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Abstract

LetW be a standard Brownian motion withW0 = 0 and let b : R+ → R be a continuous
function with b(0) > 0. The first passage time of b (from below) is then defined as

τ := inf{t ≥ 0 |Wt ≥ b(t)}.

A well-known method to determine the distribution of τ is the method of images. It
gives an explicit expression for the the first hitting time distribution for all boundaries
b that are the implicit solution to the integral equation

1 =
∫

(0,∞)
rθ(t, x)µ(dθ), t > 0,

for some σ-finite measure µ. However, the boundary b cannot be determined explicitly
for most choices of µ. Therefore, the inverse method of images has emerged – at least as
a numerical approach – to determine the measure µ and thus the distribution of τ for a
given boundary b. If a measure µ exists, the boundary b will be called representable.
Until now, it remained an open question for which boundaries b a measure µ exists
such that b is representable. In this thesis, we present a new duality approach to the
inverse method of images which enables us to give sufficient conditions for the existence
of representing measures µ for concave, analytic boundaries b. Based on that, we
put forward a new algorithm that improves upon existing algorithms for the inverse
method of images by requiring less discretisations and giving precise approximations
with very fast convergence. We also give convergence guarantees for this algorithm.
As an application, we establish a connection between the existence of first passage
time distributions and the representability of American options via European options.
This thesis concludes by approaching the first passage time problem via Fredholm type
integral equations for which we show that these uniquely determine the distribution of
the first passage time τ .





Zusammenfasssung

Sei W eine Standard Brownsche Bewegung mit W0 = 0 und sei b : R+ → R eine stetige
Funktion mit b(0) > 0. Die Erstauftreffszeit auf b (von unten) ist dann definiert als

τ := inf{t ≥ 0 |Wt ≥ b(t)}.

Eine bekannte Methode, um die Verteilung von τ zu bestimmen ist die method of
images. Diese gibt einen expliziten Ausdruck für die Verteilung der Erstauftreffszeit für
alle Grenzen b, die sich als implizite Lösung der Integralgleichung

1 =
∫

(0,∞)
rθ(t, x)µ(dθ), t > 0,

für ein σ-endliches Maß µ ergeben. Allerdings kann die Grenze b für die meisten
Wahlen von µ nicht explizit bestimmt werden. Daher ist die inverse method of images
entstanden – zumindest als numerischer Ansatz – , um für eine gegebene Grenze b
das Maß µ und damit die Verteilung von τ zu bestimmen. Wenn ein solches maß
µ existiert, heißt die Grenze b darstellbar. Bis jetzt war es eine offene Frage, für
welchen Grenzen b ein Maß µ existiert, sodass b darstellbar ist. In dieser Arbeit
präsentieren wir einen neuen Dualitätsansatz für die inverse method of images, der es
uns ermöglicht, hinreichende Bedingungen für die Existenz von darstellenden Maßen
µ für konkave, analytische Grenzen b anzugeben. Basierend darauf schlagen wir
einen neuen Algorithmus vor, der bestehende Algorithmen für die inverse method of
images verbessert, indem er bei sehr schneller Konvergenz weniger Diskretisierungen
benötigt und präzisere Annäherungen möglich macht. Wir beweisen außerdem, dass
der Algorithmus konvergiert. Als Anwendung zeigen wir eine Verbindung zwischen
der Existenz von Verteilungen von Erstauftreffszeiten und der Darstellbarkeit von
amerikanischen Optionen durch europäische Optionen. Die Arbeit schließt mit einem
Ansatz für das Erstauftreffszeit-Problem über Fredholm Integralgleichungen, für die wir
beweisen, dass diese die Verteilung der Erstauftreffszeit eindeutig bestimmen.
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Chapter 1

Introduction

1.1 Boundary hitting of Brownian motion

Just as the normal distribution is in a certain way at the heart of classical probability
theory, the Brownian motion is at the heart of the theory of stochastic processes. Like
the central limit theorem, Donsker’s theorem provides the reason why the Brownian
motion plays such a big role for stochastic processes. Moreover, the Brownian motion
is the driver for many stochastic processes via stochastic differential equations.

It is therefore not surprising that the Brownian motion and its properties form
the basis of many textbooks and have been studied extensively for a long time. The
(standard) Brownian motion or Wiener process is defined as the stochastic process
W = (Wt)t≥0 such thatW0 = 0,W has independent stationary increments,Wt ∼ N (0, t)
for all t > 0 and t 7→ Wt is almost surely continuous (cf. [Kle14], Definition 21.8).
Alternatively, Brownian motion can also be defined as the Gaussian process (Bt)t
with expectation function E(Bt) = 0 for t > 0 and covariance function Cov(Bs, Bt) =
min(s, t). The Brownian motion has the strong Markov property (cf. [Kle14], Theorem
21.18) and it satisfies the Law of the iterated logarithm (cf. [Kle14], Theorem 22.1), i.e.,

lim sup
t→∞

Wt√
2t log(log(t))

= 1 almost surely.

Heuristically, this means that the Brownian motion stays within certain boundaries
in the long term. One more important result is Donsker’s theorem (also known as
functional central limit theorem) which states the following: let X1, X2, X3, . . . be i.i.d.
random variables with E(X1) = 0 and V ar(X1) = 1. Donsker’s theorem (cf. [Kle14],
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CHAPTER 1. INTRODUCTION

Theorem 21.43) now states that the rescaled process (Snt )t≥0 given by

Snt =
∑bntc
i=1 Xi√
n

converges in distribution (i.e., in the sense of weak convergence on C[0,∞)) to the
Brownian motion.

One of the most intuitive questions to ask is when a Brownian motion crosses a
given boundary. This problem is widely known as the First Passage Time (or FPT)
problem. Let W be a standard Brownian motion with W0 = 0 and let b : R+ → R be
a continuous function with b(0) > 0. The first passage time of b (from below) is then
defined as

τ := inf{t ≥ 0 |Wt ≥ b(t)}.

Now, the goal of the FPT problem is to determine the cumulative distribution function
(c.d.f.) F of τ under P(0,0), i.e., F (t) = P(0,0)(τ ≤ t) where P(0,x) denotes the probability
distribution if W is started in x at time 0. Or, more generally, the goal is to determine
the distribution of τ conditional on the Brownian motion running from 0 at time 0 to
some x0 at time t0, i.e.,

P(0,0)(τ ≤ t0|Wt0 = x0), t0 > 0, x0 < b(t0). (1.1)

This is then of course a Brownian bridge anchored at the time-space points (0, 0) and
(t0, x0). It is known that F has a continuous density f if b is continuously differentiable
(cf. Theorem 6.1, [Fer82b]).

The FPT problem has been studied extensively and many applications have been
developed: In statistics, FPT problems arise for problems in testing (cf. [RS74], [Fer82a]
or the surveys [Sie86], [Lai01]). In finance, the problem emerges in the valuation of
barrier options (cf. [KI92], [GY96], [RS97]) as well as in default models (cf. [CGJ08],
[HW01]) and in the evaluation of credit risks (cf. [Che+06]). In [SZ13], the authors
formulate an inventory-control problem which can be seen as an FPT problem in certain
cases. There are also applications in biology for the modelling of neuronal activity (cf.
[SVZ06]). For an overview of the FPT problem and some applications in the field of
physics, including a connection to electrostatics, see the monograph [Red01] or the
more recent and shorter paper [Red22].

2



1.1. BOUNDARY HITTING OF BROWNIAN MOTION

We do not attempt to give a complete history of the FPT problem but rather
highlight some results and approaches that have been developed over the years. In
Section 1.2 below we go into detail on the method of images which will therefore be
omitted in this section.

The FPT problem has a long history and can be traced back as far as the thesis
“Théorie de la spéculation” by Bachelier (cf. [Bac00]), where the problem is first
formulated (though not as rigorously as by later authors) but only for constant b. Other
early formulations of the problem include a paper by Schrödinger ([Sch15]) and joint
work by Kolmogorov and Khintchine which was later published in [Khi33]. Khintchine
formulates the FPT problem in continuous time but then has to discretise the time axis
as he has no concept available for the event in question (“[. . . ] the general principles in
probability theory give, even in their most modern formulation, no indication for the
general definition of such a probability [. . . ]”1).

Even though the problem has been studied for a long time, closed form solutions
for F (given b) are rare. There is the well known Bachelier-Levy formula for linear
boundaries b(t) = a+mt for some a > 0, m ∈ R where the density of τ is given by

a

t3/2
φ

(
a+mt√

t

)
, t > 0 (1.2)

where φ is the density of a standard normal distribution. The formula is given in [Lév65]
(p. 82ff) but as the book is written in French, non-French speaking readers may want
to refer to [RY99], Chapter III, §3 for the case m = 0 or [Ler86], Example 1, p.27 for
the more general case m ∈ R.

Apart from the case of linear b, there are results for the square-root boundary
and for the quadratic boundary. For the square-root boundary, [Bre67] investigates
boundaries of the form b(t) = c(

√
t + 1) for some c > 0 and the stopping time

Tc = inf{t ≥ 0|Wt ≥ b(t)} (notation slightly adapted). Using a transformation of the
Brownian motion into the Ornstein-Uhlenbeck process he shows that for large t it holds
that P (Tc > t) ∼ αt−β(c), where β(c)→ 0 for c→∞ and β(c)→∞ for c→ 0. [RSS84]
uses a Volterra type integral equation and a transformation of the Brownian motion
to an Ornstein-Uhlenbeck process to derive a rather lengthy but explicit formula for
the square-root boundary (cf. Theorem 3.4 and the following Corollary in [RSS84]).

1translation by the author from the original German: “[. . . ] die allgemeinen Prinzipien der
Wahrscheinlichkeitsrechnung geben, auch in ihrer modernsten Fassung, keinen Anhaltspunkt für die
allgemeine Definition einer derartigen Wahrscheinlichkeit [. . . ]”, [Khi33], p.69
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CHAPTER 1. INTRODUCTION

Moreover, [NFK99] uses piecewise linear approximations to derive an explicit formula
for the square-root boundary as an infinite power series (cf. Theorem 4 in Section 5,
[NFK99]).

The quadratic boundary was investigated among others in [Sal88], where a formula
for the c.d.f. F of τ is derived. The formula depends on the expected value of a Brownian
functional but it is shown that this can be computed in some cases. In particular, for a
quadratic boundary, this can be expressed more explicitly in terms of Airy functions (cf.
Proposition 3.10, [Sal88]). [Gro89] derives a similar result by first expressing the c.d.f.
F in terms of a Bessel process and then reducing that expression to one depending on
Airy functions (cf. Theorem 2.1, [Gro89]).

Another approach to the FPT problem is by integral equations (typically Volterra or
Fredholm type integral equations) connecting b and F . While there have been many
approaches involving Volterra type integral equations for many years previously, [Pes02]
presents a unifying approach to derive these equations. Peskir derives an integral
equation he calls the “master equation” which is given as (cf. Theorem 3.1, [Pes02],
notation is slightly adapted)

1− Φ
(
z√
t

)
=
∫ √t

0

(
1− Φ

(
z − b(s)√
t− s

))
F (ds)

for all z ≥ b(t), where T > 0 and where Φ is the c.d.f. of the standard normal distribution.
[Pes02] goes on to derive several known equations studied by other authors from the
master equation as well as a set of new equations (cf. Theorem 6.1, [Pes02])

tn/2Hn

(
b(t)√
t

)
=
∫ t

0
(t− s)n/2Hn

(
b(t)− b(s)√

t− s

)
F (ds)

for t > 0 and n = −1, 0, 1, . . . and where Hn(x) =
∫∞
x Hn−1(z)dz and H−1 = φ (with φ

the standard normal density).
These integral equations are in most cases difficult to solve analytically but there are

numerical approaches. In [Dur71], the boundary b is approximated by linear functions in
subintervals and then the integral equations are solved with linear recursions. The paper
[Dur85] builds upon this work by introducing a series expansion of the first passage
time density of a continuous Gaussian process using integral equations and [Dur92]
makes this series more computable by only considering the case of Brownian motion.
[Smi72] suggests two alternative methods which improve upon [Dur71] by handling
singularities in the kernel of the integral equation. In [PP74], semi-closed forms for

4



1.1. BOUNDARY HITTING OF BROWNIAN MOTION

the solution are proposed, which are more explicit than in [Dur71] and [Smi72], but
these are still hard to compute explicitly except in special cases (i.e., in the cases b
is constant or linear). In [Pes02], the author discretises the given master equation in
time and solves the resulting system of linear equations. In [Di +01], the authors prove
that the first passage time density satisfies a simpler Volterra integral equation of the
second kind but the proposed algorithm again requires numerical integration which
slows down the procedure. An important question for determining first passage time
distributions from integral equations is whether the distribution is uniquely determined
by these equations. Only in this case, numerical approaches are useful. Uniqueness
results for Volterra integral equations can for example be found in [JKV09], Theorem 3.

There has also been use of Fredholm type integral equations but more rarely. In
[She67] and [Nov81], Fredholm type integral equations help to formulate known integral
transformations of F and allow to determine moments of τ as well as the asymptotic
behaviour of F . In [Dan00], linear boundaries with perturbations are considered and a
Fredholm type integral equation is used to derive a density of the FPT distribution.
Moreover, [JKV09] generalises the approach from [Pes02] and links the Volterra type
integral equations to Fredholm type equations of the form (cf. Theorem 5, [JKV09])

∫ ∞
0

e−αb(s)−
α2
2 sF (ds) = 1

for all α ∈ C with | arg(α)| ≤ π/2. In [CMW19], an algorithm for solving Fredholm
integral equations is presented and applied to the FPT problem. To the best of
the author’s knowledge, the important question whether Fredholm integral equations
uniquely determine the first passage time distribution has not been treated.

In recent years, numerical approaches have rather concentrated on Monte Carlo meth-
ods. In [WP97], an explicit formula for the probability of a Brownian motion crossing a
piecewise linear boundary is obtained. This formula is then used to approximate the
probability that a Brownian motion crosses curves that are uniform limits of piecewise
linear functions. The formula for the latter probability entails integrals, which the
authors chose to approximate using Monte Carlo simulation. This method was improved
in [PW01], where the authors provide a better upper bound for the approximation error
and extend the method to two-sided boundaries. In [BN05] the method is generalised by
approximating not only via piecewise linear boundaries but also more general functions
and by giving an exact upper bound for the approximation error. The paper [Pöt12]
again uses piecewise linear boundaries as an approximation but bases the Monte Carlo

5



CHAPTER 1. INTRODUCTION

estimators on an m-dimensional Brownian motion. In [JW17], the method from [WP97]
is extended to piecewise linear boundaries which can be discontinuous.

Other numerical methods include Monte Carlo methods relying on nested algorithms
to account for undetected crossing in between discretisation steps ([GSZ01]) or Monte
Carlo methods using simulation of three-dimensional Brownian bridges ([IK11]). The
most important drawbacks of Monte Carlo methods are the extensive computation time
and the problem of undetected crossings in between discretisation steps. There are
also numerical methods relying on crossings of horizontal lines ([HT16]), a connection
between Brownian motion and Bessel processes ([DHM17]), acceptance-rejection meth-
ods ([HZ20]) and eigenfunction expansions ([Nil20]). But all of these approaches either
require extensive computation time or approximate the crossing boundary.

