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Vorwort des Herausgebers

Die vorliegende Promotionsschrift von Herrn Dr.-Ing. Hendrawan D.B. Aji ist dem

Forschungs- und Arbeitsgebiet Bodendynamik und speziell dem Erdbebeningenieurwe-

sen zuzuordnen. In dieser Dissertation wurde eine effektive hybride Methodik zur

Beschreibung von elastischen Wellenfeldern in beliebig geschichteten Halbraumen

und für die Beschreibung der linearen und nichtlinearen Boden-Bauwerk-Interaktion

für 2D und 3D Abbildungen entwickelt. Grundlage der Entwicklung ist die voll-

ständige Kopplung von FE- und BE-Modellen im Frequenzbereich bzw. auch als

sequentieller Prozeß im Frequenz-Zeit-Bereich. Die Kopplung als FEM-hosted, di-

rekte Kopplungsmethode, wurde als Makro-Finites-Element am Rand des FEM Bere-

iches definiert. Der Vorteil dieser Herangehensweise ist die effektive Simulation

von Wellenfeldern auch für sehr große geologische Formationen und der Berüch-

sichtigung von komplexen Boden-Bauwerks-Interaktionen oder anderen nichtlin-

earen Prozessen in definierten FEM Gebieten. Neben der zeiteffektiven Numerik,

nimmt ebenfalls die Genauigkeit der Simulation deutlich zu, da deutlich weniger

Vernetzungen in dem großen Gebiet als eine reine FEM Abbildung erforderlich wer-

den. Weiterhin kann durch die Nutzung der BE-Methoden, die Sommerfeld Ab-

strahlungsbedingung, leicht erfüllt werden und stellt kein Problem bzw. zusätzlichen

Aufwand, wie in der normalen Nutzung von FEM dar. Die bereits in anderen Ar-

beiten genutzte Makro-Finites-Element Methodik wurde in der vorliegenden Arbeit

auf den 3D Fall und für beliebige Schichtungsabfolgen erweitert. Ebenso liegt die

Modellierung als Subroutine für die Nutzung in Abaqus für eine weitere Nutzung

vor. Die genutzten Formulierungen wurden an analytischen und numerischen Beispie-

len validiert. Neben der hybriden Kopplung und Modellentwicklung, wurde der

vollständige 3D Momententensor zur Abbildung komplexer Erdbebenherde als räum-

liche Dipol-Quellen implementiert. Durch die Implementierung der sequentiellen

Frequenz-Zeit-Bereichs Methodik können die Makro-Finite-Elemente für die Abbil-

dung der nichtlinearen dynamischen Boden-Bauwerk-Interaktion genutzt werden.

Die Anwendung der Entwicklung wurde an mehreren Fallbeispielen, wie der In-

teraktion von Brückenfundierungen, Gebäuden, Containments unter Erdbeben und

von seismisch induzierten Wellenfeldern in großen geologischen Speicherformatio-

nen oder Fracking, dokumentiert. Die Dissertationsschrift beinhaltet die konsequente

Weiterentwicklung von bisherigen Ansätzen und als auch Neuentwicklungen zu bo-

dendynamischen Simulationen in heterogenen Halbräumen bzw. der dynamischen

Boden-Bauwerk-Interaktion.

Kiel, im Mai 2023 Frank Wuttke
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Abstract

Experiences and studies have shown that soil-structure interaction (SSI) effect
has a vital role in the dynamic behaviour of a soil-structure system. This is true
in earthquake-resistant design and in cases of low-level vibrations such as those
coming from induced seismicity, energy production, or in the case of vibration-
sensitive buildings, e.g., microelectronics factories, research laboratories, etc. De-
spite this, analyses involving dynamic SSI are still challenging for practicing engi-
neers due to their complexity and accessibility. The demands for more economi-
cal structures and to reduce CO2 emission mean that a more precise soil-structure
analysis/design tool will be more important. In this thesis, the hybrid BEM-FEM
implementation is aimed at practicality by combining commercial software and
an in-house code. The pre-processing task can be performed under one graphical
environment. It is then enhanced with the capability to compute different types
of dynamic sources and other improvements to increase its efficiency, accuracy,
and modeling flexibility, which is essential when dealing with 3D problems.

Further, the underlying soil is commonly a layered profile with arbitrary ge-
ometries. The material properties vary over the depth without following a spe-
cific pattern. Most existing solutions solve the problem through simplification of
the geometry and pattern. Layer-wise condensation is developed to solve these
cases using hybrid BEM-FEM. The derivation of the method and its scheme for
numerical implementation is presented. The method significantly reduces the
computational memory requirement. Another challenge in the dynamic SSI is
the consideration of secondary nonlinearities, which can be addressed using the
hybrid method in the time domain. However, the time domain BEM and iterative
hybrid method are computationally costly, and implementation of such a hybrid
method on commercial software is tedious. The solution to address this case
using a sequential frequency-time domain procedure is presented. The relatively
simple approach makes it possible to consider the nonlinearities in the simulation
without using the time domain BEM and without requiring additional iterations.
Verification studies show that these methods are able to accurately compute the
effect of the layering and nonlinearities.

Case studies demonstrating the application of the enhanced hybrid method
are presented: (1) investigation of dynamic behaviour of typical integral bridges;
(2) foundation-soil-foundation interaction problem subjected to ground-borne vi-
brations where the damage state of the geological media is considered using
dilute approximation; (3) structure-soil-structure interaction problem subjected

xi



to short- and medium-range of transient excitations; and (4) nonlinear dynamic
SSI of a 2D arch bridge and a 3D multi-storey structure under point source and
double-couple source excitations, respectively. These case studies are aimed to in-
vestigate the following critical factors: (1) the dynamic site effect due to
impedance contrast of soil layers, (2) lateral inhomogeneity effect, (3) influence of
the dynamic source properties, (4) conversion of body waves into surface waves,
(5) soil-foundation or soil-structure dynamic interaction, and (6) influence of sec-
ondary nonlinearities. The results show that the complex wave field on the sur-
face and the structure’s response are highly influenced by these key factors and
their interactions.
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Zusammenfassung

Erfahrungen und Studien zeigten, dass der Boden-Bauwerk-Interaktionseffekt
(BBI) eine entshceidende Rolle für das dynamische Verhalten eines Boden-
Bauwerk-Systems spielt. Dies gilt sowohl für die erdbebensichere Design als
auch für schwache Erschütterungen oder bei erschütterungs-empfindlichen
Gebäuden. Denoch sind Analysen, die dynamischen BBI einbeziehen, aufgrund
ihrer Komplexität und Zugänglichkeit immer noch eine Herausforderung für
praktizierende Ingenieure. Die Forderungen nach wirtschaftlicheren Strukturen
und die Verringerung des CO2-Ausstoßes bedeuten, dass ein präziseres Boden-
Struktur-Analyse- und Entwurfswerkzeug immer wichtiger wird. In dieser Ar-
beit wird die hybride BEM-FEM-Implementierung durch die Kombination von
kommerzieller Software und einem hauseigenen Code auf Praktikabilität aus-
gerichtet. Anschließend wird die Software um die Möglichkeit erweitert, ver-
schiedene Arten von dynamischen Quellen zu berechnen und andere Verbesserun-
gen vorzunehmen, um die Effizienz, die Genauigkeit, und die Flexibilität der
Modellierung zu erhöhen, was bei der Bearbeitung von 3D-Problemen von
entscheidender Bedeutung ist.

Darüber hinaus ist der darunter liegende Boden in der Regel ein geschichtetes
Profil mit willkürlicher Geometrie. Die Materialeigenschaften variieren in der
Tiefe, ohne einem bestimmten Muster zu folgen. Die meisten bestehenden Lö-
sungen lösen das Problem durch Vereinfachung der Geometrie und des Musters.
Die schichtweise Kondensation wird entwickelt, um diese Fälle mit Hilfe der hy-
briden BEM-FEM zu lösen. Die Herleitung der Methode und ihr Schema für
die numerische Umsetzung werden vorgestellt. Die Methode reduziert den Spe-
icherbedarf für die Berechnung erheblich. Eine weitere Herausforderung bei der
dynamischen SSI ist die Berücksichtigung sekundärer Nonlinearitäten, die mit
der hybriden Methode im Zeitbereich gelöst werden kann. Die BEM im Zeitbere-
ich und die iterative Hybridmethode sind jedoch sehr rechenaufwändig, und die
Implementierung einer solchen hybriden Methode mit kommerzieller Software
ist mühsam. Es wird eine Lösung für diesen Fall vorgestellt, bei der ein se-
quentielles Verfahren im Frequenz-Zeit-Bereich zum Einsatz kommt. Der relativ
einfache Ansatz ermöglicht es, die Nonlinearitäten in der Simulation zu berück-
sichtigen, ohne die Zeitbereichs-BEM zu verwenden und ohne zusätzliche Iter-
ationen zu benötigen. Verifikationsstudien zeigen, dass diese Methoden in der
Lage sind, die Auswirkungen der Schichtung und der Nonlinearitäten genau zu
berechnen.
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Es werden Fallstudien vorgestellt, die die Anwendung der verbesserten hy-
briden BEM-FEM demonstrieren: (1) Untersuchung des dynamischen Verhaltens
typischer integraler Brücken; (2) Fundament-Boden-Fundament-Interaktions-
problem unter dem Einfluss von Bodenschwingungen, wobei der Schädigungszu-
stand des geologischen Mediums unter Verwendung einer verdünnten Näherung
berücksichtigt wird; (3) Struktur-Boden-Struktur-Interaktionsproblem unter kurz-
und mittelfristigen transienten Erregungen; und (4) nonlineare dynamische SSI
einer 2D- Bogenbrücke und eines 3D-Mehrgeschossbauwerks unter Punktquellen-
bzw. Doppelkoppelquellenerregungen. Diese Fallstudien zielen darauf ab, die
folgenden Schlüsselfaktoren zu untersuchen: (1) der dynamische Standorteffekt
aufgrund des Impedanzkontrasts der Bodenschichten, (2) der Effekt der lateralen
Inhomogenität, (3) der Einfluss der dynamischen Quelleneigenschaften, (4) die
Umwandlung von Körperwellen in Oberflächenwellen, (5) die dynamische In-
teraktion zwischen Fundament und Boden bzw. zwischen Bauwerk und Boden,
und (6) der Einfluss sekundärer Nonlinearitäten. Die Ergebnisse zeigen, dass
das komplexe Wellenfeld an der Oberfläche und die Reaktion des Bauwerks in
hohem Maße von diesen Schlüsselfaktoren und ihren Wechselwirkungen beein-
flusst werden.
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Chapter 1

Introduction

1.1 Background and motivation

The term soil-structure interaction (SSI) describes the reciprocity between a sup-
porting ground/soil and the structure built on it, where each one affects the
response of the other. In a more detailed form, the term is also referred to as
soil-foundation-structure interaction. For simplicity, the term SSI will be used
throughout this monograph. SSI, both static and dynamic, has been continu-
ously researched since its conception in the 19th century. The pace has further
increased in recent decades, driven by the development of computers and nu-
merical methods, the industrial needs for more economical but robust structures,
and the demands for improved earthquake-resistant design (Kausel, 2010). Un-
der civil engineering, understanding the mechanism and the effects of dynamic
SSI is an intersectional concern between geotechnical and structural engineering
disciplines. The current study is particularly focused on the dynamic SSI. This
study also addresses the analysis of structure-soil-structure interaction (SSSI),
where multiple structures interact and influence each other (Wong and Trifunac,
1975).

In the dynamic-resistant design of structures, i.e., determining the stresses
and displacements due to dynamic loads, SSI is one of the critical factors (Wolf,
1985). It has been recognized that the change in the structure’s response due to
the interactions between the ground and structure becomes significant when the
supporting ground/soil is not firm (Kramer, S. L., 1996). Therefore, the consid-
eration of SSI becomes more critical in such cases, while it may be neglected for
structures founded on stiff soil. One of the main practical uses of dynamic SSI
analyses is in earthquake engineering, as earthquakes remain one of the most
dangerous natural hazards. For example, due to the 2004 Indian Ocean earth-
quake, 227,898 people were killed or were missing and presumed dead, and 1.7
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million people were displaced (U.S.G.S., 2012). The 2008 Sichuan (China) earth-
quake caused 70,000 people dead, with another 370,000 people injured and 18,000
missings (Yön, Sayın, and Onat, 2017). In addition to the field of earthquake
engineering, dynamic SSI is also an essential aspect in the engineering of struc-
tures for vibrations mitigation, such as those occurring from transportation, ma-
chinery operation, construction, mining, energy generation, etc., or in the case of
vibration-sensitive buildings such as microelectronic productions, medical facili-
ties, research facilities.

The dynamic SSI is composed of kinematic and inertial interactions. With-
out the presence of any structure, ground-borne vibrations, such as those induced
by earthquakes, machinery operations, transportation, wind turbines, blasting,
etc., result in deformation of the ground surface referred to as the free-field mo-
tion (Wolf, 1985; Kramer, S. L., 1996). The kinematic interaction describes the
deviation in the response of the soil-structure system compared to the free-field
response due to the geometry and the higher stiffness of the foundation relative
to the surrounding soil. The foundation’s position, whether it is built on or em-
bedded in the soil, also contribute to this point. The effects of the foundation’s
higher stiffness on the spatial variation of the motion over the contact horizontal
plane and over the embedment depth are referred to as the base slab averaging
and the embedment effect, respectively (FEMA, 2020). The ground motion also
activates the structure’s inertial response due to the mass distribution throughout
the structure, which thereby retransmits the energy back into the supporting soil.
This is referred to as the inertial interaction (Kramer, S. L., 1996). The inertial
response also leads to internal base shear forces and moments against which the
structure and its foundation must be designed. The flexibility of the supporting
soil (compared to fixed-base assumption) and the propagation and absorption of
waves by the supporting soil also yield the actual natural frequency and damp-
ing of the structure as an integral part of the soil-structure system. Thus, these
dynamic characteristic depends not only on the geometry and material properties
of the structure but also on the material properties of the underlying soil. These
phenomena are often referred to as the period lengthening and increase of ef-
fective damping, based on the comparison of these properties to those when the
structure is analysed using zero Dirichlet (fixed-base) boundary conditions. Due
to all of these effects, in the field of structural dynamics and earthquake engi-
neering, SSI is one of the key factors determining the earthquake or the dynamic
resistance of the structure.
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1.1. Background and motivation

The commonly recognized understandings of the SSI effect on structural de-
sign are as follows: (1) In the case that a structure is founded on stiff soil, the
difference of the structural response including the SSI effect is negligible when
compared to the response with fixed displacement boundary conditions; (2) but
in the case that the structure is coupled with soft soil, then the SSI can be consid-
erable. The latter is particularly important in the case of heavier structures. On
flexible or slender structures, the period lengthening and the increased effective
damping lead to reduced base shear force but can also lead to higher displace-
ment demand. On stiff structures, the SSI effects can lead to higher base shear
force.

However, experiences and studies have shown that these understandings are
not always true. Due to the nature of its layering, the geological profile can am-
plify certain frequency content of the propagating seismic waves. The presence
of a softer layer near or on the ground surface, which is common in cities built
on deltas or dried basins, results in site amplification. This was particularly ap-
parent in the damages found in Mexico City during the 1985 earthquake, which
originated in Michoacán, 320 km away. The site amplification subsequently re-
sults in destructive resonance for many multi-storey buildings (Resendiz and
Roesset, 1987). When the SSI effect is taken into account, the period lengthening
of these buildings was found to be about 1.0 s higher than the result from fre-
quency analysis with fixed-base. A study of the collapse of Hanshin Expressway
in the Kobe earthquake concluded that period lengthening also led to a stronger
response (Mylonakis et al., 2006).

In the majority of studies concerning dynamic SSI, an assumption of a ho-
mogenous half-space is taken to simplify the problem, e.g., Dominguez, 1993;
Mossessian and Dravinski, 1990. For the soil layering effect, most studies con-
sider stratified half-space with horizontal interfaces, e.g., Manolis et al., 2017. In
reality, the surrounding/supporting soil strata have an arbitrary number of lay-
ers and arbitrary geometries. The material properties often vary over the depth
without following a specific pattern. To the best of the author’s knowledge, the
consideration of arbitrary layered half-space in a hybrid numerical method com-
bining the boundary element method (BEM) and the finite element method (FEM)
for two-dimensional (2D) and three-dimensional (3D) problems is not yet realized
prior to this study.

Another critical aspect in the simulation of dynamic SSI is the material and
geometrical nonlinearities. Experimental investigation showed that the linear
elastic model for soils is valid in small strain cases (< 10−5) (Vucetic, 1994). This
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is experienced by the soil-structure systems during weak seismic events located
far from the seismic source or during operational duty, e.g., traffic or machinery-
induced vibrations. During strong ground shaking, where the soil experiences
shear strains > 10−4, the supporting soil and the structural members can expe-
rience material nonlinearity which can significantly alter the system’s response
(Pitilakis et al., 2006; Bolisetti, Whittaker, and Coleman, 2018; Tamhidi and Ghan-
nad, 2020). Another aspect that influences the SSI during such a magnitude of
ground shaking is the contact nonlinearity in which the foundation is separated
from the adjacent soil (sliding, uplifting, and gapping) (Gazetas and Apostolou,
2004). To consider the material or contact nonlinearities, or both, the time domain
formulation and solution are required. However, from the perspective of hybrid
BEM-FEM, the BEM in the time domain has a relatively high computational cost,
rendering it less attractive in comparison to the BEM in the frequency domain
(Dominguez, 1993).

The consideration of SSI in dynamic structural design was not always
deemed necessary, and it was recommended to be neglected in some earlier seis-
mic codes such as ATC-3, 1978 or NEHRP, 1997 (Mylonakis and Gazetas, 2000).
The reasons are that (1) by neglecting the SSI effect, the design result was ex-
pected to be on the safer side, and; (2) the analyses considering SSI are deemed
too complex. Due to the latter reason, the consideration of SSI is often only briefly
described in recent building codes to avoid complicating the guidance. In the
current days of practical engineering, the consideration of SSI effects is still often
weighed as too complex since it requires the mastery of complicated mathemat-
ical expressions and high computational capacity. In Eurocode 8 - part 5 (CEN,
2004), the consideration of SSI effect is to be taken in (a) structures where P-δ has
a significant effect, (b) structures with massive or deep-seated foundations, (c)
slender structures, and (d) structures supported on very soft soils (CS,max < 100
m/s). Additionally, Eurocode 8 also requires that SSI effects on piles be assessed.
One example of the attempts to promote the implementation of SSI considera-
tion in the structural design was the release of the practical guide by the Federal
Emergency Management Agency (FEMA, 2020). The revised ASCE Standard 4,
"Seismic Analysis of Safety-Related Nuclear Structures and Commentary," pro-
vides guidance on nonlinear SSI analyses that includes the consideration of ma-
terial nonlinearity, embedment effect, failure of soil at soil-foundation interface,
pore fluid-soil interaction, uplifting and sliding of the foundation, and gapping
effects (Coleman, Bolisetti, and Whittaker, 2016). Even when the SSI effect results
in the reduction of base shear load, the consideration of SSI can be used as the
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justification for more economical designs. This is in line with the demand to re-
duce CO2 emission, considering the cement industry is one of the most significant
contributors (Cao et al., 2021).

The challenge in considering SSI in practical engineering activities is even
higher for 3D cases due to the higher modeling and computation efforts. There
are instances where such analysis is necessary. The conditions can be summarized
into the following: (1) when soil layering vary three-dimensionally, (2) when
boundary conditions of the problem vary three-dimensionally, and (3) when the
structure of interest has a 3D characteristic that strongly influences its response
(Kramer, S. L., 1996). Additionally, the increasingly denser population, com-
mercial, and industrial centers lead to dynamic interaction involving a complex
of structures and its surrounding soil strata which also mandates a 3D analysis.
The term site-city interaction (Bard et al., 2006) was coined for such large scale
phenomenon.

1.2 Summary of contributions

The current work presents endeavours to address the challenges described in the
above paragraphs that are still largely present in civil engineering dealing with
soil-structure interaction.

• The necessity and pertinence of an efficient, accurate, and accessible nu-
merical tool for the simulation of 2D and 3D dynamic SSI are addressed
by the implementation and improvement of hybrid BEM-FEM, combining
commercial software package ABAQUS and an in-house code written in
MATLAB®. The in-house code is developed such that pre-processing tasks
can be performed using the ABAQUS environment to facilitate explicit vi-
sualization, which makes it more accessible and reduces error.

• Consideration of different types of dynamic sources is included to simulate
wave propagation.

• Layered half-space with arbitrary layering geometries and a number of lay-
ers is handled by the development of the layer-wise condensation algorithm
that is incorporated seamlessly into the hybrid BE-FE method.

• Nonlinearities of the material behaviour (soil and structure) and the soil-
foundation interface (sliding, uplift, and/or gapping) are addressed by com-
bining solutions for the frequency and time domains.
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• Industrial applications of the developed hybrid method are presented with
topics covering studies on the dynamic behaviour of integral bridges, soil-
foundation interaction considering damaged geological media, structure-
soil-structure interaction considering the influence of arbitrarily layered ge-
ological media, nonlinear dynamic analyses of a 2D arch bridge spanning
a region with inhomogeneous geological profile, a 3D multi-storey build-
ing founded on a sedimentary basin, and a seismic simulation involving an
actual geometrical data.

1.3 Organization of the dissertation

The dissertation consists of ten chapters, and it is organized as follows:

• Chapter 1 introduces the background and motivation of this dissertation,
the scope, and the organization.

• Chapter 2 presents state-of-the-art mechanical models for the solution of
wave motion in a half-space and SSI problems, followed by the classic for-
mulation of dynamic elasticity, the Green’s function, and the fundamental
coupling of BEM-FEM.

• Chapter 3 discusses the basic numerical enhancements that are implemented
to increase the accuracy and efficiency of the hybrid BEM-FEM numerical
implementation, including the consideration of embedded dynamic source
and incident wave, handling of non-smooth nodes in BEM using dummy
elements, mirror algorithm to reduce BEM computation, and handling of
non-conforming BE-FE interface.

• Chapter 4 presents the derivation of the layer-wise condensation (LWC)
method to handle arbitrary layered half-space in a hybrid BEM-FEM based
on the macro-element concept. Verifications of the method in comparison
to existing references are given.

• Chapter 5 discusses the implementation and verification of sequential time-
frequency domain procedure (SFTDP) to handle material, geometrical and
contact nonlinearities. The applicability of the procedure for soft and hard
media is presented.

• Chapter 6 presents the application of the hybrid numerical method to study
the 3D dynamic behavior of typical integral bridges.
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• Chapter 7 presents the application of the hybrid numerical method for case
studies of 3D foundation-soil-foundation interaction considering the dam-
aged state of geological media.

• Chapter 8 presents the application of the hybrid numerical method and the
LWC for case studies of 3D structure-soil-structure interaction of a pair of
containment structures considering arbitrary layered half-space.

• Chapter 9 presents the application of the hybrid numerical method and the
sequential frequency-time domain analysis for case studies of a 2D arch
bridge and 3D multi-storey building considering secondary nonlinearities.

• Chapter 10 presents the conclusions and outlook.

Due to the length of this dissertation, anchor words or phrases are given
in bold text throughout the manuscript to guide the readers and enable faster
reading.
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Chapter 2

Overview of models for SSI and
basic formulations

2.1 Chapter overview

This chapter presents the current state of mechanical models for the SSI problem
and the backbone mathematical formulations of this dissertation. The description
of the classical formulation of the equation of motion in elastic continua is pre-
sented in the second section (2.3). The mathematical foundation of the boundary
element method is presented in the third section (2.4), followed by the finite ele-
ment method in Section 2.5. Afterward, the coupling method of BEM-FEM based
on the macro-element concept is given in Section 2.6.

2.2 Mechanical models for the soil-structure interac-

tion problem

The soil-structure interaction (SSI) phenomena are described in the following me-
chanical models, having in mind the historical retrospection of their creation:

a) The empirical Winkler foundation (Winkler, 1867) replacing the support-
ing soil with a bed of elastic or nonlinear springs and dashpots resting on a
rigid base. Justification and refinement of the Winkler hypothesis in 3D elas-
ticity for a thin layer resting on a stiff half-space are presented in Kaplunov,
Prikazchikov, and Sultanova, 2018, where the area of validity of the Winkler
model is discussed. Higher-order corrections to the Winkler formulation
are additionally studied by the authors. Extension of the method to include
nonlinear behavior of near-field supporting soil, including gapping effect,
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referred to as beam on nonlinear Winkler foundation (BNWF), can be found
in Gajan et al., 2010; Halabian and El Naggar, 2002.

b) Lamb’s solution (Lamb, 1904) for the response of the elastic half-space sub-
jected to oscillating forces. Studies on footings restings on the surface of a
half-space based on this can be found in Reissner, 1936; Sung, 1953; Bycroft,
1956; Richart, Woods, and Hall, 1970.

c) Direct numerical approach considering the subgrade soil, the foundation,
and the superstructure as a single unit modeled by FEM, BEM, or scaled
BEM-FEM, see Antes and Von Estorff, 1989; Abate et al., 2010; Liao et al.,
2007; Dineva et al., 2014. The complexity of the soil–structure numerical
models stems from the requirement to accurately represent the infinite ex-
tension of the soil region, ensuring that Sommerfeld’s radiation condition is
wholly fulfilled. The following family of finite element models and corre-
sponding computational techniques have been developed in order to min-
imize spurious reflections of waves at the artificial boundaries of the in-
finite domain and, thus, allow the radiation of the elastodynamic waves
to infinity: the absorbing boundary conditions (ABC) method, see Baffet
et al., 2012; the perfectly matched layers (PML), see Fontara et al., 2018;
the scaled boundary finite element method (SBFEM), see Schauer and Ro-
driguez, 2019; the thin layer method (TLM), see Kausel, 1994.

d) Indirect (sub-structuring) models that solve the SSI problem by decompos-
ing the superstructure-foundation-soil system into subdomains, coupled to
each other, by taking into account the compatibility and equilibrium condi-
tions at their interfaces, see Chuhan and Wolf, 1998. Equations for the sub-
domains are solved independently, and the results are iterated until con-
vergence is achieved. Thus, this method can handle material, geometri-
cal, or contact nonlinearities directly. Some examples of the works in this
field can be found in Elleithy, Al-Gahtani, and El-Gebeily, 2001; von Estorff
and Hagen, 2005; Soares Jr, von Estorff, and Mansur, 2004; Soares, 2008;
Z. Jahromi, Izzuddin, and Zdravkovic, 2008; Boumaiza and Aour, 2014;
Soares and Godinho, 2015. An efficient domain decomposition method to
model 3D SSI is presented in Hackenberg, 2016; Freisinger, Hackenberg,
and Müller, 2020 using a coupled Integral Transform Method (ITM)-FEM
approach. Elastodynamic Green’s functions for systems with one boundary
surface, as a half-space or a full-space with either a spherical or cylindrical
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cavity, are derived via ITM. The FEM zone is then coupled to the ITM sub-
structure on the cylindrical or spherical interaction surface. The ITM, lead-
ing to analytical solutions of the Lamé differential equation, can describe
the behavior of the infinite medium completely. It is valid under certain
assumptions, see Hackenberg, 2016: the material of the soil has to be homo-
geneous with linear elastic material behavior; the introduction of surfaces is
possible for simple geometries; and layers in the material can only be taken
into account if they are parallel to the respective surface. The advantages
of the BEM for modeling of semi-infinite geological domain compared to
the ITM are as follows: material can be continuously inhomogeneous, see
Manolis et al., 2017; the surface’s geometry can be arbitrary; and multi-
layered half-space with inclined layers can be considered, see Manolis and
Beskos, 1988; Dominguez, 1993.

e) Hybrid methods, mainly focusing on (1) FEM hosted, where the nodal
forces are expressed throughout the BEM domain nodal tractions and the
entire BEM influence matrices and tractions are converted to FEM-like stiff-
ness matrix and nodal forces, see Wearing, Sheikh, and Burstow, 1991; Gan-
guly, Layton, and Balakrishna, 2000; von Estorff and Firuziaan, 2000; Bode,
Hirschauer, and Savidis, 2002; François, Coulier, and Degrande, 2015; Galvín
and Romero, 2014b; or (2) BEM hosted, where the FEM formulation is trans-
formed into BEM matrix system of equations, see Brebbia and Georgiou,
1979; and (3) Macro-element approach, where the BEM influence matrices
and tractions are converted into a macro finite element, see Vasilev et al.,
2015

A specialized mathematical approach based on asymptotic hyperbolic-elliptic
formulations for elastic surface waves is efficiently extended to 3D SSI problems
involving analysis of surface and underground structures, see Kaplunov and
Prikazchikov, 2013; Kaplunov and Prikazchikov, 2017; Erbaş et al., 2017; Erbaş
et al., 2018.

In order to represent dynamic engineering problems realistically, the me-
chanical models describing 3D geological regions containing underground or sur-
face engineering structures must include the following key factors: (1) the type
and characteristics of the source radiating waves in geological media; (2) the in-
homogeneity and heterogeneity of the wave path from the source to the observer
point; (3) the local geological profile with non-parallel layers, surface, and subsur-
face relief, the existence of discontinuities, such as cracks, inclusions, faults, plus
underground/surface structures, etc.; (4) the nonlinear behavior of the near-field

11



Chapter 2. Overview of models for SSI and basic formulations

soil region (close to the foundation) in the case of moderate or severe earthquake
shaking, see Gazetas and Apostolou, 2004, and Harden et al., 2005; (5) the 3D
wave motion. The results obtained in the literature showed that the 3D SSI could
be significantly more complex and difficult to predict than the 2D cases, see Vi-
cencio and Alexander, 2021. For several reasons, it has been proven impossible
to include all these factors in 3D SSI problems. The primary one is the sheer
complexity of the 3D models describing real dynamic scenarios in a complex ge-
ological location.

Hybrid approaches seem to be the best choice for 3D SSI problems that in-
volve sub-regions with different characteristics, as they combine different compu-
tational tools within the subdomains, thus making the best use of their respective
advantages. In the proposed analysis, the author is interested only in coupling
between the FEM and BEM. The BEM has been proven as a highly accurate nu-
merical technique for elastodynamic problems in infinite and semi-infinite me-
dia, see Manolis and Beskos, 1988. The BEM requires two basic ingredients: a
reciprocal relation and a fundamental solution of the governing equation. When
a fundamental solution (or a half-space Green’s function) is used within a BEM
formulation, it provides an elegant, powerful tool for investigating the dynamic
responses of complex materials and structures. The BEM is described in sev-
eral books; see, for instance, Manolis and Beskos, 1988, Dominguez, 1993, and
Manolis et al., 2017. The fundamental solution used in constructing the bound-
ary integral equations obeys the radiation condition; thus, infinitely extended
boundaries are automatically incorporated. This is in contrast to other numerical
methods where the special transmitting and/or non-reflecting viscous bound-
aries must be used. The FEM is the most popular numerical method for civil
engineering due to its simplicity, flexibility, and accessibility. An existing wide
library of element types, constitutive models, contact definitions, and solvers is
readily available in the FEM. The features and advantages of the FEM and BEM
are presented in Table 2.1. Recommended readings on the topic of the FEM are
Bathe, 1996; Logan, 2007; Fish and Belytschko, 2007; Ferreira and Fantuzzi, 2009,
among others. In this study, a commercial FEM software package, ABAQUS, is
used.

The following conclusions can be drawn from the above descriptions:

1) There is a paucity of high-performance methodologies for treating SSSI
problems, taking into account all components along the wave path, namely:
(a) embedded source radiating waves; (b) inhomogeneous and heteroge-
neous arbitrary, non-parallelly layered wave path; (c) local geological region
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TABLE 2.1: A comparison of the FEM and BEM, after Liu, 2009.

FEM BEM

Features
• Derivative-based (local) approach • Integral-based (global) approach
• Domain mesh: 2D and 3D mesh • Boundary mesh: 1D and 2D mesh
• Sparse matrices, in many cases also

symmetrical
• Nonsymmetrical, dense matrices

• Available in many commercial
packages for general and special-
ized purposes

• Fewer commercial software pack-
ages

Advantages
• Solution is fast • The problem dimensionality is de-

creased by one, and due to this,
mesh generation is fast

• Suitable for general structure anal-
ysis or large mechanical systems

• Suitable for stress concentration
problems (e.g., fracture mechanics)

• Suitable for problems with mate-
rial, geometrical, and contact non-
linearities

• Suitable for infinite domain prob-
lems

• Composite materials (macroscale
analysis)

• Composite materials (e.g., mi-
croscale continuum models)

with its specific geometry and mechanical properties containing important
infrastructure facilities.

2) Existing large-scale commercial finite element software (e.g., ABAQUS,
ANSYS, FLAC3D) have a limitation when considering semi-infinite, far-
field geological regions where the radiation conditions must be satisfied.
For example, the infinite element definition in ABAQUS and the absorbing
boundary in FLAC3D, which are based on the work of Lysmer and Kuh-
lemeyer Lysmer and Kuhlemeyer, 1969, are limited in accuracy and appli-
cation since they only effectively absorb orthogonally impinging wave, see
Dassault Systèmes Simulia Corp, 2014 and Itasca Consulting Group, Inc.,
2022. The above disadvantage can be overcome by the development of an
efficient hybrid technique based on the finite macro-element concept. The
library of different macro-elements can extend the existing FEM software
capabilities to model semi-infinite zones with different complex mechanical
properties such as anisotropy, poroelasticity, inelasticity, arbitrary layering,
etc.
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3) The majority of the mentioned references assumed a homogeneous half-
space as a soil model. However, the soil region is usually an arbitrary lay-
ered or graded half-space. The foundation was considered a rigid body
in most of the previously cited references. However, for large-size founda-
tions, flexibility may play an important role. A rigidity assumption may be
admissible but needs careful verification.

4) Most of the models consider stratified half-space, and there are few works
modeling layers with arbitrary geometry of their interface boundaries.

5) Simulations of 3D dynamic problems considering nonlinearities are often
burdened by high computational cost.

6) Engineering design and analysis considering SSI are still considered a com-
plex and challenging task for practicing engineers. This dissertation is an
endeavor to bridge the gap between scientific research and practical engi-
neering by presenting the following ideas: to merge the pre-processing task
of the finite zone and semi-infinite zone into a single software package and
to create a procedure in which the computation tasks can be distributed,
and the results later can be transferred and reused for optimization. The
result is a numerical tool that is expected to increase the ability of practicing
engineers to conduct a more realistic engineering analysis.

The above conclusions further underline this study’s motivations and scope
as described in Chapter 1. This dissertation is focused on the hybrid BEM-FEM
based on the macro-element approach as it retains the simplicity of the FEM-
hosted approach. In this dissertation, the macro-element approach is extended
by adding an algorithm to handle arbitrary points on the BEM model by us-
ing dummy elements and an algorithm to make the macro-element reusable and
transferable. Further, an enhancement to handle the nonconforming nodal in-
terface between the BE- and FE-zones is introduced by taking advantage of the
contact definition in ABAQUS.

2.3 Equation of motion in elastic continua

In a Cartesian coordinate system Ox1x2x3, consider an elastic body Ω with a vol-
ume V and a surface Γ (Figure 2.1). The equation of motion which describes the
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equilibrium of the body is

∂σij

∂xj
+ fi = ρ

∂2ui

∂t2 , x(x1, x2, x3) ∈ Ω, (2.1)

where σij, i = j = 1, 2, 3, is the stress tensor, ui, i = 1, 2, 3, is the displacement,
t is time, ρ is the mass density, and fi, i = 1, 2, 3, is the body force acting per
unit volume. In the case that the body force is applied impulsively to one point
located at x = ξ, at time t = τ, and in the direction of xn-axis, it can be written as

fi(x, t) = Anδ(x − ξ)δ(t − τ)δin, (2.2)

where δ(.) is the Dirac delta function, δij is the Kronecker delta function, and An

is the vector magnitude of the impulse.

FIGURE 2.1: An arbitrary domain Ω with surface Γ, which outward
normal is nj.

The kinematic relation between strain and displacement assuming infinites-
imal strain is described as

ϵij =
1
2
(ui,j + uj,i), (2.3)

where ϵij, i = 1, 2, 3, j = 1, 2, 3, is the strain tensor and the comma between sub-
scripts denotes spatial derivative, e.g., ui,j = ∂ui/∂xj.

The constitutive law between stress and strain tensors for elastic isotropic
solid is given by Hooke’s law as

σij = Cijklϵkl (2.4)

or in a simplified matrix form as

σ = D ϵ, (2.5)
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Chapter 2. Overview of models for SSI and basic formulations

where Cijkl is the fourth-order stiffness tensor and D is its simplified matrix form.
The summation convention of repeated subscripts is followed. The stiffness ten-
sor can be described in terms of the Lamé moduli, λ and µ, as

Cijkl = λδijδkl + µ(δikδjl + δilδjk). (2.6)

Thus, the stress-strain relation is

σij = λδijϵkk + 2µϵij. (2.7)

The Lamé moduli can be written in terms of Young’s modulus E and Pois-
son’s ratio ν as

µ =
E

2(1 + ν)
; λ =

Eν

(1 + ν)(1 − 2ν)
. (2.8)

The longitundinal wave velocity CP and shear wave velocity CS are described as

CP =

√
λ + 2µ

ρ
; CS =

√
µ

ρ
. (2.9)

The strain energy of the domain Ω is described as

U =
∫

V

1
2

CijklϵijϵkldV =
∫

V

1
2

σijϵijdV, (2.10)

whilst the total potential energy Π is given by

Π = U−W, (2.11)

where W is the total potential of the external loads.

The field equation of homogeneous, elastic, isotropic bodies is obtained by
combining equations (2.1), (2.3), and (2.4), which results in the Navier’s equation
as follows:

µui,jj + (λ + µ)uj,ji + fi = ρüi (2.12)

or in vector form as

(λ + 2µ)∇∇·u − µ∇×∇× u + f = ρü. (2.13)

Here, the dot accent denotes the time derivative. The Navier’s equation, which
summarizes the equilibrium condition and the kinematic and constitutive rela-
tions, must be satisfied at every point in the domain Ω (Dominguez, 1993).
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2.4. The boundary element method

The stress tensor acting on the surface Γ, with the unit outward normal nj, j =
1, 2, 3, of domain Ω results in traction component ti, i = 1, 2, 3, in the form of

ti = σijnj on Γ. (2.14)

The boundary conditions are composed of the "essential" and "natural" ones.
They are also referred to as the Dirichlet and Neumann boundary conditions,
respectively. Here, the essential and natural boundary conditions are applied on
a part of the surface Γ. The corresponding partial surfaces are denoted as Γ1 and
Γ2, respectively, such that Γ1 ∪ Γ2 = Γ and Γ1 ∩ Γ2 = ⊘. The boundary conditions
are

ui = ūi on Γ1 and (2.15a)

ti = t̄i on Γ2. (2.15b)

The initial conditions for displacements and their derivatives at time t = 0
are

ui(x, 0) = u0i(x) (2.16a)

u̇i(x, 0) = u̇0i(x) (2.16b)

üi(x, 0) = ü0i(x). (2.16c)

The displacement field due to a unidirectional unit impulse located at x = ξ,
time t = τ, and in xn-direction is described through the elastodynamic Green’s
function or fundamental solution. The i-th component of the displacement field
at general point (x, t) is denoted as U∗

in(x, t, ξ, τ) (Aki and Richards, 1980). Equa-
tion (2.1) can be written alternatively as

∂

∂xj
(Cijkl

∂

∂xl
U∗

kn) + δinδ(x − ξ)δ(t − τ) = ρ
∂2

∂t2 U∗
in (2.17)

2.4 The boundary element method

The boundary element method (BEM) was proposed by Rizzo, 1967, who used
the direct boundary integral equation (BIE) formulations first for the 2D elasto-
static problem. It has been continuously improved over the years by other re-
searchers (Liu, 2009; Manolis et al., 2017). Some of the early developments of
the BIE can be found in Rizzo, 1967; Rizzo and Shippy, 1968; Cruse, 1969; Cruse,
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Chapter 2. Overview of models for SSI and basic formulations

1973; Wilson and Cruse, 1978; among others. The term BEM was used in Baner-
jee and Butterfield, 1975; Brebbia, 1978; among others, as an analogy to FEM (Liu,
2009). In the BEM, the domain is discretized along its boundary, and the integral
equation is approximated through numerical integration. The result is a pair of
influence matrices and vectors, which are then rearranged according to the de-
fined boundary conditions into a system of equations and subsequently solved.
The standard BEM requires that the influence of every collocation point to each
element be computed. This results in dense and nonsymmetric matrices, which
are computationally costly. One of the significant advances in the BEM formu-
lations is the development of the fast multipole method (FMM) (Rokhlin, 1985;
Greengard, 1987; Greengard and Rokhlin, 1987), which reduces the requirement
of interconnectivity between the collocation points and greatly enhanced its com-
putation speed. The main advantage of the FMM is obtained from the combina-
tion of it with the iterative solver. As a result, the requirement to form the entire
matrices of the BE subdomain is omitted. In a direct, FEM-hosted hybrid method,
however, these matrices are required for the condensation and conversion proce-
dure. In this work, the standard discretization and collocation technique is used
to avoid the complexity arising from this. A brief summary of the mathematical
foundation of the BEM is described in the following.

