interlayer SOC effect plays a minor role for this ultrathin film system.

For the Mn DL on Ir(111) we further extended our DFT calculations to the three prototypical
multi-Q states. Fig. 8.9 (b) reveals that all uudd states and the 3Q state of the AFM coupled layers
are very close in energy to their constituting single-q states. Surprisingly, the triple-Q state of
the FM coupled layers is found to be energetically favored by 60 meV/magnetic layer over
the RW-AFM I state contradicting the experimental observations of a stripe pattern. In order
to rule out a possible effect of the stacking sequence of the magnetic layers we calculated the
respective energy difference as well for the experimentally observed fcc stacking of the upper Mn
layer. However, for fcc-Mn/hcp-Mn/Ir(111) the 3Q state also turns out to be 62 meV/magnetic
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(a)

(b)

Figure 8.10. Interlayer exchange E⊥(q)
calculated via DFT for a Mn bilayer on
Ir(111). Contributions of the interlayer
exchange determined from spin spirals
propagating in both magnetic layers of
(a) the freestanding hcp-Mn/hcp-Mn/Ir
trilayer and (b) the corresponding film
system hcp-Mn/hcp-Mn/Ir(111) with-
out spin-orbit coupling effects. Total DFT
energies obtained from the difference of
a FM coupling between the two mag-
netic layers and an AFM coupling are
marked by filled circles whereas solid
lines denote a fit to the pairwise inter-
layer Heisenberg exchange. The corre-
sponding exchange constants are listed
in Table 8.6.

layer lower in energy than the RW-AFM I state. Repeating the same calculations with the FLEUR
code also yields a similar result with the triple-Q state being energetically favored by about 45
meV/magnetic layer. Up to now we cannot explain this finding neither based on our atomistic
spin model nor by means of experimental measurements. As mentioned in Sec. 8.1, in the Mn DL
domain walls with a hexagonal superstructure between the rotational domains of the magnetic
ground state structure have been observed, but it is unlikely that the stripe pattern of the latter
represents some kind of metastable state. Within our DFT calculations, the exact interlayer
distances obtained from the structural relaxation might also have a large impact on the energetics
of a system, i.e. possibly the GGA in-plane lattice constant of Ir could be too large compared to
the experimental value.

Figs. 8.10 (a) and (b) finally depict the dispersion of the interlayer Heisenberg exchange calculated
via E⊥(q) = 1

2 (EFM(q)− EAFM(q)−∆E) for the simple model Mn/Mn/Ir and its corresponding
film system. In contrast to Eq. (8.6), the interlayer exchange coupling ∆E additionally needs to be
taken into account since the FM coupled curves in Figs. 8.9 (a) and (b) are shifted with respect to
an AFM coupling by this value. The interlayer Heisenberg exchange constants obtained from
a fit to the respective dispersion are listed in Table 8.6. As noticed before, the simple model
Mn/Mn/Ir gives an excellent description of the properties of the more complex film system. The
deviations between the curves of the interlayer exchange turn out very small resulting in similar
values for the first three Heisenberg exchange parameters J⊥1 to J⊥3 . It becomes clear that the
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Table 8.6. Interlayer Heisenberg exchange pa-
rameters calculated via DFT for the hcp-Mn/hcp-
Mn/Ir trilayer and the corresponding film sys-
tem hcp-Mn/hcp-Mn/Ir(111). Comparison of in-
terlayer Heisenberg exchange constants J⊥i deter-
mined from the dispersion shown in Fig. 8.10 for
hcp-Mn/hcp-Mn/Ir and hcp-Mn/hcp-Mn/Ir(111).
J > 0 (J < 0) represents ferromagnetic (antiferro-
magnetic) coupling between the moments of the
two magnetic layers. All values are given in meV.

Parameter Mn/Mn/Ir Mn/Mn/Ir(111)
J⊥1 −20.05 −19.65
J⊥2 −1.88 −3.57
J⊥3 −2.64 −2.93
J⊥4 +0.18 −0.27
J⊥5 −0.18 +0.41
J⊥6 +1.07 +0.26
J⊥7 −0.43 +0.06
J⊥8 −0.79 −0.23

strong AFM interlayer exchange coupling of the two systems mainly arises due to the interlayer
exchange between nearest neighbors taking a value of J⊥1 ≈ −20 meV.

Puzzled by the surprising result of a 3Q state being lowest in total energy for Mn/Mn/Ir(111)
despite the experimental observation of a contrast resembling the RW-AFM state, we attempted
to find some indication whether HOI terms play a role at all in this film system. Even if there is
no method available yet to systematically calculate the values of interest for a magnetic bilayer,
we can estimate their influence on the energetically lowest states of the system in the following
way: taking the in-plane RW-AFM I state, i.e. the spin spiral state at the M′-point, as a starting
value (θ = 0◦), we continuously rotate the moments of the upper layer with respect to the
orientation of the lower layer by 180◦. Thus, the final value of the tilt angle θ = 180◦ corresponds
to the RW-AFM II state (see sketches in the upper part of Fig. 8.11). Keeping in mind that the
symmetric part of the pairwise exchange interaction can be written as a dot product between two
neighboring spins located in adjacent layers, the DFT results are mapped to the energy function

E(θ) = E0 + Jeff cos(θ) + Keff cos(θ)2 + ..., (8.9)

in which the existence of higher order cosine terms can only be explained by the presence of
interlayer HOI parameters. For the sake of brevity, the sum over all possible Heisenberg exchange
constants Jij and fourth-order HOI terms Kijkl is merged into an effective constant Jeff and Keff,
respectively.
The lower part of Fig. 8.11 shows the total DFT energies of magnetic structures along the

geodesic path in spin space from the RW-AFM I into the RW-AFM II state (red data points).
First of all, one notices that the RW-AFM I state represents a global energy minimum, while
the RW-AFM II state at θ = 180◦ is by 28 meV higher in energy consistent with the findings
from the energy dispersion of Mn/Mn/Ir(111) (cf. Fig. 8.9 (b)). One further sees that a fit to the
pairwise Heisenberg exchange interaction already describes the DFT data very well (orange
line), however, a slight improvement is obtained by including cosine terms up to the third power
(blue line). We interpret these results in such a way that interlayer HOI terms relevant for this
specific path only play a minor role for the Mn bilayer on Ir(111) and the Heisenberg exchange
remains the dominant energy contribution instead. However, it is not clear which HOI terms



8.6 Comparison between trilayer and film system - Mn/Fe/Ir(111) 161

Θ=0°                               Θ=90°                             Θ=180°
Figure 8.11. Coplanar tilting of the
RW-AFM I state of hcp-Mn/hcp-
Mn/Ir(111). Total DFT energies of
magnetic states (red data points) along
the geodesic path in spin space from
the RW-AFM I into the RW-AFM II
state of hcp-Mn/hcp-Mn/Ir(111). The
angle θ measures the degree of canting
between the magnetic moments of the
upper and the lower Mn layer where
θ = 0◦ (θ = 180◦) corresponds to
the RW-AFM I (II) state. In the DFT
calculation only the moments of the
upper Mn layer experience a rotation,
while the directions of the moments of
the subsurface Mn layer are kept fixed
to the start position, i.e. the RW-AFM I
state. The orange line denotes a fit to the
pairwise Heisenberg exchange, whereas
the blue line includes cosine terms
of higher power and hence possible
interlayer HOI parameters as well.

contribute to the chosen path in spin space at all. Another path that could provide insight into
the relevance of interlayer HOI in Mn/Mn/Ir(111) would be the 2Q-3Q-1Q transition which has
only been studied for magnetic monolayers so far [46].