Although there has been research into the FPT problem for decades, general solutions
or solution methods have evaded discovery or invention and there remains a veritable
zoo of approaches.

1.2 The method of images

The method of images was first introduced by [Dan82]. The following sections, however,
for the most part closely follow Lerche’s “Boundary Hitting of Brownian Motion”
([Ler86]) which still represents the most complete introduction to the method of images.
The notation has been adapted to a modernised version.

The method of images is based on the following idea (cf. [Ler86], p.18): imagine a
standard Brownian motion endowed with unit mass and more Brownian motions with
starting points greater than 0. These starting points are chosen according to some
positive measure µ and the corresponding Brownian motions are assigned negative mass
according to µ. Then, we observe the “superposition” of the Brownian motion with
unit mass and the Brownian motions with negative mass, i.e., we observe the points in
space-time, where the Brownian motions “cancel out”. The superposition can then be
represented as a boundary b for which the first hitting time distribution F can be given
in terms of µ (see Proposition 1.3 below).

In order to make this more rigorous, assume that µ is a positive, σ-finite measure
such that for all ε > 0

∫ ∞
0

φ(
√
εθ)µ(dθ) <∞,

6



1.2. THE METHOD OF IMAGES

where φ is the density of the standard normal distribution. Moreover, define

h(t, x) = 1√
t
φ

(
x√
t

)
−
∫ ∞

0

1√
t
φ

(
x− θ√

t

)
µ(dθ)

and

rµ(t, x) = r(t, x) =
∫ ∞

0
rθ(t, x)µ(dθ)

where
∫∞

0 =
∫
(0,∞) and

rθ(t, x) = exp
(
−θ

2

2t + θx

t

)
.

We will in most cases write r instead of rµ whenever it is clear which measure µ we are
referring to. Then, we have

h(t, x) = 1√
t
φ

(
x√
t

)
(1− r(t, x)).

Now denote by b : R+ → R the solution to h(t, x) = 0 or equivalently to

r(t, x) = 1,

i.e., b is such that r(t, b(t)) = 1. It can be shown that a unique solution b exists
to this equation: Note that for all t > 0 the function x 7→ r(t, x) is continuous and
monotone increasing. Moreover, we find that r(t, x)→ 0 as x→ −∞ and r(t, x)→∞
as x→∞. Then, the intermediate value theorem tells us that there exists a b(t) such
that r(t, b(t)) = 1. Since x→ r(t, x) is strictly monotone, we find that b(t) is unique.

All b satisfying this equation for some µ can be shown to have certain properties.
The following lemma is a slight extension of Lemma 1.1, [Ler86].

Lemma 1.1. Let b satisfy r(t, b(t)) = 1 for all t > 0. Then,

(i) b is analytic.

(ii) b(t)/t is monotone decreasing.

(iii) b is concave.

Proof. (i) We have that (t, x)→ r(t, x) is analytic, ∂r
∂x
> 0 and b fulfils r(t, b(t)) = 1.

7
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Then, the claim follows directly from the theorem on implicit functions in the
version for analytic functions (e.g., cf. [KK83], Chapter 0, Theorem 8.6).

(ii) The claim follows again directly from r(t, b(t)) = 1, since exp(−θ2/(2t)) is increas-
ing in t, so exp(θb(t)/t) has to be decreasing in t.

(iii) Consider the the derivative of r(t, b(t)) = 1 with respect to t. Then, we find

0 =
∫ ∞

0

(
θ2

2t2 + θ
b′(t)t− b(t)

t

)
exp

(
−θ

2

2t + θb(t)
t

)
µ(dθ).

Multiplying by t2 and taking the derivative with respect to t again, we find that

0 =
∫ ∞

0

θb′′(t)t+ θ2

t2

(
θ

2 + b′(t)t− b(t)
)2
 exp

(
−θ

2

2t + θb(t)
t

)
µ(dθ)

= b′′(t) ·
∫ ∞

0
θt exp

(
−θ

2

2t + θb(t)
t

)
µ(dθ)︸ ︷︷ ︸

≥0

+
∫ ∞

0

θ2

t2

(
θ

2 + b′(t)t− b(t)
)2
 exp

(
−θ

2

2t + θb(t)
t

)
µ(dθ)

︸ ︷︷ ︸
≥0

and therefore b′′(t) ≤ 0 which means that b is concave.

The following result (which is due to Lemma 1.2, [Ler86]) tells us how b behaves for
t↘ 0.

Lemma 1.2. Let b satisfy r(t, b(t)) = 1 for all t > 0. Let θ∗ = inf{θ |µ(0, θ] > 0} ≥ 0.
Then,

lim
t↘0

b(t) = θ∗

2 .

Proof. We show that

lim inf
t↘0

b(t) ≥ θ∗

2 and lim sup
t↘0

b(t) ≤ θ∗

2

from which the claim follows. The proof is by contradiction. So, first assume that there

8



1.2. THE METHOD OF IMAGES

exists 0 < ε < 1 such that

lim inf
t↘0

b(t) ≤ θ∗ − ε
2 .

Then, there exists a sequence ti ↘ 0 such that

1 = r(ti, b(ti))

=
∫ ∞
θ∗

exp
(
− θ

2

2ti
+ θb(ti)

ti

)
µ(dθ)

≤
∫ ∞
θ∗

exp
(
−θθ

∗(t−1
i − ε)
2 + θ(θ∗ − ε)

2ti

)
exp

(
−εθ

2

2

)
µ(dθ)

≤
∫ ∞
θ∗

exp
(
−εθ2 (t−1

i − θ∗)
)
µ(dθ) −−−→

i→∞
0.

This is a contradiction and therefore lim inft↘0 b(t) ≥ θ∗

2 . In a similar way, one can
show that lim supt↘0 b(t) ≤ θ∗

2 .

Now assume that W is a standard Brownian motion starting in 0. As before, let τ
be the first passage time of W to b, i.e.,

τ := inf{t ≥ 0 |Wt ≥ b(t)}.

Moreover, let us fix t0 > 0, and x0 < b(t0). If µ is chosen in a suitable way, the function
r can be used to approximate the hitting probability of W to b as shown in the following
proposition that is a slight reformulation and extension of the well-known results which
are presented in Theorem 1.1, [Ler86]. We will from now on not necessarily assume
that b fulfils 1 = r(t, b(t)) for a given measure µ.

Proposition 1.3. Let b : R+ → R be a boundary and µ a measure on R+. Assume
that for certain δ1 ∈ [0, 1), δ2 ≥ 0 we have

1− δ1 ≤ r(t, b(t))−1 ≤ 1 + δ2, t ∈ (0, t0]. (1.3)

Then, for all s ∈ (0, t0] and all x < b(s) it holds

(1− δ1)r(s, x) ≤ P(0,0)(τ ≤ s|Ws = x) ≤ (1 + δ2)r(s, x).

In particular, if r(t, b(t)) = 1 for all t ∈ (0, t0], it holds for all s ∈ (0, t0] and all x < b(s)

9
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that

r(s, x) = P(0,0)(τ ≤ s|Ws = x).

Proof. This proof is based on the alternative proof of Theorem 1.1 in [Ler86] on pp. 40
f. Let s ∈ (0, t0] and y < b(s). To make the above notation precise, denote by P (s,x)

(0,y)

the law of a Brownian bridge from (s, x) to (0, y) and by σ the first hitting time of the
Brownian bridge of b. Here, we consider W as a process in reversed time. Then,

P(0,0)(τ ≤ s|Ws = x) = P
(s,x)
(0,0) (σ > 0).

Then, the process Mt := r(t,Wt), t ∈ (0, s], is a martingale under P (s,x)
(0,0) (but not on

[0, s] as M0 = limt↘0 r(t,Wt)) = 0). If we assume that the function r fulfils

1− δ1 ≤ r(t, b(t))−1, t ∈ (0, t0], (1.4)

we obtain the estimate

P(0,0)(τ ≤ s|Ws = x) =
∫
{σ>0}

Mσ

r(σ,Wσ)dP
(s,x)
(0,0) ≥ (1− δ1)

∫
{σ>0}

MσdP
(s,x)
(0,0) .

Now, note that for all n ∈ N we have by the optimal stopping theorem (e.g., cf. [RY99],
Chapter II, Theorem 3.2) that

E(Mσ∨ 1
n
) = E(Mt0).

Moreover, we have that maxt∈(0,s] r(t, b(t)) is an integrable majorant of Mσ∨ 1
n
. Recalling

M0 = 0, we find
∫
{σ>0}

MσdP
(s,x)
(0,0) = E

(
Mσ1{σ>0} +M01{σ=0}

)
= E

(
lim
n→∞

Mσ∨ 1
n

)
= lim

n→∞
E
(
Mσ∨ 1

n

)
= E(Ms) = r(s, x),

so that

P(0,0)(τ ≤ s|Ws = x) ≥ (1− δ1)r(s, x).

The other inequality follows the same way.

10
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If b fulfils r(t, b(t)) = 1, we can now recover the c.d.f. F (t) = P (τ ≤ t) from
r(t, x) = P (τ ≤ t|Wt = x) by integration. We obtain

F (t) = P (Wt ≥ b(t)) +
∫ b(t)

−∞
P (τ ≤ t|Wt = x)pt(0, x)dx

= 1− Φ
(
b(t)√
t

)
+
∫ ∞

0
1− Φ

(
θ − b(t)√

t

)
µ(dθ).

Then, the density can be recovered from this as

f(t) = 1
2t3/2

∫ ∞
0

θφ

(
θ − b(t)√

t

)
µ(dθ).

The method of images is traditionally applied as follows: One starts with a measure
µ with associated function r = rµ and then considers a curve b that is the implicit
solution to the equation

r(t, x) = 1,

i.e., b is chosen such that r(t, b(t)) = 1 for all t ∈ (0, t0] for some t0 > 0. Proposition
1.3 then yields that, under certain assumptions, r describes the hitting probability of
the curve b.

Remark 1.4. Using this approach, one can generate curves with explicit hitting proba-
bilities. The easiest examples are linear boundaries b(t) = a+mt, where a > 0, b ∈ R,
which are generated by µ = exp(−2am)δ2a (cf. [Ler86], Example 1, p. 27).

Therefore, the method of images can be seen as a method to generate certain curves
with explicitly given hitting distribution which is why the method has rightly been
celebrated. However, explicit solutions remain scarce apart from the linear boundary
(cf. [Ler86], pp. 27 ff. for more explicit examples).

In practice, therefore, the more relevant problem seems to be the inverse: given a
curve b, does there exist a measure µ such that the method of images applied to µ
yields b? This question was already asked in [Ler86], p.40, and was more recently raised
again in [Kah08], p.1439 (in a slightly modified setting). This is also called the inverse
method of images. To the best of our knowledge, there is no answer yet.

We approach this question in this thesis by methods of linear program. In order to
do this, we first make the following definition.

Definition 1.5. A function b : R+ → R is called representable (in the sense of the

11



CHAPTER 1. INTRODUCTION

method of images) if there exists a positive, σ-finite measure µ on R+ such that b is the
solution of

∫ ∞
0

rθ(t, x)µ(dθ) = r(t, x) = 1,

i.e., if r(t, b(t)) = 1. In that case, we call µ the representing measure of b and say µ
represents b.

With this definition in mind, we can formulate the following theorem on the existence
of representing measures, where we use the analyticity of b. Denote byM+[2b(0),∞)
the set of all (positive) regular, σ-finite Borel measures on [2b(0),∞).

Theorem 1.6. Let µ ∈ M+(R+). Let b be analytic and let b(0) > 0. Assume one of
the following conditions holds:

(i) There exists a sequence t1, t2, . . . with accumulation point t̃ ∈ (0, t0) such that
∫ ∞

0
rθ(tn, b(tn))µ(dθ) = 1 for all n ∈ N.

(ii) There exists a strictly increasing sequence t1, t2, . . .↗ t0 such that
∫ ∞

0
rθ(tn, b(tn))µ(dθ) = 1 for all n ∈ N

and there exists some t∗ > t0 such that

∫
[0,∞)

exp
(
− θ2

2t∗

)
µ(dθ) <∞.

Then, b is represented by µ.

Proof. Note that b is analytic on (0, t0] (cf. Lemma 1.1 above). Then, the claim follows
directly from assertion (i) by use of the identity theorem for analytic functions (e.g., cf.
Theorem III.3.2, [FB09]). In order to prove that the claim follows from assertion (ii),
consider for t > t0

r(t, b(t)) =
∫

[2b(0),∞)
exp

(
−θ

2

2t + θb(t)
t

)
µ(dθ)

=
∫

[2b(0),K]
exp

(
−θ

2

2t + θb(t)
t

)
µ(dθ) +

∫
(K,∞)

exp
(
−θ

2

2t + θb(t)
t

)
µ(dθ)

12
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where we choose K := supt∈(t0,t̃]
2t∗b(t)
t∗−t for some t̃ ∈ (t0, t∗). Then, K is finite and µ is

σ-finite by assumption and therefore the first integral is finite. For the second integral,
we note that a short calculation shows that for θ > K we have that for all t ∈ (0, t̃)

exp
(
−θ

2

2t + θb(t)
t

)
≤ exp

(
− θ2

2t∗

)

and so the second integral is finite by assumption. Thus, t 7→ r(t, b(t)) is an analytic
function on (0, t̃). Now, claim (ii) follows directly from the identity theorem for analytic
functions.

Another question is how to find the representing measure numerically. There were
some attempts over the last years to find methods for a numerical approximation of
a representing measure µ. We will look at these results and present a new method in
Chapter 3.

1.3 Extensions of the method of images

In [Dan96], the method of images is heuristically extended to include signed measures µ,
i.e., to allow negative mass on [2b(0),∞). However, if signed measures are allowed, the
implicit boundary b does not need to be unique anymore and therefore signed measures
need to be treated with care. [Dan96] investigates a square-root boundary numerically
but runs into the problem of either having a bad fit of the approximation due to a too
coarse discretisation or numerical instabilities due to a too fine discretisation.

In [Kah08], an extension of the method of images is considered. Before the author
gives the extension, another approach to obtain first hitting probabilities using Schwartz
distributions was given. Consider the first hitting time τu of a standard Brownian
motion started in u ∈ R to some boundary b. Let µ be a Schwartz distribution or a
σ-finite measure, and let

U(u, t;µ) =


∫

Φ
(

u−v√
t0−t

)
µ(dv), for 0 ≤ t < t0,

0, otherwise.