Consider the body Ω in Figure 2.1, which undergoes an elastodynamic state
with the displacement field uk and in equilibrium as described by equation (2.1).
A second elastodynamic state due to a unit impulse f ∗k , which follows the descrip-
tion in equation (2.2), is applied to a point located at x = ξ and at time t = 0 with
the displacement field U∗

k and stress σ∗
kj in equilibrium as in equation (2.17). The

reciprocal theorem between these two states, assuming zero initial conditions,
dictates the following (see Dominguez, 1993):∫

Γ
(tk ∗ U∗

k )dΓ +
∫

Ω
( fk ∗ U∗

k )dΩ =
∫

Γ
(P∗

k ∗ uk)dΓ +
∫

Ω
( f ∗k ∗ uk)dΩ. (2.18)

Here, P∗
k is the traction due to the unit impulse f ∗k with outward normal nj, ex-

pressed by
P∗

k = σ∗
kjnj (2.19)

and the symbol ∗ denotes the Riemann convolution.

Using the properties of Dirac delta function in f ∗k and assuming zero body
force in the 1st elastodynamic state, the following boundary integral equation
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2.4. The boundary element method

FIGURE 2.2: A cross-section of the domain Ω after discretization of
its surface. Each element is a shell element. In the upper-left figure,
element m, which is constructed of nodes 1 and 2, is shown in the

intrinsic coordinate s.

(BIE) is obtained:

cl juj(ξ, t) =
∫

Γ
U∗

l j(x, ξ, t) ∗ tj(x, t)dΓ −
∫

Γ
P∗

l j(x, ξ, t) ∗ uj(x, t)dΓ, ξ ∈ Γ, (2.20)

where cl j, l = 1, 2, 3, j = 1, 2, 3, is the free-term depending on the geometry at
the source point ξ. Equation (2.20) results in singularity when the radial distance
between x and ξ is zero. The free-term cl j can then be calculated analitically by
using augmented boundary near the point of interest or by using the rigid-body
motion method (Dominguez, 1993).

Taking the above case of two independent elastodynamic states for time har-
monic load with the same angular frequency ω, the frequency domain equivalent
of BIE (2.20) is obtained as

cl jûj(ξ, ω) =
∫

Γ
Û∗

l j(x, ξ, ω) t̂j(x, ω)dΓ −
∫

Γ
P̂∗

l j(x, ξ, ω) ûj(x, ω)dΓ, ξ ∈ Γ, (2.21)

where the convolutions of two functions in the time domain are tranformed into
piecewise products of the Fourier transform of those functions. The time-harmonic
displacement ûj and traction t̂j are the product of the Fourier transform given by

ûj(ω) = F{uj(t)}(ω); (2.22)

t̂j(ω) = F{tj(t)}(ω), (2.23)
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Chapter 2. Overview of models for SSI and basic formulations

where the notation F{.} denotes the Fourier operation.

Let the boundary be divided into M number of elements as in Figure 2.2. The
points along the boundary which form the elements are used as the source as well
as the observation (receiver) points. Thus, they are referred to as the collocation
points. The BIE (2.21) can now be expressed as the sum of the integrals over the
element in the following discretized form:

cl jûj(ξ, ω) =
M

∑
m=1

∫
Γm

Û∗
l j(x, ξ, ω) t̂j(x, ω) dΓm−

M

∑
m=1

∫
Γm

P̂∗
l j(x, ξ, ω) ûj(x, ω) dΓ, x ∈ Γm, ξ ∈ Γ, (2.24)

where Γm is the surface of element m.

The spatial coordinate of any point along or inside element m is related to
the nodal coordinates of the element using the shape (interpolation) functions
N = [N1, N2, ..., NL], where L is the number of nodes on the element of interest.
The shape functions N are in terms of the intrinsic coordinate s, i.e., s(s1) for a line
element, s(s1, s2) for a shell element, and s(s1, s2, s3) for a 3D solid element. Us-
ing isoparametric formulation, the displacement and traction fields at any point
along or inside the element are related to the nodal displacement and the nodal
traction, respectively, using the same interpolation functions. Inserting the shape
functions into BIE (2.24), the following discretized BIE in vector form is obtained
(Dominguez, 1993)

ci ûi =
M

∑
m=1

∫
Γm

U∗ N t̂m dΓm −
M

∑
m=1

∫
Γm

P∗ N ûm dΓm. (2.25)

ûm and t̂m are the vectors of displacement and traction, respectively, of element
m. ci is a NDoF × NDoF matrix of the free-terms of the point i, where NDoF is the
number of degrees of freedom. ûi is the displacement vector of point i, which size
also depends on the problem’s dimension. Equation (2.25) can be written as

ci ûi +
LE

∑
l=1

Ĥilûl =
M

∑
m=1

Gim t̂m, (2.26)

where
Ĥil = ∑

o

∫
Γo

P∗Nq dΓo ; Gim =
∫

Γm
U∗N dΓm. (2.27)

LE is the number of nodes in the domain Ω. The first integral in (2.27) states that
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2.4. The boundary element method

the matrix Ĥil for source-receiver couple i-l is obtained by summing the integrals
for node l over all adjacent elements. This is because node l can be a part of more
than one element, and the nodal displacement vector ûl is the same for every
element where the node belongs. Subscript q is the local node designation for
the node l, whereas the notation l is the global node designation. In contrast,
the nodal traction vector of node l, t̂l, of element m can be different from that of
any adjacent element. Therefore the integral of the displacement fundamental
solution in matrix Gim cannot be assembled similarly. However, in the case that
the traction t̂m is part of the unknowns, the treatment of matrix Gim is the same
as that of the matrix Ĥil. The size of t̂m is NDoF × L.

Collecting BIE (2.26) for all collocation points results in a system of equation
that is expressed as

H û = G t̂, (2.28)

where û and t̂ are the displacement and traction vectors at nodes along the bound-
ary Γ of the domain Ω, which sizes under normally prescribed boundary condi-
tions are NDoF × LE and NDoF × L × M, respectively. The influence matrices H
and G are as follows:

H =
LE

∑
l=1

Hil for i = 1, ..., LE; (2.29)

G =
M

∑
m=1

Gim for i = 1, ..., LE, (2.30)

where

Hil =

Ĥil for i ̸= l,

ci + Ĥil for i = l.
(2.31)

When a solution for the above equation (2.28) is sought, it must be rearranged ac-
cording to the prescribed boundary conditions and the unknown variables. How-
ever, for the hybrid BEM-FEM, this is not necessary as the only prescribed bound-
ary conditions are the zero traction along the free surface, i.e., the discretized
boundary that is not part of the interface with the finite element zone nor with
other BE subdomains. The product of (G t) is a null matrix for the free surface,
and that would leave a system of equation (such as that in (2.28)) with unknown
variables in both sides: displacement field is unknown everywhere, and traction
field is unknown along the BE-FE interface. This equation is then condensed into
a compact form in terms of the unknowns along the BE-FE interface and then
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Chapter 2. Overview of models for SSI and basic formulations

transformed into a FEM-like stiffness matrix. The procedure will be discussed
later in Section 2.6.

Two types of singularities in the integrals of the fundamental solutions’ ker-
nels exist when the radial distance r between the source and receiver points is
zero. The displacement fundamental solution-based kernels exhibit a weak sin-
gularity of the type O(ln r) for 2D or O(1/r) for 3D, and the appropriate quadra-
ture rule solves these integrals. The traction fundamental solution-based kernels
exhibit a strong singularity of the type O(1/r) for 2D or O(1/r2) for 3D. These
singularities can be solved using the analytical solution or the rigid-body motion
method (Dominguez, 1993).

For transient elastodynamics, the BIE, assuming zero body forces and qui-
escent past, is given by Antes and Von Estorff, 1989,

cl juj(ξ, t) =
∫ t∗

0

∫
Γ

U∗
l j(x, ξ, t − τ) tj(x, τ) dΓ dτ−∫ t∗

0

∫
Γ

P∗
l j(x, ξ, t − τ) uj(x, τ) dΓ dτ, x ∈ Γ, ξ ∈ Γ, (2.32)

where a limit is applied to the integration over time such that t∗ = t+ ε, ε → 0, to
avoid ending the integration at the peak of Dirac δ function (Dominguez, 1993).
After spatial and temporal discretizations and application of spatial interpolation
functions, equation (2.32) can be written as

H(qq) u(q) = G(qq) t(q) +
q−1

∑
o=1

[
G(qo) t(o) − H(qo) u(o)

]
, (2.33)

where H(qo) and G(qo) are the influence matrices, expressed as

H(qo) =
LE

∑
l=1

Hil
(qo) for i = 1, ..., LE; (2.34a)

G(qo) =
M

∑
m=1

Gim
(qo) for i = 1, ..., LE. (2.34b)

Here, the two subsciprts under round brackets denote the time difference be-
tween time steps to to tq whilst the two superscripts denote the source-receiver
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2.4. The boundary element method

couple. The influence matrix components Hil
(qo) and Gim

(qo) are given by

Hil
(qo) =

Ĥil
(qo) for i ̸= l;

ci + Ĥil
(qo) for i = l;

(2.35a)

Ĥil
(qo) =

∫ tq

to
∑
n

∫
Γn

P∗(t) N dΓn dτ; (2.35b)

Gim
(qo) =

∫ tq

to

∫
Γm

U∗(t) N dΓm dτ; (2.35c)

where the integrals over time domain in Ĥil
(qo) and Gim

(qo) are solved by using time
interpolation functions. The latter is also solved by using integration by parts,
see Dominguez, 1993. In (2.35), matrices U∗(t) and P∗(t) are the fundamental
solutions in the time domain and subscript n denotes the element where the node
l is a part of.

As the described in Section 2.2, the 2nd ingredient of the BEM is the Green’s
functions or the fundamental solutions. The elastodynamic solution for the dis-
placement in k-direction due to a unit load in l-direction was first given by Stokes
in 1849. For time-harmonic problem with angular frequency ω, the solution is as
follows (Dominguez, 1993):

Û∗
lk(x, ξ, ω) =

1
απρC2

S

[
ψδlk − χr,lr,k

]
, (2.36)

where

ψ =
e−kisr

r
+

(
1

k2
isr

2
+

1
kisr

)
e−kisr

r
−

C2
S

C2
P

(
1

k2
ipr2

+
1

kipr

)
e−kipr

r
; (2.37a)

χ =

(
3

k2
isr

2
+

3
kisr

+ 1
)

e−kisr

r
−

C2
S

C2
P

(
3

k2
ipr2

+
3

kipr
+ 1
)

e−kipr

r
(2.37b)

for 3D problem and

ψ = K0(kisr) +
1

kisr

[
K1(kisr)−

CS

CP
K1(kipr)

]
; (2.38a)

χ = K2(kisr)−
C2

S
C2

P
K2(kipr) (2.38b)
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for 2D one. Additionally,

α =

4 for 3D problem;

2 for 2D problem;
(2.39a)

kip = i
(

ω

CP

)
; kis = i

(
ω

CS

)
. (2.39b)

Here, i =
√
−1, (x, ξ) is the source-receiver couple, r is the source-receiver radial

distance, and Kn(.) is the Bessel function of the 2nd kind, order of n. r,j is the
direction cosine, i.e., r,j = rj/r. For very low frequency, equation (2.36) reduces
to the elastostatic fundamental solution, which was given by Lord Kelvin (Beer,
Smith, and Duenser, 2008). The displacement fundamental solution in the time
domain is as follows (Dominguez, 1993):

U∗
lk(x, ξ, t, τ) =

1
4πρ

{
t
r2

(
3r,lr,k

r
− δlk

r

)[
H
(

t − r
CP

)
−H

(
t − r

CS

)]
+

r,lr,k

r

[
1

C2
P

δ

(
t − r

CP

)
− 1

C2
S

δ

(
t − r

CS

)]
+

δlk

rC2
S

δ

(
t − r

CS

)}
(2.40)

for 3D problem and

U∗
lk(x, ξ, t, τ) =

1
2πρ

{
1

CP

H(CPt − r)
r2

[(
2R1 +

r2

R1

)
r,lr,k − R1δlk

]
−

1
CS

H(CSt − r)
r2

[(
2R2 +

r2

R2

)
r,lr,k −

(
R2 +

r2

R2

)
δlk

]}
(2.41)

for 2D problem. The time scalar couple (t, τ) is the time distance/delay be-
tween the applied impulse at the source and the measurement at the receiver.
In the above equation, it is represented by (t − r/CP) or (t − r/CS). Here, R1 =

(C2
Pt2 − r2)1/2, R2 = (C2

St2 − r2)1/2, and H(.) is the Heaviside step function. The
k component of traction on a surface with a unit outward normal of nj due to a
unit load in l-direction is expressed as P∗

lk = ClqrsU∗
rk,snq. The explicit expression

for the time-harmonic solution is (Dominguez, 1993)

P̂∗
lk =

1
απ

[(dψ

dr
− 1

r
χ
)(

δlk
∂r
∂n

+ r,knl

)
− 2

r
χ
(

nkrl − 2r,lr,k
∂r
∂n

)
−

2
dx
dr

r,lr,k
∂r
∂n

+

(
C2

P
C2

S
− 2
)(

dψ

dr
− dx

dr
− α

2r
χ

)
r,lnk

]
, (2.42)
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where the components for 3D and 2D problems are of those in (2.38a)-(2.39a).
Other form of fundamental solutions for non-homogeneous media can be found
in Manolis et al., 2017; Fontara, 2015. Alternatively, one can also take advantage
of the half-space Green’s function, see, e.g., Bode, Hirschauer, and Savidis, 2002;
Galvín and Romero, 2014a.

2.5 The finite element method

The development of the finite element method can be traced back to the 1940s
in the works of Hrennikoff, 1941, McHenry, 1943, and Courant, 1943. McHenry
used a lattice of line elements for stress-strain analysis in solids, while Courant
proposed the use of the variational form for this and introduced piecewise in-
terpolation functions for triangular subregions that are used to approximate the
whole region. Turner et al., 1956, proposed treatment of two-dimensional ele-
ments where stiffness matrices for truss elements, beam elements, and 2D trian-
gular and rectangular plane stress elements are derived using what is now known
as a direct stiffness matrix. A solution for the rectangular-plate bending problem
was proposed by Melosh, 1961. 3D problems were later considered in the works
of Gallagher, Padlog, and Bijlaard, 1962 and Melosh, 1963, among others. The
latter also considered material nonlinearity. Dynamic problem was considered
later in Archer, 1965 (Logan, 2007; Fish and Belytschko, 2007). These few early
developments provide a glimpse of the research that kickstarted the booming era
of FEM, which is also attributed to the development of computers and computer-
aided design (CAD). Further detailed descriptions can be found in Bathe, 1996;
Fish and Belytschko, 2007; Logan, 2007; Ferreira and Fantuzzi, 2009; among oth-
ers. The FEM formulations can be derived using direct stiffness methods, vari-
ational methods (including minimum potential energy principle), or weighted
residual method (including Galerkin’s collocation, subdomain, and least squares
methods), see Bathe, 1996; Logan, 2007; Fish and Belytschko, 2007. In this section,
a brief description of the derivation of the FEM formulation using the principle
of minimum potential energy is presented.

Let us consider the elastic body Ω in Figure 2.1. The body is subjected to
prescribed boundary conditions of displacement and traction on Γ1 and Γ2, re-
spectively, and body forces per unit volume fi as before. The body after volume
discretization is presented in Figure 2.3. The displacement at any chosen point i,
úi, inside the element m can be interpolated from the nodal displacements using

25



Chapter 2. Overview of models for SSI and basic formulations

FIGURE 2.3: A cross-section of domain Ω after discretization of its
volume into finite solid elements. Solid element m is shown in the

intrinsic coordinate s.

the isoparametric shape functions with the following expression:

úi =
L

∑
l=1

Nl(si)um(l), l = 1, 2, ..., L, (2.43)

where um(l) is the displacement matrix of node l of element m and si is the in-
trinsic coordinate of the point i, such that the vector position of the point i, xi, is
related to the nodal coordinates of the element, xm(l), as

xi =
L

∑
l=1

Nl(si)xm(l), l = 1, 2, ..., L. (2.44)

Here, L is the number of nodes on element m. The strain of element m can be
derived from (2.43) and is expressed in matrix form as

ϵm = Bum. (2.45)

and the stress-strain relation is subsequently described as

σm = DBum, (2.46)

where
B =

[
∇NTxm]−1∇NT. (2.47)

Note that the components of the right hand side of (2.47) need to be rearranged
in B such that B has the same column as the column matrix um. ∇N is the partial
derivative of the shape functions with respect to the intrinsic coordinate s. The
superscript T denotes transpose operation.
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2.5. The finite element method

The strain energy in the domain Ω is given by (2.10), which can be written
in matrix form as

U =
∫

V

1
2
ϵTDϵ dV. (2.48)

The potential of the external loads due to the body forces and tractions is given
by

W =
∫

V
úT f́ dV +

∫
Γ2

úT
Γ2

t́ dΓ, (2.49)

where ú is the general displacement function as in (2.43), f́ is the applied body
forces (forces per unit volume), úΓ2 is the displacement field over surface Γ2

(where the surface tractions act), and t́ is the surface traction (forces per unit area).

Inserting equations (2.45) and (2.43) into (2.48) and (2.49), respectively, the
total potential energy Π is obtained as follows (Bathe, 1996; Logan, 2007):

Π =
1
2

∫
V

uTBTDBu dV −
∫

V
uTNT f́ dV −

∫
Γ2

uT
Γ2

NT
Γ2

t́ dΓ. (2.50)

Here, u is the nodal displacement matrix of the domain Ω, i.e., u is a result of
superposition of um, and NΓ2 is the matrix of shape functions that are applicable
for the surface Γ2. After discretization of the domain into finite elements, the
volume and surface integrals of equation (2.50) can be substituted by the sums of
the element integrals as

Π =
1
2

M

∑
m=1

∫
Vm

[um]TBTDBum dVm−

M

∑
m=1

∫
Vm

[um]TNT f́m dVm −
M

∑
m=1

∫
Γm

2

[um]TNT
Γ2

t́m dΓm. (2.51)

Collecting um in u and applying the principle of minimum potential energy by
taking the partial derivative of Π with respect to the nodal displacements as zero,
the following is obtained

∂Π
∂u

=

[ M

∑
m=1

∫
Vm

BTDB dVm
]

u−

M

∑
m=1

∫
Vm

NT f́m dVm −
M

∑
m=1

∫
Γm

2

NT
Γ2

t́m dΓm = 0. (2.52)

Equation (2.52) describes the state of equilibrium of the domain Ω.

In the dynamic problem, where time-dependent loads are applied rapidly,
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the inertia forces of the system are activated. In addition, the system’s energy dis-
sipates over time, which can be described as velocity-dependent damping forces.
The inertia force and the damping force terms can be inserted into the body
force part of (2.52). Using d’Alembert’s principle, the body force in element m is
redescribed as follows (Bathe, 1996; Logan, 2007):∫

Vm
NT f́m dVm ⇒

∫
Vm

NT[f́m − ρmNüm − ζmNu̇m] dVm. (2.53)

The acceleration and velocity inside the element ´̈um and ´̇um, respectively, are ap-
proximated from the nodal accelerations üm and the nodal velocities u̇m in the
same manner as the displacement and traction, i.e., by means of the shape func-
tions. ζ is the damping parameter. Inserting (2.53) into (2.52) and collecting the
nodal accelerations and velocities in ü and u̇, the following equation is obtained

Mü + Cu̇ + Ku = f, (2.54)

where u is the time-dependent nodal displacement, i.e., u = u(t), and u̇ and ü
are its time derivatives. The stiffness matrix K, the mass matrix M, the damping
matrix C, and the nodal external force vector f are described as

K =
M

∑
m=1

Km =
M

∑
m=1

∫
Vm

BTDB dVm; (2.55a)

C =
M

∑
m=1

Cm =
M

∑
m=1

∫
Vm

ζmNTN dVm; (2.55b)

M =
M

∑
m=1

Mm =
M

∑
m=1

∫
Vm

ρmNTN dVm; (2.55c)

f =
M

∑
m=1

∫
Vm

NT f́mdVm +
M

∑
m=1

∫
Γm

2

NT
Γ2

t́m dΓm. (2.55d)

In (2.55d), the nodal force loads that are defined directly on specific nodes can
also be inserted. The numerical integration of (2.55a)-(2.55d) can be performed
using Gauss quadrature. The solution for time-harmonic problem is obtained by
expressing the displacements and the forces as

uj(t) = ûjeiωt and (2.56a)

f j(t) = f̂ jeiωt, where j = 1, 2, 3, and i =
√
−1. (2.56b)

Here, ûj and f̂ j are the complex amplitudes of the displacements and the
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2.5. The finite element method

loads, respectively. After replacing the accelerations and the velocities as deriva-
tives of the time-harmonic displacements, (2.54) can be written as (Wolf, 1985;
Chopra, 1995)

û =
[
(K + iKs) + iωC − ω2M

]−1
f̂, (2.57)

where Ks is the structural damping matrix.

The solution in transient analysis can be obtained by solving the numeri-
cal integration with respect to the time variable using approximation such as the
Newmark-beta method or central difference method (Chopra, 1995). In ABAQUS,
two dynamics analysis types are available: explicit and implicit. The explicit
solver is based on the forward Euler method and the central difference operator,
while the implicit solver is based on the backward Euler method and modified
Newmark’s method. In the implicit dynamic analysis, the state of equilibrium
at time tj+1 is obtained from the values at time tj and at time tj+1 itself, where
tj+1 = tj + ∆t and ∆t is the time interval. The equilibrium equation (2.54) at time
tj is expressed as (Chopra, 1995)

Mü(j) + Cu̇(j) + Ku(j) = f(j). (2.58)

The difference between equilibrium states at time tj+1 and tj gives the incremental
equation

M∆ü(j) + C∆u̇(j) + K∆u(j) = ∆f(j), (2.59)

where the subscript (j) denotes the considered time step. Given certain initial
displacements and initial velocities

u(0) = ū, (2.60a)

u̇(0) = ¯̇u, (2.60b)

the acceleration can be computed as

ü(j) = [M]−1[f(j) − Cu̇(j) − Ku(j)], j = 0. (2.61)

As the displacements and its time derivatives at this time step are known, the
incremental values for the next time step can be computed as

∆u(j) = [K̂]−1∆P(j), j = 0, 1, 2, ..., (2.62)
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where

K̂ = Ktan(j) +
γ

β∆t
C +

1
β(∆t)2 M, (2.63a)

∆P(j) = ∆f(j) +

[
1

β∆t
M +

γ

β
C
]

u̇(j) +

[
1

2β
M + ∆t

( γ

2β

)
C
]

ü(j). (2.63b)

Here, Ktan is the global tangent stiffness matrix, i.e., for linearly elastic material
behaviour, Ktan = K; γ provides a linearly varying weighting between the in-
fluence of the initial and the final accelerations on the velocity; and β provides
the weighting between the influence of the initial and the final acceleration on
the displacement. In ABAQUS, the coefficients γ and β are enhanced using an
additional coefficient that reduces high-frequency artificial numerical noise, as
proposed by Hilber, Hughes, and Taylor, 1977 (Dassault Systèmes Simulia Corp,
2014).

Knowing the increment of displacement, the increments of velocity and ac-
celeration can be obtained using Newmark’s approximations as follows:

∆u̇(j) =
γ

β∆t
∆u(j) −

γ

β
u̇(j) + ∆t

(
1 − γ

2β

)
ü(j); (2.64a)

∆ü(j) =
1

β(∆t)2 ∆u(j) −
1

β∆t
u̇(j) −

1
2β

ü(j). (2.64b)

The displacement and its time derivatives for the next time step are then calcu-
lated as

u(j+1) = u(j) + ∆u(j); u̇(j+1) = u̇(j) + ∆u̇(j); ü(j+1) = ü(j) + ∆ü(j). (2.65)

When a nonlinear material is considered, e.g., elastoplastic material behaviour,
equation (2.46) can be written in the incremental form as

∆σm = DepB ∆um, (2.66)

where Dep is the elastoplastic stress-strain constitutive matrix. For transient non-
linear dynamic analyses, the equilibrium for each time step is achieved through
iteration, e.g., the Newton-Raphson iteration scheme or its modified form, based
on the state of the internal and external forces. The increment of displacement ∆u
for time step (j), obtained through iterative process, is expressed as

∆u[k]
(j) = ∆u[k−1]

(j) + δu[k]
(j), k = 1, 2, ..., (2.67)
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where superscript [k] is the iteration step. In this case, equation (2.62) is enhanced
into

δu[k]
(j) = [K̂[k](D[k−1]

ep )]−1R[k]
(j), j = 0, 1, 2, .., k = 1, 2, ..., (2.68)

which describes the contribution of displacement increment of a single iteration
step [k]. The notation R is the residual between internal and external forces, ex-
pressed as

R[k]
(j) = ∆P(j) − f̆(∆σ[k])−

[
γ

β∆t
C +

1
β(∆t)2 M

]
∆u[k]

(j), (2.69)

where f̆ denotes the internal resisting force vector, given by

f̆ =
∫

V
BTσ dV =

M

∑
m=1

∫
Vm

BTσmdVm, (2.70)

and the last part of (2.69) is the contribution of the dynamic part to the equilib-
rium. The internal force is updated in iteration step [k] using equation (2.66) after
obtaining the updated displacement ∆u[k]

(j), followed by the calculation of strain
using the relation

∆ϵ
[k]
(j) = B ∆u[k]

(j). (2.71)

In equation (2.68), matrix K̂[k](D[k−1]
ep ) considers the global tangent stifness ma-

trix Ktan which includes the updated constitutive stress-strain matrix based on
the state of stresses of the previous iteration step. The convergence can be de-
fined through a tolerance value, described, e.g., as (Chopra, 1995; von Estorff and
Firuziaan, 2000) ∣∣∣∣∆u[k]

∆u

∣∣∣∣ < tol., or (2.72a)

|R[k]| < tol. (2.72b)

The implementation of the FEM for linear and nonlinear dynamics in ABAQUS
is further detailed in the theory manual (Dassault Systèmes Simulia Corp, 2014).

2.6 The hybrid BEM-FEM based on the macro-element

concept

The coupling of BE-FE was first proposed in Zienkiewicz, Kelly, and Bettess, 1977
and later extended for dynamic problems in Spyrakos and Beskos, 1986. From

31



Chapter 2. Overview of models for SSI and basic formulations

the perspective of the coupling procedure, the hybrid BEM-FEM can be generally
classified into (1) direct method and (2) iterative method. The method classifica-
tion is summarized in Figure 2.4.

Coupled
BEM-FEM

Direct method Iterative method

BEM-hosted

FEM-hosted

Macro-
element

Neumann-
Neumann

Dirichlet-
Neumann

Dirichlet-
Dirichlet

Neumann-
Dirichlet

FIGURE 2.4: Classification of the coupled/hybrid BEM-FEM.

The iterative method

In the iterative method, the domain is decomposed into two subdomains. A trial
boundary condition is given to both subdomains along their shared interface,
where each equilibrium is solved independently. The results are then compared,
and a new boundary condition is formulated iteratively until convergence for
a single time step is achieved. The iterative method can be further divided ac-
cording to the type of boundary condition used for the subdomains (Figure 2.4).
Schematic flowcharts of the iterative method employing (1) the same boundary
conditions and (2) mixed boundary conditions as input along the subdomain in-
terface are shown in Figures 2.5 and 2.6, respectively. The advantage of the iter-
ative method in comparison to the direct method is that (1) the need to combine
both (BE and FE) systems of equations (SEs) is avoided and (2) since both subdo-
mains are solved with their respective solvers, optimized and specialized solvers
can be employed to the full extent. The combination of the SEs is one of the
drawbacks of the direct method since the FEM and BEM matrices have different
characteristics. In this field, Elleithy, Al-Gahtani, and El-Gebeily, 2001, extended
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Start

Domain Ω

BE subdomain FE subdomain

Trial boundary
condition

Conv.

BEM result FEM result

Finish

Input Input

Yes

No

FIGURE 2.5: A schematic flowchart of the iterative method using the
same boundary conditions as input along the subdomain interface,

i.e., Dirichlet-Dirichlet or Neumann-Neumann.

Start

Domain Ω

BE subdomain FE subdomain

Trial boundary
condition

Conv.

BEM result FEM result

Finish

Input

Input

Yes

No

FIGURE 2.6: A schematic flowchart of the iterative method using
a mixed type of boundary condition as input along the subdomain

interface, i.e., Dirichlet-Neumann or Neumann-Dirichlet.
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the work by Lin et al., 1996, and Feng and Owen, 1996, by improving the con-
vergence rate for elastostatics. This was later extended for elastoplastic case in
Elleithy, Tanaka, and Guzik, 2004, and for nonlinear dynamic analyses in Soares
Jr, von Estorff, and Mansur, 2004; von Estorff and Hagen, 2005; Soares, 2008. An
adaptive algorithm that avoided the domain partitioning to be predefined was
later studied in Elleithy, 2008; Elleithy and Grzhibovskis, 2009; Soares and God-
inho, 2015. Despite the promising potential, the usage of this method is limited
in problem scale and the degree of nonlinearity due to the main drawback: the
necessary inter-domain iterations. This drawback is especially problematic in
cases with large interface areas or cases involving nonlinearities since the nonlin-
ear iterations (generally included within the FE zone) are then nested inside the
inter-domain iterations.

The direct method

The direct hybrid BE-FE method can be further classified into (1) FEM-hosted
(e.g., in Wearing, Sheikh, and Burstow, 1991; Ganguly, Layton, and Balakrishna,
2000; von Estorff and Firuziaan, 2000; Bode, Hirschauer, and Savidis, 2002; François,
Coulier, and Degrande, 2015; Galvín and Romero, 2014b), (2) BEM-hosted (e.g.,
in Brebbia and Georgiou, 1979), and (3) Macro-element approach, see the pre-
vious Section 2.2. The latter is similar to the FEM-hosted approach in that the
BEM influence matrices and nodal traction vector are converted into FEM-like
stiffness and structural damping matrices and nodal forces vector. In the classi-
cal FEM-hosted approach, these matrices and vector are superpositioned into the
system of equation of the FE subdomain through its shared common nodes along
the subdomain’s interface. This method requires both subdomains to have con-
forming discretizations along the interface. In the numerical implementation,
this transforms into a further requirement of having shared node numbering be-
tween the two. Although this problem is not considered a significant drawback
for 2D problems, where domain discretization and node numbering sequence
can be easily arranged, it becomes a significant hindrance for realistic 3D model-
ing. In the macro-element approach, the converted BE properties are made into
a substructure that is then attached to the FE subdomain. In this dissertation,
the assembly of the BE vector and matrices (via the substructure) is performed
through the common surfaces instead of the shared common nodes. The draw-
back of the method is that the resulting global matrices and vector are larger in
comparison to the ones of the FEM-hosted. However, it results in a very conve-
nient modeling flexibility since the need to have conforming discretizations and
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2.6. The hybrid BEM-FEM based on the macro-element concept

node numberings are entirely omitted. The other advantage is the ability to trans-
fer and reuse the substructure for other FE models, provided that their interfaces
have the same dimension and shape. This approach is thus an optimum one for
engineering design or optimization, where the model has to be changed often
or where computation jobs are performed by separate entities, e.g., by structural
and geotechnical engineers.

In this section, a general description and the basic formulation of the cou-
pling between BE and FE using the direct method is provided. Further details
regarding the newly proposed assembly method are discussed in Section 3.5.

FIGURE 2.7: A cross-section of domain Ω after discretization into
boundary elements in Ω0 and finite elements in Ω1. The interface

between the subdomains is denoted as Γint.

In coordinate system Ox1x2x3, consider the domain Ω as shown in Figure
2.7. The domain identical to the one discussed in the previous sections is now
partitioned into BE and FE zones, denoted as Ω0 and Ω1, respectively. The inter-
face boundary between both regions is with notation Γint. The boundaries of Ω0

and Ω1 that are not part of the interface are denoted as ΓB and ΓF, respectively,
such that ΓΩ0 = ΓB ∪ Γint and ΓΩ1 = ΓF ∪ Γint. The normal vectors to boundary
Γint for each aforementioned domain are in opposite directions.

The material properties of the zone Ω0 are density ρ0; Lamé moduli λ0,
µ0; longitudinal wave velocity CP0 =

√
(λ0 + 2µ0)/ρ0; and shear wave veloc-

ity CS0 =
√

µ0/ρ0, while the material properties of both layers in the finite zone
Ω1 are as follows: λ1, µ1, CP1 , CS1 .
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The equations of motion for Ω1 and Ω0 assuming zero body forces, are as
follows:

σ
(Ω1)
ij,j (x, t) = ρ(Ω1)

∂2u(Ω1)
i (x, t)

∂t2 , x ∈ Ω1; (2.73)

σ
(Ω0)
ij,j (x, t) = ρ(Ω0)

∂2u(Ω0)
i (x, t)

∂t2 , x ∈ Ω0. (2.74)

Here, the superscripts inside round brackets denote the subdomain.

Along the interface surface boundary Γint, compatibility and equilibrium
conditions of displacements and tractions, respectively, are satisfied, i.e. u(Ω0)

i =

u(Ω1)
i and t(Ω0)

i = −t(Ω1)
i . The boundary ΓB is a traction-free surface, i.e., t(Ω0)

i =

σ
(Ω0)
ij n(Ω0)

j = 0 along ΓB. Along ΓF, mixed boundary conditions of displacement
and traction are assigned.

Following the procedure described in Section 2.4, equation (2.73) transforms
into equation (2.75) in the frequency domain as follows (Dominguez, 1993):

H(Ω0)û(Ω0) = G(Ω0) t̂(Ω0), (2.75)

where H(Ω0) and G(Ω0) are the influence matrices; û(Ω0), t̂(Ω0) are the displace-
ment and traction vectors at nodes on ΓΩ0 . The matrix equation (2.75) can be
decoupled into the following form:[

H(Ω0)
11 H(Ω0)

12

H(Ω0)
21 H(Ω0)

22

] [
û(Ω0)

1

û(Ω0)
2

]
=

[
G(Ω0)

11 G(Ω0)
12

G(Ω0)
21 G(Ω0)

22

] [
t̂(Ω0)
1

t̂(Ω0)
2

]
(2.76)

where the index "1" in the matrices H(Ω0), G(Ω0) and vectors t̂(Ω0), û(Ω0) refers to
the interface boundary Γint, while index "2" refers to the boundary ΓB. In resume,
notation (Ω0) means that semi-infinite homogeneous elastic isotropic region Ω0

is under consideration in equation (2.76); û(Ω0)
1 , t̂(Ω0)

1 are the vectors of nodal
displacements and tractions along the interface boundary Γint; and û(Ω0)

2 , t̂(Ω0)
2 are

the vectors of nodal displacements and tractions along the traction-free surface
ΓB.

Applying the condensation procedure in Vasilev et al., 2015, the following
relation between traction t̂(Ω0)

1 and displacement û(Ω0)
1 vectors along the contact

boundary Γint is derived:
t̂(Ω0)
1 = E û(Ω0)

1 , (2.77a)
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where

E =
[
G(Ω0)

11 − H(Ω0)
12 At

]−1 [
H(Ω0)

11 − H(Ω0)
12 Au

]
; (2.77b)

At =
[
H(Ω0)

22

]−1
G(Ω0)

21 ; Au =
[
H(Ω0)

22

]−1
H(Ω0)

21 . (2.77c)

The conversion of the BEM matrix into FEM-compatible form is performed
using the mapping of the nodal traction t̂ into the nodal force f̂(Ω0). In equation
(2.55d), the integral for traction (the 2nd part of the right-hand side) can be mod-
ified by inserting the shape functions N to interpolate the surface traction inside
an element t́m from its nodal values tm. The result can be written as

f̂(Ω0) = [M∗] t̂(Ω0)
1 , (2.78)

where

M∗ =
M

∑
m=1

Λm; Λm =
∫

Γm
NTN dΓm. (2.79)

Here, the notation M is the number of boundary elements along Γint; Γm is the
boundary of the element; and Λm is the elemental mapping matrix.

After the substitution of equation (2.78) into equation (2.77a), the following
generalized expression for the nodal force vector f̂(Ω0)(x ∈ Γint, ω) is obtained:

f̂(Ω0) = K(Ω0)û(Ω0)
1 , (2.80)

where
K(Ω0) = [M∗]E. (2.81)

Note that equation (2.80) is complex-valued with complex-valued stiffness ma-
trix, displacement, and free-term vectors, i.e., we have the following:

K(Ω0) = ℜ(K)(Ω0) + iℑ(K)(Ω0); û(Ω0) = ℜ(û)(Ω0) + iℑ(û)(Ω0). (2.82)

The wave field in the finite zone Ω1 is described using equation (2.57) as
follows: [

−ω2M(Ω1) + iωC(Ω1) +
(

K(Ω1) + iK(Ω1)
s

)]
û(Ω1) = f̂(Ω1), (2.83)
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where i =
√
−1; M(Ω1), C(Ω1), and K(Ω1) are the matrices of mass, viscous damp-

ing, and stiffness, respectively; K(Ω1)
s is the structural damping matrix; û(Ω1) and

f̂(Ω1) are vectors of nodal displacement and nodal force of the FE zone, respec-
tively. The matrix C(Ω1) contains the damping defined through Rayleigh and/or
proportional damping, whilst the matrix K(Ω1) contains the damping defined
through structural damping.

(A) (B)

FIGURE 2.8: Illustration of the assembly of (A) the global stiffness
matrix K, and (B) the global structural damping matrix Ks through

shared nodes along the subdomain interface.

The method used to couple the BEM properties into the FE environment of
ABAQUS is based on the substructure generation procedure in which a substruc-
ture of the BEM model for semi-infinite domain Ω0 is created and attached to the
FEM model of the domain Ω1 via prescribed tied common nodes where com-
patibility and equilibrium conditions are satisfied. ABAQUS model of the whole
system includes sub-models concerning near-field Ω1 and far-field Ω0 zones in
the following form: [

−ω2M + iωC + (K + iKs)
]

û = f̂, (2.84)

where M, C, and K are the corresponding mass, viscous damping, and stiffness
matrices of the whole global system, respectively; Ks is the structural damping
matrix of the whole hybrid model and f̂ is the vector presenting the external load.
Comparing and fitting equations (2.80), (2.83) and (2.84) and taking advantage of
the substructure procedure available in ABAQUS, we can derive the following
relations for the hybrid assembly:

• The global stiffness matrix can be assembled from the stiffness matrix of
FEM region K(Ω1) and the real part of the stiffness matrix of BEM region
ℜ(K(Ω0)).
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• The global structural damping matrix is assembled from the damping ma-
trix of FEM model K(Ω1)

s and the imaginary part of the stiffness matrix of
the BEM zone ℑ(K(Ω0)).