8.6 Comparison between trilayer and film system - Mn/Fe/Ir(111)

After presenting the DFT results for the Mn DL on Ir(111) in the previous section, we now
proceed in the same way for the Mn/Fe bilayer. In this case, we also compare both intra- and
interlayer Heisenberg exchange of a freestanding hcp-Mn/fcc-Fe/Ir trilayer and its respective
film system hcp-Mn/fcc-Fe/Ir(111).

8.6.1 Intralayer exchange

Starting again with the description of the intralayer exchange, Figs. 8.12 (a) and (b) illustrate the
energy dispersions E(q) neglecting SOC for flat spin spirals propagating only in one magnetic
layer of the Mn/Fe/Ir trilayer and the corresponding ultrathin film system. Similar to the
previously presented comparison of the Mn DL on different substrate thicknesses, the simple
trilayer model captures the behaviour of the more complex film system in the magnetic phase
space excellently. While for the top Mn layer again a typical AFM tendency becomes apparent
with the RW-AFM state at the M-point representing a global energy minimum along the high
symmetry directions of the 2D hexagonal BZ, the Fe layer is characterized by strong exchange
frustration. In both systems the FM state at the BZ centre only constitutes a local energy maximum
and spin spirals in the vicinity of the Γ-point experience a shallow energy gain. Both the RW-AFM
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state at the BZ boundary as well as the Néel state at the K-point are by 50 to 75 meV higher in
energy than the FM state. Upon comparing Figs. 8.12 (a) and (b), the modified hybridization

(a) (b)

(c) (d)

Figure 8.12. DFT total energies for spin spirals propagating in the individual magnetic layers of a
Mn/Fe bilayer on Ir(111). Energy dispersion of flat spin spirals propagating only in one magnetic layer
for (a) a freestanding hcp-Mn/fcc-Fe/Ir trilayer and (b) for the corresponding filmsystem hcp-Mn/fcc-
Fe/Ir(111) without spin-orbit coupling effects. Total DFT energies are marked by filled circles whereas
solid lines denote fits to the Heisenberg model beyond nearest neighbors. From these curves the intralayer
exchange can be calculated separately for each Mn layer. (c) and (d) DMI contributions for all q values
calculated in (a) and (b), respectively. The solid lines running through the DFT values denote a fit to the
DMI. EDM < 0(> 0): preference of right-(left-)rotating spin spirals.

of the Fe layer with the adjacent Ir substrate mainly becomes visible at the K-point where
the total energy of the Néel state in Mn/Fe/Ir(111) is reduced by 25 meV with respect to the
corresponding value of the trilayer.
Table 8.7 lists the intralayer Heisenberg exchange constants obtained from a fit to the above
discussed energy dispersions of the two studied systems. The emergence of the RW-AFM state in
the upper Mn layers can again be explained with the ratio of their AFM nearest and next-nearest
neighbor constants J1 and J2, respectively, which takes a value of roughly 1/4 indicating exchange
frustration in these magnetic layers as well. In contrast, the spin spiral ground states of the Fe
layers arise due to a small FM nearest-neighbor constant J1 with a maximum value of 9 meV
competing with AFM interactions of second and third nearest neighbors similar to the pure Fe
layer on Ir(111) presented in chapter 7.

The energy contributions of the intralayer DMI for all spin spiral states are displayed in Figs. 8.12
(c) and (d). Interestingly, they turn out very small for both the trilayer as well as the film system.
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Table 8.7. Intralayer magnetic interaction constants calculated via DFT for the hcp-Mn/fcc-Fe/Ir tri-
layer and the corresponding filmsystem hcp-Mn/fcc-Fe/Ir(111). Comparison of intralayer Heisenberg
exchange constants Ji for ith neighboring spin and intralayer Dzyaloshinskii-Moriya interaction (DMI)
constants Di for hcp-Mn/fcc-Fe/Ir and hcp-Mn/fcc-Fe/Ir(111). The intralayer exchange parameters
have been determined individually for each magnetic layer by means of a separate energy dispersion as
indicated in Fig. 8.12. The respective magnetic layer is marked by bold letters. Possible intralayer HOI
terms are not taken into account here. J > 0 (J < 0) represents ferromagnetic (antiferromagnetic) order
and D > 0 (D < 0) the preference of clockwise (counterclockwise) rotational sense. All values are given in
meV.

Parameter Mn/Fe/Ir Mn/Fe/Ir(111) Mn/Fe/Ir Mn/Fe/Ir(111)
J1 −21.20 −20.65 +9.23 +6.35
J2 −4.97 −4.89 −2.93 −0.95
J3 −0.36 −0.84 −1.32 −1.19
J4 −0.37 +0.06 +0.29 +0.20
J5 +0.38 +0.23 −0.82 −0.41
J6 −0.11 −0.17 +0.41 −0.23
J7 +0.12 +0.06 +0.12 −0.01
J8 −0.11 −0.04 −0.31 −0.05
D1 +0.34 +0.20 −0.03 +0.55
D2 +0.16 +0.13 +0.34 +0.11
D3 +0.23 +0.09 −0.12 −0.10
D4 +0.04 +0.01 −0.17 −0.01
D5 −0.03 −0.06 −0.02 +0.09

For the former the contributions of the two magnetic layers nearly cancel due to the preference of
opposite rotational senses, while in the film system spin structures with clockwise rotation are
clearly favored in both layers. Table 8.7 also reveals that this intralayer SOC effect obviously
only plays a minor role for the Mn/Fe bilayer on Ir(111) due to the negligible values of the DM
parameters contrary to the previously presented Mn DL on the same substrate.

8.6.2 Interlayer exchange

In order to look for the experimentally observed magnetic ground state of Mn/Fe/Ir(111) which
appears as a rectangular-shaped four-atomic unit cell in the experiment we extended our DFT
calculations to spin spirals propagating simultaneously in the Mn and Fe layer. These results
are shown in Figs. 8.13 (a) and (b) for a FM and an AFM coupling of the magnetic layers at the
Γ-point. Again, total DFT energies are depicted by filled circles of the respective color of the
coupling type and a fit to the Heisenberg model including intra- and interlayer exchange is
denoted by solid lines. Just like for the case of a Mn DL, the respective exchange parameters
listed in Table 8.7 and 8.8 are not determined from this fit which just serves as a guide to the eye.
Independent of the number of Ir layers, the interlayer exchange coupling ∆E takes a positive
value of 27 to 45 meV indicating the FM state to be energetically lower at the Γ-point this time
consistent with the result from the structural relaxation (cf. Fig. 8.3 (d)).
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(a) (b)

(c) (d)

Figure 8.13. DFT total energies for spin spirals propagating in both magnetic layers of a Mn/Fe bilayer
on Ir(111). Energy dispersion of flat spin spirals propagating in both magnetic layers of (a) a freestanding
hcp-Mn/fcc-Fe/Ir trilayer and (b) the corresponding film system hcp-Mn/fcc-Fe/Ir(111). Two cases are
considered: FM (blue) and AFM (red) coupling between the two layers. Total DFT energies are marked by
filled circles of the respective color whereas solid lines denote fits to the Heisenberg model including
intra- and interlayer exchange. Note that the respective exchange constants given in Table 8.7 and 8.8 are
not determined from this fit; instead, it just serves as a guide to the eye. DFT energies including DMI are
indicated by light blue and purple filled circles, respectively. The energies of the uudd (↑↑↓↓) states of
hcp-Mn/fcc-Fe/Ir(111) are denoted as empty diamonds at the q values of their constituting single-q
states for each coupling type. The magnetic moments of the spin structures at the most important high
symmetry points are listed in Table C.4 of Appendix C. (c) and (d) DMI contributions for all q values
calculated in (a) and (b), respectively. EDM < 0(> 0): preference of right-(left-)rotating spin spirals.