Then, [Kah08] shows (cf. Theorem 2.5) that if µn is a sequence of Schwartz distributions
with U(b(t), t;µn)→ 1 as n→∞ (and if some other regularity assumptions hold), then,
U(u, 0;µn)→ P (τu < t0) as n→∞. Then, the author gives an extension of the method

13
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of images to Schwartz distributions. In particular, if µ is a Schwartz distribution such
that

∫
exp

(
−θ

2

2t + θb(t)
t

)
µ(dθ) = 1

for all t ∈ (0, t0], then, (cf. [Kah08], Theorem 6.2)

P (τ < t0) = Φ
(
−b(t)√
t0

)
+ U(b(t0), 0;µ).

In [AP10], the authors introduce the mapping S(β) as

S(β) : f 7→ (1 + β·)f
(
·

1 + β·

)

for β ∈ R. They show (Theorem 3.1, [AP10]) that the first crossing density of a boundary
b and the first crossing density of a boundary S(β)(b) are functional transforms of each
other. The authors connect this mapping to the method of images and show that if µ
is the measure representing b then the boundary S(β)(b) is represented by µ(β) where
µ(β)(dθ) := exp(−βθ2/2) · µ(dθ).

Finally, we present some results by [Zip16] (note that the paper comes chronologically
before the paper [Zip13] which we will quote later on and which builds on [Zip16]).
The paper investigates boundaries b generated by the method of images by linking its
behaviour for large t to the Laplace transform µ̃ of the representing measure µ. To
make this more precise, define

β∞ = lim
t→∞

b′(t),

α∞ = lim
t→∞

b(t)− tb′(t),

where we call β∞ the limiting slope and α∞ the limiting intercept of b. Note that
β∞ ∈ [−∞,∞) and α∞ ∈ (−∞,∞] since b is concave. Then, [Zip16] shows two main
results for the limit behaviour of b:

• (cf. Theorem 1, [Zip16]) β∞ <∞ if and only if µ̃(s) is convergent for s ≥ −β∞
and µ̃(−β∞) = 1.

• (cf. Theorem 2, [Zip16]) b is asymptotically linear with limiting slope β∞ and
limiting intercept α∞ if and only if µ̃(−β∞) = 1, µ̃(s) is twice differentiable for

14



1.3. EXTENSIONS OF THE METHOD OF IMAGES

s ≥ −β∞ and

α∞ = −1
2
µ̃′′(−β∞)
µ̃′(−β∞) .

Consequently, [Zip16] summarises that the limiting behaviour falls into one of three
categories: the limiting slope β∞ goes to −∞ if and only if µ̃ is not convergent, β∞ <∞
if and only if µ̃ is convergent and b is even asymptotically linear if and only if µ̃ is
convergent and twice differentiable (cf. Table 1, [Zip16]).

Finally, let us give a short outlook on the method of images for two-sided boundaries.
In [Ler86], Lerche notes that the method indeed extends to two-sided boundaries.
Following this lead, we denote by b1 the lower bound and by b2 the upper bound
for which we are interested in the hitting distribution of a Brownian motion W . In
particular, we assume b1(t) ≤ b2(t) for all t > 0, b1(0) < W0 < b2(0) and define in this
case τ := inf{t ≥ 0 : Wt /∈ (b1(t), b2(t))}. Let µ be a measure on R with µ({0}) = 0. If
we have both r(t, b1(t)) = 1 and r(t, b2(t)) = 1 for all t ≤ t0, where

r(t, x) =
∫ ∞
−∞

rθ(t, x)µ(dθ),

then, we can again obtain the conditional distribution of τ or at least bounds on it.
The following proposition is the analogue of Proposition 1.3 above.

Proposition 1.7. Assume the above set-up with two boundaries b1 and b2 and assume
that there exist δ1 ∈ [0, 1), δ2 ≥ 0 such that for t ∈ (0, t0] we have

1− δ1 ≤ r(t, b1(t))−1 ≤ 1 + δ2 and 1− δ1 ≤ r(t, b2(t))−1 ≤ 1 + δ2.

Then, for all x0 with b1(t0) < x0 < b2(t0) we find

(1− δ1)r(t0, x0) ≤ P(0,0)(τ ≤ t0|Wt0 = x0) ≤ (1 + δ2)r(t0, x0).

In particular, if r(t, b1(t)) = 1 and r(t, b2(t)) = 1 for all t ∈ (0, t0], then it holds that

r(t0, x0) = P(0,0)(τ ≤ t0|Wt0 = x0).

Proof. Denote by P (t0,x0)
(0,ζ) the measure of a Brownian bridge from (t0, x0) to (0, ζ) with

first hitting time σ of b1 or b2. As before, we consider W as a process in reversed time.
Then, the proof is analogous to the proof of Proposition 1.3.
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With this proposition in mind, we can again compute the distribution function F of
τ as

F (t) = 1− Φ
(
b2(t)√
t

)
+ Φ

(
b1(t)√
t

)
+
∫ ∞
−∞

Φ
(
θ − b1(t)√

t

)
− Φ

(
θ − b2(t)√

t

)
µ(dθ).

See Lemma A.2 in the appendix for a detailed derivation of the cumulative distribution
function. Moreover, [Ler86] notes that the results for the method of images carry over
to the two-sided case. In particular, we have that µ only puts mass on (−∞, 2b1(0)] ∪
[2b2(0),∞) (analogous to Lemma 1.2).

1.4 Related methods

There are two prominent examples of methods related to the method of images: the
method of weighted likelihoods and the tangent approximation. We will introduce these
methods and show their connection to the method of images. This section is again
based on [Ler86].

The method of weighted likelihoods was first introduced by [RS70]. Its close con-
nection to the method of images was shown by [Ler86]. Consider a positive, σ-finite
measure µ on R+ and let

q(t, x) =
∫ ∞

0
exp

(
θx− 1

2θ
2t
)
µ(dθ).

Consider the equation

q(t, x) = 1

for t ≥ t0 for some t0 > 0 and denote its implicit solution by β(t), i.e., β fulfils
q(t, β(t)) = 1. It can be shown that β has similar properties as the boundary b in the
method of images. In particular, β can be shown to be monotone increasing, concave,
and infinitely often continuously differentiable (cf. [Ler86], p.34). Define now T as the
first hitting time of a standard Brownian motion W to β after t0, i.e.,

T = inf{t > t0 |Wt ≥ β(t)}.
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Then, it can be shown for x0 < β(t0) that (cf. Theorem 2.1, [Ler86])

P (t0 ≤ T <∞|Wt0 = x0) = q(t0, x0).

Integration yields that (cf. Corollary 2.1, [Ler86])

P (t0 ≤ T <∞) = 1− Φ
(
β(t0)√
t0

)
+
∫ ∞

0
Φ
(
β(t0)− θt0√

t0

)
µ(dθ).

Now, recall that the boundary b from the method of images is the implicit solution of
the equation

1 = r(s, y) =
∫ ∞

0
exp

(
θy

s
− θ2

2s

)
µ(dθ)

whereas β is the implicit solution of

1 = q(t, x) =
∫ ∞

0
exp

(
θx− 1

2θ
2t
)
µ(dθ).

Using the time-inversion transformation

x = y

s
, t = 1

s

we find that (cf. [Ler86], (2.11)-(2.14))

b(s)
s

= β(t) and b(s) = β(t)
t

as well as

q
(1
t
,
x

t

)
= r(t, x).

The methods are therefore equivalent up to time inversion. Moreover, it can be shown
that the method of images and the method of weighted likelihoods use harmonic
functions for the forward and backward diffusion equation, i.e., different characteristics
of the same objects (cf. Theorems 1.3 and 2.2 in [Ler86]).

The close connection between these two methods means that they are essentially
the same. Thus, both have the same advantages and disadvantages and while they
in principle offer a way to find the hitting time distribution for a Brownian motion
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crossing a boundary, few explicit solutions are available.

The second method that is connected to the method of images is the tangent approx-
imation. A formal introduction of the method requires a lot of technical considerations
(for a detailed introduction and a derivation from the method of images, see [Ler86],
Chapters 3 and 4). Here, we will limit ourselves to a shorter, more intuitive account.
The idea behind the tangent approximation is the following: Consider for some point t
the tangent dt to the concave boundary b in t, i.e., consider dt(s) = b(t) + (s− t)b′(t).
Then, it is intuitively clear that for every t the density of the hitting time for b can be
approximated from above with the density of the hitting time for d. Or, more precisely,
it holds

fb(t) ≤ fdt(t)

where fb and fd denote the first hitting time densities for b and d, respectively. The
argument for this is that d lies above b since b is concave. But then, a standard Brownian
motion started in 0 has a higher probability of hitting b before t than hitting d before t
and has therefore “used” more of its hitting probability for b than it has for d. This
can also be formally proven (cf. the deduction of formula (3.2) in [Ler86]).

The advantage of this approach is that the density of the hitting time for a linear
function (in this case, the tangent) is well-known and is given by the Bachelier-Lévy
formula (cf. Formula (1.2) above). Now, it can be shown that (cf. Theorem 4.1, [Ler86])
fdt(t) converges uniformly to fb(t) on intervals of the form (0, t1] if b increases to infinity.
The same result was previously shown for some class of boundaries b as t → 0 by
[Str67]. Note however that the tangent approximation is a purely local method, as
approximating the first hitting time density of b for each t with the first hitting time
density of the tangent d in the same point t will not yield a probability density except
for the case when b is a linear function (cf. [Ler86], page 61) in which case we can revert
to the Bachelier-Lévy formula.

The tangent approximation was improved upon by several authors. In [Dur85]
and [Dur92], the first-passage density is given as an infinite series whose first term is
the tangent approximation. The author gives some examples where he shows higher
accuracy of his improved method compared to the classical tangent approximation. In
[RS95], the hazard rate tangent approximation is introduced. This method makes use
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of the hazard rate

rτ (t) := lim
ε↘0

P (τ ≤ t+ ε | τ > t)
ε

and approximates the hazard rate of the boundary b at some time t with the hazard
rate of the tangent of b in t. The method from [RS95] shows faster computation time
than the method set out in [Dur92] but [RS95] notes that his method is less accurate if
[Dur92] uses sufficiently many terms of his series. Finally, [Dan96] suggests a change to
the tangent approximation by replacing the linear tangent with a tangential curve of
higher order which cannot be given explicitly but for which an explicit first crossing
density can be derived. The author provides numerical approximations showing better
performance than the standard tangent approximation.

It is clear from what we have seen above that there are several open questions
concerning the first passage time problem. Most prominent among these is probably:
For a given curve b does there exist a measure µ such that b is representable in the
sense of the method of images? And how to obtain µ numerically in an efficient way?
And while there are different algorithms to obtain first hitting time distributions via
Fredholm equations, uniqueness of the distribution obtained via the Fredholm equation
remains an open question.

1.5 Structure and contribution of this thesis

Let us set out the structure and contribution of this thesis. In Chapter 2 we present
a new infinite linear programming approach to the inverse method of images. We
give two different linear programs and quickly find that these provide upper and lower
bounds for the hitting time distribution (Theorem 2.1). We continue to investigate
these programs by formulating the according dual programs and find strong duality
results for both set-ups (cf. Theorems 2.7 and 2.13). The proof requires compactification
of the underlying spaces.

Then, we use these results to obtain sufficient conditions for representability of a
given concave, analytical boundary b. One of the sufficient conditions makes use of
the distribution λ̄ of the last hitting time to b of a Brownian bridge W running from 0
at time 0 to x0 at time t0 (cf. Theorem 2.15). We will discover a possible connection
between this (conditional) distribution of the last hitting time and the (conditional)
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distribution of the first hitting time as the solutions of the dual programs introduced
before. Another sufficient condition exploits the analyticity of b and general properties
of attainable measures in the respective dual problems (cf. Theorem 2.19). For both
theorems, the sufficient conditions can be checked numerically.

In Chapter 3, we first look at existing computational methods for the inverse
method of images and see that while the methods are easy to implement, they require
discretisation of both time and space and no convergence results are available. We give
convergence results for our linear programs, where we only discretise the space axis (cf.
Propositions 3.1 and 3.2). We formulate a new algorithm based on these discretised
versions of the linear programs and give error bounds for the approximation.

In Chapter 4, we give a short introduction of the concept of European options
representing American options (in particular, the American put). The question of
existence of such representing European options is still open. We show that if a
European pay-off f represents some American pay-off g, then the stopping boundary bg
associated with g is representable in the sense of the method of images (cf. Theorem 4.1).
In particular, this gives rise to a new proof idea for showing existence of a representing
European option given an American option.

Finally, Chapter 5 deals with a well-known set of Fredholm integral equations that
characterise the first hitting time distribution. We show that this characterisation is
indeed unique (cf. Theorem 5.3).
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Chapter 2

A Linear Programming Approach
for the Inverse Method of Images

We investigate two linear programs that give upper and lower bounds for the first
hitting time distribution of a boundary b. Then, we show classical duality results for
these programs and finally use these duality results to give sufficient conditions under
which a representing measure µ for b exists.

2.1 Two set-ups of linear programs

We fix a real-valued, analytic, concave boundary b : [0,∞)→ R with finite slope at 0,
i.e., |b′(0)| <∞, and b(0) > 0. Note that we do not assume that t 7→ b(t)/t is monotone
decreasing (the second property from Lemma 1.1 above). Indeed, this property already
follows from our assumptions: Since b is concave, we have that b′′(t) ≤ 0 for all t. Using
this and the fact that b(0) > 0 we find with the help of the Taylor expansion that

0 < b(0) ≤ b(t) + b′(t)(0− t) = b(t)− b′(t)t ⇔ b′(t)t− b(t) ≤ 0.

Hence, we find that

d

dt

b(t)
t

= b′(t)t− b(t)
t2

≤ 0

which means that t 7→ b(t)/t is decreasing. Moreover, we fix a point (t0, x0) with t0 > 0
and x0 < b(t0). In the light of Proposition 1.3, it seems natural to consider either the
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following linear problem

maximise
∫
rθ(t0, x0)µ(dθ)

subject to µ ∈M+[2b(0),∞),∫
rθ(t, b(t))µ(dθ) ≤ 1 for any t ∈ (0, t0]

(D1)

where we approximate the measure µ representing b “from below”. Alternatively, we
could also consider the following linear program

minimise
∫
rθ(t0, x0)µ(dθ)

subject to µ ∈M+[2b(0),∞),∫
rθ(t, b(t))µ(dθ) ≥ 1 for any t ∈ (0, t0]

(P2)

where we approximate the measure µ representing b “from above”. We omitted the
bounds of integration as we integrate over the whole space in each case. Note that due
to Lemma 1.2 it is enough to consider measures µ on [2b(0),∞) for a given boundary b.
The programs are linear as the objective functions as well as the constraints are linear in
the optimisation variable µ. However, note that both programs are infinite-dimensional.

The labelling of the first program as (D1) and the second as (P2) may at first glance
be confusing. The notation will make more sense down the line when we consider the
associated formal dual problems and weak and strong duality.

The reader may rightly ask herself which program to prefer over the other, i.e.,
whether there is a “natural” or “better” choice for one or the other. While we need
both programs in order to find sufficient conditions for a representing measure µ to
exist, the most immediate use is that admissible solutions to these programs lead to
lower and upper bounds for the probability P(0,0)(τ ≤ t0|Wt0 = x0) as the following
theorem shows.