• The global load vector f̂ = f̂(Ω1).

• The global viscous damping matrix is expressed by C = C(Ω1), where vis-
cous damping matrix C(Ω1) contains the damping defined through the Rayleigh
and/or proportional damping definition of the FEM model.

• The global mass matrix is M = M(Ω1).

• The unknowns are the nodal displacements along (1) the FEM mesh and (2)
the BEM mesh along the FE-BE interface.

The assembly of the global stiffness matrix and structural damping matrix is il-
lustrated in Figure 2.8. The hybrid numerical scheme presented here is a 3D gen-
eralization of the hybrid scheme in Vasilev et al., 2015.

The general scheme of the modeling and computation is illustrated in Figure
2.9. The processes performed in MATLAB® and ABAQUS are not necessarily
manual back-and-forth tasks since the processing phases in steps 3 through 6 can
be executed under one set of code written in MATLAB®; it can send command to
the operating system to execute ABAQUS.

During the dicretization of the BEM region, the surface boundary is dis-
cretized into either linear (3-node triangle and 4-node quadrilateral) or quadratic
(6-node triangles and 8-node quadrilateral) isoparametric boundary elements,
where continuous polynomial approximations are used for the boundary geom-
etry, the displacement, and the traction vectors.

The well-known problem in hybrid techniques based on BEM and FEM is
that FEM leads to sparse symmetric positive definite matrices, while BEM based
on collocation technique leads to full, non-symmetric ones. Following the assem-
bly of the stiffness matrix of BEM into the FEM system of equation, as described in
the previous section, the stiffness and structural damping matrices of the whole
model are both unsymmetric. ABAQUS provides unsymmetric matrix storage
and solution scheme, which can be activated either by (1) using the syntax "*STEP,
UNSYMM=YES" in the ABAQUS/Standard input file or by (2) choosing the un-
symmetric equation solver in the step editor when using ABAQUS/CAE graphi-
cal user interface. This option is available for use in a direct-solution steady-state
dynamic analysis.
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Define the geometry of the
FE and BE subdomains,

the interface between
them Γint, and the material
properties of the finite zone

Ω1 including the founda-
tions and the structures.

Mesh the FE and the BE
subdomains. Shell elements

are used for the latter.

Create 2 separate input
files, one each for FE
and BE subdomains.

Material
properties of

the semi-infinite
zone (BE

subdomain) Ω0.

For each frequency ω,
compute, condense,

and convert the BEM
influence matrices into
stiffness matrix K(Ω0).

For each frequency ω,
create a macro-element of

the BE subdomain Ω0 using
substructure procedure.For each frequency ω,

create an input file of the
global model Ω1 ∪ Ω0

containing the FE model
and the correspond-

ing BEM substructure.

For each frequency ω,
solve the global model
Ω1 ∪ Ω0 using steady-
state dynamic solver.

Collect ouputs
and perform
inverse FFT.

BEM input file

FEM input file

FIGURE 2.9: A schematic flowchart of the hybrid FEM-BEM based
on the macro-element concept in the frequency domain. The grey
color marks processes performed in the ABAQUS environment,

while the white marks those performed in MATLAB.
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2.7 Chapter summary

This chapter provides readers with basic concepts of the numerical methods and
the coupling method used trough out this work. Further details of the FEM or the
BEM can be perused in the textbooks referenced in each corresponding section.
The following Chapter 3 describes the basic numerical enhancements developed
and implemented based on these formulations.
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Chapter 3

Basic numerical enhancements

3.1 Chapter overview

This chapter presents several basic numerical enhancements formulated and im-
plemented for the hybrid BEM-FEM. Most enhancements are performed on the
BEM formulation, which is a large part of the computation. The overview is fol-
lowed by the description of the method to handle embedded transient dynamic
point source, incident wave, and double-couple source in Section 3.2. It is fol-
lowed by the description of the method to handle arbitrary non-smooth nodes in
a half-space BE model using the enhanced analytical solution and dummy (en-
closing) elements in Section 3.3. To reduce the computational load, the imple-
mentation of the mirroring algorithm based on the reciprocity of Green’s func-
tion is presented in Section 3.4. It is followed by the description of the contact
definition to handle the non-conforming BE-FE interface, which omits the need
to have matching meshes and shared common nodes between both subdomains
(Section 3.5). These enhancements mainly work in the background but result in a
very convenient modeling flexibility and increase the solution efficiency, two fea-
tures of great import in practical engineering. The chapter ends with verification
studies of the hybrid method in Section 3.6. A part of this chapter is published
in H.D.B. Aji, F. Wuttke, P. Dineva (2021). "3D hybrid model of foundation-soil-
foundation dynamic interaction". In: Z. für Angew. Math. Mech. (ZAMM) 101,
e202000351. DOI: 10.1002/zamm.202000351.

3.2 Inclusion of an embedded transient dynamic point

source, an incident wave, or a double-couple source

Let us now extend the problem described in Section 2.6 into a closer idealization
of real-world dynamic SSI problem as shown in Figure 3.1. Consider a 3D finite
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FIGURE 3.1: Problem geometry presenting the general configuration
of the finite region Ω1 embedded in a half-space Ω0 with a dynamic

source at X0.

geological region Ω1 which is embedded in a semi-infinite elastic isotropic media
Ω0 with transient dynamic load comprising either (a) an incident plane wave or
(b) waves generated by an embedded source (caused by seismic or other types
of dynamic events) at point X0(X01, X02, X03). This is possible since the BEM is
suitable and accurate to handle the infinite or semi-infinite domain. The inter-
face boundary between both regions Ω1 and Ω0 is with notation Γint, whilst the
surface ΓF and ΓB are the free-surface of ranges Ω1 and Ω0, respectively. The
boundary of the finite region Ω1 is ΓΩ1 = Γint ∪ ΓF, whereas the boundary of the
external semi-infinite zone Ω0 is ΓΩ0 = Γint ∪ ΓB. The normal vectors to boundary
Γint for each subdomain are in opposite directions.

Material properties of the geological semi-infinite zone Ω0 are density ρ0;
Lamé constants λ0, µ0; the longitudinal wave velocity CP0 ; and the shear wave
velocity CS0 , while the material properties of the finite range Ω1 are as follows:
λ1, µ1, CP1 , CS1 .

To include the transient dynamic body force in Ω0, the equation of motion in
(2.74) is modified into the following:

σ
(Ω0)
ij,j (x, t) + f (Ω0)

i (X0, t) =

ρ(Ω0)
∂2u(Ω0)

i (x, t)
∂t2 , x ∈ Ω0, i = 1, 2, 3, j = 1, 2, 3. (3.1)
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The equation of motion for subdomain Ω1 remains the same as in (2.73). When
an embedded dynamic point source located at X0(X01, X02, X03) is considered,
the dynamic force having the amplitude f (Ω0)

i ( f (Ω0)
1 , f (Ω0)

2 , f (Ω0)
3 ) and the time

history function f (t) is presented as

f (Ω0)
i (X0, t) = f (Ω0)

i f (t)δ(x − X0). (3.2)

Consider a dynamic state with a quiescent past, i.e., the initial conditions
for displacements and their first derivatives with respect to time are zero. The
solution to the problem of the transient wave is obtained by the use of the follow-
ing well-known numerical procedure, see Chaillat, Bonnet, and Semblat, 2009:
(a) the fast Fourier transform (FFT) is applied to the governing equations (3.1)
and (2.73); (b) the corresponding boundary-value problem is solved in the fre-
quency domain; and (c) the inverse fast Fourier transform (IFFT) is applied to the
solutions in the frequency domain and finally solutions in the time domain are
obtained.

After the application of FFT to equations (2.73) and (3.1), the frequency-
dependent equations of motion have the following form:

σ
(Ω1)
ij,j (x, ω) + ρ(Ω1)ω2û(Ω1)

i (x, ω) = 0, x ∈ Ω1; (3.3)

σ
(Ω0)
ij,j (x, ω) + ρ(Ω0)ω2û(Ω0)

i (x, ω) = − f (Ω0)
i f̂ (ω)δ(x − X0), x ∈ Ω0, (3.4)

where ω is the circular frequency in rad/sec. The term fi(X0, t) = f (Ω0)
i f (t)δ(x −

X0) becomes f (Ω0)
i f̂ (ω)δ(x − X0) in the frequency domain. The term f̂ (ω) is ob-

tained by performing the FFT on f (t), expressed as

f̂ (ω) = F{ f (t)}(ω). (3.5)

Boundary conditions for semi-infinite region Ω0 are as follows:

• Along the free-surface ΓB, the tractions t̂(Ω0)
i = σ

(Ω0)
ij n(Ω0)

j are zero, n(Ω0)
j are

the components of the outward normal to the surface ΓB.

• Along the interface surface boundary Γint, compatibility and equilibrium
conditions of displacements and tractions, respectively, are satisfied, i.e.,
û(Ω0)

i = û(Ω1)
i and t̂(Ω0)

i = −t̂(Ω1)
i .

• Sommerfeld’s radiation condition is satisfied at infinity.

Boundary conditions for finite region Ω1 are detailed in the following:
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• Along the free-surface ΓF, the tractions are zero, i.e. t̂(Ω1)
i = σ

(Ω1)
ij n(Ω1)

j = 0,

n(Ω1)
j are the components of the outward normal to the surface ΓF.

• Along the interface surface boundary Γint, compatibility and equilibrium
conditions of displacements and tractions are satisfied.

The solution of the defined mechanical problem in the frequency domain satisfies
the governing equations (2.73) and (3.1) and the boundary conditions discussed
above.

After application of the reciprocal theorem to equation (3.4), the following
BIE is obtained:

cl jû
(Ω0)
j (ξ, ω) =

∫
ΓΩ0

Û∗(Ω0)
l j (x, ξ, ω)t̂(Ω0)

j (x, ω)dΓΩ0−∫
ΓΩ0

P̂∗(Ω0)
l j (x, ξ, ω)û(Ω0)

j (x, ω)dΓΩ0+

f (Ω0)
j f̂ (ω)Û∗(Ω0)

l j (x, X0, ω), x ∈ ΓΩ0 , ξ ∈ ΓΩ0 , (3.6)

where x, ξ is the source-receiver couple. The last part of (3.6) is obtained after
the application of the reciprocal theorem and using the property of the integral of
Dirac delta function, see Manolis et al., 2017.

In the case that the dynamic load is presented by an incident plane wave,
the total wave field in Ω0 can be described as the superposition product of the
free-field motion, û f f

i , t̂ f f
i , i = 1, 2, 3, and the scattered wave field, ûsc

i , t̂sc
i (due to

wave scattering by Γint), as follows, see Vasilev et al., 2015:

û(Ω0)
i (x, ω) =û f f (Ω0)

i (x, ω) + ûsc(Ω0)
i (x, ω), (3.7a)

t̂(Ω0)
i (x, ω) =t̂ f f (Ω0)

i (x, ω) + t̂sc(Ω0)
i (x, ω), i = 1, 2, 3. (3.7b)

The corresponding BIE is written as follows:

cl j(û
(Ω0)
j (ξ, ω)− û f f (Ω0)

j (ξ, ω)) =∫
ΓΩ0

Û∗(Ω0)
l j (x, ξ, ω)(t̂(Ω0)

j (x, ω)− t̂ f f (Ω0)
j (x, ω))dΓΩ0−∫

ΓΩ0

P̂∗(Ω0)
l j (x, ξ, ω)(û(Ω0)

j (x, ω)−

û f f (Ω0)
j (x, ω))dΓΩ0 , x ∈ ΓΩ0 , ξ ∈ ΓΩ0 . (3.8)
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The BIE (3.8) above is written with respect to the scattered wave field. The free-
field motion at point x(x1, x2) due to an incident P-wave with an amplitude Ainc

P

and an incident wave angle θinc in the case of a time-harmonic excitation can be
computed as follows (Wolf, 1985; Dineva et al., 2014):(

u f f
1 (x, ω)

u f f
2 (x, ω)

)
=Ainc

P

{
k/kp

−iι/kp

}
e−ιx2−ikx1+

Ainc
P RPP

{
k/kp

iι/kp

}
eιx2−ikx1 + Ainc

P RPS

{
iι′/kp

−k/kp

}
eι′x2−ikx1 , (3.9)

where the wavenumbers are

kp =
ω

CP
; ks =

ω

CS
; (3.10a)

and

k = kp cos θinc; ι = ikp sin θinc; ι′ =
√

k2 − k2
s ; i =

√
−1 (3.11a)

∆(k) = (2k2 − k2
s)

2 − 4k2ι ι′; (3.11b)

RPP = −[(2k2 − k2
s)

2 + 4k2ι ι′]/∆(k); RPS = −4ikι(2k2 − k2
s)/∆(k). (3.11c)

The angle θinc is measured anticlockwise from the axis Ox1 to the direction of
the wave propagation. The free-field motion at point x(x1, x2) due to an incident
SV-wave with an amplitude of Ainc

SV is given by(
u f f

1 (x, ω)

u f f
2 (x, ω)

)
=Ainc

P

{
−iι′/ks

−k/ks

}
e−ι′x2−ikx1+

Ainc
SV RSS

{
iι′/ks

−k/ks

}
eι′x2−ikx1 + ASV RSP

{
k/ks

iι/ks

}
eιx2−ikx1 , (3.12)

where

k = ks cos θinc; ι =
√

k2 − k2
p; ι′ = iks sin θinc; i =

√
−1 (3.13a)

∆(k) = (2k2 − k2
s)

2 − 4k2ι ι′; (3.13b)

RSS = −[(2k2 − k2
s)

2 + 4k2ι ι′]/∆(k); RSP = 4ikι′(2k2 − k2
s)/∆(k). (3.13c)

In the case of a 3D problem, equations (3.9) and (3.12) can be implemented by
assuming x2 as the vertical coordinate x3 and x1 as any horizontal coordinate of
point x.

47



Chapter 3. Basic numerical enhancements

The inclusion of a double-couple dynamic source can be derived as follows.
The equivalent of equation (3.6) in the time domain is written as

cl ju
(Ω0)
j (ξ, t) =

∫
ΓΩ0

U∗(Ω0)
l j (x, ξ, t) ∗ t(Ω0)

j (x, t)dΓΩ0−∫
ΓΩ0

P∗(Ω0)
l j (x, ξ, t) ∗ u(Ω0)

j (x, t)dΓΩ0+

f (Ω0)
j f (t) ∗ U∗(Ω0)

l j (x, X0, t), ξ ∈ ΓΩ0 , x ∈ ΓΩ0 , X0 ∈ Ω0. (3.14)

Following the procedure by Aki and Richards, 1980, the body force is now ap-
plied at an infinitesimal distance of ∆lk from point X0, and the gradient of the
Green’s function (equation (2.40)) is taken over direction k. The last term of the
above equation is now written as

f (Ω0)
j f (t)∆lk ∗

∂U∗(Ω0)
l j (x, X0, t)

∂xk
= M(Ω0)

jk f (t) ∗ U∗(Ω0)
l j,k (x, X0, t), (3.15)

where M(Ω0)
jk = f (Ω0)

j ∆lk is the moment tensor. Equation (3.14) now reads

cl ju
(Ω0)
j (ξ, t) =

∫
ΓΩ0

U∗(Ω0)
l j (x, ξ, t) ∗ t(Ω0)

j (x, t)dΓΩ0−∫
ΓΩ0

P∗(Ω0)
l j (x, ξ, t) ∗ u(Ω0)

j (x, t)dΓΩ0+

M(Ω0)
jk f (t) ∗ U∗(Ω0)

l j,k (x, X0, t), ξ ∈ ΓΩ0 , x ∈ ΓΩ0 , X0 ∈ Ω0. (3.16)

The product of moment tensor and the derivative of the Green’s function is writ-
ten explicitly for 3D problem as (Aki and Richards, 1980)

Mjk f (t) ∗ U∗
l j,k =

(15r,lr,jr,k − 3r,lδjk − 3r,jδlk − 3r,kδl j

4πρ

)
t
r4

Mjk

(
f
(

t − r
CP

)
− f

(
t − r

CS

))
+

(6r,lr,jr,k − r,lδjk − r,jδlk − r,kδl j

4πρ C2
P

)
1
r2 Mjk f

(
t − r

CP

)
−
(6r,lr,jr,k − r,lδjk − r,jδlk − 2r,kδl j

4πρ C2
S

)
1
r2 Mjk f

(
t − r

CS

)
+

r,lr,jr,k

4πρ C3
P

1
r

Mjk ḟ
(

t − r
CP

)
−
(r,lr,j − δl j

4πρ C3
S

)
r,k

1
r

Mjk ḟ
(

t − r
CS

)
. (3.17)
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Note that in comparison to equation (2.40), the above relation is obtained by re-
placing the Heaviside step function with the time function described in equation
(3.2). In addition, the spatial derivatives are taken with respect to the source point
ξ as opposed to the field point x.

The equivalent displacement function for 2D problems assuming a line source
parallel to the plane’s normal can be derived from equation (2.41) as follows:

Mjk f (t) ∗ U∗
l j,k =

1
2πρCP

{
1
r

[(
4

R1
+

8R1

r2 − r2

R3
1

)
r,lr,jr,k

−
(

2R1

r2 +
1

R1

) (
r,lδjk + r,jδlk + r,kδl j

)]
Mjk f (CPt − r)

+
1
r2

[(
2R1 +

r2

R1

)
r,lr,jr,k − R1r,kδl j

]
Mjk ḟ (CPt − r)

}
− 1

2πρCS

{
1
r

[(
4

R2
+

8R2

r2 − r2

R3
2

)
r,lr,jr,k

−
(

2R2

r2 +
1

R2

) (
r,lδjk + r,jδlk + r,kδl j

)
+

r2

R3
2

r,kδl j

]
Mjk f (CSt − r)

+
1
r2

[(
2R2 +

r2

R2

)
r,lr,jr,k −

(
R2 +

r2

R2

)
r,kδl j

]
Mjk ḟ (CSt − r)

}
. (3.18)

The moment tensor Mjk is obtained according to the moment amplitude M0

and the fault geometry: strike angle ϕDC, dip angle δDC, and rake angle γDC. It is
written as (Aki and Richards, 1980)

Mjk = M0

cos δDC cos γDC

 0 0 − cos ϕDC

0 0 − sin ϕDC

− cos ϕDC − sin ϕDC 0



+ sin δDC cos γDC

− sin 2ϕDC cos 2ϕDC 0
cos 2ϕDC sin 2ϕDC 0

0 0 0



− cos 2δDC sin γDC

 0 0 sin ϕDC

0 0 − cos ϕDC

sin ϕDC − cos ϕDC 0



+ sin 2δDC sin γDC

− sin2 ϕDC
1
2 sin 2ϕDC 0

1
2 sin 2ϕDC − cos2 ϕDC 0

0 0 1


 . (3.19)
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In this implementation, the north direction, which is the reference line for the
strike angle measurement, is set along the x1 direction.

In the 2D case, it is implied that the double-couple line source is along the
east-west direction. Therefore, application in 2D cases is limited to slip movement
or rupture with no east-west component, e.g., {ϕDC = 270◦, δDC between 0-90◦,
γDC = 90◦} or {ϕDC=0, δDC=0, γDC=0}. In equation (3.19), the components of the
2nd rows and columns are omitted for 2D.

We can write the equivalent of equation (2.28) or (2.75) for equations (3.6),
(3.8), and (3.16) by applying discretization and collocation procedures to them.
The results can be summarized into the following boundary element equation:

H(Ω0)û(Ω0) − G(Ω0) t̂(Ω0) = Φ(Ω0), (3.20)

where the term Φ(Ω0) depends on the type of the dynamic problem being consid-
ered.

Φ(Ω0) =



0, for a dynamic source from within Ω1;

f (Ω0)
j f̂ (ω)U∗(Ω0)

l j (x, X0, ω), for an embedded point source;

H(Ω0)û f f (Ω0) − G(Ω0) t̂ f f (Ω0), for an incident plane wave; and

F
{

NDC
∑
1

M(Ω0)
jk f (t) ∗ U∗(Ω0)

l j,k (x, X0, t)

}
(ω), for double-couple sources.

(3.21)

NDC is the number of double-couple sources.

Following the above relation, the matrix equation (2.76) is now written as[
H(Ω0)

11 H(Ω0)
12

H(Ω0)
21 H(Ω0)

22

] [
û(Ω0)

1

û(Ω0)
2

]
−
[

G(Ω0)
11 G(Ω0)

12

G(Ω0)
21 G(Ω0)

22

] [
t̂(Ω0)
1

t̂(Ω0)
2

]
=

[
Φ(Ω0)

1

Φ(Ω0)
2

]
, (3.22)

where the index "1" refers to the interface boundary Γint and index "2" refers to
the boundary ΓB, as before. Equation (2.77a) can now be enhanced as (Vasilev
et al., 2015)

t̂(Ω0)
1 = E û(Ω0)

1 − p, (3.23)

where

p =
[
G(Ω0)

11 − H(Ω0)
12 At

]−1 [
Φ(Ω0)

1 − H(Ω0)
12 Θ

]
; Θ =

[
H(Ω0)

22

]−1
Φ(Ω0)

2 ; (3.24)
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and the relation in (2.77b) remains. Equation (2.80) is now written as

f̂(Ω0) = K(Ω0)û(Ω0)
1 − r(Ω0), (3.25)

where
K(Ω0) = [M∗]E; r(Ω0) = [M∗]p. (3.26)

The assembly of the SEs of the subdomains are the same as described in Sec-
tion 2.6 with one addition: the assembly of the dynamic load vector r(Ω0) into
the global load vector f̂. The load vector can be obtained from the assembly of
the vector of external loads assigned on the FEM model f̂(Ω1) and the vector of
dynamic force term of the BEM model r(Ω0). The workflow in Figure 2.9 is now
enhanced as in Figure 3.2.
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Define the geometry of the
FE and BE subdomains,

the interface between
them Γint, and the material
properties of the finite zone

Ω1 including the founda-
tions and the structures.

Mesh the FE and the BE
subdomains. Shell elements

are used for the latter.

Create 2 separate input
files, one each for FE
and BE subdomains.

Choice of
dynamic

excitation type:
(1) source from
within Ω1; (2.a)
transient point
source at X0;
(2.b) incident

wave; (2.c)
double-couple
source at X0.

In the case of
(2.a), perform FFT.

Material
properties of

the semi-infinite
zone (BE

subdomain) Ω0.

For each frequency ω,
compute, condense,

and convert the BEM
influence matrices and

dynamic load vector into
stiffness matrix K(Ω0) and
nodal force vector r(Ω0).

For each frequency ω,
create a macro-element of

the BE subdomain Ω0 using
substructure procedure.

For each frequency ω,
create an input file of the

global model Ω1 ∪ Ω0

containing the FE model
and the correspond-

ing BEM substructure.

For each frequency ω,
solve the global model
Ω1 ∪ Ω0 using steady-
state dynamic solver.

Collect ouputs
and perform
inverse FFT.

BEM input file

FEM input file

FIGURE 3.2: A schematic flowchart of the hybrid FEM-BEM based
on the macro-element concept considering various types of dynamic
sources. The grey color marks processes performed in the ABAQUS
environment, while the white marks those performed in MATLAB.
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model

3.3 Computation of the jump-term for arbitrary non-

smooth nodes in the BE model

As described in Section 2.4, two types of integrals are obtained after discretization
of boundary integral equations, depending on whether or not the radial distance
r between the source and receiver points is zero: (a) at r ̸= 0 the integrals are
regular, and there are no singularities, the solution is numerical; (b) at r = 0 there
are two types of singularities: (*) the displacement-based kernels exhibit a weak
singularity of the type O(ln r) for 2D or O(1/r) for 3D, and these integrals are
solved by appropriate quadrature rule; (**) the traction-based kernels exhibit a
singularity of the type O(1/r) for 2D or O(1/r2) for 3D and these integrals can
be solved analytically or using the rigid-body motion method, see Dominguez,
1993; Beer, Smith, and Duenser, 2008. This section briefly describes the explicit
analytical solution and its enhancement that is well-suited for 2D problems, fol-
lowed by the application of the rigid-body motion method for both 2D and 3D
cases.

Let us examine the reciprocal form of the two elastodynamic states of a 2D
subdomain Ω0 in equation (2.18). Using the properties of the Dirac delta func-
tion in f ∗k and assuming zero body forces, we obtained the following form in the
frequency domain

ûj(ξ, ω) =
∫

Γ
Û∗

l j(x, ξ, ω)t̂j(x, ω)dΓ −
∫

Γ
P̂∗

l j(x, ξ, ω)ûj(x, ω)dΓ, ξ ∈ ΓΩ0 . (3.27)

An augmented boundary Γaug near the point of interest ξ is created at a distance
of raug from the point of interest ξ, see Figure 3.3. Consider an infinitesimal sur-
face along Γaug described as

dΓaug = raug dθ. (3.28)
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FIGURE 3.3: Illustration of the augmented boundary Γaug around
point ξ.

Implementing the augmented boundary, the right-hand side of (3.27) can be writ-
ten as

∫
Γ

Û∗
l j(x, ξ, ω) t̂j(x, ω)dΓ −

∫
Γ

P̂∗
l j(x, ξ, ω) ûj(x, ω)dΓ =

lim
raug→0

∫
Γ−Γaug

Û∗
l j(x, ξ, ω) t̂j(x, ω)dΓ−

lim
raug→0

∫
Γ−Γaug

P̂∗
l j(x, ξ, ω) ûj(x, ω)dΓ+

lim
raug→0

∫
Γaug

Û∗
l j(x, ξ, ω) t̂j(x, ω)dΓaug−

lim
raug→0

∫
Γaug

P̂∗
l j(x, ξ, ω) ûj(x, ω)dΓaug, (3.29)

The third part of the right-hand side of (3.29) vanishes as raug → 0. The
fourth part can be solved analytically since the O(1/r) term in the traction fun-
damental solution and the r term from the integral solution over the semicircle
boundary cancel each other out. This yields in the jump-term cl j, l = 1, 2, j = 1, 2,
in BIE (2.20) that can be written as

cl jûj(x, ω) = lim
raug→0

∫
Γaug

P̂∗
l j(x, ξ, ω) ûj(x, ω) dΓaug. (3.30)

The jump-term cl j is the same as in the case of elastostatic because the elasto-
dynamic fundamental solution tends to be the static one as r → 0 (Dominguez,
1993).

The elastostatic fundamental solution that computes tractions at point x due
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to a unit point load at point ξ is given by Lord Kelvin as (Dominguez, 1993; Beer,
Smith, and Duenser, 2008)

P∗
l j(static)(x, ξ) =

C2

r

[
C3δl j + 2r,lr,j

r n
∥r∥ − C3(1 − δl j)(njr,l − nlr,j)

]
, (3.31)

where

C2 =
1

4π(1 − ν)
; C3 = 1 − 2ν. (3.32)

The vector r = rj, j = 1, 2, is the distance vector between the ξ and x while n =

nj, j = 1, 2, is the unit normal of the surface at point x. Inserting (3.31) into the
integral in (3.30), one obtains the explicit expression of cl j after integrating from
θ2 − π/2 to θ1 + π/2 as (Dominguez, 1993)

[cl j] =I − 1
8π(1 − ν)

[
C4 + sin 2θ1 − sin 2θ2 cos 2θ2 − cos 2θ1

cos 2θ2 − cos 2θ1 C4 − sin 2θ1 + sin 2θ2

]
, (3.33)

where
C4 = 4(1 − ν)(π + θ2 − θ1), (3.34)

θ1 is the angle between the unit normal of the element that precedes the node ξ

and Ox1 axis, θ2 is the angle between the unit normal of the element that follows
ξ and the Ox1 axis, and I is a 2 × 2 unit matrix. The jump-term (3.33) is accurate
for point ξ when the two adjacent elements are of equal length.

FIGURE 3.4: Illustration of the augmented boundary Γaug in the case
that the adjacent elements have different lenghts. The right figure
illustrates an idealized condition where the angle θ, i.e., the angle
that is measured anticlockwise from θ2 − π/2 to θ1 + π/2, is π/2.

In the case that the elements are of different length, the accuracy can be
maintained by modifying the non-diagonal terms of (3.33) as follows. Due to the
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different lengths, the augmented boundary of the integral in (3.30) is now in an
eccentric shape that is closer to an ellipse, see Figure 3.4 (left figure). Assuming
an ideal angle between the adjacent elements of π/2 as in Figure 3.4 (right figure),
the position of the target point x along Γaug in local coordinate (x̄, ȳ) follows an
ellipsoid form as

x̄2

a2 +
ȳ2

b2 = 1 (3.35)

with the partial derivative over x̄ of

2x̄
a2 +

2ȳ
b2

∂ȳ
∂x̄

= 0. (3.36)

Here, x̄ is inline with the tangent line of the proceeding element while ȳ is per-
pendicular to x̄ line. Thus, the tangent line to the ellipse in terms of the local
coordinate is

∂ȳ
∂x̄

= − x̄b2

ȳa2 . (3.37)

Since
tan θ =

ȳ
x̄

, (3.38)

the normal vector to boundary Γaug at point x can be obtained as the negative
reciprocal of the tangent line as

nj = tan θ̄γ =
ȳa2

x̄b2 =
a2

b2 tan θ. (3.39)

With the above relation, all components surrounding θ̄γ can be calculated as

x̄γ = raug cos θ C2
5 ; rγ = raug

[
cos2 θ C4

5 + sin2 θ
] 1

2 ; C5 =
b
a

. (3.40)

C5 is the ratio between the length of the following element to the length of the
preceding element, i.e., the eccentricity of the augmented boundary. The radius
and the normal direction sine and cosine are

r,x̄ = cos θ; r,ȳ = sin θ; (3.41)

n,x̄ =
cos θ C2

5[
cos2 θ C4

5 + sin2 θ
] 1

2
; n,ȳ =

sin θ[
cos2 θ C4

5 + sin2 θ
] 1

2
. (3.42)
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We can define the dΓaug as

dΓaug =
raug dθ

cos θ̄ψ
; (3.43)

cos θ̄ψ =
n r

∥n∥∥r∥ = n,j r,j

=
cos2 θ C2

5 + sin2 θ[
cos2 θ C4

5 + sin2 θ
] 1

2
. (3.44)

We examine explicitly the integral of the non-diagonal part of (3.31), i.e., the third
part of the right-hand side, using the preceding relations as

θ1+π/2∫
θ2−π/2

C2C3

raug
[n,x̄r,ȳ − n,ȳr,x̄] dΓaug =

θ1+π/2∫
θ2−π/2

C2C3

[
sin θ cos θ(C2

5 − 1)
cos2 θ C2

5 + sin2 θ

]
dθ, (3.45)

which results in

cl j = −C2C3

2
(1 − δij) ln(∥(C2

5 − 1) cos2 θ + 1∥)
∣∣∣∣θ1+π/2

θ2−π/2

= −C2C3

2
(1 − δij)

[
ln(∥(C2

5 − 1) sin2 θ1 + 1∥)−

ln(∥(C2
5 − 1) sin2 θ2 + 1∥)

]
. (3.46)

The above relation (3.46) is applicable for general 2D problems with arbitrary
geometry since it is free from the local coordinate term and takes into account the
influence of the length difference between the two adjacent elements. When used
in conjunction with (3.33), the results are also accurate for θ other than π/2.

The equivalent form of (3.33) for 3D problems can be derived similarly. This
solution is only valid in models where all elements have the same size. The three-
dimensional equivalent form of (3.46) is difficult to construct since an arbitrary
point in 3D problems can be connected to more than two elements and may have
different sizes. A general solution is also given in Mantic, 1993. However, im-
plementing such a solution requires the elements to be numbered in a particular
sequence. This is a rather complex task in a 3D model building with realistic
arbitrary geometry.

Since this study is aimed at practicality and general applicability, the use
of the rigid-body motion method is chosen for 3D problems, see Dominguez,
1993; Beer, Smith, and Duenser, 2008. The solution can be derived using the
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assumption that the body is moving freely in space and the overall boundary
of the domain is traction-free. The mathematical expression can be derived from
equation (2.26) by applying zero tractions and collecting the terms related to point
"i" in the left-hand side as

ci ûi + Ĥiiûi = −
LE

∑
l=1

Ĥilûl. (3.47)

Following the procedure described in Dominguez, 1993 (Chapter 2), the diagonal
terms of the traction-based kernels Ĥii can be computed as

Ĥii = −
LE

∑
l=1

Ĥil
s + (Ĥii − Ĥii

s ), for i ̸= l. (3.48)

Here, Ĥs is the static part of the traction-based kernels while (Ĥ − Ĥs) is the dy-
namic part of the kernels. Using the method, the jump-term can be computed
by summing all traction-based kernel static coefficients of all collocation points
except for the point "i". The above relation is valid for half-space model. For a
model of an infinite medium, the relation is as follows:

Ĥii =

(
I −

LE

∑
l=1

Ĥil
s

)
+ (Ĥii − Ĥii

s ), for i ̸= l, (3.49)

where I is a unit matrix of a suitable dimension.

(A)

Z

Y

X

X

Y

Z

Boundary Set

Active elements

Dummy elements

(B)

FIGURE 3.5: Illustrations of dummy elements in a half-space model
that allow the use of rigid-body motion method: (A) a sketch of a
half-space problem with a valley and (B) an isometric view of the

BEM mesh in ABAQUS.

The rigid-body motion method requires that a domain boundary is finite.
Thus, it cannot be applied to arbritary non-smooth nodes of an open polygon (in
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2D case) or an open surface (in 3D case) geometry. To overcome this, the dis-
cretized half-space is enhanced with dummy elements and/or helper node to
create an enclosed geometry, see Figure 3.5. The cost of the additional dummy el-
ements are rather insignificant; they are only required for the computation of the
static part of the traction fundamental solution and thus, they are only required
to be calculated once.

The boundary elements that represent the relief of the half-space are refered
to as "active elements" since they are considered for the complete computation
in all frequencies. For the outer edges of the active boundary elements, the rigid-
body motion calculation results in coefficients that depend on the shape, i.e., the
angle θ. To correctly model the half-space, these values are overridden with value
of 0.5I, where I is a unit matrix of 2 × 2 for 2D or 3 × 3 for 3D. For this, the edges
where the active and the dummy elements meet are collected in a set named
"Boundary". In ABAQUS, a set is a collection of regions or entities, e.g., nodes,
elements, or surfaces, which can be used in the assignment of material definition,
boundary condition, contact definition, etc. In this case, the node set "Boundary"
is passed on to the in-house MATLAB® code. Based on this information, the code
overrides the jump-term on any nodes that belongs to the set.

The application of the rigid-body motion method in the current coupled
BEM-FEM can be summarized in the following steps:

1. Model the half-space with the relief and add enclosing geometry, i.e., edges
or surfaces.

2. Create a geometry set that includes the dummy elements and another set
that includes the outer edges of the half-space (Boundary Set).

3. The in-house MATLAB® code recognizes the dummy elements and con-
siders the rest active elements. After computation of the BEM model, the
in-house code recognizes the Boundary Set and overrides the jump-term cl j

of the nodes that belong to it.

Thus, the problem is shifted from the mathematical domain into simply modeling
and numerical programming. Using this approach, any arbitrary non-smooth
point with arbitrary adjacent element sizes in both 2D and 3D can be computed
accurately.
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3.4 Use of symmetry to reduce the BEM computation

One of the main drawbacks of BEM is the requirement to compute all influence
coefficients between all collocation points. One can take advantage of the prop-
erties of Green’s function or fundamental solutions to reduce the computational
load. In a homogeneous boundary of a homogeneous domain, consider a unit
impulse applied in the j-direction at x = ξ(m) and another unit impulse in the
l-direction at point x = ξ(n). The following spatial reciprocity holds true (Aki
and Richards, 1980):

Û∗
l j(ξ

(n), ξ(m), ω) = Û∗
jl(ξ

(m), ξ(n), ω), l = 1, 2, j = 1, 2. (3.50)

The spatial reciprocity can be expanded as follows. If we consider that ξ(n) is the
mirror symmetry of ξ(m) along Oxl axis, l = 1, 2, then the following relations can
be obtained:

• If ξ(n) is a mirror symmetry of ξ(m) along the Ox2 axis such that ξ(n)(−ξ1, ξ2),
where ξ1 and ξ2 are the spatial components of ξ(m), then

Û∗
l j(ξ

(n)(−ξ1, ξ2), ξ(m)(ξ1, ξ2), ω) =

Ml j ◦ Û∗
l j(ξ

(m)(ξ1, ξ2), ξ(n)(−ξ1, ξ2), ω). (3.51)

• If ξ(n) is a mirror symmetry of ξ(m) along the Ox1 axis such that ξ(n)(ξ1,−ξ2),
where ξ1 and ξ2 are the spatial components of ξ(m), then

Û∗
l j(ξ

(n)(ξ1,−ξ2), ξ(m)(ξ1, ξ2), ω) =

Ml j ◦ Û∗
l j(ξ

(m)(ξ1, ξ2), ξ(n)(ξ1,−ξ2), ω). (3.52)

Here, the symbol ◦ denotes the Hadamard (entrywise) operation. The operator
Ml j is defined as

Ml j =

[
1 −1
−1 1

]
. (3.53)

The reciprocity relations can be expanded for the case of a mirror symmetry
source-couple. Consider the source-couple (ξ(m), ξ(n)) as before and its mirror

60



3.4. Use of symmetry to reduce the BEM computation

FIGURE 3.6: Source-receiver couple (ξ(m), ξ(n)) and its mirror sym-
metry couple (ξ(p), ξ(q)).

symmetry (ξ(p), ξ(q)) due to a line along Ox2 as shown in Figure 3.6. The follow-
ing reciprocity expression can be derived:

Û∗
l j(ξ

(q)(−ξ
(n)
1 , ξ

(n)
2 ), ξ(p)(−ξ

(m)
1 , ξ

(m)
2 ), ω) =

Ml j ◦ Û∗
l j(ξ

(n)(ξ
(n)
1 , ξ

(n)
2 ), ξ(m)(ξ

(m)
1 , ξ

(m)
2 ), ω). (3.54)

The equivalent for a symmetry line along Ox1 is as follows:

Û∗
l j(ξ

(q)(ξ
(n)
1 ,−ξ

(n)
2 ), ξ(p)(ξ

(m)
1 ,−ξ

(m)
2 ), ω) =

Ml j ◦ Û∗
l j(ξ

(n)(ξ
(n)
1 , ξ

(n)
2 ), ξ(m)(ξ

(m)
1 , ξ

(m)
2 ), ω). (3.55)

Since the traction fundamental solution is a product of the displacement one,
the relations can be passed on as

P̂∗
l j(ξ

(q)(−ξ
(n)
1 , ξ

(n)
2 ),ξ(p)(−ξ

(m)
1 , ξ

(m)
2 ), ω) =

Ml j ◦ P̂∗
l j(ξ

(n)(ξ
(n)
1 , ξ

(n)
2 ), ξ(m)(ξ

(m)
1 , ξ

(m)
2 ), ω); (3.56)

P̂∗
l j(ξ

(q)(ξ
(n)
1 ,−ξ

(n)
2 ),ξ(p)(ξ

(m)
1 ,−ξ

(m)
2 ), ω) =

Ml j ◦ P̂∗
l j(ξ

(n)(ξ
(n)
1 , ξ

(n)
2 ), ξ(m)(ξ

(m)
1 , ξ

(m)
2 ), ω). (3.57)
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Equations (3.54 - 3.57) are valid for 3D problems by modifying the operator Ml j

as follows:

Ml j =




1 −1 −1

−1 1 1

−1 1 1

 for mirror symmetry along Ox2 − Ox3 plane,


1 −1 1

−1 1 −1

1 −1 1

 for mirror symmetry along Ox1 − Ox3 plane.