In contrast to the Mn DL on Ir(111), the single-q state of lowest energy is not found at a high
symmetry point of the enlarged symmetry zone neither in the Mn/Fe/Ir trilayer nor in the
respective film system. In case of the former, the global energy minimum is located at q ≈ 0.43
2π
a along ΓK′M′ for the FM coupled layers corresponding to a 135◦ spin spiral containing eight

atoms in the surface unit cell. The inclusion of the DMI further lowers its energy. Due to the
altered hybridization between the magnetic bilayer and the non-magnetic substrate another
energy minimum arises for a FM coupling of the layers in the film system competing with the
one just mentioned. It is a 75◦ spin spiral along the ΓM′ direction at q ≈ 0.42 2π

a and it is only
0.37 meV higher in energy than the 135 ◦ spin spiral along ΓK′M′. Besides not including four
atoms in the surface unit cell as observed in the experiment, but 24 instead, it also causes further
complications finding the true magnetic ground state.
Figs. 8.13 (a) and (b) further demonstrate that the general trend of the energy dispersion for
the two coupling types of magnetic moments does not depend on the number of Ir layers



8.6 Comparison between trilayer and film system - Mn/Fe/Ir(111) 165

consistent with previous findings for the Mn DL on Ir(111) (cf. Figs. 8.9 (a) and (b)), but rather
represents an intrinsic property of the Mn/Fe bilayer. This assumption is again supported
by DFT calculations performed for a freestanding magnetic DL consisting of the respective
elements [138] for which only the exact energy contributions of the spin spiral states change
upon removing the non-magnetic substrate layers.

Just like in case of Mn/Mn/Ir(111), the interlayer DMI does not seem to be relevant for the
Mn/Fe bilayer on Ir(111) since the maximum deviation between the contributions calculated
for FM and AFM coupled spin spirals amount to 3.5 meV as shown in Fig. 8.13 (d). Hence, the
intralayer DMI obtained from calculations considering spin spirals in only one magnetic layer
should provide an informative basis concerning this SOC effect in the Mn/Fe bilayer on Ir(111)
(see Table 8.7).
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Figure 8.14. (SP)-STM images calculated via DFT for the uudd- 1
2 ΓM′ state of FM coupled magnetic

layers of the Mn/Fe bilayer on Ir(111). (a) STM image for a non-spinpolarized tip, (b) SP-STM image for
a tip spin polarization of 0.2 and (c) for 0.5 calculated at 5 Å above the surface in the energy range [EF-0.1
eV, EF]. The calculations have been performed via FLEUR based on the spin-polarized generalization [136]
of the Tersoff-Hamann model [115]. The red (green) circles with upward (downward) pointing arrows
denote magnetic atoms with the respective magnetization direction. Large (small) circles represent the
magnetic atoms of the Mn surface (Fe subsurface) layer. For better visualization, the magnetization
components of the Mn and Fe atoms are drawn in-plane; in the corresponding DFT calculation they
are pointing along the out-of-plane easy magnetization direction instead. Note that for each tip spin
polarization a quadrupled image of the magnetic unit cell (indicated by dashed lines) is shown.

Since none of the energetically lowest single-q states of the energy dispersion is able to explain
the experimentally observed magnetic ground state of Mn/Fe/Ir(111), we expanded our DFT
calculations to the collinear uudd states. In this context, the uudd state along ΓM′ direction is of
special interest as the shape of its unit cell (cf. Fig. 8.7 (a)) is consistent with the one found in the
experiment. Moreover, the q value of the constituting 90◦ spin spiral in each layer is located close
to the local minimum of the energy dispersion, i.e. the 75◦ spin spiral along ΓM′ at q ≈ 0.42 2π

a
(see Fig. 8.13 (b)).
In Fig. 8.13 (b) a similar picture as previously reported for the Mn DL emerges for the Mn/Fe
bilayer on Ir(111): the superposition states turn out to be close in energy to their building blocks
with the maximum energy difference amounting to 29 meV/magnetic layer which is still quite
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Figure 8.15. Interlayer exchange E⊥(q)
calculated via DFT for a Mn/Fe bilayer
on Ir(111). Contributions of the inter-
layer exchange determined from spin
spirals propagating in both magnetic lay-
ers of (a) the freestanding hcp-Mn/fcc-
Fe/Ir trilayer and (b) the corresponding
film system hcp-Mn/fcc-Fe/Ir(111) with-
out spin-orbit coupling effects. Total DFT
energies obtained from the difference of
a FM coupling between the two mag-
netic layers and an AFM coupling are
marked by filled circles whereas solid
lines denote a fit to the pairwise inter-
layer Heisenberg exchange. The corre-
sponding exchange constants are listed
in Table 8.8.

(a)

(b)

small in consideration of the energy scale of the dispersion. However, the uudd-ΓM′ state is
energetically unfavourable by 11 meV/magnetic layer with respect to its corresponding 90◦ spin
spiral and can hence not be the ground state of the system. Keeping in mind that this value is
indeed very small and the interlayer distances obtained from a specific structural relaxation
can also have a large impact on the energetics of the system at hand, we calculated SP-STM
images via DFT for the uudd-ΓM′ state for FM coupled layers (see Fig. 8.14) and compared the
results with experimental measurements on different rotational domains. However, the magnetic
contrast found in the DFT calculation which is characterized by a snake-like pattern only matches
the contrast of one rotational domain thereby finally excluding the collinear multi-Q state as the
experimentally observed magnetic structure.

Figs. 8.15 (a) and (b) show the dispersion of the interlayer Heisenberg exchange calculated
according to E⊥(q) = 1

2 (EFM(q)− EAFM(q)− ∆E) for the simple trilayer Mn/Fe/Ir and its
respective film system. Although there are quantitative differences visible between the two
curves, both of them have a strong exchange frustration in common which becomes manifest in
deep energy minima of up to 35 meV for q ≈ 0.31− 0.33 2π

a along both high symmetry directions
of the enlarged hexagonal symmetry zone. The corresponding interlayer Heisenberg exchange
constants are listed in Table 8.8 revealing the exchange between nearest neighbors denoted by J⊥1
to be responsible for the FM interlayer exchange coupling in both systems. With values of up to
nearly 20 meV it competes against AFM interactions of second and third nearest neighbors.
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Parameter Mn/Fe/Ir Mn/Fe/Ir(111)
J⊥1 +15.27 +19.53
J⊥2 −4.55 −5.94
J⊥3 −3.72 −3.67
J⊥4 +1.69 −0.43
J⊥5 −0.41 −0.17
J⊥6 +0.79 −0.20
J⊥7 +0.09 −0.13
J⊥8 +0.09 +0.15

Table 8.8. Interlayer Heisenberg exchange pa-
rameters calculated via DFT for the hcp-
Mn/fcc-Fe/Ir trilayer and the corresponding
filmsystem hcp-Mn/fcc-Fe/Ir(111). Comparison
of interlayer Heisenberg exchange constants
J⊥i determined from the dispersion shown in
Fig. 8.15 for hcp-Mn/fcc-Fe/Ir and hcp-Mn/fcc-
Fe/Ir(111). J > 0 (J < 0) represents ferromag-
netic (antiferromagnetic) coupling between the
moments of the two magnetic layers. All values
are given in meV.