Theorem 2.1. For each (D1)-admissible µ1, we find that

rµ1(t0, x0) :=
∫
rθ(t0, x0)µ1(dθ) ≤ P(0,0)(τ ≤ t0|Wt0 = x0)

and for each (P2)-admissible solution µ2 that

rµ2(t0, x0) :=
∫
rθ(t0, x0)µ2(dθ) ≥ P(0,0)(τ ≤ t0|Wt0 = x0)
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Moreover, if there exists a representing measure µ∗, i.e.,
∫
rθ(t, b(t))µ∗(dθ) = 1 for any t ∈ (0, t0],

then µ∗ is a maximiser in (D1) and a minimiser in (P2).

Proof. We will use Proposition 1.3 to prove this statement. Let µ1 be a (D1)-admissible
solution. Then,

rµ1(t, b(t)) =
∫
rθ(t, b(t))µ1(dθ) ≤ 1 for any t ∈ (0, t0].

So, we have that r(t, b(t))−1 ≥ 1 for all t ∈ (0, t0] and so we can choose the constant δ1

in Proposition 1.3 to be 0. We then find that r(t0, x0) ≤ P(0,0)(τ ≤ t|Wt0 = x0). The
other inequality follows the same way.
If now µ∗ is indeed a representing measure, i.e.,

∫
rθ(t, b(t))µ∗(dθ) = 1 for any t ∈ (0, t0],

then we find again by Proposition 1.3 that

r(t0, x0) =
∫
rθ(t0, x0)µ∗(dθ) = P(0,0)(τ ≤ t|Wt0 = x0)

and so µ∗ must be a maximiser in (D1) and a minimiser in (P2).

This theorem tells us that the optimal solutions to these programs are candidates
for a measure µ representing b. We now need to investigate the existence of optimal
solutions to these problems and whether these fulfil r(t, b(t)) = 1 for any t ∈ (0, t0].

To further analyse the problems (D1) and (P2), we consider the associated formal
dual problems. If the reader is unfamiliar with linear programming (especially in the
infinite-dimensional context), she is kindly referred to [Roc70] or the more concise
[Roc74]. Alternatively, we have provided the most important notions in Appendix A.4.
For (D1), the dual program is

minimise ‖λ‖

subject to λ ∈M+(0, t0],∫
rθ(t, b(t))λ(dt) ≥ rθ(t0, x0) for any θ ∈ [2b(0),∞)

(P1)
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and for (P2), the dual program is

maximise ‖λ‖

subject to λ ∈M+(0, t0],∫
rθ(t, b(t))λ(dt) ≤ rθ(t0, x0) for any θ ∈ [2b(0),∞),

(D2)

where ‖λ‖ denotes the total variation norm of a measure λ. We now have two set-ups:
either (D1) and its dual (P1) or (P2) and its dual (D2). The reader will note that in both
set-ups the maximising problem gets tagged with a “D” and the minimising problem
gets tagged with a “P”. This is in line with the “usual” notation for linear programs
where the minimising problem is often regarded as the canonical primal problem and
the maximising problem is often the canonical dual problem. In particular, with this
notation we will see that the canonical version of weak duality holds. Let d1, p1, d2 and
p2 denote the optimal values of (D1), (P1), (D2) and (P2), respectively. Then, we will
show d1 ≤ p1 and d2 ≤ p2, respectively.

In the following sections we first establish strong duality for (D1) and (P1) (Section
2.2), then for (P2) and (D2) (Section 2.3) and finally use these results to establish
sufficient conditions for the existence of a representing measure µ for a given boundary
b exists (Section 2.4).

2.2 Strong duality in the first set-up

In this and the following section, we rely on the method set out in [CKL22]. The reader
will note the parallel structures we use but also the divergences in some proof methods,
where the structure of the current problem and the structure of the problem in [CKL22]
do not align. Throughout, we will use analogous notation to [CKL22] to make the
comparison easier for the reader. For a more detailed comparison of the problems, see
Section 4.1.

We begin by defining Ω := (0, t0] and

T :M[2b(0),∞)→ C(Ω), Tµ(t) :=
∫

[2b(0),∞)
rθ(t, b(t))µ(dθ),

T ′ :M(Ω)→ C0[2b(0),∞), T ′λ(θ) :=
∫

Ω
rθ(t, b(t))λ(dt),

where C and C0 denote the spaces of continuous functions and continuous functions
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vanishing at infinity, respectively. Also, let 〈f, ν〉 :=
∫
fdν on the Cartesian products

C0(Ω) ×M+(Ω) and C0[2b(0),∞) ×M+[2b(0),∞), respectively. Moreover, define
g(θ) := rθ(t0, x0). We can now reformulate our programs as follows:

maximise 〈g, µ〉

subject to µ ∈M+[2b(0),∞),

1− Tµ ∈ C+(Ω)

(D1)

and
minimise ‖λ‖

subject to λ ∈M+(Ω),

T ′λ− g ∈ C+
0 [2b(0),∞),

(P1)

whereM+, C+ and C+
0 denote the cones of non-negative elements in the spacesM,

C and C0. We now restrict our problems to compact sets. This enables us to show
existence of optimal solutions to these restricted problems as well as show strong duality.
Then, we can extend our findings and investigate strong duality between (D1) and (P1).

2.2.1 Strong duality of the restricted linear programs

Let the operator T and the space Ω be defined as above. Set for any ε ∈ Ω

Ωε := [ε, t0].

We will consider this compact subset of Ω as it allows us to obtain existence of optimal
measures of the programs restricted to Ωε. Now, we define

T ∗ :M(Ωε)→ C0[2b(0),∞), T ∗λ(θ) :=
∫

Ωε
rθ(t, b(t))λ(dt).

Note that T ∗ is defined analogously to T ′ with the difference between the two being the
areas of integration, i.e., Ω for T ′ and Ωε for T ∗. Consider now the Cartesian products
from before, but restricted to Ωε, i.e., C(Ωε)×M(Ωε) and C0[2b(0),∞)×M[2b(0),∞),
respectively. We will use the algebraic pairing

〈f, ν〉 =
∫
fdν
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as before. This algebraic pairing is finitely valued, bilinear and point separating.
Moreover, if C0(Ωε) and C+

0 [2b(0),∞) are endowed with the weak topologies σ(C0,M)
and the spacesM(Ωε) andM[2b(0),∞) with the vague topologies σ(M, C0) induced
by the algebraic pairing, then all four spaces are locally convex Hausdorff spaces and
C0(Ωε) is the continuous dual ofM(Ωε) and vice versa. The same holds for C0[2b(0),∞)
andM[2b(0),∞). If the reader is unfamiliar with locally convex spaces, we refer her to
Section A.3.

Using Fubini’s theorem, it can be shown that we have

〈Tµ, λ〉 = 〈µ, T ∗λ〉

for every µ ∈ M[2b(0),∞) and λ ∈ M(Ωε) and so the operators T and T ∗ are
indeed adjoint operators. Moreover, the operators T and T ∗ are σ(M, C0)− σ(C0,M)-
continuous (with respect to the corresponding spaces) due to Lemma A.6.

Recall that our ultimate goal is to find a measure µ1 ∈M+[2b(0),∞) solving (D1).
The approach now is to approximate this measure with a series of measures that are
the solutions to problems with weaker constraints. To this end, consider

maximise 〈g, µ〉

subject to µ ∈M+[2b(0),∞),

1− Tµ ∈ C+(Ωε).

(D1,ε)

Later on, we show that the (D1,ε)-optimal elements yield a sequence whose limit is the
solution of (D1). For now, we start by considering the formal Lagrange dual problem
associated to (D1,ε)

minimise ‖λ‖

subject to λ ∈M+(Ωε),

T ∗λ− g ∈ C+[2b(0),∞).

(P1,ε)

Denote the optimal values of (D1,ε) and (P1,ε) by d1,ε and p1,ε, respectively. Note that
by construction we have that 0 ≤ d1,ε ≤ p1,ε, i.e., weak duality holds. We can confirm
this with the following short calculation: Recall that T and T ∗ are adjoint operators.
Using the constraints of the linear programs, we obtain that for any dual admissible
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µ ∈M+[2b(0),∞) and any primal feasible λ ∈M+(Ωε) we have

0 ≤ 〈g, µ〉 ≤ 〈T ∗λ, µ〉 = 〈λ, Tµ〉 ≤ 〈λ, 1〉 = ‖λ‖.

Then, we obtain by taking the supremum over all (D1,ε)-feasible µ and all (P1,ε)-feasible
λ

d1,ε = sup
µ
〈g, µ〉 ≤ inf

λ
‖λ‖ = p1,ε

The following lemma confirms the existence of primal and dual attainable and optimal
measures.

Lemma 2.2. There exist a (D1,ε)-admissible µ1,ε such that d1,ε = 〈g, µ1,ε〉 and a
(P1,ε)-admissible λ1,ε such that p1,ε = ‖λ1,ε‖.

Proof. Consider the following modified version of (D1,ε) where we absorb g(θ) =
rθ(t0, x0) into the measure µ

maximise ‖µ‖

subject to µ ∈M+[2b(0),∞),

1− Tmodµ ∈ C+(Ωε)

(D1,ε,mod)

where

Tmodµ(t) =
∫

[2b(0),∞)

rθ(t, b(t))
rθ(t0, x0) µ(dθ)

for all t ∈ Ωε. Note that Tmod is continuous. Moreover, note that this program is
equivalent to (D1,ε). Now, consider the constraint for t = t0 to obtain that for any
(D1,ε,mod)-admissible µ we have

1 ≥
∫

[2b(0),∞)
exp

(
− θ2

2t0
+ θb(t0)

t0
+ θ2

2t0
− θx0

t0

)
µ(dθ)

=
∫

[2b(0),∞)
exp

(
θ(b(t0)− x0)

t0︸ ︷︷ ︸
≥0

)
µ(dθ) ≥

∫
[2b(0),∞)

µ(dθ) = ‖µ‖.

In particular, we find that ‖µ‖ ≤ 1 for all (D1,ε,mod)-admissible µ. Instead of solving the
maximisation problem (D1,ε,mod) we can equivalently maximise the σ(M, C)-continuous
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mapping µ 7→ ‖µ‖ over the set

Cε
d := T−1

mod

(
1− C+(Ωε)

)
∩M+[2b(0),∞) ∩BM+[2b(0),∞)(1)

where BM(R)(1) denotes the σ(M, C)-closed ball of radius 1 around 0 onM(R). We
now show that Cε

d is indeed compact. First, 1−C+(Ωε) is closed as it is homeomorphic
to the σ(C,M)-closed cone

C+(Ωε) =
⋂

λ∈M+(Ωε)
{f ∈ C(Ωε)|〈f, λ〉 ≥ 0} .

The continuity of Tmod then yields that T−1
mod(1 − C+(Ωε)) is σ(M, C)-closed as well.

Then, we can rewrite

M+[2b(0),∞) =
⋂

f∈C+
0 [2b(0),∞)

{µ ∈M[2b(0),∞)|〈f, µ〉 ≥ 0}

and so M+[2b(0),∞) is σ(M, C)-closed, too. Finally, we find that BM+[2b(0),∞)(1)
is σ(M, C)-compact due to Theorem A.7. Now, µ 7→ ‖µ‖ is upper-semi-continuous
with respect to the topology σ(M, C) and thus Lemma A.5 tells us that it attains its
maximal value d1,ε at some measure µε,mod ∈ Cε

d. Finally, the optimal value d1,ε of
(D1,ε) is obtained at µ1,ε where

dµ1,ε

dµε,mod
= g−1.

Now, turning our attention to (P1,ε), we define λ̃ = δt0 which is admissible in (P1,ε) for
all ε since we find for all θ ∈ [2b(0),∞) that

T ∗λ̃ = exp
(
− θ2

2t0
+ θb(t0)

t0

)
> exp

(
− θ2

2t0
+ θx0

t0

)
= g(θ)

as b(t0) > x0 by assumption. Thus, λ̃ is admissible and ‖λ̃‖ = 1. Therefore, it suffices
to minimise the σ(M, C)-continuous mapping λ 7→ ‖λ‖ over the set

Cε
p := (T ∗)−1

(
1− C+[2b(0),∞)

)
∩M+(Ωε) ∩BM+(Ωε)(1).

The σ(M, C)-compactness of Cε
p now follows along the same lines as the compactness of

Cε
d. Thus, we can again conlcude with Lemma A.5 that λ 7→ ‖λ‖ attains its minimum
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p1,ε at some measure λ1,ε ∈ Cε
p .

We can now prove strong duality. The Lagrange function L1 :M(Ωε)×M[2b(0),∞)→
[−∞,∞] associated with the (P1,ε)-(D1,ε)-duality is defined as

L1(λ, µ) := ‖λ‖+ 〈g, µ〉 − 〈T ∗λ, µ〉+ IM+(Ωε)(λ)− IM+[2b(0),∞)(µ),

where

IM(x) :=


0, if x ∈M,

∞, if x /∈M,

for any set M . We will use the following simplifications later on:

sup
µ∈M[2b(0),∞)

inf
λ∈M(Ωε)

L1(λ, µ) = sup
µ∈M+[2b(0),∞)

inf
λ∈M+(Ωε)

(‖λ‖+ 〈g − T ∗λ, µ〉)

= sup
µ∈M+[2b(0),∞)

(
〈g, µ〉+ inf

λ∈M+(Ωε)
〈λ, 1− Tµ〉

)
(2.1)

= sup
µ∈M+[2b(0),∞)

Tµ≤1

〈g, µ〉 = d1,ε,

inf
λ∈M(Ωε)

sup
µ∈M[2b(0),∞)

L1(λ, µ) = inf
λ∈M+(Ωε)

sup
µ∈M+[2b(0),∞)

(‖λ‖+ 〈g − T ∗λ, µ〉)

= inf
λ∈M+(Ωε)

(
‖λ‖+ sup

µ∈M[2b(0),∞)
〈g − T ∗λ, µ〉

)
(2.2)

= inf
λ∈M+(Ωε)
T ∗λ≥g

‖λ‖ = p1,ε.

Moreover, define the dual value function v1 : C0(Ωε)→ (−∞,∞] by

v1(f) := inf
µ∈M[2b(0),∞)

L∗1,µ(f),

where L∗1,µ denotes the conjugate of the mapping L1,µ.

Lemma 2.3. The dual value function v1 is convex and we have −d1,ε = v1(0) and
v∗∗1 (0) = −p1,ε. In particular, we have −d1,ε ≥ −p1,ε.
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Proof. We find with Lemma A.8(i) and our calculations in (2.1) that

v∗∗1 (0) ≤ v1(0) = inf
µ∈M[2b(0),∞)

L∗1,µ(0)

= inf
µ∈M[2b(0),∞)

sup
λ∈M(Ωε)

(〈0, λ〉 − L1,µ(λ))

= − sup
µ∈M[2b(0),∞)

inf
λ∈M(Ωε)

L1(λ, µ) = −d1,ε.