(3.58)

For the current hybrid BEM-FEM application, the influence matrices be-
tween point p and q in (2.29) can be computed from the influence matrices be-
tween point m and n, i.e., without having to perform any numerical integration,
as

Hpq =M ◦ Hmn for (m, n, p, q = 1, 2, ..., LE), (l, j = 1, 2, 3); (3.59)

Gpq =M ◦ Gmn for (m, p = 1, 2, ..., LE), (n, q ∈ Γint), (l, j = 1, 2, 3); (3.60)

provided that points p and q are the mirror symmetry counterparts of points m
and n, respectively. This operation is valid for the global H matrix but only valid
for a part of the G matrix in which the receiver elements belong to the BE-FE in-
terface, i.e., the elements where the traction values are unknown. This operation
can be performed more effectively when applied on the global H matrix and part
of G matrix, i.e., after the assembly of the element matrices is completed.

For the calculation of the force term due to dynamic sources such as those in
Section 3.2, the symmetry operation for the traction-based kernels must be per-
formed on a per-element basis since the traction values on two adjacent elements
may be different. The expression for reciprocity between element a and its mirror
symmetry element b is

Gpq = M ◦ Gmn for (m, p = 1, 2, ..., LE),

(n ∈ element a), (q ∈ element b), (l, j = 1, 2, 3). (3.61)

To utilize this approach, the following 6 steps are inserted:

1. The BEM model is divided into three quadrants (Figure 3.7) for 3D case (2
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FIGURE 3.7: A cross-section view of a discretized Ω1 where a
double-symmetrical BEM model is divided into 3 quadrants.

quadrants in 2D case). Each quadrant is given a named set to be passed on
to the in-house code.

2. The in-house code recognizes the quadrants and proceeds to search for the
symmetry pair of every node and element in the BEM model.

3. Numerical integrations are then performed on the elements in the first quad-
rant. Due to the nature of the BEM formulation, computation of the 1st

quadrant includes the sources from the whole BEM model, i.e., the sources
from all quadrants, which results in rectangular matrices since the number
of sources is much higher than the receivers.

4. The influence matrices are then mirrored to the second quadrant.

5. Subsequently, the matrices of the 1st and the 2nd quadrants are mirrored to
the 3rd quadrant.

6. The resulting matrices of the 2nd and the 3rd quadrants are then superposi-
tioned to the matrices of the 1st quadrant to obtain the complete influence
matrices.

Although this approach is not generally applicable, there are many instances
where it can be used. The algorithm can be modified easily to include a symme-
try line or plane which is not along the main axis, i.e., at x1 ̸= 0 or x2 ̸= 0. The
mirroring method significantly reduces the BEM computation load in 3D prob-
lems since only 25% of the total elements have to be computed. Total elapsed
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computation time is reduced by circa 60% since an additional computation time
is still required for the mirroring operation.

3.5 Solution to the non-conforming BE-FE interface

In Section 2.6 and Section 3.2, the assembly procedure of the BEM stiffness matri-
ces and nodal force vector into the FEM SEs is described, where it is performed
through shared common nodes. As discussed in the same sections, this type
of procedure requires that the meshes of the BEM and FEM models conform
to each other along the BE-FE interface. Further, the node numbering and se-
quences of both meshes must be the same to send the information correctly. In
real 3D modeling jobs, this translates into a rather problematic task for the fol-
lowing drawbacks:

• The modeling tasks of the finite and semi-infinite regions may be performed
by different persons, i.e., geotechnical and structural engineers.

• The structural model or the finite region may need to be modified often to
optimize the design or to revise/update the assumptions. This will mean
that the semi-infinite model then has to be modified accordingly.

• The pre-processing software may not facilitate a thorough or deep interven-
tion from the user to its node numbering algorithm since this is optimized
to produce banded FEM matrices.

• The model geometry may simply be too complex that conforming meshes of
solid elements in the finite region and shell elements along the semi-infinite
zone cannot be materialized.

To overcome this challenge, one can take advantage of the contact interaction def-
initions in ABAQUS, in which three options are provided: general contact, con-
tact pairs, and contact element. The first two options are generally recommended,
while the latter is for special cases only (Dassault Systèmes Simulia Corp, 2014).
"Tied" contact is available under contact pairs option to join two surfaces to-
gether with no relative motion. This type of contact allows for dissimilar meshes
to be joined.

In the "tied" contact definition, one must define one of the surfaces as a mas-
ter surface and the other as a slave surface. ABAQUS enforces a kinematic con-
straint such that the slave surface does not penetrate the master surface. There-
fore, the best practice is to assign the surface with the finer mesh as the slave
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FIGURE 3.8: Interaction between a node on the slave surface and its
pairing nodes on the master surface in a contact pair in ABAQUS.

surface. At the beginning of the analysis, ABAQUS pairs each node on the slave
surface to the nearest neighbouring nodes of the master surface. An illustration
is given in Figure 3.8 where node 103 is the considered node on the slave surface,
and nodes 1 and 2 are the pairing nodes on the master surface. ABAQUS then
creates an "anchor" point along the master surface, x(a), which can be expressed
as

x(a) = (1 − α)x(1) + αx(2), (3.62)

where x(j) is the coordinate vector of node j and α is calculated such that the
line x(a) − x(103) coincides with n(x(a)). The unit normal n(x(a)) is based one a
smooth transition of the unit normal vectors of the nodes of the master surface,
e.g., n(x(a)) is based on n(x(1)) and n(x(2)); n(x(2)) is obtained by averaging the
normal of segments x(1) − x(2) and x(2) − x(3). The above spatial interpolation
relation (3.62) can be generalized as

x(a) =
LM(a)

∑
l=1

Nlx(l), l = 1, 2, ..., LM(a), (3.63)

which is similar to equation (2.43) before. The notation LM(a) denotes the number
of pairing nodes on the master surface related to point a, which depends on the
dimension of the problem. This relation is then used for displacement such that

û(a) =
LM(a)

∑
l=1

Nlû(l), l = 1, 2, ..., LM(a). (3.64)
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In this implementation of hybrid BEM-FEM, the macro finite element (or sub-
structure) of the BE subdomain is joined using tied contact to the surfaces of the
FE zone along the BE-FE interface. The substructure is defined as the master sur-
face, while the latter is defined as the slave surface. There are two solid reasons
for this: (1) the mesh on the FE zone tends to be finer compared to the one of the
BE zone; and (2) since the finer mesh is assigned as the slave surface, the com-
putation of the contact converges more quickly, and the setup results in a faster
computation. The equation relating the displacement of a slave node a on the fi-
nite region Ω1 along the interface to the displacements of the neighbouring nodes
in the substructure (Ω0) can be expressed as follows:

û(a)(Ω1) =
LM(a)

∑
l=1

Nlû(l)(Ω0), a ∈ Ω1; l ∈ Ω0; l = 1, 2, ..., LM(a), (3.65)

where the superscripts (Ω0) and (Ω1) denote the domain. Note that the above
equation is also valid for time domain formulation. The coefficients of the stiff-
ness and the damping matrices of point a and those of the pairing nodes l =

1, 2, ..., LM(a) act in parallel. Using the above relation, the total number of un-
knowns is slightly reduced. The effective nodal force acting on point a can be
obtained as

f̂(a)(Ω1) = K(a)(Ω1)
LM(a)

∑
l=1

Nlû(l)(Ω0). (3.66)

In the case that an embedded transient dynamic source or incident wave is con-
sidered, the dynamic nodal force vector r(Ω0) is distributed along the interface
into effective nodal forces such that for point a, it is expressed as

f̂(a)(Ω1) +
LM(a)

∑
l=1

r(Ω0)
e f f =

LM(a)

∑
l=1

r(Ω0). (3.67)

This implementation omits the need to conventionally assemble the BE vec-
tor and matrices to the FE SEs through the shared nodes. Instead, the substructure
is defined using a completely different nodal subset. The consequence is that the
global matrices and vector are larger than the ones of the traditional FEM-hosted
approach. Illustration of the assembly of the global stiffness matrix K, global
structural damping matrix Ks, and the global force vector f̂ is given in Figure 3.9.
However, this approach brings the following advantages: (1) discretization of
the FE and BE models, as well as the modeling of the BE-FE interface, are more
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(A) (B) (C)

FIGURE 3.9: Illustration of the assembly of (A) the global stiffness
matrix K, (B) the global structural damping matrix Ks, and (C) the

global force vector f̂ using tied contact pair.

accessible and more flexible, especially for 3D realistic models since meshes of
both subdomains do not need to conform; (2) since the substructure is using a
different nodal subset, it is transferable and reusable for other FE models; (3)
due to the transferability of the substructure, modeling and computation tasks
can be distributed into separate entities; (4) the possibility to reuse the substruc-
ture means that computation time can be significantly reduced, which is helpful
for parametric studies, designs, or optimization tasks.

3.6 Verification of the enhanced hybrid computational

scheme

What follows is the solution of benchmark examples to present the accuracy and
convergence study of the described hybrid numerical scheme and establish its
accuracy level. As far as the discretization approach is applied in both BEM and
FEM models, the relative size of the discretization elements and possible mis-
matches (i.e. small elements abutting large ones) can cause spurious wave re-
flections not otherwise present. The accuracy criterion used in the discretization
procedure states that λS/lBE ≥ 10, where lBE is the length of the corresponding
element and λS is the shear wavelength. In the case that quadratic elements are
in use, it is shown in the following examples that λS/lBE ≥ 5 is sufficient.

Test example 1: wave propagation in a homogeneous half-space

due to incident waves

The first benchmark example considers the geometry presented in Figure 3.1 as-
suming that the local finite geological region Ω1 is a square cuboid, see Figure
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FIGURE 3.10: The geometry of test example 1: (A) the FEM region,
(B) the BEM region, and (C) the whole BEM-FEM model.

3.10, with the same material properties as those of the semi-infinite region Ω0.
This means that the 1st numerical scheme verification concerns the wave prop-
agation in a homogeneous half-space due to incident normal time-harmonic P-
or SV-wave. The FEM region, the BEM zone, and the global BEM-FEM model
are shown in Figures 3.10a, 3.10b, and 3.10c, respectively. The dimension of the
surface of the BEM model is 8 × 8 m2. The FEM region is a square cuboid which
has a width of 2 m and a depth of 1 m. Thus, the BEM-FEM interface is a paral-
lelepiped of the exact sizes. In Figure 3.10, the dummy elements are red colored.
The same material properties are applied to both zones. The material properties
are as follows: Lamé constants λ = µ = 4.5 MPa and Poisson’s ratio of 0.25. The
incident P- or SV-wave considered here is a wave propagating in the vertical di-
rection, i.e., in the direction of the coordinate axis x3 in Figure 3.1. The shearing
direction in the case of SV-wave is in the direction of the coordinate axis x1, see
Figure 3.1. The following frequencies are considered: 0.05 Hz, 20 Hz, and 43.3 Hz
for the P-wave; and 0.05 Hz, 20 Hz, and 40 Hz for the SV-wave.

Two mesh sizes, Mesh A and Mesh B, are compared here to show the con-
vergence. The mesh sizes of the boundary and finite elements in both meshes are
1/4 m and 1/6 m, respectively, which correspond to 1/5 and 1/7.5 of the shortest
shear wavelength (λS = 1.25 m for 40 Hz). Ratios βP and βS relate the longest
wavelength to the length of the discretized free-surface of the half-space (ΓB in
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Figure 3.1), written for the shear wave as

βS = λS/lΓB . (3.68)

The length lΓB of the model in Figure 3.10 is 3 m which corresponds to βP =

577.35 for P-wave case at 0.05 Hz and βS = 333.33 for SV-wave case at 0.05 Hz.
The numbers of elements used for this example, in the case of λS/lBE = 5 and
βS = 333.33, are 256 quadratic hexahedral finite elements and 1024 quadratic
quadrilateral boundary elements for Mesh A and; 864 quadratic hexahedral finite
elements and 2112 quadratic quadrilateral boundary elements for Mesh B.
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FIGURE 3.11: Displacements in the FEM zone along line x1 =
0, x2 = 0 of test example 1: (A) normalized vertical displacement
due to vertical incident P-wave and (B) normalized horizontal dis-

placement due to vertical incident SV-wave.
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The normalized by incident wave amplitude displacements along the line
x1 = 0, x2 = 0 inside the FEM zone for the case of βP = 577.35, βS = 333.33
are shown in Figures 3.11a and 3.11b. Outstanding agreements between the ana-
lytical solution for free-field wave motion in homogeneous elastic isotropic half-
space presented in Achenbach, 1975, and solutions obtained by the hybrid BEM-
FEM for test example 1 are apparent. In the case of incident P-wave, the relative
errors to the analytical solution in the cases of βP = 1732.05 and βP = 577.35 for
a frequency of 0.05 Hz using Mesh A are 2.11% and 2.00%, respectively. The error
of the results obtained from Mesh B with βP = 577.35 relative to the analytical
solution is 1.36%, meaning that the relative difference between the two results of
Mesh A and Mesh B is 0.65%. In the case of incident SV-wave, the relative errors
for the lowest considered frequency of 0.05 Hz and βS = 577.35 are 0.50% and
0.41% for Mesh A and B, respectively. A numerical experiment done using Mesh
A in the case of incident plane SV-wave with βS of 1000.0, 333.33, and 250.0 show
relative errors of 3.07%, 0.50%, and 0.49%.

Test example 2: response of a rigid massless foundation rested on

a homogeneous half-space under vertical harmonic loading

The 2nd test example concerns the dynamic response of a rigid massless foun-
dation resting on a homogeneous elastic isotropic half-space due to vertical har-
monic loading applied to the foundation. In this test example, the foundation is
included in the FEM region, and the half-space is modeled in the BEM zone. The
dimension of the square foundation is 1 m. The material properties of the half-
space are taken from Chuhan, Chongmin, and Pekau, 1991, as follows: Lamé
constants λ = 180 GPa, µ = 90 GPa, and Poisson’s ratio of 1/3. To handle the
rigid foundation, the rigid-body constraint available in ABAQUS, which ties the
degree of freedoms of a solid into a reference point, is used. Thus, no elastic mate-
rial definition is required for the foundation. The vertical compliance of the foun-
dation due to vertical harmonic loading is defined as (Gazetas, 1991; Chuhan,
Chongmin, and Pekau, 1991)

Vvv =
û3µb
2P

, (3.69)

where û3 is the vertical displacement at the bottom center of the foundation, b is
the width of the foundation, and P is the amplitude of the applied time-harmonic
load. To reveal the sensitivity of the result to the size of the discretized free-
surface of the half-space, a numerical experiment is performed using βS of ∞,
1125, and 562.5, assuming the lowest frequency of 2 Hz. The case of βS = ∞
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FIGURE 3.12: Comparison of the author’s solution for vertical com-
pliances of rectangular rigid massless foundation resting on homo-
geneous half-space with results in Chuhan, Chongmin, and Pekau,

1991.

means that no free surface is discretized; only the boundary of the half-space un-
der the foundation is considered. The foundation is modeled using 32 quadratic
hexahedral finite elements, 16 of which are in contact with the half-space. The
half-space is modeled using 480, 680, and 1320 quadratic boundary elements for
the respective three βS.

Figure 3.12 shows a comparison between the authors’ results obtained by the
hybrid computational approach based on the BEM and FEM with the solutions
obtained by 3D pure BEM in Chuhan, Chongmin, and Pekau, 1991. The relative
difference between the results of the models with βS = ∞ and βS = 1125 is
4.73% while the relative difference of the latter with the results of the model with
βS = 562.5 is 3.29%.

Test example 3: wave propagation due to a double-couple source

in a homogeneous infinite space and half-space

In the third test example, the validity of the inclusion of a double-couple type
dynamic source is tested. Two cases are considered: (1) a finite soil box Ω1 lo-
cated in a homogeneous infinite space Ω0; (2) a finite soil box Ω1 located in a
homogeneous half-space Ω0 with the traction-free surface along the plane x3=0.
The material properties are as follows: CP=6000 m/s, CS=3464.11 m/s, ρ=2500
kg/m3. No material damping is considered. In both cases, the soil box is a solid
cube of 50 m in size modeled in the FE subdomain. In the case of infinite space,
the BE region is a shell cube surrounding the soil box. The center of the model is
at x(0, 0, 0). In the case of half-space, the BE subdomain includes surfaces around
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FIGURE 3.13: The seismic moment M0 versus time for test example
3.

the soil box, except for its top surface and traction-free surfaces lΓB in the vicinity
of the soil box. The soil box is placed symmetrically such that the center of its
top surface is at x(0, 0, 0). Three types of BE models with different sizes of lΓB are
considered to examine the convergence of the solution: (i) 50 m, (ii) 75 m, and (iii)
100 m.

For both cases, the double-couple source is located either (a) at X0(-1 km, 0,
-7 km) or (b) at X0(5 km, 5 km, -5 km). The fault geometry is described in the
former case by zero strike, dip, and rake angles. This results in a moment tensor
Mij with only Mxz and Mzx as non-zero components, see equation (3.19). In the
case of source (b), the strike, dip, and rake angles are ϕDC = 30◦, δDC = 65◦,
γDC = 40◦. In all cases, the seismic moment M0 is 3.15E+17 Nm and the time
function is set according to Beresnev and Atkinson, 1997, as

f (t) =
[
1 − (1 +

t
η
)e−

t
η

]
(3.70)

with parameter controlling the rate of displacement increase η of 0.57, see Figure
3.13. The double-couple dynamic load’s time series has a duration of 16 s with
a time interval of 0.0156 s. After Fourier operation, the interval of the discrete
frequencies is 0.0625 Hz, and the highest considered frequency is 3.875 Hz. The
largest element size is 1/20 of the shortest shear wavelength.

The results of hybrid simulation for the infinite space problem are compared
to the closed-form solution in equation (3.17), which is valid for a field point in an
unbounded domain. The equivalent solution for a point located on the surface of
a half-space domain can be approximated using the following formula. Writing
equation (3.16) for a point x = ξ, located on a traction-free surface, results in

cl juj(ξ, t) +
∫

Γ
P∗

l j(ξ, ξ, t) ∗ uj(ξ, t)dΓ = Mjk f (t) ∗ U∗
l j,k(ξ, X0, t), ξ ∈ Γ, X0 ∈ Ω.

(3.71)
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For a time-harmonic elastodynamic problem, the integral in the second term of
the left-hand side of equation 3.71 is obtained by computing the dynamic part of
the traction-based kernel, see equation (3.47). Assuming low frequency vibration,
this term vanishes, and the analytical solution for displacement of point ξ on
the surface of a half-space due to a double-couple source located at X0 can be
approximated as

uj(ξ, t) =
[
cl j
]−1 Mjk f (t) ∗ U∗

l j,k(ξ, X0, t). (3.72)

For a point on a smooth surface, cl j is 0.5I, where I is a unit matrix of an appro-
priate size.

Comparative plots of the displacements between the hybrid simulation with
the closed form solution for a point x(0, 0, 0) located in an infinite space due
to a dynamic load from the source location and fault geometry of type (a) and
type (b) are given in Figures 3.14 and 3.15, respectively, which show excellent
agreements. The comparisons of the results for a point located on the surface of a
half-space due to a wave propagating from the source location and fault geometry
of type (a) are given in Figure 3.16, which also show a good agreement. The
relative differences between the results obtained for the half-space model with
the geometry of type (i) and (ii) are 5.96% and 2.48% for horizontal and vertical
displacements, respectively. The relative differences between the results for type
(ii) and (iii) are 3.92% and 1.53%. To extend the numerical experiment, another
set of simulations using the following material properties is performed: CP=3000
m/s, CS=1732.05 m/s, ρ=2200 kg/m3. The relative average differences between
the results for all sets of simulations and the analytical solution are summarized
in Figure 3.17a. Modifying the ratio βS into

β∗
S = (λS)

0.15/lΓB (3.73)

results in a more consistent error prediction, see Figure 3.17b.

In sum, the verification study is based on comparing the author’s solutions
obtained by the proposed hybrid FEM-BEM with results obtained by other au-
thors and with the analytical result for free-field wave motion in homogeneous
elastic isotropic half-space or infinite space under dynamic loads. It can be sum-
marized that βS ≤ 500 or β∗

S ≤ 0.075 in combination with λS/lBE ≥ 5 seems to
be sufficient to obtain good accuracy. The comparison shows that the proposed
hybrid computational technique works accurately and can be used for SSI simu-
lations.
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FIGURE 3.14: Comparison of author’s solution for displacement
components uj for point x(0, 0, 0) in an infinite space due to source
location and fault geometry of type (a) with the analytical solution:

(A) u1 and (B) u3.
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FIGURE 3.15: Comparison of author’s solution for displacement
components uj for point x(0, 0, 0) in an infinite space due to source
location and fault geometry of type (b) with the analytical solution:

(A) u1, (B) u2, (C) u3.

3.7 Chapter summary

In this chapter, several numerical improvements and implementations are de-
tailed. The inclusion of different types of dynamic sources makes the hybrid
numerical method a versatile engineering tool. To the best of the author’s knowl-
edge, the application of the double-couple source formulation on the hybrid BEM-
FEM has not been realized before. The use of enclosing (dummy) elements for
the jump-terms computation and the use of symmetry have been implemented
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FIGURE 3.16: Comparison of author’s solution for displacement
components uj for point x(0, 0, 0) on the surface of a half-space due
to source location and fault geometry of type (a) with the analytical
solution: (A) u1 and (B) u3. Traction-free surface of the BE model lΓB

is 75 m.
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FIGURE 3.17: βS (A) and β∗
S (B) versus relative average differences

(with respect to the analytical solution) for test example 3.

by other researchers. However, it is not yet implemented in the context of hybrid
BEM-FEM where the whole domain is modeled using one pre-processor. The
simple method to handle non-conforming BE-FE interface unlocks several prac-
tical advantages and computational efficiency. The hybrid method’s accuracy
and its solution’s convergence are proven through several examples of dynamic
problems. This chapter and the basic formulations in Chapter 2 become the foun-
dations for the methods described in the following two chapters, which enable
the computation of arbitrary layering and the inclusion of nonlinearities.

Synthetic examples presented in Chapter 6 and Chapter 7 show practical
engineering applications of the hybrid method described up to this chapter to
solve dynamic SSI problems.
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Chapter 4

Layer-wise condensation (LWC)
method for the computation of
arbitrary layered half-space

4.1 Chapter overview

This chapter delivers details regarding the layer-wise condensation (LWC) method.
The chapter begins with the mathematical description of the boundary value
problem (Sections 4.2 and 4.3), followed by the derivation of the LWC algorithm
for a three-layered semi-infinite media Ω0 with arbitrary layering interface in Sec-
tion 4.4. The generalized scheme of the method for a semi-infinite media with an
arbitrary number of layers and geometry is given in Section 4.5. Integration of the
method into the hybrid BEM-FEM scheme is presented in Section 4.6 followed
by verification study in Section 4.7. The content of this chapter is published in
H.D.B. Aji, F. Wuttke, P. Dineva (2022). "3D structure-soil-structure interaction in
an arbitrary layered half-space". In: Soil Dynamics and Earthquake Engineering 159,
107352. DOI: 10.1016/j.soildyn.2022.107352.

4.2 Problem statement and definition of the bound-

ary value problem (BVP)

The LWC method combines the multi-domain boundary element method
(MDBEM) with the condensation/substructuring procedure commonly used in
the FEM or hybrid BEM-FEM. The MDBEM is a well-known approach to model
multilayered media and large-scale problems, see Dominguez, 1993; Manolis et
al., 2017. The basic idea of the multi-domain approach is to write the integral
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equations for each subdomain individually and then couple the subdomains un-
der interface boundary conditions. In the MDBEM, the computational domain
is divided into a number of subdomains with corresponding BIE formulation;
the BEM algebraic equations are established for each subdomain; and the global
system of equations is formed by assembling results of all subdomains in terms
of the equilibrium and consistency conditions over common interface nodes. The
problematic points in the models of layered half-space are as follows: (a) at a large
number of layers, a system with a high number of degrees of freedom is obtained,
leading to much higher computational effort; (b) the assembling difficulties of the
system of equations directly affects the computational efficiency; (c) the coeffi-
cient matrix of the global system of equations based on the MDBEM is sparse,
and therefore the well-developed solvers for sparse systems can be employed
to solve it; (d) results show that the number of subdomains and the refinement
level of the mesh is the two dominant factors affecting the solution accuracy; (e)
to the best of the author’s knowledge, the MDBEM matrices are not compatible
with the condensation procedure of the BE subdomain in the direct, FEM-hosted
hybrid BE-FE method or the original macro-element concept. The current work
avoids all these problematic points by applying the computational condensation
technique.

In a coordinate system Ox1x2x3, consider a finite geological region Ω1 which
is located in the first layer of a semi-infinite elastic isotropic layered media Ω0

with an embedded transient dynamic source at point X0(X01, X02, X03), see Fig-
ure 4.1.

The near-field soil region Ω1 is assumed to be linear elastic isotropic charac-
terized by the small-strain soil stiffness. The linear elastic model for soils is rea-
sonably valid in the case the strain is small, e.g., in the interval 10-6–10-4, and this
occurs at weak seismic events at considerable distances from the seismic source.
Vucetic (Vucetic, 1994) showed that a linear soil model is restricted to small shear
strain amplitudes, up to 10-5, which suggests that the linear elastic approximation
can provide reasonable estimates of the soil response only for small to moderate
ground motions. Linear elastic models should result in accurate response pre-
dictions for low-intensity shaking. However, they are inadequate for extreme
shaking which may results in highly nonlinear soil, structure, or foundation re-
sponse.

The main focus of this chapter is to enhance the hybrid BEM-FEM approach
based on the macro-element concept with the layer-wise condensation method,
thus, allowing modeling of the 3D wave motion in a half-space with inclined
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FIGURE 4.1: Problem geometry presenting the general configuration
of a finite region Ω1 embedded in the first layer Ω01 of an arbitrary

layered half-space Ω0 with a dynamic source at point X0.

elastic isotropic layers of arbitrary number and geometry. The complexity of the
proposed model analysis taking into account the nonlinear soil behaviour in the
near-field region close to the foundation, is detailed in Section 5.

The interface boundary between both regions Ω1 and Ω0 is designated with
notation Γint as before. Note that Γint for each region has the opposite normal
vectors. The external boundary of the finite region Ω1 is ΓΩ1 = Γint ∪ ΓF.

The external semi-infinite zone Ω0 is layered with N + 1 homogeneous elas-
tic isotropic layers Ω0k, k = 1, 2, ..., N + 1, with infinitely extended boundaries.
These layers are with arbitrary geometry of their boundaries Γi, i = 1, 2, ..., N + 1,
where the boundary ΓN+1 is the boundary between the Nth layer and the semi-
infinite in depth (N + 1)th layer containing the dynamic source X0. The free-
surface boundary Γ1 is the top boundary of the first layer where the finite region
Ω1 is located. Note that the notation Γ1 refers to the free surface of the first layer,
but outside of the surface ΓF, which is the free surface of the region Ω1. The
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boundary of the semi-infinite region Ω0 is defined as the boundary of all N + 1
layers, i.e. ΓΩ0 = ΣN+1

k=1 ΓΩ0k . The boundary of the first Ω01 layer is denoted as
ΓΩ01 = Γ1 ∪ Γint ∪ Γ2, the boundary of the Nth layer is ΓΩ0N = ΓN ∪ ΓN+1 and
the boundary of the N + 1 layer ΓΩ0N+1 = ΓN+1. Note that the layers [1, N] are
infinite along Ox1 and Ox2 axes and are finite only in Ox3 direction.

The material properties of the geological semi-infinite zone Ω0 are density
ρ0i, Lamé constants λ0k, µ0k, longitudinal wave velocity CP0k and shear wave ve-
locity CS0k , where k = 1, 2, ..., N + 1. The material properties of the finite range Ω1

are λ1, µ1, CP1 , and CS1 .

The initial boundary-value problem for the wave propagation in the geo-
logical region under consideration consists of governing equations in 3D elas-
todynamics, initial conditions, and boundary conditions discussed below. The
equations of motion for the domains are given by

σ
(Ω1)
ij,j (x, t) = ρ(Ω1)

∂2u(Ω1)
i (x, t)

∂t2 , x(x1, x2, x3) ∈ Ω1; (4.1)

σ
(Ω0k)
ij,j (x, t) = ρ(Ω0k)

∂2u(Ω0k)
i (x, t)

∂t2 ,

x(x1, x2, x3) ∈ Ω0k, k = 1, 2, ..., N; (4.2)

σ
(Ω0k)
ij,j (x, t) + f (Ω0)

i (X0, t) = ρ(Ω0k)
∂2u(Ω0k)

i (x, t)
∂t2 ,

x(x1, x2, x3) ∈ Ω0k, k = N + 1. (4.3)

Here, ∂2u(Ω1)
i /∂t2, σ

(Ω1)
ij (i = 1, 2, 3; j = 1, 2, 3) are accelerations and stresses be-

longing to the finite region Ω1; Ω0k is the kth layer of semi-infinite layered region
Ω0; x(x1, x2, x3) is the vector position; X0(X01, X02, X03) ∈ Ω0N+1 is the coordi-
nate vector of the dynamic source location point; ∂2u(Ω0k)

i /∂t2, k = 1, 2, ..., N +

1, i = 1, 2, 3, are the acceleration components in the kth layer; and σ
(Ω0k)
ij are the

stress tensor components in the kth layer. The dynamic force is presented as
f (Ω0)
i (X0, t) = f (Ω0)

i f (t)δ(x − X0), where f (Ω0)
i ( f (Ω0)

1 , f (Ω0)
2 , f (Ω0)

3 ) is the ampli-
tude and f (t) is the time history function. The vector fi has a unit of force per
unit volume, see Manolis and Beskos, 1988 and Dominguez, 1993.

The initial conditions for displacements and their first derivatives with re-
spect to time are zero. After application of the direct FFT with respect to the time
variable in equations (4.1)-(4.3), the frequency ω dependent equations of motion
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have the following form:

σ
(Ω1)
ij,j (x, ω) + ρ(Ω1)ω2û(Ω1)

i (x, ω) = 0, x(x1, x2, x3) ∈ Ω1; (4.4)

σ
(Ω0k)
ij,j (x, ω) + ρ(Ω0k)ω2û(Ω0k)

i (x, ω) = 0,

x(x1, x2, x3) ∈ Ω0k, k = 1, 2, ..., N; (4.5)

σ
(Ω0k)
ij,j (x, ω) + ρ(Ω0k)ω2û(Ω0k)

i (x, ω) = − f (Ω0k)
i f̂ (ω)δ(x − X0),

x(x1, x2, x3) ∈ Ω0k, k = N + 1, (4.6)

where the term f (Ω0)
i (X0, t) = f (Ω0)

i f (t)δ(x − X0) becomes f (Ω0)
i f̂ (ω)δ(x − X0) in

the frequency domain.

Boundary conditions for the layered semi-infinite region Ω0 are as follows:

• Along the free-surface Γ1 ∈ Ω01, the tractions t̂(Ω01)
i = σ

(Ω01)
ij n(Ω01)

j are zero,

where n(Ω01)
j , j = 1, 2, 3, are the components of the outward normal to the

surface Γ1.

• Along the interface boundary Γint between the region Ω1 and the soil layer
Ω01, the compatibility and equilibrium conditions of the displacements and
tractions, respectively, are satisfied, i.e., û(Ω01)

i = û(Ω1)
i and t̂(Ω01)

i = −t̂(Ω1)
i .

• Along the interface boundary between layers Γi, i = 2, 3, ..., N + 1, the com-
patibility and equilibrium conditions of the displacements and tractions,
respectively, are satisfied.

• The Sommerfeld’s radiation condition is satisfied at infinity.

The boundary conditions for the finite region Ω1 are the same as described in
Section 3.2 and are not repeated here for brevity. The solution of the mechanical
problem in the frequency domain defined here satisfies the governing equations
(4.4)-(4.6) and the boundary conditions discussed above.

4.3 Macro-finite element formulation via BEM mod-

eling of wave propagation in a semi-infinite lay-

ered region

Following the procedures described in Section 2.4 and Section 3.2 (Dominguez,
1993; Manolis et al., 2017), the wave field in the far-field semi-infinite layered zone
Ω0 is described by a system of N boundary integral equations (BIEs) (4.7) along
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the boundary ΓΩ0k , k = 1, 2, ..., N and boundary integral equation (4.8) along the
boundary ΓΩ0N+1 . Note that ΓΩ01 = Γ1 ∪ Γint ∪ Γ2, ΓΩ02 = Γ2 ∪ Γ3,..., ΓΩ0N =

ΓN ∪ ΓN+1, and ΓΩ0N+1 = ΓN+1.

cl jû
(Ω0k)
j (x, ω) =

∫
ΓΩ0k

Û∗(Ω0k)
l j (x, ξ, ω) t̂(Ω0k)

j (ξ, ω)dΓ−∫
ΓΩ0k

P̂∗(Ω0k)
l j (x, ξ, ω) û(Ω0k)

j (ξ, ω)dΓ, for x ∈ ΓΩ0k , k = 1, 2, ..., N; (4.7)

cl jû
(Ω0N+1)
j (x, ω) =

∫
ΓN+1

Û∗(Ω0N+1)
l j (x, ξ, ω) t̂(Ω0N+1)

j (ξ, ω)dΓ−∫
ΓN+1

P̂∗(Ω0N+1)
l j (x, ξ, ω) û(Ω0N+1)

j (ξ, ω)dΓ+

f (Ω0N+1)
j f̂ (ω)Û∗(Ω0N+1)

l j (x, X0, ω), for x ∈ ΓN+1, l, j = 1, 2, 3. (4.8)

Note that upper indices of the fundamental solution and of its corresponding
traction in BIEs (4.7) and (4.8) indicate the number of the corresponding soil layer
Ω0k.

BIEs (4.7) and (4.8) are transformed into the matrix equation (4.9) after appli-
cation of the well-known discretization and collocation procedures, see Dominguez,
1993:

H(Ω0k)û(Ω0k) − G(Ω0k) t̂(Ω0k) = Φ(Ω0k), (4.9)

where

Φ(Ω0k) =

0 for k = 1, 2, ..., N,

f (Ω0k)
j f̂ (ω)U∗(Ω0k)

l j (x, X0, ω) for x ∈ Ω0N+1, k = N + 1.
(4.10)

The matrices H(Ω0) and G(Ω0) are the influence matrices with the size of 3Lx3L,
where L is the number of nodes along all existing boundaries in Ω0; û(Ω0), t̂(Ω0)

are the displacement and traction vectors at nodes along these boundaries. Equa-
tion (4.9) is the same as equation (3.20).

The system of boundary integral equations (4.7) and (4.8) and their matrix
form (4.9) is in respect to the unknown total wave displacements and tractions
along the existing boundaries. What follows is to define correctly the macro-
finite element describing wave field along the interface boundary Γint between
the finite local region Ω1 and the semi-infinite layered half-space outside it. This
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subjected to transient dynamic load concentrated at point X0

will be done by the following three steps: (a) description of the layer-wise con-
densation approach which is illustrated in Section 4.4 by considering a simple
example of three-layered half-space subjected to transient dynamic load concen-
trated at point X0; (b) a generalization of the layer-wise condensation approach
for the case of N layers rested on the seismic bed, described as the (N + 1) layer,
which is presented in Section 4.5; (c) derivation of the correlation between the
nodal traction along the interface boundary Γint coming from the BEM model
of the semi-infinite zone and the nodal forces along Γint necessary for the FEM
model of the finite local region Ω1 which is described in Section 4.6.

4.4 Layer-wise condensation approach applied for a

three-layered half-space subjected to transient dy-

namic load concentrated at point X0

FIGURE 4.2: A layered half-space Ω0 = Σ3
k=1Ω0k containing a finite

region Ω1 and an embedded dynamic source in semi-infinite layer
Ω03 at point X0.

The arbitrary layered semi-infinite media will be modeled further by apply-
ing the layer-wise condensation approach. In order to illustrate it in a relatively
simple way, we will consider a semi-infinite domain Ω0 = Σ3

k=1Ω0k with three
layers, see Figure 4.2. The first layer Ω01 has top boundary Γl1 = Γ1 ∪ Γint and
bottom boundary Γm1 ; the second layer Ω02 has top boundary Γm2 and bottom
boundary Γn2 ; and the third layer Ω03, which is semi-infinite in depth, has only
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the top boundary Γn3 . In other words, the boundaries Γ1 ∪ Γint; Γ2; Γ3 in Fig-
ure 4.1 are now denoted as Γl1 ; Γm1 and Γm2 ; Γn2 and Γn3 , respectively, in Figure
4.2. The matrix equation (4.9) reads now as equation (4.11) having in mind the
inserted above notations:

Hl1l1 Hl1m1 0
Hm1l1 Hm1m1 0

0 Hm2m2 Hm2n2

0 Hn2m2 Hn2n2

0 0 Hn3n3


 ûl

ûm

ûn

−


Gl1l1 Gl1m1 0
Gm1l1 Gm1m1 0

0 −Gm2m2 Gm2n2

0 −Gn2m2 Gn2n2

0 0 −Gn3n3


 t̂l

t̂m

t̂n

 =


0
0
0
0

Fn3

 , (4.11)

where Fn3 = f (Ω03)
j f̂ (ω)U∗(Ω03)(x, X0, ω).

The influence matrices Hij and Gij written in the notations used in equa-
tion (4.11) can be read in the following manner: first two lower indices show the
boundary where the source nodes are, while the next two lower indices show
the boundary of the field points. For example, Hl1m1 and Gl1m1 are the influence
matrices when the source points are along the boundary Γl1 = Γ1 ∪ Γint and the
field points are along the boundary Γm1 . Vectors ûl, t̂l; ûm, t̂m; ûn, t̂n stand for
displacements and tractions on the boundaries Γl = Γl1 , Γm = Γm1 ∪ Γm2 and
Γn = Γn1 ∪ Γn2 , respectively. The compatibility and equilibrium of displacement
and traction, respectively, along the layer interfaces, hold ûm = ûm1 = ûm2 and
t̂m = t̂m1 = −t̂m2 . In equation (4.11), the traction vectors are written for the sign of
the upper layer, and this results in the negative sign for Gm2m2 , Gn2m2 and Gn3n3 .
Note that the vector t̂l contains unknown tractions along the interface boundary
Γint, and it has zero traction values along the traction-free boundary Γ1. For this
reason, the components of the matrices Gl1l1 and Gm1l1 which correspond to Γ1

can be neglected and thus, the Gl1l1 matrix can be made into a square, i.e., an in-
vertible matrix, with only the components corresponding to non-zeroth traction
components along the interface boundary Γint.