In a final step, we again wanted to estimate the impact of possible interlayer HOI terms on
the energy landscape of the Mn/Fe bilayer on Ir(111). To this, we proceeded in the same way
as described for the Mn DL in Sec. 8.5.2, i.e. by calculating the total DFT energies of magnetic
structures along the geodesic path in spin space from the RW-AFM I to the RW-AFM II state.
The results are shown in the lower part of Fig. 8.16. Here, the RW-AFM II state represents a

Θ=0°                               Θ=90°                             Θ=180° Figure 8.16. Coplanar tilting of the RW-
AFM I state of hcp-Mn/fcc-Fe/Ir(111). Total
DFT energies of magnetic states (red data
points) along the geodesic path in spin space
from the RW-AFM I into the RW-AFM II state
of hcp-Mn/fcc-Fe/Ir(111). The angle θ mea-
sures the degree of canting between the mag-
netic moments of the upper and the lower Mn
layer where θ = 0◦ (θ = 180◦) corresponds
to the RW-AFM I (II) state. In the DFT cal-
culation only the moments of the upper Mn
layer experience a rotation, while the direc-
tions of the moments of the subsurface Mn
layer are kept fixed to the start position, i.e.
the RW-AFM I state. The orange line denotes
a fit to the pairwise Heisenberg exchange,
whereas the blue line includes cosine terms of
higher power and hence possible interlayer
HOI parameters as well.

global minimum being energetically favourable by 60 meV with respect to the RW-AFM I state
consistent with the observation from the energy dispersion (cf. red and blue DFT data point at
the M′-point in Fig. 8.13 (b)). Mapping the DFT results to the power series of cosine terms given
by Eq. (8.9) reveals the pairwise Heisenberg exchange to match the first-principles data points
perfectly (orange line). In this case, no improvement is achieved by including cosine terms of
higher power (blue line) indicating that interlayer HOI terms are negligible for Mn/Fe/Ir(111) at
least along the considered path. However, just as in the case of the Mn DL on Ir(111), from this
observations no conclusions can be drawn regarding the relevance of certain HOI terms along
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other paths for the present film system.

8.7 Conclusion

In this chapter, we have presented a thorough DFT study on hexagonal magnetic bilayers grown
pseudomorphically on the Ir(111) surface and the more simple system of a Mn ML on the same
substrate.
The latter is characterized by strong AFM exchange coupling and significant HOI terms on the
order of 3 meV. In accordance with experimental observations, the Néel state turns out to be
the magnetic state of lowest energy for an hcp-stacked Mn ML on Ir(111) due to the geometric
frustration on the triangular lattice.
While the investigation for the magnetic ML was straightforward owing to profound knowledge
acquired by means of the previously presented systems in this thesis, the calculation of the elec-
tronic and magnetic properties of two interacting magnetic bilayers represents a computationally
and conceptually much more demanding task. Hence, after presenting the conceptual framework
for the model of pairwise Heisenberg exchange for a magnetic double layer, we first performed
DFT calculations for a simple freestanding hcp-Mn/hcp-Mn/Ir and a hcp-Mn/fcc-Fe/Ir trilayer
in order to get a feeling for the topic and to estimate the computational effort for the more
complex film systems.
Consistent with results obtained for trilayers containing only one magnetic layer (cf. chapter 5),
both the intra- and interlayer Heisenberg exchange constants of Mn/Mn/Ir and Mn/Fe/Ir
already describe the corresponding film system exceptionally well indicating that the general
trend of the energy dispersion represents an intrinsic property of the considered magnetic
bilayer. Consequently, the hybridization with the non-magnetic substrate only influences the
total energies of the individual spin spiral states thereby changing the magnetic ground state of
the respective bilayer in some cases.

The ultrathin film system hcp-Mn/hcp-Mn/Ir(111) exhibits a strong AFM interlayer exchange
coupling mediated mainly by nearest neighbors and the RW-AFM state at the M′-point is found
to be the single-q state of lowest energy. Surprisingly, the superposition of three RW-AFM states
at the boundary of the enlarged symmetry zone resulting in a non-collinear triple-Q state in the
two magnetic layers turns out to be energetically favored by 60 meV/magnetic layer thereby
contradicting the experimental observation of a stripe pattern. Moreover, this finding indicates
the existence of HOI terms in the system since the prototypical multi-Q states are energetically
strictly degenerate with their corresponding spin spiral states regarding the pairwise Heisenberg
exchange just like their monolayer analogues.

On the other hand, hcp-Mn/fcc-Fe/Ir(111) is characterized by strong interlayer exchange
frustration showing two competing energy minima corresponding to a 75◦ and a 135◦ spin spiral
in each magnetic layer, respectively. However, none of them is able to explain the experimentally
observed rectangular-shaped four-atomic magnetic unit cell. By comparing further the magnetic
contrast of different rotational domains from the experiment with the DFT calculated SP-STM



8.7 Conclusion 169

images of an uudd state of suitable size we can exclude this collinear multi-Q state as a possible
magnetic ground state for the Mn/Fe bilayer.
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9 Summary

In this thesis, density functional theory (DFT) calculations based on the full potential linearized
augmented planewave method as implemented in the FLEUR code [54] and the projector aug-
mented wave (PAW) method as implemented in the VASP code [55] were performed to study
the impact of higher-order exchange interactions (HOI) on a variety of complex nanoscale
collinear and non-collinear spin structures in ultrathin film systems. All investigated interfaces
are amenable to spin-polarized scanning tunneling microscopy (SP-STM) measurements con-
ducted by experimental collaborators allowing for a direct comparison of first-principles theory
and experiment and consequently a deeper understanding of the physics behind such spin
textures. The magnetic interaction constants required to evaluate the microscopic origin of the
experimentally observed magnetic ground states are obtained by mapping total DFT energies to
an atomistic spin model.

After introducing the theoretical background on DFT in chapter 2 and methods for solving the
Kohn-Sham equations in chapter 3, the atomistic spin model including all magnetic interaction
contributions required to interpret the DFT results adequately was introduced in chapter 4. Here,
special attention was paid to the pairwise Heisenberg exchange and the HOI terms arising in
fourth order pertubation theory from the Hubbard model.