Then, we can compute the conjugate v∗1 :M(Ωε)→ [−∞,∞] of v1 as

v∗1(λ) = sup
f∈C0(Ωε)

(〈f, λ〉 − v1(f))

= sup
µ∈M[2b(0),∞)

sup
f∈C0(Ωε)

(
〈f, λ〉 − L∗1,µ(f)

)
= sup

µ∈M[2b(0),∞)
L∗∗1,µ(λ)

= sup
µ∈M[2b(0),∞)

L1,µ(λ),

where for the last equality we used Theorem A.9 which is applicable since the mapping
M(Ωε) 3 λ 7→ L1,µ(λ) := L1(λ, µ) is closed in the sense of Section A.3 and convex for
all µ ∈M[2b(0),∞). Then, the biconjugate ofv1 can be computed as

v∗∗1 (f) = sup
λ∈M(Ωε)

(〈f, λ〉 − v∗1(λ))

= sup
λ∈M(Ωε)

inf
µ∈M[2b(0),∞)

(〈f, λ〉 − L1(λ, µ)) . (2.3)

With the help of our calculations in (2.2), this yields

v∗∗1 (0) = sup
λ∈M(Ωε)

inf
µ∈M[2b(0),∞)

(〈0, λ〉 − L1(λ, µ))

= − inf
λ∈M(Ωε)

sup
µ∈M[2b(0),∞)

L1(λ, µ) = −p1,ε.

Moreover, note that the mapping v1 never takes the value −∞: Assume by contradiction
that there exists f ∈ C0(Ωε) such that v1(f) = −∞. We know that v∗∗1 ≤ v1 and
therefore we have v∗∗1 (f) = −∞, as well. But then because of (2.3) we find that
supµ L(λ, µ) = ∞ for any λ ∈ M(Ωε) and thus p1,ε = ∞. But, we do know that a
(P1,ε)-admissible solution exists and therefore this is impossible.
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Finally, we show that v1 is convex. To this end, let α ∈ (0, 1) and f1, f2 ∈ C0(Ωε). Note
that L1 is concave in its second component which is clear from its definition. Then, we
find for any measures µ̃, µ̂ ∈M+[2b(0),∞)

v1(αf1 + (1− α)f2) = inf
µ∈M[2b(0),∞)

L∗1,µ(αf1 + (1− α)f2)

= inf
µ∈M[2b(0),∞)

sup
λ∈M(Ωε)

(〈αf1 + (1− α)f2, λ〉 − L1(λ, µ))

≤ sup
λ∈M(Ωε)

(〈αf1 + (1− α)f2, λ〉 − L1(λ, αµ̃+ (1− α)µ̂))

≤ α sup
λ∈M(Ωε)

(〈f1, λ〉 − L1(λ, µ̃))

+ (1− α) sup
λ∈M(Ωε)

(〈f2, λ〉 − L1(λ, µ̂)) .

Taking the infimum over µ̃, µ̂ we obtain

v1(αf1 + (1− α)f2) ≤ α inf
µ1∈M[2b(0),∞)

sup
λ∈M(Ωε)

(〈f1, λ〉 − L1(λ, µ̃))

+ (1− α) inf
µ2∈M[2b(0),∞)

sup
λ∈M(Ωε)

(〈f2, λ〉 − L1(λ, µ̂))

= αv1(f1) + (1− α)v1(f2).

Note that we can conclude from Lemma 2.3 that −d1,ε ≥ −p1,ε which is equivalent
to weak duality holding. Of course, we already showed weak duality above without
using the additional structure of the dual value function v1.

We will also need the following version of Theorem 5.42 from [AB06].

Lemma 2.4. Let V be a locally convex space, f : V → (−∞,∞] a convex function
and x0 ∈ V . If there exists an open neighbourhood O of x0 such that supx∈O f(x) <∞,
then f is continuous in x0.

Now, we can prove the following lemma about strong duality.

Lemma 2.5. Strong duality holds between the programs (D1,ε) and (P1,ε) and for the
optimal solutions µ1,ε and λ1,ε the following complementary slackness conditions hold

T ∗λ1,ε = g holds µ1,ε-almost surely on [2b(0),∞) and

Tµ1,ε = 1 holds λ1,ε-almost surely on Ωε.
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Proof. Lemma 2.3 tells us that strong duality holds if v∗∗1 (0) = v1(0). By Theorem A.9
and the fact that we just showed v1 to be convex, we can deduce that

v∗∗1 (0) = cl(co(v1))(0) = lsc(v1)(0),

where cl, co and lsc denote the closure, the convex hull and the lower semi-continuous
hull of a function as defined below in Appendix A.3. Now, use Lemma A.8 to obtain

v∗∗1 (0) = sup
O∈U(0)

inf
f∈O\{0}

v1(f)

where U(0) is the set of all σ(C,M)-open neighbourhoods of 0. This means, we want

v1(0) = sup
O∈U(0)

inf
f∈O\{0}

v1(f),

i.e., continuity of v1 at 0 with respect to the topology σ(C,M). In order to show
continuity we make use of Lemma 2.4. As a σ(C,M)-open neighbourhood of 0 we
choose O := {‖f‖∞ < 1}. Then we find for any f ∈ O that

v1(f) = inf
µ∈M[2b(0),∞)

L∗1,µ(f) = inf
µ∈M[2b(0),∞)

sup
λ∈M(Ωε)

(〈f, λ〉 − L1,µ(λ))

= inf
µ∈M+[2b(0),∞)

sup
λ∈M+(Ωε)

(〈f, λ〉 − ‖λ‖ − 〈g, µ〉+ 〈T ∗λ, µ〉)

≤ sup
λ∈M+(Ωε)

(‖f‖∞ ‖λ‖ − ‖λ‖) = 0

Now, Lemma 2.4 yields that v1 is continuous at 0 and therefore p1,ε = −v∗∗1 (0) =
−v1(0) = d1,ε.

Moreover, the optimizers λ1,ε and µ1,ε fulfil the complementary slackness conditions.
By using that T and T ∗ are adjoint operators and that strong duality holds, i.e., that
d1,ε = p1,ε, we find that

0 ≤ 〈T ∗λ1,ε − g, µ1,ε〉 = 〈T ∗λ1,ε, µ1,ε〉 − d1,ε

= 〈λ1,ε, Tµ1,ε〉 − p1,ε = 〈λ1,ε, Tµ1,ε − 1〉 ≤ 0.

This means that T ∗λ1,ε = g holds µ1,ε-almost surely on [2b(0),∞) and Tµ1,ε = 1 holds
λ1,ε-almost surely on Ωε.

We can now summarise our findings from Lemma 2.2 and Lemma 2.5.
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Proposition 2.6. The optimal values p1,ε and d1,ε of the linear programs (P1,ε) and
(D1,ε) are attained by the solutions λ1,ε and µ1,ε, respectively. Strong duality holds and
we have the following complementary slackness conditions

T ∗λ1,ε = g, holds µ1,ε-almost surely on [2b(0),∞) and

Tµ1,ε = 1, holds λ1,ε-almost surely on Ωε.

2.2.2 Strong duality of the unrestricted programs

We now return to the original programs (D1) and (P1). We lift the results from the
restricted programs (D1,ε) and (P1,ε) by considering suitable sequences of solutions
where we let ε↘ 0. We now consider measures λ1,ε as measures on all of Ω = (0, t0] by
continuing them as the null measure outside of Ωε.

If we denote by d1 and p1 the optimal values of (D1) and (P1), we obtain weak
duality with analogous calculations as above (or simply by construction of the linear
programs). We showed above that for any (P1,ε)-admissible λ we have ‖λ‖ ≤ 1 and for
the modified program (D1,ε,mod) any admissible solution µ̃ satisfies ‖µ̃‖ ≤ 1 (recall that
the solution µ of the unmodified program (D1,ε) can be recovered from the solution µ̃
of the modified program by dµ/dµ̃ = g−1 where g(θ) = rθ(t0, x0), cf. proof of Lemma
2.2 above). Note that the bound is independent of ε in both cases. The metrisation
of the vague topology is possible on the total variation unit balls in both spaces (for
example, cf. [Bau01], §31). From Theorem A.7 we can deduce that these unit balls are
vaguely compact. Thus, there exists a sequence εn ↘ 0 and measures µ̃1 and λ1 with
‖µ̃1‖ ∨ ‖λ1‖ ≤ 1 such that µ̃1,εn → µ̃1 and λ1,εn → λ1 vaguely.

Moreover, note that for every function f : [2b(0),∞)→∞ with compact support,
the function f/g also has compact support. This allows us to conclude that µ1,εn =
1/g · µ̃1,εn

n→∞−−−→ 1/g · µ̃1 =: µ1 vaguely.

So, we have vague convergence of optimal measures for the restricted measures to
some measures µ1 and λ1. These measures are good candidates for being the optimal
measures in (D1) and (P1). However, we do not yet know whether µ1 and λ1 are even
admissible in the respective programs, much less whether these solutions are optimal or
whether strong duality holds.

Let us start by looking at admissibility. We know that µ1,εn converges vaguely to
µ1 and that the mapping θ 7→ rθ(t, b(t)) is continuous on [2b(0),∞) for any t ∈ Ω and
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vanishes at infinity. By Lemma A.1 we can conclude that

Tµ1(t) =
∫

[2b(0),∞)
rθ(t, b(t))µ1(dθ) = lim

n→∞

∫
[2b(0),∞)

rθ(t, b(t))µ1,εn(dθ) ≤ 1

and so µ1 is indeed (D1)-admissible.
Now, for λ1 to be (P1)-admissible, we need the additional assumption that ‖λ1,εn‖ →

‖λ1‖. Since then, we find by the Portemanteau theorem (see e.g., [Kle14], Theorem
13.16]) that λ1,εn → λ1 weakly and not only vaguely. This assumption can be numerically
investigated in an application by computing λ1,ε for smaller and smaller ε. The only
thing that could go wrong is that λ1,εn pushes mass into 0 for n→∞ since the total
mass of λ1 would then be smaller than the mass of the λ1,εn .

Moreover, we need t 7→ rθ(t, b(t)) to be bounded on (0, t0]. In order for this to be
true, we need the additional assumption that b′(0) < ∞. Then, we can check the
constraint for θ ∈ [2b(0),∞). First, we find for θ > 2b(0) that

rθ(t, b(t)) = exp
(
− θ

2t(θ − 2b(t))
)
→ 0

for t→ 0 since θ− 2b(t) > 0 for t sufficiently small. The latter is true since we assumed
that b is continuous. In the case that θ = 2b(0) we find that

r2b(0)(t, b(t)) = exp
(

2b(0)
(
b(t)− b(0)

t

))
→ exp (2b(0)b′(0)) <∞

for t→ 0 since we assumed 0 < b(0) <∞ and b′(0) <∞. In both cases we find that
t 7→ rθ(t, b(t)) is bounded. Then, we find by Portmanteau (again, see e.g., [Kle14],
Theorem 13.16]) that

∫
(0,t0]

rθ(t, b(t))λ1(dt) = lim
n→∞

∫
(0,t0]

rθ(t, b(t))λ1,εn(dt) ≥ g(θ)

and so λ1 is (P1)-admissible.
Finally, we find by Lemma A.1 that lim infn→∞〈g, µ1,εn〉 = 〈g, µ1〉. Moreover, we

have ‖λ1‖ ≤ lim infn→∞ ‖λ1,εn‖ (which is already true due to vague convergence but of
course also since we assumed limn→∞ ‖λ1,εn‖ = ‖λ1‖). Thus,

p1 ≤ ‖λ1‖ ≤ lim inf
n→∞

‖λ1,εn‖ = lim inf
n→∞

p1,εn

= lim inf
n→∞

d1,εn = lim inf
n→∞

〈g, µ1,εn〉 = 〈g, µ1〉 ≤ d1 ≤ p1.
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Note that all inequalities must therefore be equalities which shows several important
things: λ1 and µ1 are (P1)- and (D1)-optimal and we have that d1 = p1, i.e., strong
duality holds. Finally, we can again use the adjointness of T and T ′ as well as the fact
that strong duality holds, i.e., d1 = p1 and thus find that

0 ≤ 〈T ′λ1 − g, µ1〉 = 〈T ′λ1, µ1〉 − d1 = 〈λ1, Tµ1〉 − p1 = 〈λ1, Tµ1 − 1〉 ≤ 0

and therefore we have T ∗λ1 = g holds µ1-almost surely on [2b(0),∞) and Tµ1 = 1 holds
λ1-almost surely on Ω. We can again summarise our findings.

Theorem 2.7. (a) There exists a sequence (εn)n∈N and measures λ1 ∈M+(Ω) and
µ1 ∈M+[2b(0),∞) such that λ1,εn → λ1 and µ1,εn → µ1 vaguely. In addition, µ1

is (D1)-admissible.

(b) If ‖λ1,εn‖ → ‖λ1‖ and b′(0) < ∞, then λ1 is (P1)-admissible. Moreover, the
optimal values d1 and p1 in (D1) and (P1) are obtained by µ1 and λ1, respec-
tively, the optimal values coincide (i.e., strong duality holds) and the following
complementary slackness conditions are satisfied:

∫
rθ(t, b(t))µ1(dθ) = 1 for λ1-a.a. t ∈ (0, t0],∫
rθ(t, b(t))λ1(dt) = rθ(t0, x0) for µ1-a.a. θ ∈ [2b(0),∞).

2.3 Strong duality in the second set-up

Let us begin by recalling the definitions of the alternative primal problem

minimise
∫
rθ(t0, x0)µ(dθ)

subject to µ ∈M+[2b(0),∞),∫
rθ(t, b(t))µ(dθ) ≥ 1 for any t ∈ (0, t0]

(P2)

and its corresponding alternative Lagrange dual problem

maximise ‖λ‖

subject to λ ∈M+(0, t0],∫
rθ(t, b(t))λ(dt) ≤ rθ(t0, x0) for any θ ∈ [2b(0),∞).

(D2)
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With the same definitions of g, T , T ′ and T ∗ as well as Ω and Ωε as before we can again
formulate the programs in their abbreviated forms and their constraint forms.

2.3.1 Strong duality of the restricted linear programs

Let us now directly consider the constraint forms. The reader can easily write down
the abbreviated, unconstrained forms for herself. We consider

minimise 〈g, µ〉

subject to µ ∈M+[2b(0),∞),

Tµ− 1 ∈ C+(Ωε)

(P2,ε)

and its formal dual
maximise ‖λ‖

subject to λ ∈M+(Ωε),

g − T ∗λ ∈ C+[2b(0),∞).

(D2,ε)

In the same way as before, we find that T and T ∗ are adjoint operators with respect to
〈f, λ〉 =

∫
fdλ (defined on the respective spaces) and continuous. Denote the optimal

values of (P2,ε) and (D2,ε) by p2,ε and d2,ε, respectively. Then, we again have weak
duality by construction which we can confirm with the following calculation: for any
primal admissible µ ∈M+[2b(0),∞) and any dual feasible λ ∈M+(Ωε)

0 ≤ ‖λ‖ = 〈λ, 1〉 ≤ 〈λ, Tµ〉 = 〈T ∗λ, µ〉 ≤ 〈g, µ〉.