The 5th row of equation (4.11) can be written as

ûn = [Hn3n3 ]
−1 [−Gn3n3 t̂n + Fn3

]
. (4.12a)
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After insertion of relation (4.12a) into the 4th row of equation (4.11), we obtain

Hn2m2ûm + Hn2n2 [Hn3n3 ]
−1 [−Gn3n3 t̂n + Fn3

]
+ Gn2m2 t̂m − Gn2n2 t̂n = 0. (4.12b)

Written for t̂n, the above equation reads as equation (4.12c)

t̂n = [AG2 ]
−1
[
Hn2m2ûm + Gn2m2 t̂m + Hn2n2 [Hn3n3 ]

−1 Fn3

]
. (4.12c)

Here, AG2 is defined as

AG2 = Hn2n2 [Hn3n3 ]
−1 Gn3n3 + Gn2n2 . (4.12d)

After inserting equation (4.12a) into the 3rd row of equation (4.11) we obtain

Hm2m2ûm +Hm2n2 [Hn3n3 ]
−1 [−Gn3n3 t̂n + Fn3

]
+Gm2m2 t̂m −Gm2n2 t̂n = 0. (4.12e)

Now collecting the terms related to t̂n to the left-hand side yields

[
Hm2n2 [Hn3n3 ]

−1 Gn3n3 + Gm2n2

]
t̂n =

Hm2m2ûm + Gm2m2 t̂m + Hm2n2 [Hn3n3 ]
−1 Fn3 . (4.12f)

Let us define the following relation

AG1 = Hm2n2 [Hn3n3 ]
−1 Gn3n3 + Gm2n2 . (4.12g)

After insertion of equation (4.12c) into equation (4.12f), the following equation is
derived

[
Hm2m2 − AG1 [AG2 ]

−1 Hn2m2

]
ûm+[

Gm2m2 − AG1 [AG2 ]
−1 Gn2m2

]
t̂m = Fm2 , (4.12h)

where
Fm2 =

[
AG1 [AG2 ]

−1 Hn2n2 − Hm2n2

]
[Hn3n3 ]

−1 Fn3 . (4.12i)

Equation (4.12h) replaces the 3rd, 4th, and 5th rows of matrix equation (4.11)
and condenses layer 3 into layer 2 and as a final result, the unknowns ûn and t̂n

are omitted. The procedure can be perpetuated to further condense the influence
matrices of layer 2 into layer 1 by writing equation (4.12h) for ûm in the following
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compact form
ûm = [BH]

−1 [−BGt̂m + Fm2

]
, (4.12j)

where

BH = Hm2m2 − AG1 [AG2 ]
−1 Hn2m2 ; (4.12k)

BG = Gm2m2 − AG1 [AG2 ]
−1 Gn2m2 . (4.12l)

In the next step, equation (4.12j) is inserted into the 2nd row of equation (4.11)
as follows:

Hm1l1ûl + Hm1m1 [BH]
−1 [−BGt̂m + Fm2

]
− Gm1l1 t̂l − Gm1m1 t̂m = 0. (4.12m)

From this equation, the following expression for t̂m is obtained:

t̂m = [CG2 ]
−1
[
Hm1l1ûl − Gm1l1 t̂l + Hm1m1 [BH]

−1 Fm2

]
. (4.12n)

Here, CG2 is defined as

CG2 = Hm1m1 [BH ]−1 BG + Gm1m1 . (4.12o)

Note that equation (4.12n) and equation (4.12o) are similar to equation (4.12c)
and equation (4.12d), respectively, except for the different sign in front of the G
matrix on the right-hand side of the former pair. Inserting equation (4.12j) into
the 1st row of equation (4.11), one obtains

Hl1l1ûl + Hl1m1 [BH]
−1 [−BGt̂m + Fm2

]
− Gl1l1 t̂l − Gl1m1 t̂m = 0. (4.12p)

Collecting the terms related to t̂m into the left-hand side yields

[
Hl1m1 [BH ]−1 BG + Gl1m1

]
t̂m = Hl1l1ûl − Gl1l1 t̂l + Hl1m1 [BH]

−1 Fm2 . (4.12q)

Let us define the relation

CG1 = Hl1m1 [BH ]−1 BG + Gl1m1 (4.12r)
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and insert equation (4.12n) into equation (4.12q). As a result, it is obtained the
following matrix equation:

[
Hl1l1 − CG1 [CG2 ]

−1 Hm1l1

]
ûl −

[
Gl1l1 − CG1 [CG2 ]

−1 Gm1l1

]
t̂l =[

CG1 [CG2 ]
−1 Hm1m1 − Hl1m1

]
[BH]

−1 Fm2 . (4.12s)

The above equation can be rewritten in a more compact form as

H∗ûl − G∗ t̂l = Φl, (4.12t)

where

H∗ =
[
Hl1l1 − CG1 [CG2 ]

−1 Hm1l1

]
, (4.12u)

G∗ =
[
Gl1l1 − CG1 [CG2 ]

−1 Gm1l1

]
, and (4.12v)

Φl =
[
CG1 [CG2 ]

−1 Hm1m1 − Hl1m1

]
[BH]

−1 Fm2 . (4.12w)

As a final result, we can conclude that equation (4.11) is condensed into a
single row of matrix equation (4.12t) with the following terms: (a) The matrices
H∗ and G∗ are the modified influence matrices of the surface boundary which
include the influence of all the rest layers; (b) The dynamic load coming from
the embedded source at point X0 in layer Ω03 is presented by the load vector Φl.
Equation (4.12t) is similar to equation (4.12h) except for the sign in front of the
modified G matrix. Note that signs of the modified G matrix in both equations are
intentionally chosen to follow the signs of the unmodified G matrices in equation
(4.11). In equation (4.12t), only unknowns of displacement ûl and traction t̂l along
the boundary Γl are left, which makes this equation suitable for the subsequent
hybrid condensation.

4.5 Layer-wise condensation approach applied for a

(N + 1)-layered half-space subjected to transient

dynamic load concentrated at point X0

The repetitive form of the layer-wise condensation procedure presented in the
previous section renders the method suitable for numerical implementation. Con-
sider a problem with geometry in Figure 4.1 with N + 1 number of layers where
each is designated as layer k, k = 1, 2, ..., N + 1. In the bottommost layer, the
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boundary, which is an interface to the layer above it, is marked as Γnk , k = N + 1.
In the topmost layer and other subsequent layers except for the bottommost layer,
the upper boundary is marked as Γmk , k = 1, 2, ..., N, while the lower boundary
is marked as Γnk , k = 1, 2, ..., N. The condensation procedure can be organized in
the following manner:

1) Start with the lowest layer, i.e. k = N + 1. Compute the influence matrices,
Hnknk and Gnknk , and the force vector of the applied dynamic load Fnk .

2) Continue with the next layer above until the topmost layer, i.e., k = N, N −
1, ..., 1. For each of these layers, execute the following computational steps:

a) Adjust the components of influence matrices and the load vector from
the previous layer, Hn(k+1)n(k+1) , Gn(k+1)n(k+1) and Fn(k+1) , to the degree of
freedom designations of the current layer. This step is necessary when
the node numberings on Γn(k+1) and Γnk are different.

b) Compute the influence matrices for the current layer. No sign change
on the assembly of the G matrix is required. In the case of the topmost
layer, discard the contribution of the free-surface elements to the G
matrix.

c) Compute AG1 and AG2by the following relations:

AG1 = Hmknk

[
Hn(k+1)n(k+1)

]−1
Gn(k+1)n(k+1) + Gmknk ; (4.13)

AG2 = Hnknk

[
Hn(k+1)n(k+1)

]−1
Gn(k+1)n(k+1) + Gnknk . (4.14)

d) Compute the new influence matrices, Hnknk and Gnknk , and the new
load vector, Fnk , by the following relations:

Hnknk =
[
Hmkmk − AG1 [AG2 ]

−1 Hnkmk

]
; (4.15)

Gnknk =
[
Gmkmk − AG1 [AG2 ]

−1 Gnkmk

]
; (4.16)

Fnk =
[
AG1 [AG2 ]

−1 Hnknk − Hmknk

] [
Hn(k+1)n(k+1)

]−1
Fn(k+1) . (4.17)

e) Proceed with the next layer above the current one.

3) Following the described condensation procedure, the influence matrices,
H∗ and G∗, and the load vector, Φl, are obtained for the top most layer,
k = 1, i.e., Φl = Fn1 . These matrices describe wave scattering, reflection,
and transmission through the whole arbitrary layered soil region Ω0.
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4.6 Integration of the layer-wise condensation approach

with the hybrid BEM-FEM

The next stage of work concerns the derivation of a correlation between the nodal
tractions along the interface boundary Γint coming from the BEM model of the
semi-infinite layered zone Ω0 and the nodal forces along Γint necessary for the
FEM model of the region Ω1.

To proceed with the BEM sub-domain condensation, equation H∗ûl −G∗ t̂l =

Φl is decoupled into matrices corresponding to the interface boundary Γint de-
noted by the index "1" and free-surface Γ1 denoted by index "2" as described in
equation (3.22) of Section 3.2. After this decoupling, the following matrix equa-
tion is obtained:[

H∗(Ω0)
11 H∗(Ω0)

12

H∗(Ω0)
21 H∗(Ω0)

22

] [
û(Ω0)

l1

û(Ω0)
l2

]
−
[

G∗(Ω0)
11 G∗(Ω0)

12

G∗(Ω0)
21 G∗(Ω0)

22

] [
t̂(Ω0)
l1

t̂(Ω0)
l2

]
=

[
Φ(Ω0)

l1

Φ(Ω0)
l2

]
, (4.18)

where û(Ω0)
l and t̂(Ω0)

l are the nodal displacement and traction vectors along the
boundary Γl = Γ1 ∪ Γint and Φ(Ω0)

l is the applied dynamic load along the same
boundary due to existence of an embedded source in the most bottom layer.

Following the procedure discussed in Section 3.2 (Vasilev et al., 2015), the
following relation can be derived from equation (4.18):

t̂(Ω0)
l1 = E û(Ω0)

l1 − p, (4.19)

where

E =
[
G∗(Ω0)

11 − H∗(Ω0)
12 At

]−1 [
H∗(Ω0)

11 − H∗(Ω0)
12 Au

]
; (4.20a)

p =
[
G∗(Ω0)

11 − H∗(Ω0)
12 At

]−1 [
Φ(Ω0)

l1 − H∗(Ω0)
12 Θ

]
; (4.20b)

At =
[
H∗(Ω0)

22

]−1
G∗(Ω0)

21 ; (4.20c)

Au =
[
H∗(Ω0)

22

]−1
H∗(Ω0)

21 ; (4.20d)

Θ =
[
H∗(Ω0)

22

]−1
Φ(Ω0)

l2 ; (4.20e)

which are equivalent to equations (3.23) and (3.24). Thus, the remaining proce-
dures described in Section 3.2 are valid from this point:

1) the conversion of the influence matrix E and the dynamic load vector p
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into stiffness and structural damping matrices K(Ω0) and nodal force vector
r(Ω0), respectively, follows the relations in (3.25) and (3.26);

2) the assembly of the stiffness and structural damping matrices of the BEM
region, ℜ(K(Ω0)) and ℑ(K(Ω0)), with the stiffness and structural damping
matrices of the FEM region, K(Ω1) and K(Ω1)

s into the global stiffness and
structural damping, K and Ks, matrices follows the description in Section
2.6 using tied contact pair described in Section 3.5, see Figure 3.9;

3) the assembly of the nodal force vector of the BEM region r(Ω0) with the
nodal load vector of the FE zone f̂(Ω1) into the global nodal load vector f̂
follows the description in Section 3.2 using tied contact pair described in
Section 3.5, see Figure 3.9.

4) the generation of substructures, solution of the global SEs using direct solu-
tion steady-state dynamic procedure, collection of outputs, and conversion
of the results into time-domain solutions follow the description in Section
2.6, see also Figure 3.2.

The insertion of the LWC method into the hybrid numerical scheme (Fig-
ure 3.2) is summarized in the workflow in Figure 4.3. Since equation (4.9) is es-
sentially the same as equation (3.20), the LWC method can also be applied for
double-couple source cases. In the case of incident wave, it is only valid for cases
where all layers’ geometries reach the traction-free surface.
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Define the geometry of the
FE and BE subdomains, the
interface between them Γint,
and the material properties
of the finite zone Ω1. Mesh
the subdomains and create

2 input files. See Figure 3.2.

Choice of
dynamic

excitation type.
See Figure 3.2

for details.

Material
properties of
the layered

half-space (BE
subdomains)

Ω0k, k =

1, 2, ..., N + 1.

For each frequency ω, compute
the influence matrices Hnknk and
Gnknk , and the force vector Fnk of
the bottommost layer k = N + 1.

Continue with the next layer k = N
until the topmost layer k = 1. Apply
the LWC method to update the ma-

trices Hnknk and Gnknk , and vector Fnk .

Condense and convert the BEM
influence matrices and dynamic
load vector into stiffness matrix

K(Ω0) and nodal force vector r(Ω0).

Create a macro-element of
the BE subdomain Ω0 using

substructure procedure.
For each frequency ω,

create an input file of the
global model Ω1 ∪ Ω0

containing the FE model
and the correspond-
ing BE substructure.

For each frequency ω,
solve the global model
Ω1 ∪ Ω0 using steady-
state dynamic solver.

Collect ouputs
and perform
inverse FFT.

FEM input file

BEM input file

FIGURE 4.3: A schematic flowchart of the hybrid FEM-BEM based
on the macro-element concept with the LWC method. The grey color
marks processes performed in the ABAQUS environment, while the

white marks those performed in MATLAB.
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4.7 Verification study

The accuracy and convergence of the hybrid model described above and the
numerical scheme accompanying it are studied by the use of appropriate cho-
sen benchmark examples. The accuracy criterion established in Section 3.6 that
λS/lBE ≥ 5 is used, where lBE is the length of the corresponding element and λS

is the shear wavelength.

Test example 1: dynamic response of a rigid massless foundation

rested on a layered half-space under vertical harmonic loading

The objective of test example 1 is the dynamic response of a rigid massless foun-
dation resting on a half-space with two layers with equal material properties.
The assumption for layers with equal material properties reduces the problem
into the case of a rigid massless foundation on a homogeneous half-space. The
rigid foundation is under vertical harmonic load acting on its center. The FE sub-
domain consists only of the foundation, while the BE subdomain is presented by
a free-surface layer Ω01 and a semi-infinite region Ω02. Two types of geometry
of the interface Γ2 between the two layers of the BE subdomain are considered
to show the interface geometry’s influence on the solution’s accuracy. In the 1st

type of geometry, the layer Ω01 has a fixed depth hΩ01 = 1 m and is modeled
with infinite, horizontal, and parallel top and bottom boundaries, see Figure 4.4a.
Figure 4.4b shows the complete FEM-BEM model with this type of geometry. In
the 2nd type of geometry, the bottom boundary of the layer Ω01 is modeled with
an irregular shape extruded along x1 axis (Figure 4.4c). The layer-wise conden-
sation method is utilized in this test example to process the layered BEM domain
without including the force term since the excitation originated from within the
finite region.

The material properties of the homogeneous half-space are taken from the
study by Chuhan, Chongmin, and Pekau, 1991, as follows: Lamé constants λ0 =

180 GPa, µ0 = 90 GPa and Poisson’s ratio of 1/3. The dimension of the square
foundation is 1 m × 1 m, while the BEM model’s discretized free surface is 6 m by
6 m. The discretized free surface’s influence on the particular problem’s result is
explored in Section 3.6. To expose the solution’s sensitivity to the size of the inter-
face between both layers, it is modeled with the three dimensions: 6 m × 6 m, 7
m × 7 m, and 8 m × 8 m. A ratio between the offset distance of the interface from
the free-surface boundary relative to the depth of the interface hΩ01 is defined as
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FIGURE 4.4: Test example 1: (A) a cut view of the BEM region and
(B) a perspective view of the complete FEM-BEM model with the
geometry of type 1; (C) a cut view of the BEM region with the geom-

etry of type 2.
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FIGURE 4.5: Vertical compliances of a rectangular rigid massless
foundation resting on a half-space with two layers having equal ma-
terial properties versus normalized frequency. Comparison of the
author’s results with those in Chuhan, Chongmin, and Pekau, 1991

for a homogeneous half-space.

follows: ro f f = (bΓ2 − bΓ1)/hΩ01 , where bΓ1 and bΓ2 are the half-width of the dis-
cretized free-surface boundary (either along x1 or x2 direction) and the interface
boundary, respectively. The aforementioned three dimensions correspond to the
following three cases of the parameter ro f f : 0.0, 1.0, and 2.0. Figures 4.4a and
4.4b present the geometry of the 2nd case, i.e., ro f f = 1.0. The rigid foundation is
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modeled using the rigid body constraint available in ABAQUS. The foundation’s
mesh consists of 64 quadratic hexahedral finite elements, 16 of which are in con-
tact with the half-space. The same element size of 0.25 m is used for the FEM and
BEM regions which correspond to λS/lBE = 4 at the highest frequency of 5 kHz.
For the 2nd case of the parameter ro f f , the layer Ω01 is modeled using 1440 bound-
ary elements, of which 288 elements are dummies, while the semi-infinite layer
Ω02 is discretized by 672 boundary elements including 96 dummy elements. In
Figure 4.4, the foundation is green, and the dummy elements are red-colored. The
vertical compliance of the foundation due to vertical harmonic loading is defined
as in (3.68). Figure 4.5 shows a comparison between the authors’ results obtained
by the hybrid computational approach based on the BEM and FEM for both ge-
ometries with the solutions obtained by 3D pure BEM in Chuhan, Chongmin, and
Pekau, 1991. As can be seen, the solutions are very close, and it illustrates that
the LWC method works with satisfactory accuracy.

Test example 2: wave propagation in a finite soil region located in

a two-layered half-space due to dynamic point source

The 2nd test example concerns a wave propagation problem in a finite soil region
Ω1 located in the first layer Ω01 of a two-layered half-space Ω0 due to a dynamic
excitation located at point X0, see Figure 4.6. The finite region Ω1 is a square
cuboid with a width of 400 m and a depth of 50 m. The dimension of the outer
edges of the mesh of the BEM region Ω0 is 1 km × 1 km. It expands horizontally
300 m outward of the finite region. The BEM unbounded zone, which is outside
of the finite soil region Ω1 (the FEM zone), consists of 2 layers (Ω0k, k = 1, 2)
with free-surface infinite boundary Γ1 and horizontal, infinite interface Γ2. Two
geometry types are considered to study their effect on the solution’s accuracy. In
the 1st type of geometry, the interface Γ2 is horizontal along the plane x3 = −200
m (Figure 4.6a), while in the 2nd type of geometry, it is modeled as irregular re-
lief extruded along x2 direction (Figure 4.6b). The finite and semi-infinite regions
are connected by inter-regional interface Γint, while the free surface of the finite
region is denoted by ΓF. A point source is placed at X0(-100 m, 0, -230 m). Equal
material properties are assigned for Ω1 and Ω0k (k = 1, 2) with the following de-
tails: Lamé moduli λ = 144 MPa, µ = 72 MPa and Poisson’s ratio of 1/3. The as-
sumption for equal material properties of the finite soil region Ω1 and both layers
of the half-space Ω0 reduces the problem to the case of wave propagation in a ho-
mogeneous half-space due to dynamic point source located at point X0. The time
history function used for the dynamic input is a Ricker wavelet with a duration of
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(A)

(B)

FIGURE 4.6: Test example 2: (A) the geometry of type 1 and (B)
the geometry of type 2. Note that all features of both geometries
are symmetrical along the plane x1 = 0, depicted as the centerline,

except for the dynamic source X0.

10 s, a time delay of 1 s, a frequency range of [0, 3] Hz, a main frequency of 1 Hz,
and a time resolution of 0.01 s. The time function is transformed into the Fourier
domain and then normalized with respect to the maximum absolute value of the
amplitude spectrum. The frequency resolution of the transformed time-function
considered for the analysis is 0.1953 Hz, and the amplitude is f (Ω0)

i (106 N, 0, 0).
The BEM and FEM regions with the geometry of type 1 are modeled with two
mesh sizes to show the solution’s convergence: (Mesh A) λs/lBE = 5; (Mesh B)
λs/lBE = 8. The former mesh size is used for the model with the geometry of
type 2.
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FIGURE 4.7: Comparison of displacement components (A) u1 and
(B) u3 for test example 2 with the results obtained for the reference

model at points along line x2 = x3 = 0.

Synthetic seismograms obtained for both meshes and geometries of the test
example 2 and compared with the result obtained for the reference model, which
is the homogeneous half-space with a mesh size of λs/lBE = 8, are shown in
Figure 4.7. The relative differences between the displacement component u1 ob-
tained for the reference model without any layering and test example 2 with the
geometry of type 1, Mesh A, are 3.49%, 3.11%, 4.31%, and 3.65% for observer
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points x(0, 0, 0), x(50 m, 0, 0), x(100 m, 0, 0), and x(150 m, 0, 0), respectively.
For displacement component u3, the relative differences are 4.37%, 3.53%, 5.20%,
and 6.10%. Comparing the results obtained by using Mesh A and Mesh B for
the geometry of type 1 show that the relative differences for the aforementioned
observer points are as follows: (u1) 0.81%, 1.37%, 2.53%, and 2.64%; (u3) 2.28%,
2.23%, 3.32%, and 3.35%. The relative differences between the results obtained
for the geometries of type 1 and of type 2, with Mesh A for the above observer
points, are as follows: (u1) 0.78%, 0.05%, 0.02%, 0.01%; (u3) 0.31%, 0.09%, 0.09%,
0.05%.

In order to study the influence of the size of the discretized BEM region
on the solution’s accuracy, the BEM boundaries sizes for the geometry of type 1
are modified by assuming dimensions of 500 m × 500 m and 800 m × 800 m. A
ratio relating the size of the discretized free-surface and the depth of the dynamic
source at point X0 is defined as follows: rBX0 = (LBEx1

− |X0(x1)|)/X0(x3), where
LBEx1

is the half-width of the discretized free-surface of the BEM region in the
direction of x1 and X0(xi) is the coordinate of point X0 in the xi direction. The
three dimensions of the free surface of the BEM region correspond to rBX0 of 0.65,
1.30, and 1.74. The relative differences between the displacement component ui

obtained from the model with rBX0 of 0.65 and 1.30 for the four observer points are
as follows: (u1) 8.22%, 11.75%, 15.52%, and 18.51%; (u3) 7.47%, 7.68%, 20.61%, and
25.55%. The relative differences between the cases rBX0 = 1.30 and rBX0 = 1.74 are
the followings: (u1) 2.37%, 4.32%, 5.43%, and 6.74%; (u3) 5.70%, 2.34%, 5.29%, and
6.22%. Based on these results, rBX0 ≥ 1.70 is used in all subsequent simulations.

The above results highlight the excellent accuracy of the proposed hybrid
computational FEM-BEM technique based on the macro-element concept and the
layer-wise condensation procedure.

An illustration of the computational cost reduction as a result of the LWC
method for test example 2 is described as follows. The BEM region of test example
2 with the geometry of type 1 consists of 3810 and 1750 nodes for layer Ω01 and
layer Ω02, respectively. An assembled global influence matrix of the BEM zone
for the frequency domain analysis would require ((NDoF × L)2 × Nbyte × 2) bytes
of computational memory, where L is the number of nodes, NDoF is the number of
degrees of freedom per node, Nbyte is the memory size to store one numeric value
in MATLAB®. The last multiplier is due to the complex number, which requires
two numeric values per entry. For all floating-point numbers in MATLAB® in
this study, an 8-byte double-precision format is used. During the computation,
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three influence matrices are required to store the following integrals: (1) the dy-
namic part of the traction fundamental solution’s kernel; (2) the static part of the
traction fundamental solution’s kernel (containing only real numbers); and (3)
the displacement fundamental solution’s kernel. Thus, the computation of test
example 2 requires (4.451+2.226+4.451=11.129) gigabytes (GB). Using the layer-
wise condensation method, the maximum memory requirement for the influence
matrices occurs during the computation of layer Ω01 with storage of 5.226 GB for
all three matrices. Thus, about 53% less memory is required. The reduction is
higher when more layers are computed.

In the case of test example 2, the corresponding BVP is solved for 20 discrete
frequencies in the interval [0,3] Hz. The elapsed computation time for all frequen-
cies is approximately 102 minutes consisting of 88 minutes for BEM computation
and condensation, 7 minutes for the macro finite-element (substructure) genera-
tion, and 7 minutes for the steady-state dynamic solution of the global BEM-FEM
model. Due to the re-usability of the substructures, any recalculation that does
not include any change in the BEM region would only cost the last part of the
above computation time. A workstation with a 32-core CPU (base speed of 3.69
gigahertz), 256 GB of random-access memory, and PCIe-NVMe storage drives is
used in combination with version 2020 of MATLAB® and ABAQUS.

4.8 Chapter summary

The derivation of the layer-wise condensation method and its general scheme is
presented. The method can be seamlessly incorporated into the hybrid BEM-FEM
scheme and works in conjunction with the numerical improvements described in
Chapter 3. Verification studies considering responses of foundation under dy-
namic loading and wave propagation problems show that the method works
well. Significant computational memory can be reduced as an effect. Further
improvement to the hybrid method that enables the consideration of nonlineari-
ties in the model is described in the following chapter.

Practical examples which show the application of the method described here
are presented in Chapter 8 and Chapter 9.
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Chapter 5

Nonlinear dynamic SSI analysis
using the sequential frequency-time
domain (SFTD) procedure

5.1 Chapter overview

This chapter discusses the sequential frequency-time domain analyses to solve
dynamic problems involving nonlinearities. The introduction is given in Section
5.2, where critical points of the problem and exsiting solutions are described. It
is followed by the description of the procedure, the compatibility conditions, and
the error measurement in Section 5.3. Section 5.4 discusses the verification study
considering a 3D multi-storey structure and taking into account soft and hard
supporting soils.

5.2 Introduction and review of the exsiting solutions

During earthquake excitation, the material nonlinearity that is exhibited by the
soil due to the wave motion is referred to as the soil primary nonlinearity while
the nonlinearity of the soil due to the interaction with structures is considered as
the secondary nonlinearity (Coleman, Bolisetti, and Whittaker, 2016). In a condi-
tion where a structure is relatively stiff compared to its supporting soil, the rota-
tion and translation of the foundation might occur and add to the structural dis-
placement. Thus, the structure’s natural period is increased (Bielak, 1978; FEMA,
2020). In addition, the physical (with respect to the constitutive model) or geo-
metrically (large deformations) nonlinear soil behaviour in the near-field region
close to the foundation has a strong effect on the seismic response of the soil-
structure system. As illustrations, a report by Yashinsky, 1998, concluded that the
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damages on highways due to the 1989 Loma Prieta, California, earthquake were
caused by the combination of soft soil and flexible piles. Similar findings were
reported by Mylonakis et al., 2006, for the damages on the Hanshin Expressway
due to the 1995 Kobe earthquake.

Numerical studies of this phenomenon are conducted by many authors,
among them are Pitilakis et al., 2006, Tamhidi and Ghannad, 2020, and Bolisetti,
Whittaker, and Coleman, 2018, where a comparative study for the application of
linear, equivalent linear and nonlinear approximation of the soil behavior in the
soil-structure models is presented. A study of a bilinear hysteretic structure by
Bielak, 1978, on viscoelastic half-space showed that the resonant amplitude of a
soil-structure system is increased compared to that of a rigid base. Harden et al.,
2005, used beam on nonlinear Winkler foundation (BNWF) approach to study
the nonlinear behavior of shallow foundations under cyclic loading. The perfor-
mance of this approach was later compared to the contact interface model (CIM)
in modeling the nonlinear soil-foundation interaction problems in a study by Ga-
jan et al., 2010. Tamhidi and Ghannad, 2020, implemented the equivalent linear
model according to ASCE 7-10 and the BNWF method in OpenSees (Mckenna,
2011) to simulate the influence of nonlinear soil behaviour on the ductility de-
mand of the superstructure. Hybrid FEM-SBFEM was also successfully utilized
to model nonlinear dynamic SSI, e.g., see Halabian and El Naggar, 2002; Bransch,
2010, where the SBFEM is used to model the far-field region and to satisfy the
Sommerfeld’s radiation condition at infinity. However, the SBFEM solution for
layered media is computationally expensive (Ferro, 2013).

Hybrid BEM-FEM has been used to analyse the nonlinear dynamic SSI prob-
lem as well. Following the hybrid BEM-FEM in the time domain by Karabalis and
Beskos, 1984, von Estorff and Firuziaan, 2000, obtained the solution for nonlin-
ear SSI by using the direct method where the BEM influence matrices are incor-
porated into the nonlinear iteration algorithm of the FEM, and the equilibrium
condition of displacement is enforced. The iterative method (domain decompo-
sition) was successfully implemented as well, as reported in Rizos and Wang,
2002; Soares Jr, von Estorff, and Mansur, 2004; von Estorff and Hagen, 2005.
A MATLAB® toolbox codenamed SSIFiBo was released by Galvín and Romero,
2014b, based on the coupling method by Soares, Mansur, and Von Estorff, 2007.
Contact nonlinearity between the soil and foundation can be modeled with it.

Implementing the direct or iterative coupling method in the time domain on
the ABAQUS software package is a complex task. In the direct method, the BEM
stiffness matrices have to be exported into ABAQUS for every time step, whilst
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in the iterative method, a higher hierarchy software must be written to control
ABAQUS, MATLAB®, as well as the flow of trial boundary conditions and results
data between the two solvers and to control the convergence. Furthermore, the
iterative method requires an iteration scheme to be performed, see Section 2.6.
Thus, it is likely unsuitable for a large domain with a considerable BE-FE interface
or multiple nonlinearities.

In most of the aforementioned hybrid BEM-FEM studies, the time domain
BEM formulations were used. In this formulation, the solution for time step
q requires the influence matrices of time steps 1 until {q − 1} to be multiplied
and accumulated with the corresponding past solutions, see equation (2.32). This
means that, as the analysis marches forward in time, more data storage is re-
quired. In addition to this drawback, the BEM formulation in the time domain
is computationally expensive compared to the frequency domain. It also exhibits
artificial numerical damping, and it is prone to numerical instability as reported
by Dominguez, 1993; Panagiotopulos and Manolis, 2011. Improvement by replac-
ing the displacement-traction pair with the velocity-traction pair was suggested
by Panagiotopulos and Manolis, 2011. An alternative time domain formulation
using the convolution quadrature method (CQM) was proposed in Schanz and
Antes, 1997a; Schanz and Antes, 1997b.

One of the ideas to avoid the time domain BEM was the development of
the hybrid frequency-time domain (HFTD) approach, which stemmed from the
work by Kawamoto, 1983, who used the pseudo-force term to represent the resid-
ual force between the linear elastic system, solved in the frequency domain, and
the nonlinear system. The general equilibrium is written as

Mü + Cu̇ + Ku = f + fNL, (5.1)

where fNL is the pseudo-force term, which is evaluated after the solution for the
unknown u(t) is obtained from the inverse FFT of the solution in the frequency
domain u(ω). The pseudo-force is then returned to the equilibrium condition in
the frequency domain for the next iteration until the residual force is within a
defined tolerance. Advanced implementations of the hybrid frequency-time do-
main method for hybrid BEM-FEM can be found in Obrembski, Clouteau, and
Greffet, 2005; François, 2008. In addition, Ferro, 2013, developed and imple-
mented the hybrid Laplace-time domain approach. However, in most of these
studies, nonlinearities are only considered to a limited extent. The term "non-
linear" often does not cover all aspects of secondary nonlinearity. These aspects,
according to the revised ASCE Standard 4 "Seismic Analysis of Safety-Related
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Nuclear Structures and Commentary," are (1) material nonlinearity, (2) embed-
ment effect, (3) failure of soil at soil-foundation interface, (4) pore fluid-soil inter-
action, (5) uplift and sliding of the foundation, and (6) gapping effects (Coleman,
Bolisetti, and Whittaker, 2016).

In summary, the current state of nonlinear dynamic SSI analyses within the
hybrid BEM-FEM framework has the following critical points:

• The time domain BEM formulation is used, which requires ample memory
storage in realistic cases with a large domain or in cases of transient dy-
namic excitation with a long time duration, e.g., earthquake time history.

• Secondary nonlinearities are only partially considered.

• The geostatic stress state of the soil and the loads on the structural members
are often neglected.

• Implementation of the time domain hybrid method or the HFTD method
in commercial software packages such as ABAQUS is cumbersome and im-
practical from the user’s point of view. In much commercial software, it
may not be possible to modify the matrices at every time interval or time
step.

An alternative method to overcome these points is presented in this chapter. To
solve the problems, the author takes advantage of the fact that, in this hybrid
model, the BE-FE interface can be placed at a distance from the source of non-
linearities, i.e., the structure of interest and/or soil near the foundation. Because
of that, the discrepancy of the stresses or tractions along the BE-FE interface be-
tween linear and nonlinear solution can be considerably minimized. The pro-
posed method extends the hybrid method described in Section 2.6 and Section
3.2, which is developed for the whole domain in the frequency domain, into a
sequential analysis in the time domain. The outputs of the former are used as
inputs for the finite region model in the latter.

5.3 Sequential frequency-time domain procedure

Consider a problem similar to the one before where domain Ω1 is located in a
semi-infinite region Ω0. A foundation in the finite region Ω1 supports a structure,
see Figure 5.1a, where the structure is depicted as a single-degree-of-freedom
model. The free surface of the foundation is denoted as Γ f while the soil-foundation
contact surfaces are collected in Γg. The free-surfaces of Ω0 and Ω1 are denoted

102



5.3. Sequential frequency-time domain procedure

as ΓB and ΓF, respectively. Thus, the external boundary of Ω0 and Ω1 are ΓΩ0 =

Γint ∪ ΓB and ΓΩ1 = Γint ∪ ΓF ∪ Γg, respectively.

The material properties are: (Ω0) ρ0, λ0, µ0, CP0 , CS0 ; (Ω1)ρ1, λ1, µ1, CP1 , CS1 ;
and (the structure and foundation) ρ f , λ f , µ f , CPf , CS f . Following the procedure
described in Section 3.2, the system of equation of the whole system in ABAQUS
is given in equation (2.84), and the solution of the unknown in the frequency

(A)

(B)

FIGURE 5.1: (A) The problem geometry presenting the finite region
Ω1, with a structure and a foundation located at it, embedded in a
half-space Ω0 with dynamic source at X0. (B) The finite region Ω1 is
decoupled from the global domain and initial conditions ŭ(t = 0)

and boundary conditions ŭ(t) are applied to its interface Γint.
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domain û(Ω1)(x, ω), x ∈ Ω1, is obtained using the direct steady-state dynamic
solver of ABAQUS, see Figures 3.2 and 4.3. û(Ω1)(x, ω) contains the solution for
all nodes in Ω1 including the nodes along Γint of the FE region. It considers the
following essential aspects:

• the effect of wave motion following the applied transient dynamic source at
X0,

• the (linear elastic) material properties of the near- and far-field region, and

• the kinematic and inertial interactions between the soil and the structure.

Extracting the solution along Γint of Ω1 from the whole solution û(Ω1), such
that û(Ω1)(x, ω), x ∈ Γint, the solution in the time domain for these nodes along
the interface ŭ(Ω1)(x, t), x ∈ Γint, can be obtained after applying the inverse FFT,
i.e.,

ŭ(Ω1)(x, t) = F−1{û(Ω1)(x, ω)}(t), for x ∈ Γint, (5.2)

where F−1{.} denotes inverse Fourier operation.

Let us now consider the same finite region Ω1 but without the semi-infinite
region, see Figure 5.1b. The dynamic equilibrium of the finite region Ω1, written
in the time domain, is described in equation (2.54), repeated here as

M(Ω1)ü(Ω1) + C(Ω1)u̇(Ω1) + K(Ω1)u(Ω1) = f(Ω1). (5.3)

The compatibility and equilibrium condition of displacement that is estab-
lished in Section 2.6 for the interface Γint between BE and FE region can be re-
applied to bridge the frequency and time domain formulations, expressed as

u(Ω1)
j (x, t) = ŭ(Ω1)

j (x, t) = F−1{û(Ω1)
j (x, ω)}(t), for x ∈ Γint, (5.4)

where the left-hand side of the equation refers to the displacement in the time
domain, and the rest refers to the product of the preceding frequency domain
output. Thus, equation (5.3) can be rewritten in the form of

[
M(Ω1)
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M(Ω1)
21 M(Ω1)
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(5.5)
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where the matrices and vectors corresponding to nodes belonging to the interface
Γint are denoted by subscript "2" and those corresponding to the rest of the nodes
in Ω1 are denoted by subscript "1". Equation (5.5) states that the solution of the
finite region in the time domain u(Ω1)

1 (x, t) can be obtained by applying the fre-

quency domain outputs ŭ(Ω1)(x, t), ˘̇u(Ω1)(x, t), or ˘̈u(Ω1)(x, t) as initial and bound-
ary conditions along Γint. The initial and boundary conditions are expressed for
displacement as

u(Ω1)(x, 0) = ŭ(Ω1)(x, 0), for x ∈ Γint; and (5.6)

u(Ω1)(x, t) = ŭ(Ω1)(x, t), for x ∈ Γint; (5.7)

respectively.

In practice, however, the application of the displacement time history, i.e.,
ŭ(Ω1), in a direct integration dynamic analysis in ABAQUS is prone to numerical
error due to its lack of differentiability. This is because ABAQUS will compute
the corresponding time derivatives of this input; since the displacement time his-
tory is linear within any two points in time, the velocity history will be piecewise
constants, and the acceleration values at the time points may be infinite, as illus-
trated in Section 33.1.2 of its user’s manual (Smith, 2014). This can be remedied by
utilizing the built-in smoothing function provided by the software. However, a
seemingly better choice to preserve the solution’s accuracy is by using the veloc-
ity time history, e.g., ˘̇u(Ω1), instead of displacement. As initial displacements, ini-
tial velocities, and velocity time histories are known, the transient analysis com-
putation can be performed as described in Section 2.5. In this work, the implicit
dynamic solver is used.

The remaining compatibility and equilibrium condition of traction can then
be used as a means of verification of the solution, expressed as

t(Ω1)
j (x, t) = t̆(Ω1)

j (x, t) = F−1{t̂(Ω1)
j (x, ω)}(t), for x ∈ Γint, (5.8)

where the left-hand side of the equation refers to the results from (5.5) and the
rest refers to the outputs of the preceding frequency domain analysis. However,
since traction is not an extractable output in ABAQUS, we can instead request the
stress output of representative integration points near the interface. Quantifica-
tion of the discrepancies through mean square error (MSE) and mean average
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error (MAE) can be defined as

MSE =
1

NE

NE

∑
n=1

1
TE

TE

∑
k=1

(
σ

n(Ω1)
j(k) − σ̆

n(Ω1)
j(k)

)2
, for n ∈ Γint, (5.9)
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1
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k=1

∣∣∣σn(Ω1)
j(k) − σ̆

n(Ω1)
j(k)

∣∣∣, for n ∈ Γint, (5.10)

respectively. Here, n denotes the considered integration point; NE is the number
of them; (k) denotes the time point; and TE is the number of them within the
considered time window.

The implementation of the velocity time histories as boundary conditions
for the time domain model in ABAQUS can be performed by using the following
keywords in the ABAQUS input file. The time histories are first written as ampli-
tudes in text files. The inclusion of the amplitudes in the model is then performed
using the keyword "*Amplitudes, name=amplitude_name, input= text_file_name.txt".
Afterward, the amplitudes are attached to the corresponding nodes using the
keyword "*Boundary, OP=New, type=velocity, amplitude= amplitude_name" fol-
lowed in the next line by the node number or node set, the first degree of freedom,
the last degree of freedom, and the magnitude (i.e., 1). Including "OP=New" in
the above keyword is necessary for the reason given below.

To consider soil material and soil-foundation contact nonlinearities in the
dynamic model, initial geostatic stress must be established in the finite model.
To perform this correctly, a geostatic step is defined in the time domain analysis
prior to the dynamic step. From this point of view, the use of velocity time history,
instead of displacement one, is advantageous since the geostatic step typically re-
sults in a displacement in the range of < 10−5 m, depending on the complexity
of the geometry and the material properties. By using velocity as a boundary
condition, the contradiction between the displacement values can be avoided.
Temporary encastré boundary conditions along the interface Γint are required
during the geostatic step to ensure the solution’s convergence. A static loading
step is also inserted in which the dead load and other static loads are applied to
the structural members. Once the two static loading steps are completed, these
boundary conditions are then released in the subsequent dynamic step using the
keyword "*Boundary, OP=New" which is also used to assign the velocity bound-
ary conditions.

The SFTD procedure is summarized in a workflow diagram shown in Fig-
ure 5.2. It is valid for dynamic SSI cases considering nonlinearities provided that
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Define the geometry,
material properties, and

the mesh of the FEM and
BE subdomains. Define the
interface between them Γint.
Create separate input files.

See Figures 3.2 and 4.3.

Perform BEM com-
putations, see Figures
3.2 and 4.3 for details.For each frequency ω,

assembly the global sys-
tem of equations and
solve it, see Figures

3.2 and 4.3 for details.

Collect ouputs for Γint
and perform the pseudo-

transformation and inverse
FFT to obtain ˘̇u(Ω1)(t).