In chapter 5 a systematic study on the modification of the pairwise Heisenberg and higher-
order exchange interactions within the nearest-neighbor approximation at TM interfaces using
freestanding trilayers with a central magnetic Fe or Co element was presented (Ref. [I]). The
dependence of the biquadratic and the four-spin interactions on both the band filling of the 4d
and 5d layers as well as their stacking sequence was considered. For Fe based trilayers with a Rh
or Ir layer the HOI are partially found to range on the same order of magnitude as the Heisenberg
exchange interaction, whereas for Co based trilayers relatively small HOI are identified. The
trends obtained for the simple trilayers agree well with the ones calculated for more complex,
experimentally accessible film systems emphasizing that the hybridization between 3d, 4d and
5d bands is the main origin for the drastically modified exchange interactions in these sandwich
structures.
For Rh/Fe/Ir(111) which was the initial motivation for this theoretical study the DFT calculations
performed here reveal the recently proposed three-site four spin interaction [50] to be responsible
for the experimentally observed dependence of the magnetic ground state on the stacking of
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the Rh overlayer [43]: while in fcc-Rh frustrated exchange interactions cause the formation of a
spin spiral (1Q) ground state, the three-site four spin interaction favors a superposition state
of two counterpropagating 90◦ spin spirals, an uudd (2Q) state, in hcp-Rh. DFT calculations
further predict the same change of the magnetic ground state for Rh/Fe/Rh(111), i.e. upon
replacing the Ir surface by the isoelectronic Rh surface. Hence, these two systems are in line
with an hcp-stacked Fe ML on Rh(111) for which the three-site four spin interaction was also
identified as an important ingredient for the stabilization of an uudd magnetic ground state [42].
Focusing additionally on the four-site four spin interaction, it has been shown recently that this
term plays an important role for the stability of magnetic skyrmions [37]. For Rh/Co/Ir(111) a
negative value for this higher-order interaction is obtained within the present study resulting in a
reduced stability of such particle-like objects which are metastable in the system at zero magnetic
field [15, 125]. In contrast, for the well studied Pd/Fe/Ir(111) system [13, 33, 34] the four-site four
spin interaction is found to be positive which leads to an enhanced stability of skyrmions.
Finally, we predict Ru/Fe/Ir(111) to possibly exhibit interesting metastable spin structures to be
uncovered by experimental work due to its row-wise antiferromagnetic ground state and strong
exchange frustration in combination with remarkable values for the DMI and HOI terms.

Triggered by SP-STM measurements from the group of Prof. Wiesendanger at the University of
Hamburg, a detailed DFT study for Fe/Rh atomic bilayers on the Ir(111) surface was performed
(chapter 6 and Ref. [II]). Depending on the stacking of the Fe monolayer (ML) and the number
of Rh layers, a variety of different uniaxial or hexagonal atomic-scale magnetic textures is
observed in zero magnetic field. First-principles calculations reveal a competition of frustrated
Heisenberg exchange and higher-order terms as the driving force for spontaneous single- or
multi-Q formation. Again, a large three-site four spin interaction turns out as the decisive
parameter for stabilizing not only uniaxial spin structures such as the uudd state but also
nanoscale hexagonal magnetic states. Due to its positive sign it promotes collinear states in the
Fe ML moving the influence of the weak DMI of the 4d TM Rh which favors non-collinear spin
textures into the background. Therefore, both the uniaxial magnetic states in fcc-stacked Fe as
well as the hexagonal spin structures discovered for an hcp stacking of the Fe ML exhibit only
a small non-collinearity with canting angles of a few degrees as inferred from both DFT and
atomistic spin model calculations.
Consequently, contrary to previous experimental findings and theoretical considerations,
the hexagonal magnetic states do not resemble non-collinear skyrmion lattices, but can be
characterized as two-dimensionally modulated collinear multi-Q states, a new class of magnetic
order (see Fig. 9.1). In view of their nanoscale size we anticipate these novel magnetic states to
possess interesting transport properties to be uncovered by future work. As indicated before,
higher-order terms were found to not only induce periodic nanoscale magnetic textures, but also
influence local magnetic perturbations in otherwise collinear states [37, 52]. In particular, in the
growing field of spintronics resorting to antiferro- [139] and ferrimagnets [140] we expect an
impact on transport properties such as the anomalous Hall effect [141, 142] or the anisotropic
magnetoresistance depending on the detailed spin configuration in domain walls [143] or other
topological defects such as skyrmions. Large higher-order interactions have further been reported
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Figure 9.1. Sketches of a hexagonal
collinear mosaic (MS) state and its corre-
sponding non-collinear skyrmion lattice.
One central conclusion which can be drawn
from this thesis is that, contrary to common
expectations, the hexagonal magnetic states
discovered for hcp-stacked Fe monolayers (on
Rh interlayers) on the Ir(111) surface do not
resemble non-collinear skyrmion lattices but
can be characterized as two-dimensionally
modulated collinear multi-Q states, a new
class of magnetic order. The three-site four
spin interaction plays a decisive role for
the stabilization of these novel magnetic
structures. The image is taken from [147].

in a range of materials including TM interfaces [19, 42], rare-earth compounds [132] as well as
two-dimensional van der Waals magnets [52, 144–146] which therefore all represent potential
candidates for hosting the novel type of multi-Q state proposed in this thesis.

In connection with Fe/Rh bilayers on Ir(111), a subsequent first-principles study on Fe MLs in
direct contact with the respective surface followed in chapter 7 (Ref. [III]). Here, the well-known
square nanoskyrmion lattice is confirmed as the magnetic ground state of fcc-Fe/Ir(111) [19],
while for hcp-Fe/Ir(111) the hexagonal skyrmion lattice previously proposed based on ex-
periments [56] turns out energetically unfavorable with respect to a hexagonal multi-Q state
exhibiting nearly collinear magnetic order similar to the systems with Rh spacer layers. Mapping
the DFT results again to the atomistic spin model demonstrates that the interplay of pairwise
Heisenberg exchange, HOI and DMI is responsible for the symmetry and collinearity of the
respective spin lattice. Due to the missing screening effect of the 4d Rh layer the DMI exerts a
considerable influence on the magnetism of the Fe layer.
Since the set of HOI terms obtained from the established method of evaluating the energy
differences of the three prototypical multi-Q states with respect to their constituting 1Q states [50]
failed to explain the experimentally observed magnetic ground states of Fe/Ir(111), we resorted
to a new approach to compute the fourth-order terms. Instead of taking energetically high-lying
states far away from the true magnetic ground state into account, a least square fit to the DFT
energies of the energetically lowest spin states was carried out using the pseudoinverse method.
The newly obtained parameter set not only provides an excellent agreement between DFT and
the atomistic spin model but also the sign of the biquadratic, three-site four spin and four-site
four spin term turns out to be consistent with previous work on fcc-Fe/Ir(111) [42].
Applying the same approach to the hcp-stacked Fe ML on a Rh double layer (DL) on Ir(111) does
not alter the previously calculated sign and magnitude of the three-site four spin interaction.
While the sign of the biquadratic and the four-site four spin term changes compared to the one
calculated from the established method, the three-site four spin term remains the decisive HOI



174 Summary

parameter of the system and at the same time the most important source for the stabilization of
collinear hexagonal magnetic states.