Now, we can show primal and dual attainment with an analogous result to Lemma 2.2.

Lemma 2.8. There exist a (P2,ε)-admissible µ2,ε such that p2,ε = 〈g, µ2,ε〉 and a (D2,ε)-
admissible λ2,ε such that d2,ε = ‖λ2,ε‖.

Proof. The proof follows along the same lines as the proof of Lemma 2.2 and we note
that it is enough to show that there exists a primal feasible µ with ‖µ‖ <∞ and for all
dual feasible λ that they are bounded by some constant. Let us begin by considering
µ̄ = c · δ2b(0) where we choose

c > exp
(
−2b(0)b(t0)− b(0)

t0

)
.
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Then, for any t ∈ Ωε

T µ̄(t) = c · exp
(
−4b(0)2

2t + 2b(0)b(t)
t

)

= c · exp
(

2b(0)b(t)− b(0)
t

)

≥ c · exp
(

2b(0)b(t0)− b(0)
t0

)
> 1,

i.e., T µ̄− 1 ∈ C+(Ωε). So, we have found a primal feasible µ with ‖µ‖ = c <∞.
For the dual problem, we find that for any dual feasible λ and for θ = 2b(0) the
constraint yields

g(2b(0)) = exp
(
−2b(0)2

t0
+ 2b(0)x0

t0

)
≥
∫

Ωε
exp

(
−2b(0)2

t
+ 2b(0)b(t)

t

)
λ(dt)

=
∫

Ωε
exp

(
2b(0)

(
b(t)− b(0)

t

))
λ(dt)

≥
∫

Ωε
exp

(
2b(0)

(
b(t0)− b(0)

t0

))
λ(dt)

≥ exp
(

2b(0)
(
b(t0)− b(0)

t0

))
‖λ‖

where we used in the third step that (b(t)− b(0))/t is monotone decreasing in t as b is
concave. So, in particular, we find that for any feasible λ we have that

‖λ‖ ≤ exp
(

2b(0)x0 − b(t0)
t0

)
=: C

and so the norm of all feasible λ is bounded by a constant C.

Next, we will deduce that strong duality holds. In order to be able to prove this, we
will need to consider modified programs to be able to show strong duality in the same
way as in the first set-up. The reader may rightly ask herself why we need this extra
detour. The reason will be become apparent after the proof of Lemma 2.10 below. For
now, the modified programs are

minimise ‖µ‖

subject to µ ∈M+[2b(0),∞),

Tmodµ− 1 ∈ C+(Ωε)

(P2,ε,mod)
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where

Tmodµ(t) =
∫

[2b(0),∞)

rθ(t, b(t))
rθ(t0, x0) µ(dθ)

and the formal dual program

maximise ‖λ‖

subject to λ ∈M+(Ωε),

1− T ∗modλ ∈ C+[2b(0),∞).

(D2,ε,mod)

where

T ∗modλ(θ) =
∫

Ωε

rθ(t, b(t))
rθ(t0, x0) λ(dt).

Note that we considered a modified version in the first set-up before where we also
absorbed the function g into the feasible measures µ. As before, we can recover the
solution of (P2,ε) from the solution (P2,ε,mod) via the relationship

dµ1,ε

dµ1,ε,mod
= g−1.

where µ1,ε and µ1,ε,mod denote the optimal solutions of (P2,ε) and (P2,ε,mod), respectively.
Note that (D2,ε) and (D2,ε,mod) are actually the same problem where we just slightly
modified the constraints by dividing by g. In particular, all characteristics we show for
the modified programs (P2,ε,mod) and (D2,ε,mod) automatically carry over to (P2,ε) and
(D2,ε).

In much the same way as before we define the Lagrange dual function as

L2(µ, λ) := ‖µ‖+ ‖λ‖ − 〈Tµ, λ〉+ IM+[2b(0),∞)(µ)− IM+(Ωε)(λ).

With the same steps as before we can again explicitly calculate that

sup
λ∈M(Ωε)

inf
µ∈M[2b(0),∞)

L2(µ, λ) = d2,ε and inf
µ∈M[2b(0),∞)

sup
λ∈M(Ωε)

L2(µ, λ) = p2,ε.

Using these calculations we can again consider L2,λ(µ) := L2(µ, λ) which is closed and
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convex for any µ and λ. Defining v2 : C0[2b(0),∞)→ (−∞,∞] as

v2(f) := inf
λ∈M(Ωε)

L∗2,λ(f)

as before we can formulate the analogon of Lemma 2.3.

Lemma 2.9. The dual value function v2 is convex and we have −d2,ε,mod = v2(0) and
v∗∗2 (0) = −p2,ε,mod. In particular, we have −d2,ε,mod ≥ −p2,ε,mod.

Proof. The proof follows along the same lines as the proof of Lemma 2.3. Note that we
used that L1 is concave in its second argument to show that v1 is convex. To accept
that this also holds here note that ‖λ‖ = 〈1, λ〉 is even a linear function in λ.

Now, we can conclude that strong duality holds in a similar way as before.

Lemma 2.10. Strong duality holds between the programs (P2,ε,mod) and (D2,ε,mod) and
for the optimal solutions µ2,ε,mod and λ2,ε,mod the following complementary slackness
conditions hold

T ∗modλ2,ε,mod = 1 holds µ2,ε,mod-almost surely on [2b(0),∞) and

Tmodµ2,ε,mod = 1 holds λ2,ε,mod-almost surely on Ωε.

Proof. By Lemma A.8, it is again enough to show continuity of v2 in 0. As before,
we want to apply Lemma 2.4 to obtain this result. We choose O := {‖f‖∞ < 1} as a
σ(C,M)-open neighbourhood of 0. For any f ∈ O we have

v2(f) = inf
λ∈M(Ωε)

L∗2,λ(f) = inf
λ∈M(Ωε)

sup
µ∈M[2b(0),∞)

(〈f, µ〉 − L2,λ(µ))

= inf
λ∈M+(Ωε)

sup
µ∈M+[2b(0),∞)

(〈f, µ〉 − ‖µ‖ − ‖λ‖+ 〈Tmodµ, λ〉)

≤ sup
µ∈M+[2b(0),∞)

(‖f‖∞‖µ‖ − ‖µ‖) = 0.

Then, the proof for strong duality concludes as before: We obtain d2,ε = −v2(0) =
−v∗∗2 (0) = p2,ε. For the complementary slackness conditions we observe that the
optimisers λ2,ε,mod and µ2,ε,mod fulfil

0 ≤ 〈Tmodµ2,ε,mod − 1, λ2,ε,mod〉 = 〈Tµ2,ε,mod, λ2,ε,mod〉 − d2,ε,mod

= 〈µ2,ε,mod, T
∗
modλ2,ε,mod〉 − p2,ε,mod = 〈µ2,ε,mod, T

∗λ2,ε,mod − 1〉 ≤ 0.

39



CHAPTER 2. A LINEAR PROGRAMMING APPROACH

This means we have that T ∗modλ2,ε,mod = 1 holds µ2,ε,mod-almost surely on [2b(0),∞) and
Tmodµ2,ε,mod = 1 holds λ2,ε,mod-almost surely on Ωε.

Note that we needed the modification of the programs in this proof: our dual value
function for the unmodified programs would have been

v2(f) = inf
λ∈M+(Ωε)

sup
µ∈M+[2b(0),∞)

(〈f, µ〉 − 〈g, µ〉 − ‖λ‖+ 〈Tmodµ, λ〉)

≤ sup
µ∈M+[2b(0),∞)

(‖f‖∞‖µ‖ − 〈g, µ〉) .

But since g(θ)→ 0 for θ →∞, we could not have defined a σ(C,M)-open neighbour-
hood O of 0 such that v2(f) is bounded for all f . This necessitated our detour.

As noted above, the results carry over to the unmodified programs (P2,ε) and (D2,ε).
We immediately obtain the following lemma.

Lemma 2.11. Strong duality holds between the programs (P2,ε) and (D2,ε) and for the
optimal solutions µ2,ε and λ2,ε the following complementary slackness conditions hold

T ∗λ2,ε = 1 holds µ2,ε-almost surely on [2b(0),∞) and

Tµ2,ε = 1 holds λ2,ε-almost surely on Ωε.

We can now summarise our findings from Lemma 2.8 and Lemma 2.11 in the following
proposition.

Proposition 2.12. The optimal values p2,ε and d2,ε of the linear programs (P2,ε) and
(D2,ε) are attained by the solutions λ2,ε and µ2,ε, respectively. Strong duality holds and
we have the following complementary slackness conditions

T ∗λ2,ε = g, holds µ2,ε-almost surely on [2b(0),∞) and

Tµ2,ε = 1, holds λ2,ε-almost surely on Ωε.

2.3.2 Strong duality of the unrestricted programs

As before, we can lift these results about the restricted programs (P2,ε) and (D2,ε) to
the unrestricted programs (P2) and (D2). Let p2 and d2 denote the optimal values of
the unrestricted programs. The weak duality 0 ≤ d2 ≤ p2 again follows from the same
calculation as above. Recall that we found for any ε > 0 that ‖µ2,ε‖ ≤ 1 and for λ2,ε
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we found that

‖λ2,ε‖ ≤ exp
(

2b(0)x0 − b(t0)
t0

)
=: C.

So, for any ε > 0 the masses of the optimisers µ2,ε and λ2,ε are bounded by constants
independent of ε. With the same metrisation argument as in the first set-up we can
find a sequence (εn)n and measures µ2 with ‖µ2‖ ≤ 1 and λ2 with ‖λ2‖ ≤ C such that
µ2,εn converges to µ2 vaguely and λ2,εn converges to λ2 vaguely.

As before, we find that for any t ∈ Ω the mapping θ 7→ rθ(t, b(t)) is continuous and
vanishes at infinity. So, we find by Lemma A.1 that

Tµ2(t) =
∫

[2b(0),∞)
rθ(t, b(t))µ2(dθ) = lim

n→∞

∫
[2b(0),∞)

rθ(t, b(t))µ2,εn(dθ) ≥ 1

and so µ2 is (P2)-admissible. To accept that λ2 is (D2)-admissible, we need to make
use of Urysohn’s lemma (e.g., cf. [Lan93], p.40, Theorem 4.2). First, we observe that
for any δ ∈ (0, t0/4) we have ∅ 6= Ω2δ ⊂ Ωδ ⊂ Ω and so by Urysohn’s lemma we can find
a continuous function φδ : Ω→ [0, 1] such that φδ(t) = 1 for all t ∈ Ω2δ and φδ(t) = 0
for all t ∈ cl(Ω \ Ωδ). Note that t 7→ rθ(t, b(t))φδ(t) is a continuous mapping for any
θ ∈ [2b(0),∞). Thus, by Lemma A.1 we find that for any θ ∈ [2b(0),∞)

∫
(0,t0]

rθ(t, b(t))λ2(dt) = lim
δ↘0

∫
(0,t0]

rθ(t, b(t))1Ω2δ(t)λ2(dt)

≤ lim
δ↘0

∫
(0,t0]

rθ(t, b(t))φδ(t)λ2(dt)

= lim
δ↘0

lim
n→∞

∫
(0,t0]

rθ(t, b(t))φδ(t)λ2,εn(dt)

≤ lim sup
δ↘0

lim sup
n→∞

∫
(0,t0]

rθ(t, b(t))λ2,εn(dt) ≤ g(θ)

and so in particular, λ2 is (D2)-admissible.
Now, recall that g is continuous and vanishes at infinity, so by Lemma A.1, we have

that 〈g, µ2〉 = limn→∞〈g, µ2,εn〉 and therefore

d2 ≤ p2 ≤ 〈g, µ2〉 = lim
n→∞
〈g, µ2,εn〉 = lim

n→∞
p2,εn = lim

n→∞
d2,εn ≤ d2.

The last inequality is true as any (D2,ε)-feasible λ is also (D2)-feasible. As all inequalities
in the above chain must be equalities, we can conclude that µ2 is (P2)-optimal, that
d2 = p2, i.e., that strong duality holds and that limn→∞ d2,εn = d2.
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In order to establish that λ2 is (D2)-optimal (and not only admissible as shown
above) we will need an analogous additional assumption to the assumption in the first
set-up, i.e., we will assume that ‖λ2,εn‖ → ‖λ2‖. Then, we find

‖λ2‖ = lim
n→∞

‖λ2,εn‖ = lim
n→∞

d2,εn = d2

as we already established above that limn→∞ d2,εn = d2. But that means that λ2 is
(D2)-optimal. Finally, we find that

0 ≤ 〈T ′λ2 − g, µ2〉 = 〈T ′λ2, µ2〉 − d2 = 〈λ2, Tµ2〉 − p2 = 〈λ2, Tµ2 − 1〉 ≤ 0

and therefore we have that T ′λ2 = g holds µ2-almost surely on [2b(0),∞) and Tµ2 = 1
holds λ2-almost surely on Ω. We can again summarise our findings.

Theorem 2.13. (a) There exists a sequence (εn)n∈N and measures λ2 ∈M+(Ω) and
µ2 ∈M+[2b(0),∞) such that λ2,εn → λ2 and µ2,εn → µ2 vaguely. The measures
µ2 and λ2 are (P2)- and (D2)-admissible, respectively. Strong duality holds, i.e.,
d2 = p2 and µ2 is (P2)-optimal.

(b) If ‖λ2,εn‖ → ‖λ2‖ and b′(0) < ∞, then λ2 is (D2)-optimal and the following
complementary slackness conditions are satisfied:

∫
rθ(t, b(t))µ2(dθ) = 1 for λ2-a.a. t ∈ (0, t0],∫
rθ(t, b(t))λ2(dt) = rθ(t0, x0) for µ2-a.a. θ ∈ [2b(0),∞).

F

Note that in this second set-up, we have strong duality and optimality of µ2 without
any additional assumptions, while in Theorem 2.7 we needed the additional assumption
‖λ2,εn‖ → ‖λ2‖ in order to obtain strong duality and optimality of µ1. In both cases,
the additional assumption is necessary for the optimality of λ1 and λ2, respectively, as
well as for the complementary slackness conditions to hold. This is due to the fact that
any (D2,ε)-feasible λ is also (D2)-admissible as we consider λ to be the null measure
outside of Ωε. However, a (D1,ε)-admissible µ does not have to be (D1)-admissible, as
µ may not fulfil Tµ = 1 outside of Ωε.
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2.4 On the existence of representing measures

In this section, we investigate the existence of a representing measure, i.e., given an
analytic, concave boundary b with b(0) > 0 we want to prove the existence of a measure
µ such that for all t ≤ t0

1 = r(t, b(t)) =
∫

[2b(0),∞)
rθ(t, b(t))µ(dθ).