Write the time histories
˘̇u(Ω1)(t) as text files.

Define the time histories as
amplitudes. Define velocity

boundary conditions on
the nodes of Γint using
the amplitudes. Assign
the 1st values of them
as initial conditions.

Perform a geostatic step
and a static loading step

by defining a tempo-
rary encastré bound-
ary condition on Γint.

Perform the dynamic analy-
sis step in the time domain.

FEM input file

BEM input file

FIGURE 5.2: A schematic flowchart of the hybrid FEM-BEM for
nonlinear dynamic analysis using the sequential frequency-time do-
main procedure. The grey color marks processes performed in the
ABAQUS environment, while the white marks those performed in

MATLAB.

Γint is sufficiently distanced from the sources of nonlinearities, as will be demon-
strated in the following section.
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5.4 Verification study considering soft and hard soil

cases

The verification study considers dynamic simulation of a multi-storey building
located on a half-space in response to ground-borne vibration, see Figure 5.3.
4 square foundations with width and thickness of 1 m and 0.3 m, respectively,
support the structure. The center-to-center distance between the columns is 3 m,
and the floor height is 3 m. The whole domain is excited by a transient dynamic
vibration radiating from an embedded point source located at X0(-1 km, 0, -1
km). The finite region is decoupled into Ω1 and Ω∗

1 where the asterisk superscript
marks the inclusion of nonlinear material behaviour, which in this case is the
Mohr-Coulomb plasticity.

Two types of material properties are studied, referred to as case 1 and case 2,
to check the validity of the approach: (1) a relatively soft soil with CP = 400 m/s,
CS = 200 m/s and (2) a hard supporting media with CP = 1600 m/s, CS = 800
m/s. The material properties are laid out in Table 5.1. To compensate for the
harder material in case 2, two additional floors are used, see Figure 5.3b. The
Mohr-Coulomb plasticity is defined as follows: friction angle of 25◦, dilation an-
gle of 0.1◦, and cohesion of 2.50 kPa. In addition to the soil nonlinearity, contact
nonlinearity is also considered by defining frictional and separable contact be-
tween the soil and the foundation. Thus, sliding, uplifting, and gapping between
the soil and the foundations are taken into account.

A 10% structural damping is applied to all materials. This damping defi-
nition is active in the frequency domain (steady-state dynamic) analysis. In the
time domain, the damping definition is replaced by Rayleigh damping using
αR = 2.356 and βR = 0.00079577, where the former is the factor for mass propor-
tional damping and the latter is the one for stiffness proportional damping. The
two values are chosen to provide approximately the same energy dissipation in
the frequency range of [5, 20] Hz as the 10% structural damping.

Ricker wavelets are used as a time function of the transient excitation. In case

TABLE 5.1: The material properties considered for the verification
study of the SFTD.

Region λ (MN/m2) µ (MN/m2) ν ρ (kg/m3)

Ω0 & Ω1 (case 1) 132.00 66.00 1/3 1 650
Ω0 & Ω1 (case 2) 2 688.00 1 344.00 1/3 2 100

Foundations and structure 6 666.67 10 000.00 0.20 2 500
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(A) (B)

FIGURE 5.3: Sketches of the model used for the verification study
presenting a multi-storey building resting on a semi-infinite half-
space: (A) case 1 and (B) case 2. All features in the sketch are sym-

metrical along the centerline except for the dynamic source at X0.

1, the main frequency is 5 Hz, the time delay is 0.5 s, the time interval is 0.0117 s,
and the frequency resolution is 0.1953 Hz, while in case 2, the values are 4 Hz, 0.4
s, 0.01 s, and 0.167 Hz, respectively, see Figure 5.4. Due to the low wave velocity
in case 1, a transfer function is applied to the wavelet so that the arriving waves
will be within the time window of the simulation, which is approximately 5.9 s
long. The transfer function is computed for a depth of 1 km, i.e., the depth of X0,
and it results in an advancement of approximately 3.5 s of the main wave and a
shift in the frequency range of the wavelet (Figure 5.4b). The amplitude vectors
of the excitation are f (Ω0)

i (1013 N, 0, 0) and f (Ω0)
i (1012 N, 0, 0) for case 1 and case 2,

respectively.

Three types of geometry are considered to examine the influence of the
buffer zone size on the stress compatibility condition along Γint and the struc-
ture’s response. The size of the buffer zone is governed by the notations a and
b in Figure 5.3, which values are laid out in Table 5.2. The numerical models of
case 1 with the geometry of type 2 and type 3 are presented in Figure 5.5 and 5.6,
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FIGURE 5.4: Ricker wavelet time histories and their (normalized)
amplitude spectra used for case 1 in (A) and (B) and case 2 in (C)
and (D). The amplitude spectrum presented in (B) is obtained after
application of a transfer function, which is computed for the depth

of X0.

TABLE 5.2: Values of dimensions a and b in Figure 5.3.

Type of geometry
Dimension 1 2 3

a (m) 2.00 5.00 14.00
b (m) 2.00 2.00 13.00

respectively. The element sizes of the BE and FE meshes of the soil model are
λS/6.67 and λS/10, respectively, for case 1 and a frequency of 20 Hz. In the time
domain part of the sequential analysis, the BE meshes, i.e., the substructures, are
omitted.

In this study, 8-nodes brick (hexahedral) elements with 8 integration points,
i.e., C3D8 element in ABAQUS, are used for the buffer zone. Three elements
are chosen as the object of observation to quantify the compliance of the stress
values along Γint. In each of these elements, four integration points closer to Γint

are considered for observation of stress and the calculation of MSE and MAE.

A geostatic step and a static loading step are inserted. In the geostatic step,
a predefined stress field is applied to the soil model to define the geostatic stress.
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5.4. Verification study considering soft and hard soil cases

FIGURE 5.5: Numerical model of case 1 showing the geometry of type
2. The BE mesh is omitted in the time domain part of the sequential

analysis.

An overburden distributed load of 10 kPa is applied to avoid zero confining pres-
sure on the solid elements of the soil model on the surface. The stresses due to
this overburden pressure is also included in the predefined field to create a bal-
ance of internal-external forces. In the static loading step, gravity load is applied
to the structural members, i.e., the foundations, the columns, the beams, and the
slabs. In case 1, an additional distributed load of 5 kPa (500 kg/m2) is assigned on
the concrete slabs to represent the live load. In case 2, the distributed load is in-
creased to 25 kPa. Additionally, masses of 1000 kg are assigned to beam-column
joints in the model of case 2.

The implicit dynamic solver, see Section 2.5, is used for the time domain part
of the sequential analysis. The maximum time increment is set to be the same as
the time interval of the velocity time histories so sufficient details of the response
can be captured.

To establish a reference model, a sequential analysis is performed without
any material and contact nonlinearities. In this case, the soil-foundation inter-
face is defined using tied contact, i.e., relative displacement and separation are
not allowed. Comparisons of the stress components between the frequency do-
main result and the sequential analysis result of the model with the geometry of
type 1 at two integration points without nonlinearities are presented in Figure 5.7.
The MSEs and MAEs for the time window of [0.2, 2.6] s are given in Table 5.3.
Note that for the calculation of MSE and MAE, the time points of the outputs of
the frequency domain are synchronized to one of the sequential analyses, and the
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FIGURE 5.6: The elements under observation, marked with bound-
ing red lines, are shown in the cut view of the model of case 1 with

the geometry of type 3.
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FIGURE 5.7: Comparisons of stress components σj between the re-
sults for the hybrid model with the geometry of type 1 in the fre-
quency domain and for the sequential analysis without nonlineari-
ties. The material properties are those of case 1 in (A) and case 2 in

(B).

amplitudes are interpolated correspondingly.

Figure 5.8 compares the stress components between the frequency domain

112



5.4. Verification study considering soft and hard soil cases

TABLE 5.3: MSEs and MAEs for the model with the geometry of
type 1 and material properties of case 1 and case 2 when the nonlin-

earities are not included.

MSE (%) MAE (%)
Case σ1 σ3 σ1 σ3

Case 1 2.40E-3 1.80E-3 0.264 0.208
Case 2 7.19E-4 5.32E-4 0.105 0.101

TABLE 5.4: MSEs and MAEs of the stress components of the se-
quential analysis relative to the frequency domain analysis. Mate-

rial properties of case 1 and the nonlinearities are considered.

Type of geometry
Type 1 Type 2 Type 3

Error σ1 σ3 σ1 σ3 σ1 σ3

MSE (%) 0.707 0.228 0.119 0.145 0.012 0.090
MAE (%) 6.858 4.399 3.132 3.120 0.559 0.498

TABLE 5.5: MSEs and MAEs of the stress components of the se-
quential analysis relative to the frequency domain analysis. Mate-

rial properties of case 2 and the nonlinearities are considered.

Type of geometry
Type 1 Type 2 Type 3

Error σ1 σ3 σ1 σ3 σ1 σ3

MSE (%) 0.518 0.052 0.013 0.069 5.35E-4 0.001
MAE (%) 4.224 1.763 0.918 1.527 0.113 0.151

result and the sequential analysis result of the model with material properties of
case 1, with three types of geometry, and with all nonlinearities included. The
same comparison for case 2 is given in Figure 5.9. The MSEs and MAEs for the
time window of [0.2, 5.0] s of case 1 and case 2 are given in Table 5.4 and Table
5.5, respectively. In Figure 5.8a alone, the MAEs of σ1 and σ3 are approximately
10.6% and 5.3%, respectively. The values are 12.6% and 3.6% for Figure 5.9a.
These figures show the results for a Gauss-point of the element located on the
right side in Figure 5.5, i.e., behind the structure when considering the ray path.
The errors are significantly lower in the other observed elements, thus, the lower
total MAE.

To reveal the influence of the stress discrepancies along Γint to the structure’s
response, the relative displacements of an observation point on the roof are com-
pared considering the three types of geometry. The comparisons of the relative
displacements for case 1 are presented in Figure 5.10 while those for case 2 are
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FIGURE 5.8: Comparisons of stress components σj between the re-
sults for the hybrid model in the frequency domain and for the se-
quential analysis with the nonlinearities. Three types of geometry
and material properties of case 1 are considered. (A) Geometry of

type 1, (B) geometry of type 2, and (C) geometry of type 3.

shown in Figure 5.11. The MSEs and MAEs are presented in Table 5.6 and Table
5.7 for cases 1 and 2, respectively. The displacements for the model with the geom-
etry of type 3 are used as references since Figures 5.8-5.9 and Tables 5.4-5.5 show
that these results comply very well to the stress compatibility and equilibrium
condition. These results show that the negative influence of the stress discrepan-
cies along Γint on the structure’s response is relatively small, especially in the case
of soft soil. The buffer zone size has more effect on the accuracy of the structure’s
response when soil with high stiffness is considered. It can be observed that a
medium-sized buffer zone (geometry of type 2) is sufficient to obtain satisfactory
results.

The effect of the material and contact nonlinearities on the structure’s re-
sponse in the particular soil-structure system of case 1 is illustrated in Figure 5.12.
It can be observed that the nonlinearities reduce the amplitude and the natural
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FIGURE 5.9: Comparisons of stress components σj between the re-
sults for the hybrid model in the frequency domain and for the se-
quential analysis with the nonlinearities. Three types of geometry
and material properties of case 2 are considered. (A) Geometry of

type 1, (B) geometry of type 2, and (C) geometry of type 3.

frequency of the system. Due to sliding, a permanent horizontal displacement is
observed in Figure 5.12a.

The elapsed computation time for case 1 with three types of geometry is pre-
sented in Table 5.8. One hundred twenty discrete frequencies are computed for
the frequency domain solution. The workstation and the software used for the
computation are described in Section 4.7. It is shown in the table that even for the
geometry of type 3, material properties of case 1, and a frequency range such as in
Figure 5.4b, a reasonable computation time can still be achieved.

The results show that the nonlinear dynamic SSI can be simulated by ex-
tending the developed frequency domain procedure and modifying the bound-
ary conditions of the finite model. Thus, other developed enhancements, such as
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FIGURE 5.10: Comparisons of normalized displacement compo-
nents uj of an observation point in the roof relative to its base be-
tween the results for the model with the geometry of type 3 and the
other types of geometry: (A) and (C) displacement time histories
and (B) and (D) Fourier amplitudes. Material properties of case 1

and the nonlinearities are considered.

TABLE 5.6: MSEs and MAEs of the displacements of an observation
point in the roof relative to its base for the model with geometry of
type 1 and type 2 vs the model with the geometry of type 3. Material

properties of case 1 and the nonlinearities are considered.

Type of geometry
Type 1 vs type 3 Type 2 vs type 3

Error σ1 σ3 σ1 σ3

MSE (%) 0.029 0.044 0.077 0.022
MAE (%) 1.041 1.272 0.567 0.709

TABLE 5.7: MSEs and MAEs of the displacements of an observation
point in the roof relative to its base for the model with the geometry
of type 1 and type 2 vs the model with the geometry of type 3. Mate-

rial properties of case 2 and the nonlinearities are considered.

Type of geometry
Type 1 vs type 3 Type 2 vs type 3

Error σ1 σ3 σ1 σ3

MSE (%) 0.428 0.155 0.047 0.036
MAE (%) 4.939 2.508 1.532 1.177

the LWC method, remain applicable. The accuracy and compliance of the com-
patibility conditions can be achieved by providing sufficient distance between the

116



5.4. Verification study considering soft and hard soil cases

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

1.5

2

(A)

2 4 6 8 10 12

0

0.02

0.04

0.06

0.08

(B)

0 1 2 3 4 5 6

-1.5

-1

-0.5

0

0.5

1

1.5

2

(C)

2 4 6 8 10 12

0

0.02

0.04

0.06

0.08

(D)

FIGURE 5.11: Comparisons of normalized displacement compo-
nents uj of an observation point in the roof relative to its base be-
tween the results for the model with the geometry of type 3 and the
other types of geometry: (A) and (C) displacement time histories
and (B) and (D) Fourier amplitudes. Material properties of case 2

and the nonlinearities are considered.
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FIGURE 5.12: Comparisons of displacement components uj of an ob-
servation point on the roof relative to its base between the results for
the model without and with the nonlinearities. Material properties
of case 1 and the geometry of type 2 are considered. (A) Normalized
displacement u1, (B) normalized Fourier amplitude of u1, (C) nor-
malized displacement u3, and (D) normalized Fourier amplitude of

u3.
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TABLE 5.8: Elapsed computation time for the hybrid model of case 1
using the sequential analysis when the nonlinearities are included.

All units are in minutes.

Geometry
BEM com-
putation

Substructure
generation

Global SSD
solution

TD solution

Type 1 3 8 28 44.2
Type 2 5 21 32 46.4
Type 3 25 90 58 56.2

source of nonlinearities and the BE-FE interface. The drawback of this approach
is that it is not applicable to cases with widespread nonlinearities, such as lique-
faction cases. Since a frequency domain computation needs to be finished before
the time domain one, it also tends to be more expensive for problems with a short
duration of excitation, e.g., explosion analysis. However, it is advantageous for
problems with mild or medium nonlinearities and long excitation duration. It
is also shown that the state of the soil and the structural members can be repre-
sented realistically since geostatic and static loading steps can be inserted seam-
lessly. Other advantages are that there is no additional iteration required, and it
can be applied directly to existing commercial FEM software without creating an
additional controller.

5.5 Chapter summary

In this chapter, the idea of using sequential computations to solve SSI problems
with nonlinearities and its modification to overcome numerical differentiability
problems are detailed. Numerical experiments of a simple structure considering
soft and hard soils show that the method has advantages and limitations.

This chapter is followed by four chapters describing different practical ap-
plication examples. Applications of the sequential frequency-time domain proce-
dure for 2D and 3D dynamic SSI problems are presented in Chapter 9.
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Chapter 6

Application I: Dynamic behaviour of
typical integral bridges

6.1 Chapter overview

This chapter discusses the application of the hybrid BEM-FEM for a case study
of the dynamic behavior of typical integral bridges. This chapter demonstrates
the versatility of the hybrid method, including the numerical enhancements de-
scribed in Chapter 3, particularly when the dynamic load is applied from within
the FE region, see equation (3.20). Integral bridge concept is of great interest due
to its intensive soil-structure interaction. The problem is described through gen-
eral and mathematical perspectives in Section 6.2, followed by a discussion of
the modeling approach in 6.3 and the results in Section 6.4. The content of this
chapter is published in H.D.B. Aji, M. Basnet, F. Wuttke (2020). "A numerical
study on the influences of underlying soil and backfill characteristics on the dy-
namic behaviour of typical integral bridges". In: Bauingenieur 95.11, pp. 2-11.
DOI:10.37544/0005-6650-2020-11-35.

6.2 Introduction and problem description

The integral bridge concept was developed to overcome the maintenance and
performance problems caused by the degradation or failure of movable joints
and bearings. Despite its role in eliminating or reducing the stresses due to lat-
eral movement and forces, joints and bearings are commonly not durable, less
redundant, and expensive to maintain. Their non-performance can lead to col-
lateral damages (Moehle and Eberhard, 2003; Waldin, Jennings, and Routledge,
2012). The integral concept is realized by building the superstructure monolithi-
cally with its supporting substructure, i.e., abutments or piers, thus, eliminating

119



Chapter 6. Application I: Dynamic behaviour of typical integral bridges

the need for joints or bearings. Although studies showed that the application of
integral bridge concept can have advantages, such as economically better in the
initial and long-term phases, better performance during earthquake, simpler con-
struction and better vehicular experience (Arsoy, Barker, and Duncan, 1999; Aji,
2014), its behaviour is not fully understood and agreed by members of scientific
community, engineers as well as regulators.

One of the distinct points of the behaviour of integral bridges is the strong
soil-structure interaction, which occurs due to the bridge’s structural members’
continuity and contact with the adjacent backfill and underlying soil. This is
particularly more significant in the case of short-span or high-stiffness super-
structure. From the standpoint of dynamic-resistant design, the integral bridge
dynamic characteristic, quantified through the system’s natural frequencies and
damping ratio, cannot be assessed in the same manner as non-integral ones.

Studies regarding the influence of soil-structure interaction on the dynamic
response of bridges can be found in Werner, Beck, and Levine, 1987; Werner,
Beck, and Nisar, 1990; Wilson and Tan, 1990, among others. In Goel, 1997 and
Goel and Chopra, 1997, studies regarding the influence of abutments and soil
nonlinearities can be found. A study by Martinez, Mateo, and Alarcon, 1996, us-
ing 3D BEM in the frequency domain, investigated the stiffness of vertical walls
of abutment and wingwalls, in contact with embankment, without the contribu-
tion of the vertical resistance from the soil under the foundation of the abutment.
A simplified method of abutment stiffness is sometimes preferred to reduce the
computational burden, such as in Karantzikis and Spyrakos, 2000. Results of
the numerical-analytical approach where the soil reactions are represented by
a combination of translational and rotational springs can be found in Spyrakos
and Loannidis, 2003, while a 3D time history FEM of a semi-integral bridge can
be found in Barbosa and Silva, 2007. The sensitivity of the bridge’s seismic re-
sponse with respect to different bridge modeling approaches was studied by us-
ing FEM and nonlinear springs in Aviram, Mackie, and Stojadinovic, 2008. Later,
more complex models were compared to simpler ones in Erhan and Dicleli, 2014
where, besides nonlinear hysteretic springs, dashpots and soil columns were used
to model radiation damping and free-field motion of nearby soil, respectively.
These studies showed that mode shapes, natural frequencies, ultimate base shear
strength, and peak displacement were altered by the models. A study by Zan-
geneh Kamali, 2018, which combines field measurement as well as FEM and
FEM-BEM results on short-span railway integral bridge, found that the effect of
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surrounding soil on the response depends on the ratio between the flexural stiff-
ness of the bridge and the dynamic stiffness of the foundation-soil system and
to the ratio between the resonant frequency of the soil layer and the fundamental
frequency of the bridge. The study also showed the modeling limitation currently
experienced by the existing available numerical procedure, which may affect the
accuracy of the computation.

In this study, the developed 3D hybrid BEM-FEM approach is taken to as-
sess the influence of the underlying soil and backfill material properties to the
dynamic behaviour of typical integral bridges, expressed by the resonance fre-
quencies of the coupled system, and comparison to the results obtained via the
conventional method, where a combination of encastré grounding and frequency-
independent springs is used, are presented. Four typical single-span integral
abutment bridges are analysed in a steady-state dynamic manner for this study.
In addition, the effects of deck length and curved alignment are also explored.
The current study is focused on the identification of dynamic characteristics of
the bridge-soil system, which is active during the daily operation of the bridge
rather than the ultimate capacity. Thus, material and geometric nonlinearities are
not considered.

The bridge superstructure, abutments, and the backfill behind the abutments
are modeled by using the finite element method, which is chosen due to its mod-
eling accessibility, extensive element library as well as its efficiency in modeling
complex structural systems in the finite domain. On the other hand, the underly-
ing soil is computed using the BEM, which can account for the dynamic problem
of the unbounded domain and satisfy Sommerfeld’s radiation condition in the
far-field zone.

The decomposition of the problem domain is as follows. Let us consider a
coupled system in Figure 6.1. An elastic isotropic semi-infinite geological region
is denoted as Ω0 with boundary of ΓΩ0 = ΓB ∪ Γint and material properties of CP0

& CSV0 , which are the longitudinal and shear wave velocities. The boundary ΓB

is the free-surface of Ω0 whilst the Γint is the contact interface between Ω0 and
Ω1. The Ω1 is the finite continuum with surface ΓS and material properties CP1 &
CSV1 . Thus, Ω0 represents the surrounding media up to the far-field region while
Ω1 represents the structure and can include a near-field object such as, in this
case study, soil backfilling. The computation of the integral bridge models using
hybrid BEM-FEM follows the procedures described in Section 2.6, see Figure 2.9.
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FIGURE 6.1: Illustration of a soil-structure interaction problem using
3D hybrid BEM-FEM.

6.3 Simulation and parametric analysis

To evaluate the influence of deck length and curved alignment, 4 typical integral
bridges are modeled. These are typical overhead crossing, single-span concrete
integral bridges with monolithic superstructure-abutment joints resting on a half-
space shown in Figure 6.2. The deck lengths are chosen as 35 m & 45 m, which are
then cross-combined with alignment sets of straight and curved, the latter with a
radius of 400 m, see Table 6.1. Other geometrical dimensions are kept constant:
the width of the bridge is 12 m; the abutment height and thickness are 7.6 m and
0.5 m, respectively, with wingwalls extending to 1 : 1 slope; the superstructure
consists of a 30 cm thick deck, and 5 T-girders distanced at 2.5 m with 1.6 m height
and 1.0 m high diaphragm.

TABLE 6.1: The bridge models.

No. Span length (m) radius of curvature (m)

1 35 ∞
2 35 400
3 45 ∞
4 45 400

Two numerical approaches are utilized to illustrate the effect of modeling on
dynamic identification: (1) a hybrid BEM-FEM approach and (2) a conventional
approach where encastré groundings, i.e., fixed restraints, are applied along the
bottom center-line of the abutment, i.e., perpendicular to the traffic direction,
and frequency-independent springs are applied to the walls of the abutment and
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TABLE 6.2: The material properties of the soil considered in the sim-
ulation.

No. CSV (m/s) ρ (kg/m3) µ (MPa)

1 100 1650 16.50
2 250 1800 112.50
3 375 1840 258.75
4 500 1890 472.50

wingwalls to represent the passive soil resistance, see Figure 6.2b. In the hybrid
numerical approach, the backfills are modeled as a continuum and included in
the FE subdomain, while it is left out of the numerical model in the conventional
one. In both approaches, the deck-diaphragm-girder system of the superstruc-
ture is meshed using integrated beam and shell elements. The abutments and the
wingwalls are discretized using continuum elements. As a result of the far-field
computation, the BEM substructure is directly attached to the continuous surface
formed behind the wingwalls and backfills and under the spread footings. In Fig-
ure 6.2c, the BE subdomain prior to condensation is the green-colored surfaces.

The concrete properties of the bridge are as follows: Young’s modulus of
300 GPa, Poisson’s ratio of 0.2, and density of 2400 kg/m3. The underlying soil
and backfill materials considered for the parametric analysis are laid out in Table
6.2, where µ is the shear modulus. Poisson’s ratio of 1/3 is assigned for all soil
materials. The interface between the structure and backfill is frictional, with a
friction angle of 20◦. The interface between the FEM and BE subdomains is of tied
constraint. For the study of the influence of the underlying soil, the properties no.
2 of Table 6.2 are assigned to the backfill, while the properties of the underlying
soil are varied. For the study of the backfill’s influence, the properties no. 2 are
assigned to the underlying soil, and the properties of the backfill are varied.

In the conventional model, the spring values are computed following the
lateral passive earth pressure according to Eurocode 7 2004 using the following
assumptions: (1) the density of the soil is 18 kN/m3; (2) the mode of wall move-
ment is rotational one (type "a" of Table C.2 in Eurocode 7 2004); (3) the calculation
is based on the 1.1% wall rotation to generate half mobilised passive resistance
(0.5σP) of dense soil (Table C.2 of Eurocode 7 2004); (4) the passive earth pressure
coefficient is calculated based on Figure C.2.1 of Eurocode 7 2004 with soil internal
friction angle taken as 30◦ and the soil-wall friction angle taken as 20◦.

For the conventional approach, the system identification is performed using
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(A)

(B)

(C)

FIGURE 6.2: The integral bridge under consideration: (A) an illus-
trative cross section of the hybrid BEM-FEM approach, (B) an illus-
trative cross section of the conventional approach, and (C) an iso-
metric view of bridge model 1 using BEM-FEM, where the BEM re-

gion is green-colored.

eigenfrequency extraction while in the hybrid simulations, the resonant frequen-
cies of the coupled system are generated by applying one- or multi-directional
distributed load located at the deck. Six mode shapes that are considered in this
study are shown in Figure 6.3 for bridge model 4. For example, mode shape one
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FIGURE 6.3: Six mode shapes of the integral bridge considered in
this study, shown for bridge model 4.

is generated by uniform vertical distributed load while mode shape two is gen-
erated by the coupled left-right vertical distributed load. Load patterns 5 and 6
are horizontal uniform distributed loads in the transversal and longitudinal di-
rection, respectively. The magnitude of the distributed load is 1 Pascal. In each
activated mode shape, the displacement is measured at the degree of freedom
and the point at the deck, which represents the maximum response consistently.

6.4 Results and discussion

The results for the simulations with varying underlying soil for each bridge model
are presented in Figures 6.4, 6.5, 6.6, and 6.7. The results for simulations with
varying backfill are shown in Figures 6.8, 6.9, 6.10, and 6.11. In these figures, the
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natural frequencies for the corresponding mode shapes obtained from the con-
ventional approach are presented as discrete plots and scaled for visibility. Load
pattern five consistently generates two mode shapes: (1) rotational-dominant
mode shape, found in the mode shape generated by load pattern 2 (Figure 6.3b),
and (2) translational-dominant mode shape. No longitudinal translational mode
shape was obtained from the conventional approach due to the fixed restraints
used in the model.

For the bridge model with curved alignment, load pattern 1 generates two
mode shapes with closely spaced resonant frequencies. These mode shapes are
the 1st and 2nd mode shapes in Figures 6.3a and 6.3b, respectively. Compar-
ing Figures 6.4 and 6.6, it can be seen that the range of alteration of the res-
onant frequencies is lower on long-span bridge. For load patterns 1, 2, and
5, where the same movement mode is shared between both abutments, softer
underlying soil provides less restraining effect. Thus, lower resonant frequency
and higher damping are observed. These restraining effect patterns are less clear
in a shorter bridge for load patterns 3 and 4, where each abutment experiences
different movement modes. However, the pattern of the damping alteration is
still evident. An exception is found on the longitudinal mode shape generated
by load pattern six, where the higher horizontal restrain from stiffer soil yields
higher damping and frequency. The coupled system’s responses due to the load
patterns 1 to 4 are dominated by the stiffness of the superstructure. In contrast,
the responses due to load patterns 5 and 6 are controlled by the soil-structure in-
teraction, and thus, higher resonant frequencies alteration is observed from these
load patterns.

In Figures 6.8 and 6.10, the damping effect coming from softer backfill is clear
in load patterns 1, 2, and 4; the opposite effect is found in load patterns 5 and 6;
and no significant effect found from the response to load pattern 3. In all consid-
ered mode shapes, the alteration of the resonant frequencies due to the backfill
is less pronounced than the observed effect from the underlying soil. This is due
to the role of the wingwalls, which stiffness is much higher than the considered
backfill. Thus, they dominate the force transfer from the superstructure to the
underlying soil. In the mode shapes 5 and 6, where higher soil-structure interac-
tion is incorporated, the stiffer backfill provides higher damping.

These results highlight that the dynamic behaviour of a soil-structure system
with strong SSI, such as those in integral bridges (or integral abutment bridges), is
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6.4. Results and discussion

highly dependent on the underlying soil properties and the structure’s configura-
tion itself. As shown in the figures, the numerical prediction of this dynamic be-
haviour depends on the type of method and model used to represent the problem.
A relatively simple model with encastré grounding and frequency-independent
springs can provide a rough estimation of the dynamic behaviour. The identified
natural frequencies from such an approach can be taken with some safety mar-
gin. However, this approach is insufficient when a more accurate estimation of
the system’s natural frequencies and damping values is inquired, especially for
those with strong SSI. In practice, the identification of the dynamic characteris-
tic can significantly influence the design of the structure as well as the type of
vehicles serviced by the structure.
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Chapter 7

Application II: Simulations of
foundation-soil-foundation dynamic
interaction including damaged state
of geological material

7.1 Chapter overview

In this chapter, the developed hybrid BEM-FEM is applied to case studies of
foundation-soil-foundation interaction. In addition, the damaged state of the ge-
ological material is taken into consideration. The problem statement is given
in Section 7.2 followed by the description of the damage model in Section 7.3.
The details regarding the parametric study and discussion of the results are pre-
sented in Section 7.4. The content of this chapter is published in H.D.B. Aji, F.
Wuttke, P. Dineva (2021). "3D hybrid model of foundation-soil-foundation dy-
namic interaction". In: Z. für Angew. Math. Mech. (ZAMM) 101, e202000351. DOI:
10.1002/zamm.202000351.

7.2 Problem statement

In coordinate system Ox1x2x3, consider 3D finite geological region Ω1 which is
embedded in a semi-infinite elastic isotropic media Ω0 with transient dynamic
load generated by an embedded source at point X0(X01, X02, X03), see Figure 3.1.
The description of both domains, Ω0 and Ω1, is the same as in Section 3.2 follow-
ing Figure 3.1.
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(A) (B)

FIGURE 7.1: The problem geometry: (A) the geometry of the finite
region Ω1; and (B) two rectangular foundations embedded in the

top layer of Ω1.

The concrete geometry of the finite region Ω1 is given in Figure 7.1a. The fi-
nite region Ω1 consists of two layers: (a) layer 1 in the domain Ω1(L1) with bound-
aries of ΓF, Γint(L1), ΓS12; (b) and layer 2 in the domain Ω1(L2) with boundaries of
Γint(L2), ΓS12. Note that the normal vectors to the interface boundary between
both layers ΓS12 are equal in magnitude but opposite in sign. There are two iden-
tical rectangular foundations in the first layer with length b, width c and height
h. The distance between both foundations is d. The top sides of the left and right
foundation are free surfaces and are denoted as ΓF1 and ΓF2, while the embedded
surfaces are collected in ΓG1 and ΓG2, see Figure 7.1b. Material properties of the
geological semi-infinite zone Ω0 are density ρ0; Lamé moduli λ0, µ0; and wave ve-
locities CP0 and CS0 , while the material properties of both layers in the finite range
Ω1 are as follows: λ1, µ1, CP1 , CS1 for the layer one and λ2, µ2, CP2 , CS2 for the
layer two. The material properties of the foundations are denoted by λ f , µ f , CPf ,
and CS f .

Comparing Figures 3.1, 7.1a and 7.1b, it can be seen that the free-surface of
the finite region Ω1 denoted by ΓF in Figure 3.1 corresponds to ΓF = ΓF0 ∪ ΓF1 ∪
ΓF2 in Figure 7.1a, whereas ΓF0 is the free-surface outside the top sides of both
foundations. The interface contact boundary Γint between the finite zone Ω1 and
semi-infinite one Ω0 shown in Figure 3.1 is the surface Γint(L1)∪Γint(L2), see Figure
7.1a.

In resume the boundaries of both zones are as follows:
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7.3. Damage model description

• In the finite near-field geological zone Ω1:

– The external boundary is ΓΩ1 = Γint ∪ ΓF = Γint ∪ ΓF0 ∪ ΓF1 ∪ ΓF2,
where Γint = Γint(L1) ∪ Γint(L2).

– The internal boundary is ΓS12 ∪ ΓG1 ∪ ΓG2.

• In the semi-infinite far-field geological zone Ω0, the boundary is ΓΩ0 = ΓB ∪
Γint.

The current work aims to solve the 3D elastodynamic problem for the above-
described geometry and to evaluate the wave field in the finite layered zone Ω1

with two elastic foundations taking into account the influence of the wave field
in the dynamically loaded semi-infinite region, type and characteristics of the
dynamic source, layering effect in the finite zone, foundation-soil-foundation in-
teraction effect, and soil damaged state.

The equations of motion for Ω1 and Ω0 are given in equations (2.73) and (3.1),
respectively. Point source approximation such as in (3.1) is a simple, convenient
model to simulate weak seismic events, such as aftershocks or faults with negligi-
ble size, compared to the dimension of the seismic zone, see Nakano, 1923; Pour-
sartip, Fathi, and Tassoulas, 2020. Other approaches for including the seismic
loads in the computational model are the following: (i) simulating the seismic
source as a double-couple, see Stein and Wysession, 1991; (ii) simulating the fault
rupture as a double-couple sequence (dynamic rupture model), see Galvez et al.,
2014; Aki and Richards, 1980; (iii) introducing the effects of the seismic source to
the model indirectly, i.e., this is the case of incident wave loaded the boundary of
the object under consideration, see Manolis et al., 2017.

The computation of the hybrid BEM-FEM model considering an embedded
transient dynamic source follows those described in Section 3.2 and Section 2.6
using tied contact pair detailed in Section 3.5, see Figure 3.2.

7.3 Damage model description

The damaged state of the geological material is described by the damage model
proposed in Chuhan and Gross, 1998, where the dispersion phenomenon of elas-
tic waves in a solid permeated by a random distribution of micro-cracks is consid-
ered. The material characteristics of solids can be significantly affected by micro-
cracks which give rise to stiffness degradation of the solid compared to its orig-
inally uncracked state. A radical difference between wave fields in cracked and

139



Chapter 7. Application II: Simulations of foundation-soil-foundation dynamic
interaction including damaged state of geological material

uncracked media is presented by two phenomena referred to as wave disper-
sion and wave attenuation. In materials with dispersed micro-cracks, the solid
is seen by the incident wave as an attenuated and dispersive continuum, even
though the cracked solid is still perfectly elastic, see Chuhan and Gross, 1998.
The essence of the damage model proposed in Chuhan and Gross, 1998, and its
advisability for solving the above-defined foundation-soil-foundation interaction
problem will be briefly discussed here.

There are the following basic assumptions: (a) the solid is homogeneous,
isotropic, and linear elastic with distributed slit micro-cracks; (b) the location and
orientation of micro-cracks is random; (c) the dilute approximation is adopted,
i.e., geometrical and dynamical interactions amongst individual cracks are ne-
glected; (d) the crack-faces are not in touch, and the traction-free boundary condi-
tion is satisfied; and (e) all slit micro-cracks are identical with the same half-length
a∗. This approximation has the consequence that the analysis is only appropriate
for small crack densities, denoted by ncr, and less favourable for an intermedi-
ate and dense concentration of micro-cracks. However, as noted in Chuhan and
Gross, 1998, the dilute approach in most current problems known in material sci-
ence should be entirely adequate. From a practical point of view, the significance
of the dilute approximation is that one can use explicit formulas for computing
the attenuation coefficient and the effective wave velocity rather than resort to
other cumbersome models.

The effective medium approach is applied based on homogenization by us-
ing a representative volume element (RVE), large enough compared to the di-
mensions of the micro-cracks and small enough compared to the solid dimen-
sions. The RVE should be able to show the microscopic details and represent
the cracked solid’s overall average behavior. A statistically homogeneous elastic
solid presents the original heterogeneous cracked solid with macroscopic isotropy,
with the same overall average response as the original one. The effective medium
of the cracked solid remains linear, causal (overall average response of the effec-
tive medium can be influenced only by past events), and passive (no energy can
be created within the effective solid) as in its originally uncracked state. As in the
case of visco-elastic wave propagation in a homogeneous material, the overall av-
erage dynamic response can be described by a complex and frequency-dependent
wave number k(ω), defined by ke f f (ω) = ω/Ce f f (ω) + iαe f f (ω). Once the com-
plex wave number ke f f (ω) of the effective medium has been obtained, the effec-
tive wave phase velocity Ce f f (ω) = ω/ℜ[ke f f (ω)] and the attenuation coefficient
αe f f (ω) = ℑ[ke f f (ω)] can be defined by taking the real and imaginary part of
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FIGURE 7.2: Normalized effective wave phase velocities versus ksa∗

in (A) and (B); and normalized attenuation coefficient ᾱ versus ksa∗

in (C), after Chuhan and Gross, 1998.
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ke f f (ω). In Chuhan and Gross, 1998, both the theory of Foldy Foldy, 1945 and the
causal approach based on Kramers, 1927; Kronig, 1926, relations are applied to
define the complex effective wave characteristics ke f f (ω), Ce f f (ω) and αe f f (ω),
respectively. These effective complex characteristics are obtained in Chuhan and
Gross, 1998, via the help of the BEM numerical procedure for the calculation of
scattering cross-section of a single micro-crack denoted by γsc. The coefficient γsc

describes the amount of energy lost by an incident wave due to its scattering by
the micro-crack. For the aim of the present work, the authors used the results
in Chuhan and Gross, 1998, for the case of randomly oriented slit cracks but un-
der the assumption of a small attenuation coefficient. Figures 7.2a, 7.2b and 7.2c
show the normalized effective wave phase velocities Ce f f

P /CP, Ce f f
S /CS and nor-

malized attenuation coefficient ᾱ = 4αe f f a∗/πεcr versus ksa∗, where ks = ω/CS;
CP and CS are the longitudinal and shear wave velocities of the uncracked solid;
and εcr = (4n/π)(a∗)2 is the crack-density parameter introduced in Budiansky
and O’connell, 1976.

It can be seen from Figures 7.2a to 7.2c that when the dimensionless wave
number ksa∗ belongs to the interval (0.0, 0.5], then the normalized attenuation
coefficient ᾱ belongs to the interval (0.0, 0.05], the normalized effective wave ve-
locity Ce f f

P /CP belongs to the interval [0.745, 0.69] at εcr = 0.2, and the normalized
effective wave velocity Ce f f

S /CS belongs to the interval [0.865, 0.845] at εcr = 0.2.
Thus, at the mentioned frequency interval (0.0, 0.5], the imaginary part αe f f (ω) of
the complex wave number Ke f f (ω) is negligibly small compared with its real part
ω/Ce f f (ω). The numerical results concerning the damaged geological material
are obtained in such a frequency interval providing a negligible small attenua-
tion coefficient. The effective material characteristics (elastic moduli and density
for damaged material case) are calculated for a fixed crack-density parameter εcr

following results in Figure 7.2.

7.4 Parametric study and discussion of the results

The aim of this section is to reveal the complex character of the 3D wave field
that develops in a finite layered soil region containing two elastic foundations
and rests in a homogeneous elastic isotropic half-space with an embedded source
of dynamic transient excitation. The parametric study consists of two parts. The
first part considers a short-range dynamic excitation of a small layered finite re-
gion with two embedded foundations (case study 1). It is followed by the second
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FIGURE 7.3: The time history (A) and amplitude spectrum, normal-
ized to the maximum absolute value, (B) of the transient excitation.

part, a study regarding a long-range dynamic excitation case of two foundations
embedded in a multi-layered sedimentary basin (case study 2).