Our studies on magnetic monolayers have not only revealed the underlying microscopic stabi-
lization mechanisms of already known complex spin structures such as the square nanoskyrmion
lattice of fcc-Fe/Ir(111) [19] or the uudd state of hcp-Rh/Fe/Ir(111) [43] but also unraveled novel
magnetic textures such as the hexagonal collinear multi-Q states in Fe/Rh bilayers on Ir(111).
Going beyond monolayers, the interplay of intra- and interlayer pairwise Heisenberg exchange,
HOI and DMI are expected to lead to new exciting spin structures as well. Moreover, magnetic
3d TM bi- and trilayers on surfaces might provide first insights towards the impact of HOI in
bulk systems.
Hence, motivated by SP-STM measurements from our experimental colleagues in Hamburg,
both a Mn DL and a Mn/Fe bilayer on Ir(111) were investigated by means of first-principles
calculations (chapter 8). While the Néel state with an angle of 120◦ between neighboring magnetic
moments could easily be identified as the state of lowest energy for the more simple system of an
hcp-stacked Mn ML on Ir(111) in accordance with experimental observations, the calculation
of the energy dispersion of two interacting magnetic layers turns out as a computationally
and conceptually much more demanding task. Thus, in order to treat spin spirals propagating
simultaneously in two magnetic layers and to enable extracting the intra- and interlayer ex-
change constants, a detailed introduction to the conceptual framework for the model of pairwise
Heisenberg exchange in magnetic bilayers was presented. It was demonstrated that not only the
number of q values increases due to the enlarged symmetry zone for spin spirals compared
to the hexagonal Brillouin zone of a magnetic ML but also twice the amount of prototypical
multi-Q states is possible for a bilayer – two uudd states and one 3Q state for both FM and AFM
coupling of the layers.
Consistent with the results for trilayers containing only one magnetic layer (chapter 5), the
properties of Mn/Mn/Ir(111) and Mn/Fe/Ir(111) are already described excellently by their
respective simplified model system indicating the general trend of their energy dispersions to
be an intrinsic property of the corresponding magnetic bilayer. In contrast to the experimental
observation of a stripe pattern on the Mn DL which would be consistent with the magnetic
contrast of a row-wise antiferromagnetic (RW-AFM) state, our DFT calculations surprisingly
predict a non-collinear 3Q state in the two magnetic layers (see Fig. 9.2 (a)) to be energetically
favored by 60 meV/magnetic layer over its constituting single-Q state. This is strong evidence for
the existence of HOI terms in the system since this novel spin structure turns out energetically
degenerate with its respective single-Q RW-AFM state regarding the pairwise Heisenberg
exchange similar to its monolayer analogue.
Mn/Fe/Ir(111) which is promising for exhibiting intriguing magnetic states due to the sponta-
neous nanoskyrmion lattice in the fcc-stacked Fe ML on Ir(111) [19] shows a strong interlayer
exchange frustration with two competing energy minima corresponding to a 75◦ and a 135◦ spin
spiral in each magnetic layer. However, up to now our DFT calculations are not able to explain
the experimentally observed rectangular-shaped four-atomic magnetic unit cell of the system.
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(a)

(b) (c)

Figure 9.2. Towards higher-order exchange
interactions in magnetic multilayers. (a) de-
picts the spin structure of a non-collinear 3Q
state arising in two magnetic layers which
is predicted as the state of lowest energy by
DFT for a Mn DL on the Ir(111) surface. Note
that this spin texture is different from that of
a 3Q state in a magnetic monolayer as, for
instance, present in Mn/Re(0001) [40]. (b) and
(d) show sketches of randomly oriented spin
states within the chemical and the p(2× 1)
supercell, respectively, which can be used to
determine HOI constants for magnetic bilay-
ers via an adapted computation scheme in the
near future (see text for details). Images from
(b) and (c) by courtesy of T. Drevelow.

In order to complete the DFT study on magnetic bilayers it would be desirable to obtain access to
possible higher-order terms which could be responsible for the obvious stabilization of a 3Q
state in Mn/Mn/Ir(111). Furthermore, the investigation of HOI in magnetic bilayers shows great
promise with respect to the explanation of the unknown magnetic ground state of Mn/Fe/Ir(111).
However, since film systems with multiple magnetic layers give rise to a large number of possible
HOI terms, it is worthwile extracting only the most important ones for the system at hand which
requires a modification of the computation scheme presented in this thesis. One method recently
developed by T. Drevelow from our group is briefly presented in the following 1.
Instead of resorting to spin spiral vectors along the high symmetry paths of the hexagonal
Brillouin zone, states with a randomized magnetic orientation within the chemical unit cell are
constructed and a random spin spiral vector is applied as the boundary condition (see Fig. 9.2
(b) for an example of the resulting structures). This approach requires the same computational
effort as needed for flat spin spirals, but offers some advantages. First, the magnetic phase space
gets sampled more evenly since restrictions regarding the spin spiral vector and the opening
angle of the magnetic moments are lifted. The amount of randomly created states is unlimited as
well hence allowing to tune the accuracy of the results accordingly. Secondly, in case of flat spin
spirals, additional calculations within larger unit cells need to be performed in order to extract
the HOI since the respective constants are coupled to the Heisenberg exchange parameters in a

1T. Drevelow, private communication
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certain way. This problem can be circumvented by varying the opening angle of the spin spiral.
Thirdly, the calculation of multiple spin spiral setups (spiral only in the top/bottom or both
layers) becomes needless as all those structures are part of sub-spaces of the space of randomly
created states. By generating random states not only within the chemical unit cell but also in a
p(2× 1) supercell (see Fig. 9.2 (c)), it is feasible to create a space of possible structures that also
contains spin spiral superposition states. This approach facilitates a simultaneous computation
of HOI and Heisenberg exchange interactions.
Once a sufficient number of energies for a set of states is calculated via DFT, the pseudoinverse
method presented in chapter 7 can be applied since the energy in the atomistic spin model
depends linearly on the interactions constants allowing to approximate the DFT energies with a
matrix equation. To improve the predictive capability of the method, different sets of interactions
are tested via cross validation in order to optimize the extrapolation. This procedure reveals
which HOI are relevant for the system at hand and which can be discarded for the description of
the energy landscape.
Applying this method to the Mn DL and the Mn/Fe bilayer on Ir(111) will enable us to consider
new interactions for the two systems and improve the energy landscape which might result in
new ground states in the atomistic spin model that are consistent with the experimental data.
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Figure A.1. Comparison of spin model vs. DFT energies for selected magnetic states of fcc-stacked Fe
MLs on Rh1 and Rh2 on Ir(111). a,b, Upper panels show DFT total energies with respect to the FM
reference for fcc-Fe/Rh1/Ir(111) and fcc-Fe/Rh2/Ir(111) (red squares), respectively, and energies obtained
via the atomistic spin model (black circles) using DFT parameters for the magnetic interactions. The top
axis denotes non-collinear spin structures and the lower axis the corresponding collinear states. The lower
panels show the decomposition of the total energy into the contributions from the Heisenberg exchange,
the biquadratic interaction, the three-site four spin (3-Spin) and the four-site four spin interaction (4-Spin).
Filled (open) circles represent collinear (non-collinear) states. For the calculation of the total energies in
the spin model the DMI and MAE were taken into account, but not shown here. The lines connecting the
data points serve as a guide to the eye. Figure adapted from Ref. [II].
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12:15-MS
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7:12-MS