We have already proven something similar. In Theorem 2.7, the complementary slackness
conditions state that

r(t, b(t)) =
∫

[2b(0),∞)
rθ(t, b(t))µ1(dθ) = 1 for λ1-a.a. t ∈ (0, t0]

where µ1 and λ1 are the optimal measures for (D1) and (P1), respectively. The analogous
result holds for µ2 and λ2 due to Theorem 2.13. It is now enough to “lift” this result
from “almost every” to “every” in the sense that if λ1 or λ2 put mass everywhere
on Ω = (0, t0], then we have that b is representable. As we want to make use of the
complementary slackness conditions as well as strong duality throughout this section,
we will assume the assumptions of Theorem 2.7 and 2.13 to hold, in particular, that
‖λ1,εn‖ → ‖λ1‖, ‖λ2,εn‖ → ‖λ2‖ and b′(0) < ∞. In addition, we will of course also
assume that our initial assumptions hold, i.e., b is analytic and concave with b(0) > 0.

We start by noting that there exists an interesting measure which we call λ̄. This
measure is admissible in (P1) and (D2) and already fulfils the constraints in both
programs with equality everywhere.

Lemma 2.14. Denote the last hitting time of W to b by σb and write

λ̄(dt) = P (σb ∈ dt|W0 = 0, Wt0 = x0).

Then, λ̄ is attainable for (P1) and (D2) and∫
rθ(t, b(t))λ̄(dt) = rθ(t0, x0) for any θ ∈ [2b(0),∞).

Proof. First, note that λ̄ ∈M+(0, t0]. Now, let θ ≥ 2b(0) and consider a straight line
gθ with gθ(0) = θ/2 lying above the boundary b. Let τθ be the first hitting time of W
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to gθ and choose a parameter aθ according to Remark 1.4 such that

P (τθ < t|W0 = 0,Wt = x) = aθrθ(t, x) for any x ≤ g(t).

Then, using the notation from the proof of Proposition 1.3 and the strong Markov
property of the Brownian bridge,

rθ(t0, x0) = 1
aθ
P (τθ < t0|W0 = 0,Wt0 = x0)

= 1
aθ

∫
(0,t0]

P
(t,b(t))
(0,0) (τθ ≤ t)P (t0,x0)

(0,0) (σb ∈ dt)

= 1
aθ

∫
(0,t0]

aθrθ(t, b(t))P (t0,x0)
(0,0) (σb ∈ dt)

=
∫

(0,t0]
rθ(t, b(t))λ̄(dt).

So, in particular, λ̄ is attainable in both (P1) and (D2).

Note that λ̄ is a strong contender to be optimal in both (P1) and (D2) as it already
fulfils the constraint not only with inequality but even with equality everywhere.
If λ̄ really is the optimal measure in both programs, then this yields a stochastic
interpretation of (P1) and (D2) as the programs determining the (conditional) last
hitting time distribution of a standard Brownian motion to b. This would be a nice
symmetry with the programs (D1) and (P2) used to determine the (conditional) first
hitting distribution.

Recall that p1 and d1 denote the optimal values of (P1) and (D1) and that p2 and
d2 denote the optimal values of (P2) and (D2). If we assume strong duality in both
set-ups and since λ̄ is attainable in both (P1) and (D2) we obtain

d1 = p1 ≤ ‖λ̄‖ ≤ d2 = p2. (2.4)

With the help of this inequality, we are able to formulate the following theorem which
provides sufficient conditions for a general concave, analytic b to be representable.

Theorem 2.15. Assume the prerequisites of Theorems 2.7 and 2.13 are met. Assume
one of the following conditions is fulfilled:

(i) d1 = p2

(ii) p1 = d2
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Then, b is representable.

Proof. The proof is immediate from (2.4). If one of the conditions is fulfilled, we
immediately have that λ̄ is the optimal measure in both (P1) and (D2). As λ̄ puts mass
everywhere in (0, t0], we can conclude from either Theorem 2.7 or Theorem 2.13 that
r(t, b(t)) = 1 for all t ∈ (0, t0] and so b is representable.

Note that the conditions given in Theorem 2.15 are of course equivalent due to
Equation (2.4). The theorem is stated in this way to stress that if the optimal values of
the “µ-problems” (D1) and (P2) or the optimal values of the “λ-problems” (P1) and
(D2) agree, then we have representability.

The conditions from Theorem 2.15 are a substantive improvement over the conditions
that we usually impose to guarantee that b is representable. Where one usually would
have to prove r(t, b(t)) = 1 for all t ∈ (0, t0], now one only has to check whether d1 = p2

or p1 = d2. In particular, these conditions can easily be checked in implementations
(see Section 3.3 below).

Recall that linear boundaries b are representable by point measures. In particular,
we have that d1 = p2 and therefore λ̄ is the dual optimal measure. The following proof
is more of a didactical nature to showcase how a representability proof for more general
b might be treated.

Corollary 2.16. If b is linear, then p1 = d2. In particular, λ̄ is the optimal measure
in both (P1) and (D2).

Proof. We will show that p1 = d2 and therefore the optimal values of the original and
the alternative set-up coincide. In particular, λ̄ then is an optimal measure in both (P1)
and (D2). Recall that the optimal measure λ1 in (P1) has to fulfil

T ′λ1(θ) ≥ g(θ) for µ1 − a.e. θ ∈ [2b(0),∞).

So, in particular, we find for θ = 2b(0) that

exp
(
−2b(0)2

t0
+ 2b(0)x0

t0

)
≤
∫

(0,t0]
exp

(
−2b(0)2

t
+ 2b(0)b(t)

t

)
λ1(dt)

=
∫

(0,t0]
exp

(
2b(0)

(
b(t)− b(0)

t

))
λ1(dt)

≤ exp (2b(0)b′(0)) ‖λ1‖
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and so equivalently we have

‖λ1‖ ≥ exp
(

2b(0)
t0

(x0 − b(0)− t0b′(0))
)

=: A.

Similarly, we have that the optimal measure λ2 in (D2) has to satisfy

T ′λ2(θ) ≤ g(θ) for µ2 − a.e. θ ∈ [2b(0),∞).

So, again we find for θ = 2b(0) that

exp
(
−2b(0)2

t0
+ 2b(0)x0

t0

)
≥
∫

(0,t0]
exp

(
−2b(0)2

t
+ 2b(0)b(t)

t

)
λ2(dt)

=
∫

(0,t0]
exp

(
2b(0)

(
b(t)− b(0)

t

))
λ2(dt)

≥
∫

(0,t0]
exp

(
2b(0)

(
b(t0)− b(0)

t0

))
λ2(dt)

= exp
(
−2b(0)2

t0
+ 2b(0)b(t0)

t0

)
‖λ2‖

and so equivalently we have

‖λ2‖ ≤ exp
(

2b(0)
t0

(x0 − b(t0))
)

=: B.

In particular, we already know that A ≤ ‖λ1‖ = p1 ≤ d2 = ‖λ2‖ ≤ B. So, we need
A ≥ B and this is the case if

x0 − b(0)− t0b′(0) ≥ x0 − b(t0) ⇔ b′(0) ≤ b(t0)− b(0)
t0

.

But this last condition is fulfilled since b is linear. So, we find that λ̄ is now indeed the
optimal measure in both (P1) and (D2).

As mentioned before Corollary 2.16, the course of the argument in the proof may be
a starting point for a proof that more general b are representable and that does not rely
on sufficient conditions like Theorem 2.15 does above. In particular, the ansatz used in
the proof of Corollary 2.16 was to utilise the constraints of both programs which tell us
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that

T ′λ1(θ) ≥ g(θ) for µ1 − a.e. θ ∈ [2b(0),∞)

as well as

T ′λ2(θ) ≤ g(θ) for µ2 − a.e. θ ∈ [2b(0),∞)

to show ‖λ2‖ = d2 ≤ p1 = ‖λ1‖. Then, combine this with (2.4) where we have
‖λ1‖ = p1 ≤ d2 = ‖λ2‖. In the case of linear b we only used the constraints at θ = 2b(0).
Incorporating the constraints for θ > 2b(0) might be a promising ansatz. For linear
b the mass of the representing measure µ is concentrated in 2b(0) whereas for more
general concave b there is mass in (2b(0),∞).

Moving away from the measure λ̄, we can also give more sufficient conditions such
that b is representable. To this end, we first make two observations about properties of
attainable measures in (P1) and (D2), respectively.

Lemma 2.17. Let λ be attainable for (P1). Then, for every ε ∈ (0, t0) it holds that
λ([t0 − ε, t0]) > 0.

Proof. Let λ be such that
∫

Ω
rθ(t, b(t))λ(dt) ≥ rθ(t0, x0) for any θ ∈ [2b(0),∞),

i.e.,

∫
exp

(
−1

2θ
2
(1
t
− 1
t0

)
+ θ

(
b(t)
t
− x0

t0

))
λ(dt) ≥ 1 for any θ ∈ [2b(0),∞).

We may write

∫
exp

(
−1

2θ
2
(1
t
− 1
t0

)
+ θ

(
b(t)
t
− x0

t0

))
λ(dt) =

∫
α(t) exp(−β(t)(θ − γ(t))2)λ(dt)

for certain positive functions α, β and γ being bounded on [0, t0− ε] for each ε ∈ (0, t0).
Now, if ε ∈ (0, t0) is such that λ([t0 − ε, t0]) = 0, then dominated convergence yields
the contradiction

∫
exp

(
−1

2θ
2
(1
t
− 1
t0

)
+ θ

(
b(t)
t
− x0

t0

))
λ(dt)→ 0 as θ →∞.
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Lemma 2.18. Let λ be attainable for (D2). Then, λ({t0}) = 0.

Proof. As before, let λ be attainable but this time for (D2), i.e., we have that for all
θ ∈ [2b(0),∞)

∫
(0,t0]

rθ(t, b(t))λ(dt) ≤ rθ(t0, x0).

So, equivalently, we obtain

∫
(0,t0]

exp
(
−θ

2

2

(1
t
− 1
t0

)
+ θ

(
b(t)
t
− x0

t0

))
︸ ︷︷ ︸

=:h(t)

λ(dt) ≤ 1.

Assume that λ({t0}) > 0, then we find

1 ≥
∫

Ω
h(t)λ(dt) ≥ h(t0) · λ({t0}) = exp

(
θ

(
b(t0)− x0

t0

))
· λ({t0})→∞, θ →∞

as b(t0) > x0 by assumption. This is a contradiction. So in particular, λ({t0}) = 0.

With these two lemmata at hand, we can now formulate the following sufficient
conditions such that b is representable.

Theorem 2.19. Assume the prerequisites of Theorems 2.7 and 2.13 are met and assume
the integrability condition from Theorem 1.6 (ii) is met, i.e., assume that there exist
some t∗ such that

∫
[0,∞)

exp
(
− θ2

2t∗

)
µi(dθ) <∞

where i = 1, 2. Moreover, assume, one of the following conditions is met:

(i) λ1({t0}) = 0

(ii) For every ε ∈ (0, t0) it holds λ2([t0 − ε, t0]) > 0

Then, b is representable.

Proof. The proof uses Theorem 1.6 (ii) and the previous two lemmata (2.17) and (2.18).
First, assume condition (i) holds. We know from Lemma 2.17 that λ1 puts mass in
every interval of the form [t0−ε, t0] for every ε ∈ (0, t0) but by assumption λ1({t0}) = 0.
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Due to the complementary slackness conditions from Theorem 2.7, we can conclude
that there exists a strictly increasing sequence t1, t2, . . .↗ t0 such that

∫
rθ(tn, b(tn))µ1(dθ) = 1 for all n ∈ N.

Then, we can conclude from Theorem 1.6 (ii) that b is representable. The proof in the
case that condition (ii) holds follows along the same lines with the help of Lemma 2.18
and Theorem 2.13.

Note that Theorem 2.19 also offers sufficient conditions for b to be representable
that are easier to check than the usual condition r(t, b(t)) = 1. In Chapter 3, we will
investigate a new method to obtain numerical candidates for µ1 and λ1 or µ2 and λ2,
respectively. Then, it is rather straightforward to check whether these measures fulfil
the conditions from Theorem 2.19 at least numerically.
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Chapter 3

Computational Method for the
Linear Programming Approach

After a short introduction to existing numerical approaches for the inverse method of
images, we give a convergence result for discretised versions of our programs and based
on that a new algorithm. We also provide error bounds for the numerical distribution
function of the first hitting time to a boundary b. This is followed by a numerical study
of representability, i.e., a numerical study of the assumptions in Theorem 2.15. Finally,
the chapter concludes with an investigation of two-sided boundaries.

3.1 Existing computational approaches for the in-
verse method of images

In [LRD02], the authors propose an approximation method for the inverse method of
images. We adapt the notation from [LRD02] to our notation used above. Given a
boundary b, the authors consider the equation

1 =
∫

[2b(0),∞)
exp

(
θb(t)
t
− θ2

2t

)
µ(dθ)

for t > 0. The idea is now to approximate the actual but unknown representing measure
µ with a measure µ̃ such that the boundary b̃ generated by µ̃ is close to b. The authors
assume µ to be a weighted sum of point measures δθr with (positive or negative) weights
wr, r = 1, . . . , N for some N ∈ N. Moreover, they choose a set of increasing time points
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ts, s = 1, . . . , 2N to arrive at the simplified equation

1 =
N∑
r=1

wr exp
(
θr
b(ts)
ts
− θ2

r

2ts

)
, s = 1, . . . , 2N. (3.1)

The values of θr can be pre-assigned in which case the given system of equations is
linear in the weights wr. Only N time points are then required to solve (3.1). The idea
behind this discretisation is that the given boundary b and the boundary b̃ generated
by the (signed) measure µ̃ through the method of images are equal at the time points
ts. If the values of θr, r = 1, . . . , N are pre-assigned, N points are sufficient to solve the
system of equations (3.1). The authors comment that a higher number of time points
may be desirable to increase the accuracy of the approximation of b with b̃ but this may
of course turn the system (3.1) singular.

The authors proceed to give approximate formulas for the distribution function and
the density of the first hitting time where they take the formulas from the method
of images and substitute the unknown representing measure µ with µ̃ but keep the
boundary b, which yields the formulas

b(t)
2t3/2φ

(
b(t)√
t

)
−

N∑
r=1

wr

(
b(t)− θr

2t3/2

)
φ

(
b(t)− θr√

t

)

for the density and for the distribution function

1− Φ
(
b(t)√
t

)
+

N∑
r=1

wrΦ
(
b(t)− θr√

t

)
.

The authors also extend their method to two-sided boundaries (cf. Section 3.5, [LRD02]).
Moreover, they investigate the approximation error by showing that for the first hitting
times τb and τb̃ to the boundaries b and b̃, respectively, it holds for all t > 0 that

|P (τb < t)− P (τb̃ < t)| → 0, as ε̄t := sup
0<s<t

|b̃(s)− b(s)| → 0.