It is assumed that the time history function of the dynamic force input at
the embedded source follows the 90-degree component of the displacement time
history recorded by Newhall station during the Northridge earthquake on 17 Jan-
uary 1994. The record has a peak displacement of 17.595 cm and is available at
www.strongmotioncenter.org. To reduce the computational cost, the time history
is trimmed to include only the record in the time range t = [1, 26] s. It is subse-
quently filtered using a band-pass of 0.1-25 Hz and then detrended. After that, it
is transformed into the Fourier domain and normalized by the amplitude spec-
trum’s maximum absolute value. The frequency range considered for the analysis
is [0, 8] Hz with a resolution of 0.0488 Hz. The time history function’s time step
and the subsequent inverse-FFT results are 0.02 s. The treated time history and
the normalized absolute amplitude spectrum are shown in Figure 7.3. Note that
the time-function of the seismic record is used formally as a time-function of the
transient dynamic excitation concentrated in a defined below point X0.
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TABLE 7.1: The material properties considered for the parametric
study of case 1.

Region λ (MN/m2) µ (MN/m2) ν ρ (kg/m3)

Ω0 1 050.00 525.00 1/3 2 100
Ω∗

0 392.82 392.82 0.25 2 100
Ω1(L1) 65.63 43.75 0.30 1 575
Ω1(L2) 105.00 105.00 0.25 1 680

Foundations 6 666.67 10 000.00 0.20 2 500
Foundations* 388.89 583.33 0.20 2 500
Foundations** 95.83 143.75 0.20 2 500
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FIGURE 7.4: The model geometry for the parametric study of case
1: (A) the FEM region, (B) the BEM region, and (C) the whole BEM-

FEM model.

7.4.1 Case study 1

The geometry of the model of the first case study is shown in Figure 7.4. The
finite soil region Ω1 (Figure 7.4a) is a cuboid with widths of 8 m and 5 m in x1

and x2 directions, respectively. It consists of two layers namely Ω1(L1) at the top
and Ω1(L2) at the bottom. The thicknesses of Ω1(L1) and Ω1(L2) layers are 2.5 m
and 1.5 m, respectively. Two identical elastic foundations with dimensions of 1.0
m x 1.0 m x 1.0 m are embedded in Ω1(L1) with distance d between them. The
free surface of the half-space discretized in the BEM model is 2 m at the shortest,
which corresponds to a ratio βS of 31.25.

The material properties considered for the parametric study are laid out in
Table 7.1 where the Lamé moduli, Poisson’s ratios, and the densities are given.
Two states of geological material in the semi-infinite region Ω0 are compared:
undamaged and damaged. The latter is marked Ω∗

0 in Table 7.1 and the effective
phase velocities ratios Ce f f

P /CP and Ce f f
S /CS are 0.749 and 0.865, respectively, see

Figure 7.2, at the crack-density parameter εcr = 0.2 and at ksa∗ close to zero.

The numerical model is discretized using 400 quadratic hexahedral finite el-
ements, 348 active quadratic quadrilateral boundary elements, and 104 dummy
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(A)

(B)

FIGURE 7.5: Normalized amplitudes of displacement components
in case study 1 along the line x2 = 0, x3 = 0 versus x1

b and versus
time t (s) in the case of undamaged soil in the semi-infinite region
Ω0 with embedded dynamic source 1 and a separation distance be-

tween foundations d = 2 m: (A) |u1| and (B) |u3|.

boundary elements. The maximum element size is 1 m which is approximately
1/20 of the shortest shear wavelength λS of the materials in Table 7.1 when con-
sidering the frequency of 8 Hz as the highest input component.
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FIGURE 7.6: Comparison of normalized displacement component
u3 in case study 1 versus time t (s) between results for undamaged
and damaged soil in the semi-infinite region Ω0 with embedded dy-
namic source 1 and a separation distance between foundations d =

2 m at observer point x(0, 0, 0).
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(A)

(B)

FIGURE 7.9: Normalized amplitudes of displacement component
|u2| in case study 1 along the line x1 = 0, x3 = 0 versus x2

b and
versus time t (s) in the case of undamaged soil in the semi-infinite
region Ω0 with embedded dynamic source 1 and foundations ar-
rangement as follows: (A) arrangement 1 with d = 1 m and (B) ar-

rangement 1 with d = 0.25 m.

Two different locations of the embedded dynamic source with amplitude
f (Ω0)
i (0, 0, 1010 N) are used in the simulations denoted as dynamic source 1 with

location X0(0, 0, -10 m) and dynamic source 2 with location X0(1 m, -0.5 m, -8 m).
The following arrangements of both foundations are considered: (a) arrangement
1, where the line connecting the centers of the surface walls of both foundations
is parallel to the axis Ox1 and the distance between them is d = 2 m, 1 m, 0.5
m and 0.25 m; (b) arrangement 2, where the line connecting the centers of the
surface walls of both foundations is parallel to the diagonal of the free-surface of
the finite region Ω1 and d = 1 m.

Figures 7.5-7.8 compare the results for undamaged and damaged geological
material in the semi-infinite region Ω0, at arrangement 1 of the foundations with
d = 2 m and in the case of dynamic source 1. Synthetic seismograms at observer
points along the line x2 = 0, x3 = 0 are shown in Figure 7.5. Note that the
normalized amplitudes of displacement component u2 are zero along the lines
x1. This figure shows the absolute displacement component normalized by the
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maximum value of the free-field displacement from the same dynamic source
one and measured at x(4 m, 0, 0), x(0, 2.5 m, 0) and x(0, 0, 0) for u1, u2 and u3,
respectively. The seismograms in the case of the damaged state follow a similar
form to that of the undamaged case but with around 30% increase in amplitudes
as shown by the plot of the normalized displacement component u3 versus time at
observer point x(1.5 m, 0, 0), see Figure 7.6. Normalized displacement amplitudes
along the line x2 = 0, x3 = 0 are shown in Figure 7.7 where the results are focused
around the displacement peak in the time interval t = [4.0, 8.62] s.

Figure 7.8 illustrates the effect of the damaged state of the semi-infinite geo-
logical region Ω0 on the normalized displacement amplitudes |ui| along the free-
surface plane x3 = 0 of the finite region Ω1 at a fixed time moment t = t∗, where
t∗ is the fixed time moment when the response displacement component u3 has
its peak.

Figure 7.9 presents the arrangement effect at different separation distances
between foundations on the second displacement component |u2| along the line
x1 = 0, x3 = 0. The results show that when the foundations are at a distance
of 0.25 m from each other, significant change in the displacement wave field is
visible. Figure 7.10 illustrates the differences in the displacement component u2

along the plane x3 = 0 in the finite region Ω1 at a fixed time t∗ between the
results of arrangement 1, d = 1 m; arrangement 2, d = 1 m; arrangement 1,
d = 0.5 m; and arrangement 1, d = 0.25 m. Both Figures 7.9-7.10 are obtained for
the undamaged state of Ω0 and show that the types of foundation arrangement
and distance between them are responsible factors for the dynamic response.
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FIGURE 7.14: Normalized displacement components ui in case
study 1 at observer point x(1 m, 0, 0) versus time t (s) in the cases
of undamaged and damaged soil in the semi-infinite region Ω0 with
dynamic source 1 and source 2 and a separation distance between

foundations d = 2 m: (A) u1, (B) u2 and (C) u3.

Further, we consider elastic foundations with strongly reduced stiffness
properties due to aging, weathering, cracking, damage or other deteriorating ef-
fects, see Pitilakis and Karatzetzou, 2014. The following reduced elastic proper-
ties for masonry foundation are given: Poisson’s ratio 0.2 and Young’s modulus
E = 1400 MPa (Foundations∗ in Table 7.1) and 345 MPa (Foundations∗∗ in Table
7.1). These foundation characteristics are used in Figures 7.11-7.13. These figures
depict normalized amplitudes of displacement components |u1| (Fig. 7.11), |u2|
(Fig. 7.12) and |u3| (Fig. 7.13) along the free-surface of the finite region Ω1 at a

154



7.4. Parametric study and discussion of the results

fixed time moment of the peak of the displacement component u3 in the cases of
the foundations’ arrangement 1, fixed separation distance d = 1 m and the fol-
lowing elastic properties of both foundations: (a) E = 24000 MPa, (b) E = 1400
MPa and (c) E = 345 MPa. Note that for the other considered cases presented
in Figures 7.5-7.10 and Figure 7.14, the elastic property of the foundations is E =

24000 MPa (Foundations in Table 7.1).

Normalized displacement components ui at observer point x(1, 0, 0) for the
model with foundations arrangement one and d = 2 m due to the dynamic signal
coming from the dynamic source one and source two are compared in Figure 7.14.

7.4.2 Case study 2

The geometry of the model of the second parametric case study is shown in Fig-
ure 7.15 where a sedimentary basin with a half-sphere geometry with a diameter
of 40 m is considered. The basement rock of the basin is represented as a semi-
infinite region Ω0, and the finite region Ω1 consists of 4 layers of elastic isotropic
sediment. Two identical elastic foundations with a size of 6 m × 6 m and thick-
ness of 1 m are embedded in the top layer with a separation distance of 2 m. Cut
views of the model in the ABAQUS pre-processor are presented in Figure 7.16.
The largest element size in the BEM and FEM models is 1.5 m, corresponding to
1/13 of the shortest shear wavelength. The length of the discretized free surface
is 6 m which leads to βS of 416. Other than consideration regarding the ratio βS,

FIGURE 7.15: The model geometry for parametric case study 2.
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TABLE 7.2: The material properties considered for the parametric
study of case 2.

Region λ (MN/m2) µ (MN/m2) ν ρ (kg/m3)

Ω0 1 050.00 525.00 1/3 2 100
Ω∗

0 392.82 392.82 0.25 2 100
Ω1(L1) 62.63 43.75 0.30 1 575
Ω1(L2) 392.82 392.82 0.25 2 100
Ω1(L3) 62.63 43.75 0.30 1 575
Ω1(L4) 105.00 105.00 0.25 1 680

Foundations 6 666.67 10 000.00 0.20 2 500

(A) (B)

(C)

FIGURE 7.16: Cut views of the model of case study 2 in
ABAQUS/CAE: (A) the BE model, (B) the FE model, and (C) the

complete model.

this length is taken to avoid creating a thin beam polygon which leads to numer-
ical inaccuracy, either in the static or dynamic case. The material properties for
each layer in the finite region Ω1, the foundations, the semi-infinite region Ω0

and its damaged state Ω∗
0 are given in Table 7.2. The same assumption is taken

for the damaged state of the basement rock as the one for case study 1 at fixed
crack-density parameter εcr = 0.2.
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(A)

(B)

FIGURE 7.17: Normalized amplitudes of displacement |ui| in case
study 2 along the line x2 = 0, x3 = 0 versus x1

b and versus time t (s)
in the case of undamaged basement rock in the semi-infinite region

Ω0 with embedded dynamic source 3: (A) |u1| and (B) |u3|.
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FIGURE 7.18: Comparison of the normalized displacement compo-
nent u3 at observer point x(4 m, 0, 0) in case study 2 versus time t (s)
between results for undamaged and damaged basement rock in the
semi-infinite region Ω0 considering the embedded dynamic source

3.

The dynamic source, designated as dynamic source 3, is set at location X0(0,
0, -5000 m) with amplitude of f (Ω0)

i (0, 0, 1012 N) and using the same time function
shown in Figure 7.3. The normalized amplitudes of displacement along the line
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FIGURE 7.19: Comparisons of the normalized displacements u1 in
case study 2 versus time t (s) between results for the cases where
both foundations have the same elastic properties (E = 24000 MPa)
and different elastic properties (Ele f t = 24000 MPa, Eright = 345
MPa). Embedded dynamic source 3 is considered. The displace-
ments are measured at the following observer points: (A) x(-4 m, 0,

0); (B) x(1 m, 0, 0); c) x(7 m, 0, 0).

x2 = 0, x3 = 0 versus time t (s) are shown in Figure 7.17 while comparison
between the results for undamaged and damaged states of the basement rock
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at observer point x(4 m, 0, 0) is presented in Figure 7.18. The latter figure also
shows the propagating wave’s arrival time delay in the damaged state due to its
lower wave velocity. Figure 7.19 draws normalized amplitudes of displacement
u1 at observer points x(-4 m, 0, 0), x(1 m, 0, 0) and x(7 m, 0, 0) in the case both
foundations have different elastic properties, i.e., Ele f t = 24000 MPa for the left-
side foundation and Eright = 345 MPa for the right foundation. The reference
values used for normalization are taken from the displacement result of the free-
field model at points x(20 m, 0, 0) and x(0, 0, 0) for u1 and u3, respectively.

7.5 Chapter summary

This chapter presents case studies involving foundation-soil-soundation interac-
tion and dilute approximation of damaged geological media and foundation. All
results of the parametric study plotted in Figures 7.5-7.19 reveal some trends
which can be summarized below.

(a) Obviously, the phenomenon of dynamic site effects can be seen in most of
the figures presented in this section, see Figures 7.5-7.11, 7.17-7.19. This is
due to the well-known fact that the wave field that develops at the free-
surface results from a complex interplay of geometric and material factors.
Most figures show a great difference between the displacement wave zones
near and far away from the foundations. More specifically, earthquakes and
other dynamic events are triggered by source characteristics that release en-
ergy in the form of waves. These waves filter through geological media
on their way to the free surface. They are greatly affected by the material
properties and structure of the soil layers with embedded engineering struc-
tures and the semi-infinite region under them, including local topography.
As a result, dynamic signals’ spatial and temporal variation differs consid-
erably for nearby stations in the same locality and even for the same dy-
namic event. To date, it has been proven difficult to incorporate site effects
in the engineering design of underground structures because of the sheer
complexity of the problem. This partially reflects in the relative paucity of
numerical models capable of handling irregular site geometry, multiple soil
deposits, and the availability of underground engineering facilities.

(b) The local geological soil conditions (layering or soil damage) change the
characteristics of the surface dynamic response. The damaged state of the
soil material provokes two base phenomena, wave attenuation and disper-
sion, accompanied by decreasing soil stiffness. The effect of the damaged
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state of the soil is visible in almost all of Figures 7.5-7.8, 7.14 and 7.18.
All numerical results reveal the influence of the soil micro-structure state
change on the seismic wave picture. The maximal percentage differences
observed between displacements obtained for undamaged and damaged
soils in Figure 7.7 are 30.67% and 34.18% for u1 and u3, respectively, while
the differences between the displacements in Figure 7.14 are 30.18%, 39.88%
and 34.31% for u1, u2 and u3, respectively. The maximum difference ob-
served in Figure 7.18 is 74.80%.

(c) The sensitivity of the dynamic response to the dynamic source location can be
seen in the obtained results in Figure 7.14 for the observer point x(1, 0, 0) in
the cases of two different dynamic source locations when all the rest model
parameters are fixed. The source location strongly changes the 3D dynamic
response in the same observer point, especially when it combines with the
damaged state of the soil.

(d) In the whole system, elastic properties of both foundations also plays an im-
portant role. This is illustrated in Figures 7.11-7.13. The wave pictures for
all three displacement components along the free surface of the finite lo-
cal geological region reveal a strong sensitivity to the foundation stiffness
reduction. There exist observer points for which the foundation stiffness
reduction leads to 50% increase in the seismic response. Figure 7.19 also
illustrates that the difference in elastic properties of both foundations plays
an important role in the dynamic response of the region under considera-
tion.

(e) The effect of the foundation-soil-foundation dynamic interaction is illustrated in
Figures 7.9-7.10, where it is visible that different geometrical arrangements
of both foundations have a significant impact on the wave field along the
free-surface. The results obtained in the cases of foundations arrangement
1 with separation distances between foundations of 1 m, 0.5 m, and 0.25 m
clearly illustrate the influence of foundation-soil-foundation interaction on
the dynamic response in Figures 7.10a, 7.10c and 7.10d. The geometry of
the foundations’ diagonal disposition at a fixed distance of 1 m is projected
in the wave picture shown in Figure 7.10b. The wave zone near the founda-
tions accurately and visibly reflects the geometry of their mutual location in
all Figures 7.10a, 7.10b, 7.10c, and 7.10d.
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Chapter 8

Application III:
Structure-soil-structure interaction in
an arbitrary layered half-space

8.1 Chapter overview

This chapter discusses the application of the developed hybrid BEM-FEM, com-
bined with the layer-wise condensation method, to case studies of structure-soil-
structure interaction, taking into account the influence of arbitrary layered half-
space. The introduction and problem statement are given in Section 8.2. The nu-
merical simulations and discussion of the results are presented in Section 8.3. The
content of this chapter is published in H.D.B. Aji, F. Wuttke, P. Dineva (2022). "3D
structure-soil-structure interaction in an arbitrary layered half-space". In: Soil Dy-
namics and Earthquake Engineering 159, 107352. DOI: 10.1016/j.soildyn.2022.107352.

8.2 Introduction and problem statement

In most SSI studies, only the coupling between the structure and the neighbour-
ing soil is considered, and dynamic interaction with other structures/foundations
is often ignored. The problem of the interaction of adjacent structures through the
underlying and surrounding soil, referred to as Structure-Soil-Structure Interac-
tion (SSSI), has received less attention. The pioneering works in this field are the
papers by Wong and Trifunac, 1975; Triantafyllidis and Prange, 1987; and BEM
models in Qian and Beskos, 1995; Qian and Beskos, 1996; Karabalis and Moham-
madi, 1998. The hybrid FEM-BEM models of SSSI are developed in Wang and
Schmid, 1992; Qian, Tham, and Cheung, 1996; Padrón, Aznárez, and Maeso, 2009;
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Álamo et al., 2015. Interesting results for the aseismic design of structures are pre-
sented in Knappett, Madden, and Caucis, 2015, and Aldaikh et al., 2016, where
physical modeling of the SSSI problem is used as a research tool and reveals its ef-
fect on the dynamics of adjacent structures. Discrete (reduced-order) models have
been effectively applied in evaluating the SSSI effects on the dynamic response of
buildings, see Mulliken and Karabalis, 1998; Alexander, Ibraim, and Aldaikh,
2012; Vicencio and Alexander, 2018a; Vicencio and Alexander, 2018b; Vicencio
and Alexander, 2019; Vicencio and Alexander, 2021. In Vicencio and Alexan-
der, 2021, a group of buildings or a city block under seismic excitation in 3D is
considered. The authors propose a new methodology based solely on defining
auto-rotational and inter-rotational spring coefficients for the elastic half-space.
The only input informations required are the soil class, the height, footprint di-
mensions, and the planar coordinates of the buildings. The response of idealized
building clusters during earthquakes, their effects on the ground motion, and
how individual buildings interact with the soil and each other is addressed in Is-
biliroglu, Taborda, and Bielak, 2015. Numerical results show that the SSSI effects
vary with the number and dynamic properties of the buildings, their separation,
and their impedance with respect to the soil.

The problem statement is as follows. In a coordinate system Ox1x2x3, con-
sider a finite geological region Ω1 which is located in the first layer of a semi-
infinite elastic isotropic layered media Ω0 with an embedded transient dynamic
source at point X0(X01, X02, X03), see Figure 4.1.

FIGURE 8.1: The finite region Ω1 with two structures and embedded
foundations.

The interface boundary between both regions Ω1 and Ω0 is with notation
Γint. Note that Γint for each region has the opposite normal vector. The finite re-
gion Ω1 contains two structures with embedded identical rectangular rigid/flexible
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foundations with length b, width c and height h. The distance between both foun-
dations is d, see Figure 8.1. The top sides of the left and right foundations are free
surfaces and are denoted as Γ f 1 and Γ f 2, while the embedded surfaces are col-
lected in notations Γg1 and Γg2. The external boundary of the finite region Ω1 is
ΓΩ1 = Γint ∪ ΓF, where ΓF = Γ f 0 ∪ Γ f 1 ∪ Γ f 2. Here, Γ f 0 is the free-surface in Ω1

outside the top sides of both foundations. The internal boundaries inside zone
Ω1 are the boundaries Γg1 ∪ Γg2. Although the rectangular foundation shape is
defined, an arbitrary geometry of the foundation could be considered as well.
The foundations support two structures tied to the foundation’s surface along
their contact edge or surface. For simplicity, the structures are presented as a
single-degree-of-freedom column model in Figure 8.1. However, a multi-degree-
of-freedom system with any type of stress/displacement elements available in
ABAQUS or combination of those elements can be considered.

Two foundations’ conditions are considered: rigid and flexible. In the rigid
case, all the degrees of freedom of the foundations’ solid elements are tied to a
single reference node. For the structures, only the flexible state is considered.

The external semi-infinite zone Ω0 is layered with N + 1 homogeneous elas-
tic isotropic layers Ω0k, k = 1, 2, ..., N + 1, with infinitely extended boundaries.
These layers are with arbitrary geometry of their boundaries Γi, i = 1, 2, ..., N + 1,
where the boundary ΓN+1 is the boundary between the Nth layer and the semi-
infinite in depth (N + 1)th layer containing the dynamic source X0. The free-
surface boundary Γ1 is the top boundary of the first layer where the finite re-
gion Ω1 is located. Note that notation Γ1 is the free surface of the first layer but
outside the surface ΓF, which is the free surface of the region Ω1. The bound-
ary of the semi-infinite region Ω0 is defined as the boundary of all N + 1 lay-
ers, i.e., ΓΩ0 = ΣN+1

k=1 ΓΩ0k . The boundary of the first Ω01 layer is denoted as
ΓΩ01 = Γ1 ∪ Γint ∪ Γ2, the boundary of the Nth layer is ΓΩ0N = ΓN ∪ ΓN+1 and
the boundary of the N + 1 layer ΓΩ0N+1 = ΓN+1. Note that the layers [1, N] are
infinite along Ox1 and Ox2 axes and are finite only in Ox3 direction.

The material properties of the geological semi-infinite zone Ω0 are density
ρ0k, Lamé constants λ0k, µ0k, longitudinal wave velocity CP0k and shear wave ve-
locity CS0k , where k = 1, 2, ..., N + 1. The material properties of the finite range Ω1

are λ1, µ1, CP1 , and CS1 , while the material properties of the foundations and the
structures are denoted by λ f , µ f , CPf , and CS f .

The initial boundary-value problem for wave propagation in the geological
region under consideration consists of the governing equation in 3D elastody-
namics, initial conditions, and boundary conditions as discussed in Section 4.
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The computation of the layered half-space, the assembly of the BEM and FEM
matrices and vectors, and the computation of the hybrid BEM-FEM model follow
the procedures described in the same section.

8.3 Numerical simulations

Two case studies are presented. The 1st case study considers a wave propaga-
tion problem through a layered half-space with irregular interfaces extending to
infinity, in which a finite region Ω1 is located, see Figure 8.3. Two containment
structures with embedded foundations are located in the finite zone, see Figure
8.4. The ground and the structures are exposed to low-frequency vibrations emit-
ted by a close dynamic source. In the 2nd case study, the same structures located
in a finite region are considered. This finite zone rests on a layered media in
which curved boundaries reach the free surface. A long-distance dynamic source
radiating transient waves is located in the seismic bed, see Figure 8.11.

Two types of time function f (t) are considered. The 1st one (type A) is a
Ricker wavelet which has frequency range of [0, 5] Hz, a dominant frequency of
2 Hz, and a time-delay of 1 s. After the application of FFT, the amplitude spec-
trum is normalized to the maximum absolute value (Figures 8.2a, 8.2b). The 2nd

time function (type B) is based on the 90-degree component of the displacement
time history recorded during the Northridge earthquake 1994 by Newhall station,
which is available at http://www.strongmotioncenter.org. The time history has
a time interval of 0.02 s, and it is trimmed to only include the record in the time
range t = [1, 26] s to reduce computation time (Figures 8.2c, 8.2d). A transfer
function is applied to adjust the ground motion record to the depth of the point
source X0.

8.3.1 Case study 1

The geological profile of the supporting soil is given in Figure 8.3 where four
layers are presented. The finite region containing both structures is in the top sur-
face layer. Each of the interfaces between the layers is curved about a line parallel
to x2 axis with different radii and extends to infinity. The finite region Ω1 is a
cuboid with a width of 400 m and a depth of 25 m. The BEM region’s free surface
is 1 km × 1 km. A cut view of the model in ABAQUS/CAE is given in Figure
8.5. Two foundations are embedded in the top layer. The foundations are 60 m
× 60 m wide and 3.5 m thick. The separation distance between the foundations
d is 40 m. Foundations of this size can be applied to tanks, cooling towers, large
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FIGURE 8.2: The time functions considered for the case studies: (A)
the time history and (B) amplitude spectrum, normalized to the
maximum absolute value, of the Ricker wavelet; (C) the trimmed
time history of Northridge earthquake 1994 (90-degree displace-
ment component); and (D) its amplitude spectrum, after application
of a transfer function and normalization to the maximum absolute

value.

FIGURE 8.3: The model geometry of case study 1

industrial chimneys, water towers, nuclear reactors, etc. The foundations under
consideration support structures common for nuclear containment purposes. The
geometry of the structures is 55 m high, a combination of a cylinder and a dome.
The cylinder has a radius of 20 m and a height of 35 m, while the dome has the
same radius and height of 20 m. The wall of the structures is 1.6 m thick, see
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FIGURE 8.4: The geometry of two containment structures with em-
bedded spread foundations in the finite region Ω1 in case studies 1

and 2.

FIGURE 8.5: A cut view of the model of case study 1 in
ABAQUS/CAE.

Figure 8.4. The two structures will be referred to as the west and east structures
by taking the x2 direction as the north.

The material properties of the soil layers, foundations, and structures are
laid out in Table 8.1. Two cases of material properties are considered: (A) Case 1a,
when the material properties of the finite region Ω1 are the same as the properties
of the layer Ω01 and this describes the SSI of both structures resting on the layered
half-space; (B) Case 1b, when the material properties of the layers Ω01 and Ω03 are
different from those of the finite region Ω1. This presents the case of SSI of both
structures located in the finite geological region, which rests on a layered half-
space. No structural damping is considered for this case study, although there is
no limitation.
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TABLE 8.1: The material properties considered for the parametric
study of case 1.

Region λ (MN/m2) µ (MN/m2) ν ρ (kg/m3)

Ω01 = Ω03 (case 1a) 825.00 412.50 1/3 1 650
Ω01 = Ω03 (case 1b) 1 072.50 536.50 1/3 2 145

Ω02 1 600.00 1 600.00 0.25 2 500
Ω04 2 760.00 4 140.00 0.20 2 875
Ω1 825.00 412.50 1/3 1 650

Structures and foundations 9 722.22 14 583.33 0.20 2 500

The whole domain under consideration is exposed to a dynamic excitation
emitting from a point source at X0(-100 m, 0, -230 m). The time function is a
Ricker wavelet (type A, Figures 8.2a & 8.2b) with a frequency range of [0, 5] Hz,
duration of 10 s, and time resolution of 0.01 s. In the Fourier domain, the ampli-
tude vector is f (Ω0)

i (108 N, 0, 0) and the frequency resolution is 0.1953 Hz. The
mesh element sizes of the BEM region and the soil part of the FEM region are 1/5
and 1/10, respectively, of the shortest wavelength, while the mesh element size
of the structures is 1/40 of the shortest wavelength. The foundations are meshed
using 702 hexahedral solid elements, and the containment structures are meshed
by 1161 quadrilateral shell elements.

Figure 8.6 shows synthetic seismograms of the horizontal displacement u1

at observer points along the lines x2 = x3 = 0 and x1 = x3 = 0 obtained for
case 1a and case 1b of material properties. The models for flexible foundations
without and with structures are considered. Both models give different wave
pictures, and the seismic response’s dependence on the surrounding soils’ ma-
terial properties is visible. Figure 8.7 shows the synthetic seismograms of the
displacement component u3 for case 1a of material properties. A free-field ho-
mogeneous half-space model with material properties of the lowest layer Ω04

is considered a reference model. The maximal displacements obtained at point
x(0, 0, 0) for the case of the reference model are used for normalization in these
figures. Thus, Figures 8.6-8.7 illustrate the wave amplification in the geological
region due to the arbitrary layering in the far-field zone and due to the effect of
the inertial soil-structure interaction by comparing the results for flexible founda-
tions without and with structures. The strong influence of the surrounding soil
on the structure-soil-structure interaction phenomenon is clearly shown.

Figures 8.8-8.10 illustrate the time-dependent displacement components u1
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(A) (B)

(C) (D)

(E) (F)

(G) (H)

FIGURE 8.6: Normalized displacement component u1 along the lines
x2 = x3 = 0 (Figs. A, B, C, and D) and x1 = x3 = 0 (Figs.E, F,
G, and H) for case study 1 with the material properties of case 1a
(Figs. A, B, E, and F) and case 1b (Figs. C, D, G, and H) under the
following conditions: (Figs. A, C, E, and G) flexible foundations
without structures and (Figs. B, D, F, and H) flexible foundations

with structures.
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(A) (B)

(C) (D)

FIGURE 8.7: Normalized displacement component u3 along the lines
x2 = x3 = 0 (Figs. A, B) and x1 = x3 = 0 (Figs. C, D) for case 1a
under the following conditions: (Figs. A, C) flexible foundations
without structures and (Figs. B, D) flexible foundations with struc-

tures.

and u3 of the west structure’s tip relative to its center-base point and the corre-
sponding frequency dependent amplitudes for different heights of the west struc-
ture. Structures heights of 55 m (Figure 8.8), 32 m (Figure 8.9), and 87 m (Figure
8.10) are considered, which correspond to pseudo-natural frequencies fwest of 5.59
Hz, 10.71 Hz, and 2.85 Hz, respectively. The material properties are as in the case
1a. These pseudo-natural frequencies are obtained by conventional frequency ex-
traction analysis of the model containing the foundation and the structure sans
the soil and by applying fixed displacement boundary conditions on the founda-
tion.

The results obtained by the model with only the west structure are compared
to those obtained by the models with the following types of the east structure: (1)
the east structure has an equal natural frequency to the west structure, feast =

fwest; (2) the east structure has a natural frequency approximately twice that of
the west one, feast ≈ 2.0 fwest; and (3) the east structure has a natural frequency
close to half of that of the west one, feast ≈ 0.5 fwest. The results are normalized
to the maximal absolute displacement response of the west structure for the case
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without the east one.

Figures 8.8 show that an adjacent construct with equal natural frequency can
induce strong resonance in both horizontal and vertical directions. The same
effect but a weaker grade is observed for the horizontal displacements obtained
for a relatively more rigid structure, see Figure 8.9. This is because the frequency
content of the excitation is well below the structure’s natural frequency. A more
substantial influence of the east structure with feast = 0.52 fwest was found in the
vertical response. This is likeky caused by the east structure’s rocking response,
which is in the low-frequency regime similar to the west structure’s response.
Combination of the low-frequency rocking response with the larger mass of the
taller structure then lead to a stronger resonance. The same effect was not found
in Figure 8.8 because the taller structure responses mainly in bending. A mild
influence of the east structure was found in the softer structure (87 m) because it
dissipates the incoming energy through bending, see Figure 8.10.
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FIGURE 8.8: Normalized displacement components u1 and u3 of the
west structure tip relative to its center-base point. Case 1a consid-
ering the west structure with 55 m height (Figure 8.4) and varying
types of east structure: (A) u1 versus time, (B) u3 versus time, (C)

Fourier amplitude of u1, and (D) Fourier amplitude of u3.
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FIGURE 8.9: Normalized displacement components u1 and u3 of the
west structure tip relative to its center-base point. Case 1a consider-
ing the west structure with 32 m height and varying types of east
structure: (A) u1 versus time, (B) u3 versus time, (C) Fourier ampli-

tude of u1, and (D) Fourier amplitude of u3.
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FIGURE 8.10: Normalized displacement component u3 of the west
structure tip relative to its center-base point. Case 1a considering the
west structure with 87 m height and varying types of east structure:

(A) u3 versus time and (B) Fourier amplitude of u3.
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8.3.2 Case study 2

In the 2nd case study, the influence of a long-distance ground-borne vibration
propagating to a finite sedimentary basin with two adjacent structures located in
a layered half-space is examined. The problem is illustrated in Figure 8.11 where
the semi-infinite half-space is comprised of three layers, and the finite region con-
tains two containment structures identical to those in case study 1. The contain-
ment structures are referred to as the west and east structures analogously to
those in case study 1. Each of the inter-layer boundaries reaches the free-surface
x3 = 0. The material properties are given in Table 8.2, where cases 2a and 2b have
a sense analogous to those in the cases 1a and 1b.

Both of the time functions f (t) described above are considered. The time
function of type A is a Ricker wavelet with a frequency range of [0, 5] Hz, dura-
tion of 8 s, and time resolution of 0.0156 s. In the frequency domain, the resolution
is 0.1252 Hz, and the amplitude vector is f (Ω0)

i (109 N, 0, 0), see Figures 8.2a, 8.2b.
The 2nd time function is the Northridge earthquake 1994 ground motion record
(type B, see Figures 8.2c, 8.2d), where the amplitude vector in the frequency do-
main is f (Ω0)

i (109 N, 0, 0) and the frequency resolution is 0.0244 Hz.

The point source is located at X0(-1 km, 0, -1 km), X0(-632.45 m, 0, -1264.9 m),
or at X0(0, 0, -1414.2 km). For the time function of type B, a transfer function is
applied to adjust the ground motion record to a depth of 1264.9 m. The normal-
ization of the results is performed with respect to the maximal displacement at
point x(0, 0, 0) obtained for the homogeneous half-space model with the material
properties of the layer Ω03. No structural damping is considered in the simula-
tions for the time function of type A, while a 10% structural damping is used in
the simulations using the time function of type B.

Since each layer has a boundary or boundaries reaching the free surface

TABLE 8.2: The material properties considered for the parametric
study of case 2.

Region λ (MN/m2) µ (MN/m2) ν ρ (kg/m3)

Ω01 (case 2a) 900.00 450.00 1/3 1 800
Ω01 (case 2b) 1 470.00 980.00 0.30 2 000

Ω02 1 368.00 684.00 1/3 1 900
Ω03 1 470.00 980.00 0.30 2 000
Ω1 900.00 450.00 1/3 1 800

Structures and foundations 9 722.22 14 583.33 0.20 2 500
Structures and foundations* 972.22 1 458.33 0.20 2 500
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FIGURE 8.11: The model geometry of case study 2

x3 = 0, the solution’s accuracy is independent of the ratio of rBX0 . Thus, the
dynamic source can be placed anywhere within the bottom layer. Additionally,
a supplementary condensation algorithm is required prior to step 2.a of the pro-
cedure described in Section 4.5. In this additional step, the matrices and vector
components belonging to the free surface of the previous layer are condensed into
the components belonging to the layering interface. The procedure is identical to
the one described in section 4.6.

Figures 8.12-8.13 compare the results for the cases of foundations without
and with structures and material properties of case 2a and 2b where the time func-
tion is the Ricker wavelet. These figures clearly illustrate how the soil layering
and the SSI strongly influence the wave field along the surface. Note that when
the structures are excluded, the kinematic interaction between the foundations
has an insignificant effect on the wave field because the wavelength is relatively
longer than the foundations.

Further, we consider structures with the following foundations’ types: rigid,
flexible, flexible with low stiffness (Structures and foundations* in Table 8.2), and
flexible with only one structure on the west present. The influence of the inertial
interaction in combination with the rigidity of the foundations is clearly illus-
trated in Figure 8.14 showing the displacement components u1 and u3 along the
line x2 = x3 = 0.

Figure 8.15 shows the relative displacement of the west structure’s tip with
respect to its center-base point for the models of foundations with structures un-
der varying separation distance d. Material properties of case 2b are considered.
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The seismic sources are located at points X0(-632.45 m, 0, -1264.9 m) and X0(0,
0, -1414.2 m) in Figure 8.15, which result in wave propagation angles of 63.43◦

or 90◦, respectively, to the center-top of the west foundation. Normalization of
the results is to the maximal absolute displacement responses of the single west
structure when the east structure does not exist. In the former figure, a mild influ-
ence of the east structure on the west one’s displacement responses u1 and u3 can
be observed. The latter figure shows that a strong influence of the east structure
on the vertical response u3 of the west structure occurs in the cases of separation
distance d of 20 m and 40 m. However, this was not observable for the horizontal
response u1. This is caused by the relative position of the point source at X0(0,
0, -1414.2 m) to the structures and the applied amplitude vector f (Ω0)

i (109 N, 0,
0) which result in surface waves dominating the ground motion at the position
of the structures. The displacement responses of the west structure without the
east structure obtained for point sources located at X0(-632.45 m, 0, -1264.9 m)
and X0(0, 0, -1414.2 m) show that at the frequency of 3.9 Hz, which is one of the
dominant frequencies of the responses, the foundation under west structure is
rotated by 2.64E-4◦ and 3.25E-3◦, respectively, about x2-axis. The higher rocking
movement leads to a stronger interaction between the vertical responses of the
structures.

Figures 8.16 and 8.17 show the simulation results for dynamic point source of
type B, located at point X0(-632.45 m, 0, -1264.9 m). It is assumed that the material
properties are the same as those of the case 2a, and it is accounted for 10% struc-
tural damping. The wave fields along the line x2 = x3 = 0 are presented in Figure
8.16 for cases with two containment structures at a fixed separation distance of 40
m. The west structure’s height is 55 m, while the east structure has the following
properties: (A) pseudo-natural frequency equal to that of the west structure, i.e.,
feast = fwest, and (B) pseudo-natural frequency of approximately half of those
of the west structure, i.e., feast ≈ 0.5 fwest. Figure 8.17 compare the displacement
components u1 and u3 of the west structure’s tip relative to its center-base point
for the above (A) and (B) cases. The solutions are normalized analogously, such
as those in Figures 8.8–8.10. Figure 8.17 reveals that the maximal horizontal and
vertical displacement responses of the west structure are increased by 0.77% and
by 1.83%, respectively, in the case (A). In the case (B), the horizontal and vertical
responses of the west structure are increased by 7.17% and 6.41%, respectively.
The influence of the lower frequency character of the east structure’s behaviour
on the response of the adjacent building is clearly illustrated in Figures 8.16 and
8.17.
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(A) (B)

(C) (D)

(E) (F)

(G) (H)

FIGURE 8.14: Normalized displacement components u1 (Figs. A, B,
C, and D) and u3 (Figs.E, F, G, and H) along the line x2 = x3 = 0 for
foundations with structures under the following conditions: (Figs.
A, E) rigid foundations, (Figs. B, F) flexible foundations, (Figs. C,
G) flexible foundations with low stiffness, and (Figs. D, H) single
flexible foundation with structure. The seismic source of type A is
embedded at X0(-1 km, 0, -1 km), and case 2a is under consideration.
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8.4 Chapter summary

The two case studies of soil-structure systems on arbitrary layered half-space and
the detailed geometric and parametric considerations described above illustrate
a complex wave picture. The soil layering, mechanical characteristics of the far-
field zone, the three-dimensional character of the dynamic wave propagation,
the type and location of the dynamic source, the type and dynamic behaviour of
the structures, and the structure-soil-structure interaction phenomenon strongly
influence the seismic response.
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Chapter 9

Application IV: Nonlinear dynamic
SSI of an arch bridge and a
multi-storey building.

9.1 Chapter overview

In this chapter, the application of the hybrid numerical method, in combination
with the layer-wise condensation method and the sequential analysis, for case
studies involving nonlinear dynamic soil-structure interaction is presented. The
general description of the problem is given in Section 9.2. Case study 1 is pre-
sented in Section 9.3 followed by case study 2 in Section 9.4. The former discusses
the simulation of the nonlinear dynamic response of an arch bridge in 2D plane
strain in response to a short-distance ground excitation, while the latter considers
a multi-storey building subjected to medium-distance ground vibrations. Case
study 3 in Section 9.5 focuses on the application of the hybrid method involv-
ing a large-scale actual geometry. The industrial application of the double-couple
source formulation in 2D and 3D is presented here.