Figure A.2. SP-STM simulations for hexagonal spin states in hcp-Fe/n-Rh/Ir(111). a-c Sketches of the
27-SkX, the energetically lowest 15% canted 12:15-MS state according to DFT and the collinear 12:15-MS
state of hcp-Fe/Rh1/Ir(111) and d-e the 19-SkX and collinear 7:12-MS state of hcp-Fe/Rh2/Ir(111)
followed by the corresponding simulated SP-STM images of the same area with a tip magnetization in +z,
−z (out-of-plane) as well as +y and +x direction (in-plane) with 50% spin polarization in each case. The
SP-STM simulations have been performed based on the model described in [116] at a height of 6 Å. The
corrugation amplitudes for the 27-SkX in a amount to 37 pm for a tip magnetization along the z direction
and to 29 pm for a tip magnetization along the x and y direction. For the 15% canted 12:15-MS state in b
(and the collinear 12:15-MS state in c) the corrugation amplitude amounts to 43 pm for a tip magnetization
along the z direction. Note that although the SP-STM images for the 27-SkX and the 15% canted 12:15-MS
state with in-plane magnetized tips (+y and +x) are qualitatively the same, the corrugation amplitude for
the 15% canted 12:15-MS state is only 5 pm and hence by a factor of 5.4 smaller than for the 27-SkX. The
corrugation amplitude for a tip magnetization along the z direction of the 7:12-MS state e amounts to
44 pm, while the respective value for the non-collinear 19-SkX state in d is 32 pm (around 25 pm for a
tip magnetization along x and y direction). The corrugation amplitudes for the images with in-plane
magnetized tips of the collinear 12:15-MS state and the 7:12-MS state showing the atomic lattice amount to
only 0.1 pm. This small value represents a well-known quantitative deficiency of the Tersoff-Hamann
model [115] for close-packed metal surfaces. Figure published in the supplemental material of Ref. [II].
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a b

c d

90°-1Q-ΓM uudd-ΓM

77°-1Q-ΓM 4.67-atom

Figure A.3. SP-STM simulations for uniaxial spin states in fcc-Fe/n-Rh/Ir(111) . a-d Sketches of the 90◦

spin spiral along ΓM direction, the uudd-ΓM state, the 77◦ spin spiral along ΓM and the corresponding
collinear 4.67-atom state followed by the respective simulated SP-STM images of the same area with a tip
magnetization in +z direction and 50% spin polarization in each case. The SP-STM simulations have been
performed based on the model described in [116] at a height of 6 Å. Figure published in the supplemental
material of Ref. [II].
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Figure A.4. Energy contributions to SkX
and MS states obtained in the spin model
with DFT parameters of hcp-Fe/Rh1/Ir(111).
Plot of the energy contributions from the ex-
change and three-site four spin (3-Spin) in-
teraction to the total energy E(Q) of MS and
SkX states for Q along the MΓK direction. The
energy contributions from the biquadratic, the
four-site four spin interaction, the DMI and
the MAE are not shown but included in the
total energy. The spikes in the curves for the
MS states stem from changes of the local spin
structure on the discrete atomic lattice as only
the z-component of the magnetic moments
is taken for its construction. The Q values of
the hexagonal MS states are marked by solid
lines along the ΓK direction. Inset Sketch of
the 2D BZ with the three Q-vectors Q1, Q2
and Q3 used to construct SkX states along the
ΓM direction; to obtain SkX states for the ΓK
direction the Q-vectors need to be rotated by
an angle of θ = 30◦. Figure published in the
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Figure A.5. Energy contributions to uniax-
ial collinear and non-collinear spin spiral
states obtained in the spin model with DFT
parameters of hcp-Fe/Rh2/Ir(111). Plot of the
energy contributions from the exchange and
three-site four spin (3-Spin) interaction to the
total energy E(Q) along the MΓK direction
for uniaxial collinear and their respective spin
spiral (1Q) states which serve as a basis for
their construction. The Q values of the uudd
states are marked by solid lines along both
high symmetry directions of the 2D BZ. The
energy contributions from the biquadratic, the
four-site four spin interaction, the DMI and
the MAE are not shown but included in the
total energy. Figure published in the supple-
mental material of Ref. [II].
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Figure A.6. Total energies of magnetic states along the geodesic path in spin space from the
collinear 12:15-MS state into the non-collinear 27-SkX obtained via the atomistic spin model for hcp-
Fe/Rh1/Ir(111). Energies of canted 12:15-MS states as a function of the relative polar angle θ of the 27-SkX
resolved by the contributions from different magnetic interactions comprised in the extended Heisenberg
model. The relative polar angle θ for every atom in the unit cell is defined as θ(x)=θ0 + x(θ f − θ0) with
x ∈ [0, 1] where the value x=0 is chosen for the collinear 12:15-MS state and x=1 for the fully noncollinear
hexagonal skyrmion lattice. θ f refers to the final value of every magnetic moment in the nanoskyrmion
lattice, whereas θ0 is set to 0◦ for upward pointing moments (180◦ for downward pointing moments).
The in-plane angles φ of the atoms are not changed with the variation of θ, but kept fixed to the values
of the 27-SkX. Filled circles are obtained by means of the atomistic spin model with DFT interaction
parameters from 5 layers of the Ir substrate, while lines serve as a guide to the eye. Figure published in the
supplemental material of Ref. [II].
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Figure A.7. Measurements with out-of-plane and in-plane sensitive Fe-coated W tips. a,b, Identical
sample area measured with an Fe-coated W tip with and without the application of an out-of-plane
magnetic field. Fe tips are typically sensitive to the in-plane sample magnetization at B = 0 T, whereas
an applied magnetic field aligns the tip magnetization resulting in a tip sensitive to the out-of-plane
components (see sketches on the left). While the magnetic corrugation stemming from the out-of-plane
sample magnetization components is strong for all Fe ML areas in a, the magnetic contrast observed
in b is hardly visible on the Fe ML in contact with Rh; however, the Fe ML directly on Ir(111) shows
magnetic contrast in both cases demonstrating that the tip is spin-polarized in both measurements
regardless of the tip change that occurred in between them. c,d, Same measurement setup as in a,b,
but for a different sample area. These experiments suggest that for all Fe MLs being in contact with Rh
the out-of-plane magnetization components appear much more prominent compared to the in-plane
components. However, a quantitative evaluation is not possible as other magnetoresistance effects can
play a role and a tip change occurred between the images. The measurement parameters are as follows:
U = +50 mV, I = 3 nA; B as indicated, T = 8.3 K, Fe-coated W tip. Figure published in the supplemental
material of Ref. [II].
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.
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Figure A.8. Total energies of magnetic states along the geodesic path in spin space from the collinear
4.67-atom state into the non-collinear 77◦ spin spiral obtained via the atomistic spin model for fcc-
Fe/Rh1/Ir(111). Energies of canted 4.67-atom states as a function of the relative polar angle θ of the
corresponding 77◦ spin spiral resolved by the contributions from different magnetic interactions comprised
in the extended Heisenberg model. The relative polar angle θ for every atom in the unit cell is defined as
θ(x)=θ0 + x(θ f − θ0) with x ∈ [0, 1] where the value x=0 is chosen for the collinear 4.67-atom state and
x=1 for the fully noncollinear spin spiral. θ f refers to the final value of every magnetic moment in the spin
spiral, whereas θ0 is set to 0◦ for upward pointing moments (180◦ for downward pointing moments).
Filled circles are obtained by means of the atomistic spin model with DFT interaction parameters from 5
layers of the Ir substrate, while lines serve as a guide to the eye. Figure published in the supplemental
material of Ref. [II].



B Additional data for hcp-Fe/Ir(111)

Fig. B.1 demonstrates the independence of our conclusions on the magnetic ground state of
hcp-Fe/Ir(111) with regard to the choice of the structural relaxation parameters based on the
GGA or LDA Ir in-plane lattice constant. The usage of the GGA Ir in-plane lattice constant does
not alter qualitatively the course of the energy dispersion of spin spirals compared to the one
obtained from the LDA lattice constant presented in Fig. 7.1 (b) of Sec. 7.2: spin-orbit coupling
effects lead to the formation of spin spiral minima along both high symmetry directions of the
hexagonal BZ while both the Néel state at the K-point as well as the RW-AFM state at the M-point
are energetically unfavourable with respect to the FM state at the centre of the BZ. However,
these energy differences are by 10 meV/Fe atom smaller compared to the results obtained
from the LDA lattice constant of Ir which results in a stronger antiferromagnetic coupling (see
Table B.1). Concerning the prototypical multi-Q states the same positions of the two uudd states
and the 3Q state with respect to the energy dispersion are revealed leading to similar values of
the HOI calculated via the multi-Q method (see lower lines of the last three columns of Table B.2).
One further notices that the non-collinear square SkX is favored over the collinear 7:8-MS state
whereas the opposite applies to the hexagonal 12- and 19-atomic hexagonal spin lattices. Just like
in case of the LDA lattice constant, the 7:12-MS state turns out slightly lower in energy than the
3:9-MS state. However, the trend favoring a collinear hexagonal rather than a non-collinear square
spin lattice for this Fe stacking is clearly expressed by the DFT calculation.

J1 J2 J3 D1 D2 D3 Ku
hcp-Fe/Ir(111)GGA 2.52 −0.24 −1.03 1.66 −0.12 −0.41 −0.28

Table B.1. Magnetic interaction constants calculated via DFT using the geometric structure of the
GGA Ir lattice constant for the hcp-stacked Fe ML on Ir(111). Heisenberg exchange constants Ji as
extracted from fitting the respective spin spiral energy dispersion E(q), i.e. without modification by HOI
terms, Dzyaloshinskii-Moriya interaction (DMI) constants Di and uniaxial magnetocrystalline anisotropy
energy constant Ku for hcp-Fe/Ir(111). J > 0 (J < 0) represents ferromagnetic (antiferromagnetic) order,
D > 0 (D < 0) clockwise (counterclockwise) rotation and a negative value of Ku denotes an out-of-plane
easy magnetization axis. Note that the fitting of the energy dispersion was done by including eight nearest
neighbors; the values for J4 to J8 are given in the supplemental material of Ref. [III]. All values are given
in meV.
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Table B.2. Higher-order exchange constants calculated via two different approaches for hcp-
Fe/Ir(111). Modified Heisenberg exchange constants (J′i ), i.e. taking the effect of the HOI into account as
given by Eq.(4.24)-(4.26), and HOI constants calculated via DFT for hcp-Fe/Ir(111) using the geometric
structure of the GGA Ir lattice constant. Note that only the first three pairwise exchange constants need to
be adapted within the NN approximation of the HOIs. The biquadratic (B1), four-site four spin (K1) and
three-site four spin (Y1) interaction strength for nearest neighbors are listed in the last three columns. The
upper line lists the modified exchange and HOI parameters obtained from the pseudoinverse (PI) method
(by a least square fit to the same magnetic states as in case of the LDA Ir lattice constant (see Sec. 7.3.2))
while the lower one shows the values computed from the set of coupled equations (multi-Q). All values
are given in meV. Table adapted from Ref. [III].

Method J′1 J′2 J′3 B1 K1 Y1

hcp-Fe/Ir(111)GGA
PI

multi-Q
0.16
−1.81

−2.60
−4.57

−0.53
−2.37

−1.01
2.68

−2.14
0.65

2.36
4.33

Figure B.1. DFT total energies for various
spin structures in hcp-Fe/Ir(111). (a) Energy
dispersion E(q) of flat cycloidal spin spirals
obtained via DFT along the two high symme-
try directions of the two-dimensional Brillouin
zone for hcp-Fe/Ir(111) using the geomet-
ric structure of the GGA Ir lattice constant.
Black (grey) circles represent total DFT ener-
gies without (including) spin-orbit coupling
(SOC) effects, i.e. the DMI and MAE, while
black (grey) lines show a fit to the Heisenberg
model neglecting (including) the contribu-
tions of the DMI and MAE. The DFT total
energies of a variety of additional spin struc-
tures presented in the main text are denoted
at the q values of the respective 1Q states.
(b) Energy contributions for spin spiral states
due to the DMI. Black circles denote DFT en-
ergies, whereas the black filled lines repre-
sent a fit to the Dzyaloshinskii-Moriya interac-
tion. EDM < 0 (> 0): preference of right-(left-
)rotating spin spirals. Figure published in the
supplemental material of Ref. [III].
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C Magnetic moments of Mn/Mn/Ir(111)
and Mn/Fe/Ir(111)

System magnetic layer FM LAFM RW-AFM I RW-AFM II

fcc-Mn/hcp-Mn/Ir(111)
top Mn

bottom Mn
3.53
2.47

3.20
2.61

3.51
2.72

3.35
2.46

hcp-Mn/hcp-Mn/Ir(111)
top Mn

bottom Mn
3.54
2.39

3.04
1.97

3.45
2.57

3.32
2.27

Table C.1. Magnetic moments of the four considered collinear spin configurations for the two Mn
double layers on Ir(111) after structural relaxation. The values have been obtained via the VASP code
(GGA PBE [74]) by means of a symmetric slab with 9 Ir substrate layers and one magnetic bilayer on each
side of the film using the GGA Ir lattice constant [119]. All values are given in units of µB.

System magnetic layer FM LAFM RW-AFM I RW-AFM II

fcc-Mn/fcc-Fe/Ir(111)
Mn
Fe

3.54
2.66

3.45
2.37

3.44
2.24

3.35
2.29

hcp-Mn/fcc-Fe/Ir(111)
Mn
Fe

3.58
2.69

3.33
2.23

3.38
1.87

3.36
2.22

Table C.2. Magnetic moments of the four considered collinear spin configurations for the two Mn/Fe
bilayers on Ir(111) after structural relaxation. The values have been obtained via the VASP code (GGA
PBE [74]) by means of a symmetric slab with 9 Ir substrate layers and one magnetic bilayer on each side of
the film using the GGA Ir lattice constant [119]. All values are given in units of µB.
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198 Magnetic moments of Mn/Mn/Ir(111) and Mn/Fe/Ir(111)

Coupling type magnetic layer Γ M′ 3Q

FM
Mn top

Mn bottom
3.46
1.16

3.29
2.13

3.20 (FLEUR: 3.26)
2.33 (FLEUR: 2.33)

AFM
Mn top

Mn bottom
3.15
1.71

3.23
1.95

3.21
2.09

Table C.3. Magnetic moments of spin structures at the most important high symmetry points of hcp-
Mn/hcp-Mn/Ir(111). The values for both the FM (LAFM) state for a FM (AFM) coupling of the layers at
the Γ-point as well as the RW-AFM I (RW-AFM II) state at the M′-point have been obtained via the FLEUR
code, while the moments of the 3Q state have been calculated via the VASP code unless otherwise noted.
The moments correspond to the respective energies of the spin spiral states shown in Fig. 8.9 (b). All
values are given in units of µB.

Table C.4. Magnetic moments of spin structures
at the most important high symmetry points of
hcp-Mn/fcc-Fe/Ir(111). The values for both the FM
(LAFM) state for a FM (AFM) coupling of the layers
at the Γ-point as well as the RW-AFM I (RW-AFM
II) state at the M′-point have been obtained via
the FLEUR code and correspond to the respective
energies of the spin spiral states shown in Fig. 8.13
(b). All values are given in units of µB.

Coupling type magnetic layer Γ M′

FM
Mn
Fe

3.52
2.52

3.29
1.51

AFM
Mn
Fe

3.19
1.94

3.24
1.95
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