9.2 General description

Three numerical case studies are presented to demonstrate the applicability of the
hybrid BEM-FEM in combination with the LWC and SFTD approaches in solv-
ing complex dynamic SSI problems. The first case study considers a concrete
arch bridge spanning approximately 200 m over two regions with distinct soil
properties. The structure is located in a layered geological profile, and the whole
domain is subjected to a short-distance dynamic transient excitation originated
from a source at X0. The dynamic source is computed either as a point source or a
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multi-storey building.

double-couple source. The problem is analysed in 2D. The influences of arbitrary
layering and nonlinearities on the bridge’s dynamic responses are studied.

In the second case study, a multi-storey building subjected to a ground-borne
vibration, which originated from a distance point source, is simulated. The build-
ing’s irregular plan results in a twisting mode shape that necessitates a 3D ap-
proach. The third case study deals with a 3D large-scale geological model ob-
tained from a database that is processed for a seismic computation.

Two types of time function f (t) based on the 90-degree component of the
displacement time history recorded during the Northridge earthquake 1994 by
Newhall station are considered, see Section 8.3. In the 1st time function (type A),
only the displacement record in the time range t = [1, 14.7] s is used. The time
function is then extended with zeroth entries until t = 41 s (Figures 9.1a, 9.1b).
This is chosen so that the simulation time window is sufficient for the damping
effect. The 2nd time function (type B) is using the displacement record in the time
range t = [1, 26] s, see Figures 9.1c, 9.1d. No transfer function is applied to the
ground motion record. A bandpass filter of [0.05, 25] Hz is applied to both time
functions. Smoothings are also applied to the vicinity of the trimming points to
avoid artificial high-frequency contents.
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FIGURE 9.1: The time functions considered for the case studies: (A)
the time history of type A and (B) its normalized amplitude spec-
trum; and (C) the time history type B and (D) its normalized ampli-

tude spectrum.

The problem statement follows those described in Section 7.2 for a single-
layered BEM model and Section 8.2 for a multi-layered one. One exception is that

182



9.3. Case study 1

only a single structure is considered in each case study.

As before, the BEM and FEM regions are denoted as Ω0 and Ω1. The inter-
face boundary between both regions is with notation Γint. Note that Γint for each
region has the opposite normal vector. The finite region Ω1 contains a structure
and can contain LN number of near-field soil regions, Ω1(j), j = L1, L2, ..., LN. In
case study 1, where a 2D plane strain problem is simulated, the coordinate system
is Ox1x2 instead of Ox1x2x3.

The external semi-infinite zone Ω0 is layered with N + 1 homogeneous elas-
tic isotropic layers Ω0k, k = 1, 2, ..., N + 1, with infinitely extended boundaries.
These layers are with arbitrary geometry of their boundaries Γi, i = 1, 2, ..., N + 1,
where the boundary ΓN+1 is the boundary between the Nth layer and the semi-
infinite in depth (N + 1)th layer containing the dynamic source X0.

The material properties of the geological semi-infinite zone Ω0 are density
ρ0k; Lamé moduli λ0k, µ0k; wave velocities CP0k , CS0k ; where k = 1, 2, ..., N + 1. The
material properties of the finite range Ω1 are λ1(j), µ1(j), CP1(j)

, and CS1(j)
, where

j = L1, L2, ..., LN, and the material properties of the foundations and the struc-
tures are denoted by λ f , µ f , CPf , and CS f . Material nonlinearity is considered in
the soil and the structural members. The Mohr-Coulomb model and Drucker-
Prager (cap) plasticity model are two constitutive models for the soil. The two
constitutive models are chosen to simplify the computation since the focus is on
the application of the method. Note that constitutive models which simulate
early nonlinear behaviour in soil, e.g., hypoplastic model (Herle and Gudehus,
1999), may not be suitable in this application since it introduces widespread non-
linearity on the soil region. In addition to the material nonlinearity, frictional and
separable contact between the soil and foundation is also taken into account.

The initial boundary-value problem for wave propagation in the geological
region under consideration consists of governing equations in 3D elastodynam-
ics, initial conditions, and boundary conditions, as discussed in Section 4. Initial
conditions of stresses are applied to the soil region to establish geostatic stress
prior to the implicit dynamic computation. The computation of the layered half-
space, the assembly of the BEM and FEM matrices and vectors, and the computa-
tion of the hybrid BEM-FEM model follow the procedures described in the same
section.
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FIGURE 9.2: The bridge geometry of case study 1.

TABLE 9.1: The material properties considered for case study 1.

Region λ (MN/m2) µ (MN/m2) ν ρ (kg/m3)

Ω1(L1) 441.00 220.50 1/3 1 800
Ω1(L2) 1 620.00 1 620.00 0.25 2 000

Ω01 1 620.00 1 620.00 0.25 2 000
Ω02 3 024.00 3 024.00 0.25 2 100
Ω∗

02 147.00 220.50 0.25 1 800
Ω03 3 450.00 5 175.00 0.20 2 300

Structure and foundations 8 333.35 12 500.00 0.20 2 500

9.3 Case study 1

The 1st case study considers the dynamic response of a concrete arch bridge sub-
jected to a short-distance transient excitation from a line source at X0, see Figure
9.2. The bridge is built over a valley with different material properties in each
bank. The west bank, assuming the positive x1-direction as the east, is composed
of stiff material while the east bank is a sediment basin composed of a softer one,
see Figure 9.3. Due to this, pile foundations are used to support the east part of
the bridge. The four piles of the east foundation of the arch structure reach the
stiff soil layer at a depth of 50 m, while the rests rely on frictional resistance, i.e.,
floating piles. The arch bridge has a c.t.c. distance of 212 m, and its crown is 51.5
m high from the foundation level. The bridge is analysed in 2D plane strain. The
arch structure is 2.75 m thick at the base and 1 m thick at the crown. The piers
are 1 m thick, and the piles are 0.7 m thick. A continuous connection is assumed
between the piers and the slab. The bridge and the sedimentary basin are located
on top of a geological profile that consists of three layers, as shown in Figure 9.3.
The arch bridge, the sedimentary basin, and a portion of the stiff soil layer are
modeled in the FE subdomain, while the rest of the geological profile is modeled
in the BE subdomain.

The material properties considered for this case study are laid out in Table
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9.3. Case study 1

(A)

(B)

FIGURE 9.3: The model geometries of case study 1: (A) the geometry
of type 1 and (B) the geometry of type 2.

FIGURE 9.4: Three control elements of case study 1.

9.1. A 10% structural damping is applied to all materials in the frequency do-
main phase. The damping definition is replaced with the Rayleigh coefficient of
αR = 2.356 and βR = 0.00079577 in the time domain phase. Nonlinear material
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FIGURE 9.5: The spectral acceleration and displacement of the
ground motion (horizontal component) measured at the east arch’s

base due to (A) a point source and (B) a double-couple source.

behaviour is defined for the soft soil region Ω1(L1) using Mohr-Coulomb elasto-
plastic criterion: friction angle of 25◦, dilation angle of 5◦, and cohesion of 5 kPa.
Frictional and separable contact definitions are used for the soil-foundation and
soil-pile interfaces located on the bridge’s east side. The frictional coefficient is
defined as 0.8. Tied contact is used for the soil-foundation interfaces located on
the west side. In addition, the Mohr-Coulomb definition is also used for the con-
crete material: friction angle of 42◦, dilation angle of 0◦, and cohesion of 15 MPa.
No tension cut-off or crack definition is used for this case study. The material
properties of Ω∗

02 are only used in the study of the influence of irregular geome-
try. They are not considered in the study of the influence of nonlinearities.

Two types of geometry of the semi-infinite domain are modeled to study the
influence of arbitrary layering on the dynamic response of the bridge. In the
geometry of type 1, the layering interfaces of the semi-infinite region Γ1 and Γ2

are horizontal lines, see Figure 9.3a. In the 2nd type of geometry, an irregulari-
ties along the interface is included, see Figure 9.3b. These irregularities can be
present due to a minor fault or other historical geological events. In both types of
geometry, a ratio of rBX0 ≥ 1.7 is maintained, see Section 4.7.

Time function type A is applied to a line source located at X0(-350 m, -395
m). For the point-source case, the amplitude vector in the frequency domain
is f (Ω03)

i (5.0E11 N, 0, 0). The time function has a time interval of 0.02 s and a
frequency resolution of 0.024406 Hz. In the case of a double-couple source, the
fault geometry is described as {ϕDC = 90◦, δDC = 45◦, and γDC = 90◦}, while the
seismic moment is M0 = 1.0E8 Nm. The point-source formulation is used for the
study of the influence of nonlinearities, while the double-couple one is used for
the study of the influence of arbitrary layering.

In order to accurately simulate the nonlinear soil strength and the loading
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FIGURE 9.6: A minimum principal plastic strain plot of the geome-
try of type 1’s result (view with extrusion and a deformation scale of

25).

condition of the system, a geostatic and a static loading step are inserted before
the implicit dynamic analysis step. Due to the irregular contour of the valley, the
geostatic step is performed by first running a dummy geostatic step, i.e., without
any other static or dynamic step. In this dummy step, the initial geostatic stress,
the gravity load, and overburden loadings are applied to the model as a normal
geostatic step. In addition, encastré boundary conditions are applied to all soil
regions, and the reaction forces of all of the fixed nodes are recorded using the
command "*Node print, nset=node_set_name" followed by "RF" in the next line.
The recorded reaction forces are then used as nodal forces in the actual geostatic
step. Using this approach, the initial geostatic stress can be established in an
irregular and layered soil model with a highly satisfactory result.

In the geostatic step, overburden surface loads equivalent to 1 m high mate-
rial are applied to the west and east banks. In the static loading step, the gravity
load is applied to the bridge structure with an additional 200 kg/m load applied
on its top surface. No traffic load is assumed.

For this case study, CPE4 and CPE3 (plane strain) elements of ABAQUS are
used for the finite region, while B21 (beam) elements of ABAQUS are used for the
BEs. In this implementation of using the beam element as a BE, the material is
placed on the left-hand side of the element’s direction. The finite and boundary
element sizes are λS/20 of the shortest wavelength.
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FIGURE 9.7: Comparisons of stress components σj at integration
points in the control elements between the results for the hybrid
model in the frequency domain and for the sequential analysis with

the nonlinearities. The geometry of type 2 is considered.

The control elements that are chosen to check the compliance of the compat-
ibility and equilibrium condition of stress are shown in Figure 9.4. The compar-
ison of the stress components σ1 and σ2 between the frequency domain and the
sequential analysis results are presented in Figure 9.7. The MSEs σ1 and σ2 for the
time range of t = [0.4, 25] s are 0.526% and 0.68%, respectively, while the MAEs
are 3.81% and 3.86%, respectively. In Section 5.4, it is shown that these values are
sufficient to obtain a consistent result.

The dynamic transient point-source excitation results in a strong ground mo-
tion, which spectral acceleration and displacement for the horizontal component
are shown in Figure 9.5. Figure 9.6 shows the east bank’s minimum principal
plastic strain plot. The highest plastic strains are found in the slope area near the
arch’s east foundation, the slope near the east-most foundation, and the backfill
behind this foundation. Further details also reveal that the piles under the east
foundation of the arch experience plastic strain. This is due to the nature of an
arch structure, which transfers the vertical loads it carries into horizontal loads in
the foundation, in combination with the high horizontal shaking of the applied
ground motion.

Figure 9.8 shows the comparison of displacement components uj, j = 1, 2,
measured at the bridge’s crown for the sequential analysis results between the
cases without and with the nonlinearities. In Figure 9.9, the same comparison
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FIGURE 9.8: Comparisons of displacement components uj measured
at the bridge’s crown for the results of the sequential analysis be-
tween without and with the nonlinearities. The geometry of type 2
is considered. (A) u1 versus time and (B) its Fourier amplitude, (C)

u2 versus time and (D) its Fourier amplitude.

is given for the displacement measured at the crown relative to the east founda-
tion. These figures show that the nonlinearities of the surrounding soil and the
slippage and detachment of the foundation and the pile can significantly affect
the structure’s response. Although Figure 9.8 shows reduced absolute displace-
ments, Figure 9.9 reveals 34.39% increases in the maximum relative horizontal
displacement. In contrast, the relative vertical response is increased in the lower
frequency range. This implies that the structural members experience higher in-
ternal forces due to the nonlinearities. Principal stresses measured at the base
of the east-arch show that an increase of 66.81% in the tension stress and a de-
crease of 13.21% in the compression stress are observed when the nonlinearities
are considered, see Figure 9.10.

Comparisons between the results of the analyses using two types of geome-
try are given in Figure 9.11. In this figure, a double-couple type dynamic excita-
tion is considered, and the material properties of Ω∗

02 are used instead of Ω02. The
displacements are normalized to the maximum displacement of the result for ge-
ometry type 1. It can be observed that the change in the layering’s interface affects
the structure’s displacement. Compared to the results obtained for the geometry
of type 1, the horizontal and vertical normalized displacements of the results for
the geometry of type 2 are 18.57% and 22.89% higher. When the material prop-
erties of Ω02 are considered, the relative differences are below 3%. These results
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FIGURE 9.9: Comparisons of displacement components uj measured
at the bridge’s crown relative to the east foundation’s base for the re-
sults of the sequential analysis between without and with the non-
linearities. The geometry of type 2 is considered. (A) u1 versus time
and (B) its Fourier amplitude, (C) u2 versus time and (D) its Fourier

amplitude.
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FIGURE 9.10: Comparisons of maximum and minimum principal
stresses measured at elements at the east arch’s base (A and B) and
west arch’s base (C and D) for the results of the sequential analysis
between without and with the nonlinearities. The geometry of type
1 is considered. σmax.princ. versus time in (A and C) and σmin.princ.

versus time in (B and D).
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FIGURE 9.11: Comparisons of normalized displacement compo-
nents uj measured at the bridge’s east foundation base for the results
between geometries of type 1 and type 2. A double-couple source
type is considered. (A) u1 versus time and (B) u2 versus time, (C)

Fourier amplitude of u1, and (D) Fourier amplitude of u2.

FIGURE 9.12: The wave field in the finite region for the simulation
with the geometry of type 2 and a double-couple source. The fre-

quency is 18.51 Hz

show that the effect of geometrical irregularities/discontinuities depends on the
propagating waves’ length. One can also see the differences between the wave
field produced by a single-point source and a double-couple one by comparing
Figures 9.9 and 9.11 or the spectral responses in Figure 9.5. The double-couple
solution results in a wave field with more potent high-frequency contents. Figure
9.12 depicts the wave field in the finite region at a frequency of 18.51 Hz due to a
double-couple source.
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FIGURE 9.13: The floor plan of the multi-storey building for case
study 2.

9.4 Case study 2

The model geometry for the second case study is presented in Figures 9.13, 9.14,
and 9.15. A multi-storey building with one basement and 11 floors is considered.
The floor plan is partially reduced from floor 9 to floor 11, which results in a
setback in the southeast side (positive x2 direction as the north). 1.4 m square
footings support the structure in 4 corners and 2 m square footings in other areas.
A floating monopile supports each footing with an embedded length of 8 m and
a diameter of 0.7 m. The footings are fully embedded into the soil (Figure 9.14).
The finite zone contains the structure, the foundations, and the surrounding soil,
while the semi-infinite region is modeled using BEM.

The columns and beams are steel, while the slabs, footings, and piles are con-
crete. The soil properties are assumed to be homogeneous for the semi-infinite
region Ω0 and the near-field region Ω1. It is assumed that the soil is preconsol-
idated or preloaded before construction. The material properties are given in
Table 9.2. The section profiles of the column and the beams are of the box shape,
and the dimensions are laid out in Table 9.3. The slabs have a thickness of 20
cm, and reinforcement bars are installed in two directions. The inclusion of the
damping definition and its values are the same as in case study 1, i.e., a structural
damping of 10% and its equivalent Rayleigh coefficients.

A transient dynamic excitation in the type of a point source with the time
function of type B is considered for this case study (Figure 9.1). The time interval
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FIGURE 9.14: The cross section of the multi-storey building.Viewport: 1     Model: Model−1−BEFE2     Step: Initial
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FIGURE 9.15: The CAD model for case study 2 in ABAQUS/CAE.
(A) An isometric view with parts partially hidden to expose the pile

foundations, and (B) a view of the model sans the BEM region.

is 0.078 s, and the frequency resolution is 0.02504 Hz. The amplitude vector in
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TABLE 9.2: The material properties for case study 2 with a point
source dynamic excitation.

Region λ (MN/m2) µ (MN/m2) ν ρ (kg/m3)

Slabs, footings, and piles 8 333.35 12 500.00 0.20 2 500
Columns and beams 80 000.00 80 000.00 0.25 7 800

Ω0 & Ω1 441.00 220.50 1/3 1 800

TABLE 9.3: The section profiles for beams and columns (box shape).

Member width (mm) height (mm) thickness (mm)

Column 220 220 22
Beam in x1-dir. 200 250 20
Beam in x2-dir. 200 300 20

the frequency domain is f Ω0
i (1.25E13 N, 0, 0). The dynamic point source is lo-

cated at X0(-1 km, 0, -1 km). For the frequency domain computation, 256 discrete
frequencies are computed.

The elements used for the model are as follows. S4 shell elements of ABAQUS
are used for the BEs with a size of λS/8.5 of the shortest wavelength. The finite
region comprises line, shell, and solid elements for the beams/columns, slabs,
and footings/piles/soil, respectively. The line and shell elements’ size is λS/34
while the largest size of the solid finite elements is λS/17.

The material nonlinearities are applied to the soil in the vicinity of the foot-
ings as well as to the piles and the steel members. Two types of nonlinear material
behaviour are used for the soil. The first type is the Mohr-Coulomb criterion with
the following values: friction angle of 35◦, dilation angle of 0◦, and cohesion of
250 kPa. The second type is the modified Drucker-Prager (cap) plasticity. Section
23.3 of ABAQUS manual (Smith, 2014) details the implementation of the constitu-
tive models. By matching the Drucker-Prager yield surface to the Mohr-Coulomb
parameters defined before, the following parameters are obtained: friction angle
of 54.81◦ and cohesion of 960.49 kPa. Those values describe the yield surface in
the mean stress versus the deviatoric stress plane. Other than that, a cap eccen-
tricity parameter of 0.1 and a flow stress ratio of 0.778 are used. The former value
is chosen so that the cap surface does not lay in the negative (tensile) stress area.
The plastic flow is defined using the cap hardening definition and a base mean
stress of 180 kPa (Figure 9.16). The material behaviour of the steel is defined as
bilinear material with a yield stress of 150 MPa. A frictional and separable con-
tact definition is used for the soil-footing and soil-pile interfaces with a frictional
coefficient of 0.5.

194



9.4. Case study 2

0 100 200 300 400 500 600 700

0

0.1

0.2

0.3

0.4

0.5

0.6

FIGURE 9.16: The cap hardening definition used for the Drucker-
Prager (cap plasticity) material model in case study 2. ε

p
vol is the

volumetric plastic strain.
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FIGURE 9.17: Minimum principal plastic strain plots: (A) soil region
near the foundations (modified Drucker-Prager model) and (B) the

structural members.

The dummy geostatic step establishes the initial geostatic stress in the model.
In addition to the geostatic stress due to the gravity, an overburden pressure of
180 kPa is applied on the ground’s top surface to represent the preconsolidation.
Afterward, a static loading step is performed where gravity is applied to the
structure and foundation. Distributed loads of 500 kg/m2 are applied to all slabs
to represent additional dead and live loads.

An eigenfrequency extraction analysis is performed by applying fixed bound-
ary conditions on the side and bottom surfaces of the finite soil region. It reveals
that the structure is dominated by twisting mode shapes due to its configuration.
The fundamental frequency is 0.662 Hz, followed by ten other natural frequen-
cies below 5 Hz.
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FIGURE 9.18: The spectral acceleration and displacement of the
ground motion (horizontal component) measured at a column’s

base due to the point-source excitation.

The resulting ground motion measured at the base of one of the columns is
presented as spectral acceleration and displacement in Figure 9.18. The stresses
measured at control elements for the sequential analysis result show that the
MSEs are below 0.6% and the MAEs are below 1.5% in comparison to the fre-
quency domain analysis result, meaning that a consistent result is likely reached.

The minimum principal plastic strain plots for the soil region surrounding
the pile foundations and for the structural members are presented in Figure 9.17.
It shows the material nonlinearities using the modified Drucker-Prager model
that occur in the soil surrounding the base of the piles. It also shows the plastic
joints forming in the columns’ base. The columns under the reduced floor plan
remain elastic throughout the simulation. A comparison of the minimum prin-
cipal stresses measured at two integration points of the cross-section on one of
the column’s bases between without and with the nonlinearities is shown in Fig-
ure 9.19. It shows that the maximum compressive stress is capped at the yield
stress of 150 MPa when the nonlinearities are activated. The element’s location is
marked by the red ellipse in Figure 9.17b.

Figure 9.20 compares the displacement components uj measured at a point
in the roof for the sequential analyses results between without and with the non-
linearities being included, while Figure 9.21 compares the relative displacements
of the same point with respect to its base. The cap plasticity model is used for the
results in both figures. The figures show that, in this case, the nonlinearities have
a relatively minor effect on the building’s response. The maximum horizontal
displacements for the result with the Mohr-Coulomb model and the cap plas-
ticity model are 5.56% and 10.23% lower, respectively, than the one without the
nonlinearities. At the same time, the building’s natural frequencies are practically
unchanged. The relative vertical displacement plot shows that minor permanent
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FIGURE 9.19: Minimum principal stress plots measured at two inte-
gration points of an element in a column’s base.

0 5 10 15 20 25 30 35 40

-0.1

-0.05

0

0.05

0.1

0.15

(A)

0 5 10 15 20 25 30 35 40

-0.1

-0.05

0

0.05

0.1

(B)

FIGURE 9.20: Comparison of displacement components uj mea-
sured at a point on the building’s roof for the results of the sequential
analysis between without and with the nonlinearities. The cap plas-

ticity model is used. (A) u1 versus time and (B) u3 versus time.
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FIGURE 9.21: Comparison of displacement components uj at a point
on the building’s roof relative to its base for the results of the sequen-
tial analysis between without and with the nonlinearities. The cap
plasticity model is used. (A) u1 versus time, (B) u3 versus time, (C)

Fourier amplitude of u1, and (D) Fourier amplitude of u3.
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FIGURE 9.22: The cross section of case study 2 considering double-
couple sources.

TABLE 9.4: The material properties for case study 2 with double-
couple sources.

Region λ (MN/m2) µ (MN/m2) ν ρ (kg/m3)

Ω0 & Ω01 441.00 220.50 1/3 1 800
Ω02 1 620.00 1 620.0 0.25 2 000

displacements have taken place.

The minor effect on the nonlinearities can be attributed to the relatively weak
ground motion and the building’s configuration, which can redistribute the load
from the yielding members to the columns on the setback area as they remain in a
linear elastic state. The vertical load increases the stress experienced by the struc-
tural members but also prevents sliding on the soil-foundation interface. The
embeddment effect from the piles also adds to this effect.

The simulation is extended to a transient dynamic excitation problem caused
by double-couple sources. In this case, the same time function (type B) is chosen.
It is then normalized to its maximum absolute value in the time domain and
multiplied with a seismic moment M0 of 2.5E15 Nm to create the rupture’s time
history. The seismic moment is equivalent to an earthquake with a moment mag-
nitude 4.2 MW (Hanks and Kanamori, 1979). The fault geometry is as follows:
{ϕDC = 270◦, δDC = 0◦, and γDC = 90◦}. The fault’s plane is 400 m × 400 m with
a center located at X0(-4 km, 0, -4 km). Twenty-five double-couple sources (NDC),
in a grid of 100 m, are used to model the rupture’s plane. The event is initiated
at the fault’s center and propagates with the speed of 0.95 × CS along the fault’s
plane (Beresnev and Atkinson, 1997). The energy of the rupture is distributed
equally to the sources.
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FIGURE 9.23: Displacement components uj measured at a column’s
base with a distance of 5661.8 m from the dynamic source. The nu-
merical results are normalized and compared to the analytical result
for a homogeneous half-space: (A) u1, (B) u3, (C) amplitude of u1,

and (D) amplitude of u3.

The geological profile is modified to simulate a site amplification in a lay-
ered media. The structure is founded on a sedimentary basin with a horizontal
diameter of 200 m and a depth of 50 m; see Figure 9.22. The layers outside the
finite region are modeled using BEM and referred to as Ω01 and Ω02. The material
properties of the soil regions are laid out in Table 9.4, while the properties of the
structure and foundations remain the same.

Comparisons of displacement components uj between the numerical results
measured at a column’s base and the analytical solution for a half-space in Figure
9.23 show that the horizontal displacement is amplified by 17.63%. At the same
time, the vertical one is insignificantly influenced. This can be attributed to the
bedrock’s high phase velocities, which lead to long wavelengths. For example,
the shear wavelength at a frequency of 6 Hz is 150 m, which is longer than the
basin’s depth. The SSI effect also does not significantly influence the recorded
displacement due to the stark foundations’ embeddment effect and the relatively
stiff supporting soil.

The spectral displacement and acceleration measured at the column’s base is
shown in Figure 9.24. Horizontal displacements measured at the roof relative to
its base show a peak of around 0.05 m, which confirms that a period lengthening
does not take place. The ground motion’s high-frequency content also results in
the structure’s higher mode response as shown in Figure 9.25.
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FIGURE 9.24: The spectral acceleration and displacement of the
ground motion (horizontal component) measured at a column’s

base due to double-couple dynamic sources.

(A) (B)

FIGURE 9.25: The structure’s deformation (scaled) due to double-
couple sources showing the rotational and higher mode responses

at the time (A) t = 10.32 s and (B) t = 7.60 s.

9.5 Case study 3

The third case study aims to demonstrate the application of the enhanced hybrid
method in dealing with a real arbitrary geological geometry obtained from the
field. In this case, the 3D model of the German North Sea is taken as an ex-
ample. The geometry can be obtained as an ASCII file (.ts*) from gst.bgr.de or
www.gpdn.de. The 3D horizon model considered for this study covers an area
of 6 km × 6 km with the center located at the global coordinate of x(355.90 km,
6021.98 km). The model is scaled down by a factor of two to reduce computa-
tional load. In this case study, the arbitrary complex geological profile is com-
puted using BEM, while the finite zone contains a near-field soil region and a
multi-storey structure. The BE model is within the horizontal coordinates of x1[0,
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FIGURE 9.26: The horizon model of case study 3 in AutoCAD.

TABLE 9.5: The material properties considered for case study 3.

Region λ (MN/m2) µ (MN/m2) ν ρ (kg/m3)

Ω1 & Ω01 1 651.54 2 477.31 0.20 1 990
Ω02 2 129.02 3 193.52 0.20 2 000
Ω03 2 592.36 3 888.55 0.20 2 000
Ω04 2 597.91 3 896.87 0.20 2 100
Ω05 1 695.33 2 543.00 0.20 2 100
Ω06 5 077.03 7 615.54 0.20 2 200
Ω07 7 086.48 10 629.72 0.20 2 200

3000 m] and x2[0, -3000 m]. The finite region is a cuboid with a horizontal length
of 400 m and a depth of 99.154 m, and it is located within the coordinates x1[2300,
2700 m] and x2[-1300 m, -1700 m]. The ground’s surface is at x3 = 0.

The model geometry is in the form of horizon data, describing each geo-
logical layer’s surface. To process the data, the polygons in the ASCII files are
converted into a set of polyline commands for AutoCAD using MATLAB. The
model geometry is then generated using AutoCAD’s script function. The CAD
model is shown in Figure 9.26.

Afterward, vertical faces and a bottom face are added to ensure the geometry
constitutes a closed polygon, i.e., the additional faces will act as dummy elements.
Interfaces with the finite region in the topmost layer are generated. The surfaces
are then combined into a single surface entity and exported as an ACIS (.sat*) file,
which is compatible to be imported in ABAQUS. The imported horizon model in
ABAQUS is shown in Figure 9.27. Each layer interface is facing outward of its
lower layer. This means that the elements’ node sequences are reversed for the
upper layers’ computations. The FE model is presented in Figure 9.28.
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Chapter 9. Application IV: Nonlinear dynamic SSI of an arch bridge and a
multi-storey building.

The time function considered here is a Ricker wavelet (see Figure 8.2), with
a primary frequency of 1 Hz, a time interval of 0.018773 s, a duration of 15 s,
and a delay of 1.5 s. Transient dynamic excitation in the form of a double-couple
source is simulated. The seismic moment M0 is 3.0E13 Nm, which is equivalent
to a moment magnitude MW of 2.95. This scale of seismicity can be induced
by energy exploration or carbon sequestration. The fault geometry is {ϕDC =

30◦, δDC = 65◦, and γDC = 40◦}. The source is located at X0(1500 m, -1500 m,
-1103 m).

(A)

(B)

FIGURE 9.27: The horizon model of case study 3 in ABAQUS: (A) a
translucent isometric view and (B) the mesh of the BE model.

The material properties for the geological layers are detailed in Table 9.5,
which are derived following the wave velocities proposed by Jaritz et al., 1991.
The material properties for the foundation and structure are the same as in Table
9.2.
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9.5. Case study 3

FIGURE 9.28: The FE model of case study 3 in ABAQUS.
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FIGURE 9.29: Displacement components uj measured at a point on
the finite region’s surface with a distance of r(1000 m, 0, 1103 m)
from the dynamic source. The numerical results are normalized and
compared to the analytical result for a homogeneous half-space: (A)

u1 and (B) u3.

The main challenges in working with horizon data are the presence of (1)
elements with null area and (2) rifts along the surface. The former is caused by
surface polygons whose two of their nodes share the exact coordinates. The latter
is due to how faults and surface discontinuities are drawn in a horizon model.
Additional algorithms are written to identify and rectify these problems. The for-
mer is solved by identifying elements with null Jacobian, while the latter is recti-
fied by identifying elements whose adjacent elements are less than their number
of sides. For example, a triangular element must have three adjacent elements
that share two nodes. After the elements are identified, the nodes along the rift
are collected, and additional polygons (elements) are created to close the rift.

Figure 9.29 compares the displacement components uj measured at x(2500 m,
-1500 m, 0), i.e., at the center-top of the finite region, with the analytical solution
for a homogeneous half-space (equation 3.72). These plots depict the amplifica-
tion and wave scattering due to the geological layering. The induced wave field
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multi-storey building.

(A) (B)

(C)

FIGURE 9.30: Displacement components uj measured along the line
x2 = −1500 m, x3 = 0 versus time t. (A) u1, (B) u2, and (C) u3.

along the line x2 = −1500 m, x3 = 0, i.e., in line with the propagating wave’s
direction, is shown in Figure 9.30. The presence of a structure does not affect the
wave field due to the high stiffness of the surface layer. This figure also shows
displacements in the x2-direction that is otherwise zero in the case of a homoge-
neous media because the relative distance between the source and measured line
in this direction is zero. The layering causes these effect.

9.6 Chapter summary

The three case studies presented here clearly demonstrate the effectiveness and
versatility of the hybrid BEM-FEM in combination with the LWC method and the
sequential analysis to solve nonlinear dynamic SSI problems. The importance of
the consideration for nonlinear material and contact behaviour is illustrated. A
soil-structure system’s response and the section forces can be significantly un-
derestimated, and thus, it can result in an inadequate or inefficient dynamic de-
sign. The hybrid numerical tool combined with the sequential analysis is clearly
at a disadvantage when dealing with widespread or severe nonlinearity cases.
However, it also brings clear advantages in its ability to model realistic responses
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considering material and contact nonlinearities and stress-dependent material be-
haviour. It is also advantageous regarding computational cost since the time do-
main BEM and nested iterations are avoided. For case study 1, 400 discrete fre-
quencies are computed. The computation time for the frequency domain phase
is 149 minutes, while the time domain phase is 78 minutes when considering the
nonlinearities. The computation time for case study 2, where 256 frequencies are
computed, is 277 minutes and 235 minutes for the frequency and time domains,
respectively. The elapsed time for case study 3 is around 2900 minutes due to the
high number of involved elements and nodes. The advantage of the LWC method
is apparent in this particular case since the necessary random-access memory and
storage can be limited to the requirement of each layer.
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Chapter 10

Conclusions and outlook

10.1 Conclusions

The consideration of soil-structure interaction and its effect is essential in the de-
termination of the dynamic-resistant design. This is true not only in the con-
text of earthquake-resistant design but also for low-level vibrations engineering.
However, the practical application of dynamic soil-structure interaction analy-
sis/design tools for practicing engineers still needs to be improved. This disser-
tation is an endeavour addressed to this. A numerical tool based on the hybrid
BEM-FEM is successfully implemented using ABAQUS commercial software and
in-house MATLAB® code. To improve its efficiency, accuracy, and applicabil-
ity, several basic procedures are incorporated, namely the handling of different
types of dynamic sources, handling of arbitrary non-smooth nodes using dummy
BEs, symmetry-algorithm to reduce BEM computation load, and handling of non-
conforming BE-FE interface. Verification studies conducted for compliance func-
tions of a rigid foundation and incident wave problems show excellent agree-
ments with existing reference and analytical solutions, respectively.

In approaching realistic SSI problems, it is crucial to consider that the un-
derlying soil is commonly multi-layered with arbitrary interface geometry. Fur-
thermore, its material properties can vary over the depth without following a
particular pattern. The layer-wise condensation is developed to address this. It is
based on the formulation of multi-domain BEM and the condensation procedure.
The derivation of the method and its scheme for numerical implementation is
presented. The method is proven to significantly reduce the computational mem-
ory requirement for the computation of arbitrary layered half-space. The results
of the verification study for compliance functions of a rigid massless foundation
and wave propagation problems show that the method can accurately compute
the wave field due to arbitrary layering.
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Another challenge addressed here is the consideration of secondary nonlin-
earities, i.e., the material, geometrical, and contact nonlinearities. In this regard,
the sequential frequency-time domain procedure is developed and implemented.
The relatively simple approach makes it possible to include nonlinearities in hy-
brid BEM-FEM simulations while avoiding the use of the time domain BEM and
without requiring additional iterations. Verification studies shows that the pro-
cedure can result in a consistent output, and error measurement is established.

Four application chapters of dynamic SSI problems are presented, ranging
from 2D plane strain to 3D problems. The 1st application concerns with revealing
the role of the underlying soil and backfill material properties on the dynamic
behaviour of typical integral bridges. The outcomes show that the underlying
soil has a strong influence on the resonant frequencies as well as the damping
of the system, especially on shorter bridges. The range of frequency alteration
is found to be significantly higher in mode shapes that incorporate more soil-
structure interaction, i.e., mode shapes with longitudinal or transversal motions,
compared to mode shapes dominated by the flexural stiffness of the bridge. It
is also revealed that the consideration of the wingwalls in the model, an aspect
that is often missing in the 2D approach, influences the results as the wingwalls
act as the dominating links between the bridge and the soil. Because of this, the
backfill, which fills the space between the wingwalls and the supporting soil, has
a relatively minor influence on the bridge’s dynamic behaviour.

The next application presents case studies of foundation-soil-foundation in-
teraction subjected to ground-borne vibrations. The damaged state of the geo-
logical media is considered by using dilute approximation. To study the influ-
ence of arbitratry layering, two case studies are presented in the third application
chapter, where two containment structures subjected to short- and medium-range
transient excitations are examined. These case studies are aimed to investigate
the following key factors: (1) the dynamic site effect due to impedance contrast
of soil layers, (2) lateral inhomogeneity effect, (3) influence of the dynamic source
properties, (4) existence of damage process in soils, (5) conversion of body waves
into surface waves, and (6) foundation-soil-foundation or structure-soil-structure
dynamic interaction. The results show that the complex wave field on the surface
and the structure’s response are highly influenced by these key factors and their
interactions.

The fourth application chapter presents two case studies of dynamic SSI con-
sidering the secondary nonlinearities: an arch bridge analysed in 2D plane strain
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and a 3D multi-storey building. The results show that the maximum relative dis-
placement and the section’s internal forces can be underestimated when material
and contact nonlinearities are neglected. It is also shown that an exemplary build-
ing configuration can minimize the impact of a system’s nonlinear behavior. A
third case study highlights the applicability of the enhanced method to deal with
complex arbitrary geometry from actual data. The challenges and workflow to
process the data are detailed.

These outcomes highlight the importance of the consideration SSI effect, in-
cluding the influence of the arbitrary layering of the geological profile and the
secondary nonlinearities, in the dynamic analyses of soil-structure systems. The
various case studies presented in this dissertation mark the ability of this hybrid
BEM-FEM implementation to model realistic cases.

10.2 Outlook

Potential future works for this study are as follows:

• Extension of the hybrid BEM-FEM incorporating the fast-multipole BEM is
necessary to enhance the computation speed.

• Further extension is also required to improve the hybrid BEM-FEM formu-
lation to consider poroelastic material behaviour in the semi-infinite region.

• To increase the modeling flexibility, further improvement to handle non-
conforming interface between BE subdomains is necessary.

• A comparative study of the dynamic behaviour of integral bridges based
on field experiments is necessary to validate and calibrate the simulation
result.

• Further study can also investigate the influence of other structural and ge-
ological aspects on the dynamic behaviour of integral bridges, i.e., the in-
fluence of flexural stiffness, abutment thickness, skew alignment, arbitrary
soil layering, etc.

• Further works and deeper analyses in regard to structure-soil-structure in-
teraction or soil-multi-structure interaction are possible. Within this scope,
improvement for handling large domains is necessary, which would make
it possible to consider 3D site-city interaction.

• The hybrid numerical tool can be further developed into an application,
e.g., a MATLAB® Toolbox, that can be released for the general public.
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Erbaş, Barış et al. (Sept. 2018). “Approximate analysis of surface wave-structure
interaction”. In: Journal of Mechanics of Materials and Structures 13, pp. 297–309.
DOI: 10.2140/jomms.2018.13.297.
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ISSN: 2365-7162

Experiences and studies have shown that soil-structure interaction (SSI) effect has a 
vital role in the dynamic behaviour of a soil-structure system. Despite this, analyses 
involving dynamic SSI are still challenging for practicing engineers due to their com-
plexity and accessibility. In this thesis, the hybrid BEM-FEM implementation is aimed 
at practicality by combining commercial software and an in-house code. The pre-pro-
cessing task can be performed under one graphical environment, and it is enhanced 
with the capability to compute different types of dynamic sources and other improve-
ments to increase its eff ciency, accuracy, and modeling f exibility.

Further, the underlying soil is commonly a layered prof le with arbitrary geometries. 
Most existing solutions solve the problem through simplif cation of the geometry and 
pattern. One of the main contributions in this thesis is the development of layer-wise 
condensation method to solve these cases using hybrid BEM-FEM. The method sig-
nif cantly reduces the computational memory requirement. Another challenge in the 
dynamic SSI addressed in this work is the consideration of secondary nonlinearities. 
Existing solutions using the time domain BEM and iterative hybrid method are com-
putationally costly, and implementation of such a hybrid method on commercial soft-
ware is tedious. The solution to address this case using a sequential frequency-time 
domain procedure is presented. The relatively simple approach makes it possible to 
consider the nonlinearities in the simulation without using the time domain BEM and 
without requiring additional iterations.

Case studies demonstrating the application of the enhanced hybrid method are pre-
sented including cases of 2D and 3D bridges, containment structures, and a 3D mul-
ti-storey structure under point source and double-couple source excitations. These 
case studies illustrate the role of following critical factors in SSI problems: (1) the 
dynamic site effect due to impedance contrast of soil layers, (2) lateral inhomogeneity 
effect, (3) inf uence of the dynamic source properties, (4) conversion of body waves 
into surface waves, (5) soil-foundation or soil-structure dynamic interaction, and (6) 
inf uence of secondary nonlinearities.
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