In other words: the distribution functions of τb and τb̃ are close if b and b̃ are close.
The authors do not, however, give any convergence result for the algorithm itself.
The investigated examples of square-root and parabolic boundaries show fairly good
approximations with deviations of b̃ from b especially for t small.

In [Zip13], Zipkin refines the numerical methods developed by among others [LRD02].
Again, we will slightly adapt the notation to the notation of this paper.
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Given a boundary b, [Zip13] uses the same discretisations as [LRD02] but does not
set the number of discretisations to N . Rather, denote by J the number of points with
positive mass and by I the number of time discretisations. Then, set w = (wj)j=1,...,J

and let 1 be the vector of ones of length I, which enables us to restate Equation (3.1)
as Mw = 1 for a suitable M . [Zip13] then relaxes this setting slightly by choosing slack
variables si, i = 1, . . . , I as well as a vector p of length I consisting of positive constants
(e.g., p = 1). Then, the following linear program which has to be solved

minimise pT s

subject to Mw + s = 1,

w ≥ 0,

s ≥ 0.

The linear program’s objective function minimises the deviations s. Solving this
linear program will then give the weights wj, j = 1, . . . , J such that b̃ generated by
µ̃ = ∑

j wjδθj most closely resembles b. [Zip13] does not give any convergence results for
his algorithm. However, he finds that in examples the approximation b̃ of b generally
works well on the discretised time interval [t1, tI ] but deviates from b outside that
interval. The algorithm can nevertheless be seen as a substantial improvement on the
algorithm from [LRD02]. Then, [Zip13] gives a generalisation of how to include not
only point measures but also more general positive, σ-finite measures with densities.

Although the algorithms set out by [LRD02] and [Zip13] provide good approximations,
they suffer from some drawbacks: in both cases, the measure has to be discretised as a
weighted sum of point measures as well as the time axis has to be discretised. Moreover,
for neither algorithm a convergence result is provided. Both problems are addressed in
the following sections.

3.2 Convergence results and a new algorithm

In this section, we look at a possible implementation of the inverse method of images
and to this end put forward an algorithm as well as convergence results. Similar to
Section 2.2 above, this section relies on methods set out in [CKL22]. As before, we
use analogous notations revealing parallel structures but also divergences where the
problem at hand and the one presented in [CKL22] do not align.
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Let us start by discretising the linear problem. To this end, let µi ∈M+[2b(0),∞),
i ∈ N, and let Un := {∑n

i=1 aiµi | a ∈ Rn
+} denote the positive cone generated by the

measures µi, i = 1, . . . , n. Restricting the linear program (P2) to measures in Un gives

minimise
∫
rθ(t0, x0)µ(dθ)

subject to µ ∈ Un,∫
rθ(t, b(t))µ(dθ) ≥ 1 for any t ∈ (0, t0].

(P2,n)

Then, we can prove the following existence and consistency result for our simplified
program.

Proposition 3.1. Assume µi ∈ M+(R), i ∈ N to be positive measures. Set Un :=
{∑n

i=1 aiµi | a ∈ Rn
≥0} and denote by U∞ the closure of ⋃n∈N Un with respect to the

vague topology. For n ∈ N ∪ {∞} consider the linear program (P2,n)

minimise
∫
rθ(t0, x0)µ(dθ)

subject to µ ∈ Un,∫
rθ(t, b(t))µ(dθ) ≥ 1 for any t ∈ (0, t0]

and assume that there exists C ∈ R>0 such that C · µ1 is admissible in (P2,1) and
therefore in any (P2,n) for n ∈ N ∪ {∞} and that k · ‖µ1‖ < ∞. Then, the following
assertions hold:

(a) Let n ∈ N ∪ {∞}, then the linear program (P2,n) attains its optimal value p2,n at
some admissible measure µ∗2,n. The optimal value satisfies p2,n ≤ k·‖µ1‖. Moreover,
for m ≤ n the measure µ∗2,m is (P2,n)-admissible and it holds p2,m ≥ p2,n.

(b) There exists a subsequence of optimisers (µ∗2,nk)k and a (P2,∞)-admissible measure
ν∞ such that (µ∗2,nk)k → ν∞ vaguely. Moreover,

p2,∞ ≤
∫
rθ(t0, x0)ν∞(dθ) ≤ inf

n∈N
p2,n = lim

n→∞
p2,n.

(c) If there exists a sequence (ξn)n with ξn ∈ Un converging weakly to some (P2,∞)-
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optimal measure µ∗∞ as n→∞ and if

lim
n→∞

sup
t∈(0,t0]

|
∫
rθ(t, b(t))µ∞(dθ)−

∫
rθ(t, b(t))ξn(dθ)|∫

rθ(t, b(t))µ1(dθ) = 0,

then ν∞ from Assertion (b) is (P2,∞)-optimal and (µ∗2,nk)k converges weakly to ν∞.
Moreover, we find

p2,∞ =
∫
rθ(t0, x0)ν∞(dθ) = inf

n∈N
p2,n = lim

n→∞
p2,n.

Proof. (a) For any n ∈ N we again use the trick to slightly reformulate the program
(P2,n) by absorbing rθ(t0, x0) into µ. The linear program now reads

minimise ‖µ‖

subject to µ ∈ Un,∫ rθ(t, b(t))
rθ(t0, x0) µ(dθ) ≥ 1 for any t ∈ (0, t0].

(P ′2,n)

We call ZP ′2,n the set of all admissible measures. Let n ∈ N ∪ {∞} and define
µa := C · µ1 ∈ Un. Recall that µa is (P2,n)-admissible by assumption. Now, set
µ′a := r·(t0, x0) · µa and note that µ′a is (P ′2,n)-admissible and that every potential
minimiser µ∗ ∈ ZP ′2,n satisfies

‖µ∗‖ ≤ ‖µ′a‖ =: ρ

where ρ <∞ by assumption. In particular, any potential solution µ∗ ∈ ZP ′2,n is
contained in the vaguely compact ball BM(ρ) = {µ ∈ M[2b(0),∞) | ‖µ‖ ≤ ρ}.
Therefore, in the linear program (P ′2,n) it is sufficient to consider solutions from
the set

ZP ′2,n ∩BM(ρ) =
⋂

t∈[0,t0]
H(t) ∩ Un ∩BM(ρ)

where H(t) := {µ ∈ M(R) |
∫ rθ(t,b(t))
rθ(t0,x0)µ(dθ) ≥ 1}. Note that H(t) and Un are

closed with respect to the vague topology. So, we can conclude that ZP ′2,n ∩
BM(ρ) ⊂ M(R) is vaguely compact, as well. Then, the optimal value p′2,n in
the linear program (P ′2,n) is attained by some measure µ′2,n ∈ ZP ′2,n ∩BM(ρ), cf.
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Lemma A.5, as the functional µ 7→ ‖µ‖ is lower semi-continuous with respect to
the vague topology due to Theorem A.7. Then, the optimal value p2,n in (P2,n) is
attained by µ∗2,n := r·(t0, x0)−1 · µ′2,n.

(b) Recall that ‖µ′2,n‖ ≤ ρ for any n ∈ N. As before, Theorem A.7 tells us that the
total variation unit ball is vaguely compact. So, we can find a subsequence (µ′nk)k
and some measure ν ′∞ ∈ ZP ′2,n ∩ BM(ρ) such that (µ′nk)k → ν ′∞ vaguely. Then,
we obtain that the subsequence µ∗2,nk = r·(t0, x0)−1 · µ′2,nk converges vaguely to
ν∞ = r·(t0, x0)−1 · ν ′∞ (cf. Lemma A.1). Let now t ∈ (0, t0]. Then, the mapping
[2b(0),∞)→ R, θ 7→ rθ(t,b(t))

rθ(t0,x0) vanishes at infinity so we obtain

∫ rθ(t, b(t))
rθ(t0, x0) ν

′
∞(dθ) = lim

k→∞

∫ rθ(t, b(t))
rθ(t0, x0) µ

′
nk

(dθ) ≥ 1,

i.e., ν ′∞ is (P ′2,∞)-admissible and therefore ν∞ is (P2,∞)-admissible. Then, we
have p2,∞ ≤

∫
rθ(t0, x0)ν∞(dθ). Moreover, using vague convergence we find that

‖ν ′∞‖ ≤ lim infk→∞ ‖µ′1,nk‖, cf. [Kle14], Lemma 13.15. As the sequence (p2,n)n is
monotone, we can conclude that

p2,∞ ≤
∫
rθ(t0, x0)ν∞(dθ) = ‖ν ′∞‖ ≤ lim inf

k→∞
‖µ′1,nk‖ = inf

n∈N
p2,n = lim

n→∞
p2,n.

(c) Let n ∈ N and define ηn := ξn + εnµ1 where

εn := sup
t∈(0,t0]

|
∫
rθ(t, b(t))µ∗∞(dθ)−

∫
rθ(t, b(t))ξn(dθ)|∫

rθ(t, b(t))µ1(dθ) .

By assumption, µ∗∞ is (P2,∞)-optimal and therefore (P2,∞)-admissible. Then, we
find for all t ∈ (0, t0]

∫
rθ(t, b(t))ηn(dθ)− 1

≥
∫
rθ(t, b(t))ηn(dθ)−

∫
rθ(t, b(t))µ∗∞(dθ)

=
∫
rθ(t, b(t))µ1(dθ)

(
εn −

∫
rθ(t, b(t))µ∗∞(dθ)−

∫
rθ(t, b(t))ξn(dθ)∫

rθ(t, b(t))µ1(dθ)

)

≥ 0
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which means that ηn is (P2,n)-admissible. With the help of Assertion (b) we obtain

p2,∞ ≤
∫
rθ(t0, x0)ν∞(dθ) ≤ p2,n ≤

∫
rθ(t0, x0)ηn(dθ)

=
∫
rθ(t0, x0)ξn(dθ) + εn

∫
rθ(t0, x0)µ1(dθ).

Recall that the sequence (ξn)n was assumed to be weakly convergent to µ∗∞

and therefore we obtain limn→∞
∫
rθ(t0, x0)ξn(dθ) =

∫
rθ(t0, x0)µ∗∞(dθ) = p2,∞.

Putting this together, we finally find that

p2,∞ ≤
∫
rθ(t0, x0)ν∞(dθ) ≤ lim

n→∞
p2,n ≤ lim

n→∞

∫
rθ(t0, x0)ηn(dθ) = p2,∞

as limn→∞ εn = 0 by assumption. In particular, ν∞ is (P2,∞)-optimal. Also, we
find that limn→∞ ‖µ′2,n‖ = limn→∞ p2,n =

∫
rθ(t0, x0)ν∞(dθ) = ‖ν ′∞‖. In Assertion

(b), it was shown that a subsequence (µ′nk)k converges vaguely to ν ′∞. Recall
that R is locally compact and Polish with respect to the Euclidean topology.
Then, the Portmanteau theorem guarantees that (µ′2,nk)k converges weakly to
the measure ν ′∞ (for example, cf. [Kle14], Theorem 13.16). Finally, we find that
µ∗2,nk = r·(t0, x0)−1 · µ′2,nk converges weakly to ν∞ = r·(t0, x0) · ν ′∞.

We can formulate an analogous statement for (D1).

Proposition 3.2. Assume µi ∈ M+(R), i ∈ N, to be positive measures. Set Un :=
{∑n

i=1 aiµi | a ∈ Rn
≥0} and denote by U∞ the closure of ⋃n∈N Un with respect to the

vague topology. For n ∈ N ∪ {∞} consider the linear program

maximise
∫
rθ(t0, x0)µ(dθ)

subject to µ ∈ Un,∫
rθ(t, b(t))µ(dθ) ≤ 1 for any t ∈ (0, t0]

(D1,n)

and assume that there exists C ∈ R>0 such that C · µ1 is admissible in (D1,1) and
therefore in any (P2,n) for n ∈ N ∪ {∞} and that C · ‖µ1‖ <∞. Then,

(a) Let n ∈ N ∪ {∞}, then the linear program (D1,n) attains its optimal value d1,n

at some admissible measure µ∗1,n. Moreover, for m ≤ n the measure µ∗1,m is
(D1,n)-admissible and it holds d1,m ≤ d1,n.
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(b) There exists a subsequence of optimisers (µ∗1,nk)k and a (D1,∞)-admissible measure
ν∞ such that (µ∗1,nk)k → ν∞ vaguely. Moreover,

d1,∞ ≥
∫
rθ(t0, x0)ν∞(dθ) ≥ sup

n∈N
d1,n = lim

n→∞
d1,n.

(c) If there exists a sequence (ξn)n with ξn ∈ Un converging weakly to some (D1,∞)-
optimal measure µ∞ as n→∞ and if

lim
n→∞

inf
t∈(0,t0]

|
∫
rθ(t, b(t))µ∞(dθ)−

∫
rθ(t, b(t))ξn(dθ)|∫

rθ(t, b(t))µ1(dθ) = 0,

then ν∞ from Assertion (b) is (D1,∞)-optimal and (µ∗1,nk)k converges weakly to
ν∞. Moreover, we find

d1,∞ =
∫
rθ(t0, x0)ν∞(dθ) = sup

n∈N
d1,n = lim

n→∞
d1,n.

Proof. As before, consider the modified program

maximise ‖µ‖

subject to µ ∈ Un,∫ rθ(t, b(t))
rθ(t0, x0) µ(dθ) ≤ 1 for any t ∈ (0, t0].

(D′1,n)

Note that for all (D′1,n)-admissible µ we find by evaluating the constraint at t = t0 that

1 ≥
∫

[2b(0),∞)
exp

(
− θ2

2t0
+ θb(t0)

t0
+ θ2

2t0
− θx0

t0

)
µ(dθ)

=
∫

[2b(0),∞)
exp

(
θ
b(t0)− x0

t0

)
µ(dθ) ≥

∫
[2b(0),∞)

µ(dθ) = ‖µ‖.

Thus, all admissible solutions of (D′1,n) are contained in BM(1) = {µ ∈M[2b(0),∞) |
‖µ‖ ≤ 1}. The rest of the proof follows along the same lines as the proof of Proposition
3.1.

Similar results can be formulated and proven for the programs (P1) and (D2), see
Appendix A.2.

Note that we can limit ourselves to point measures on a dense subset of [2b(0),∞)
for our choices of the µi in the previous Propositions 3.1 and 3.2 and still be able to
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approximate every possible representing measure µ arbitrarily close. This is due to
the fact that for every locally compact space E (in our case E = [2b(0),∞)) the set of
discrete Radon measures (i.e., the set U∞ from the above propositions) is vaguely dense
inM+(E) (i.e.,M+[2b(0),∞) in our case). This result can be found as Theorem 30.4
in [Bau01]. The inclusion of measures with densities, as done in [Zip13], is therefore not
necessary for the convergence of the algorithm but may be useful for numerical reasons.

We can now outline a possible algorithm by considering the following simplification
of our discretised linear problem (P2,n). We consider the interval [2b(0), 2b(0) + l], where
l > 0 is some constant determining the interval length. Then, we choose a discretisation
into n equidistant points θi, i = 1, . . . , n, where θ1 = 2b(0) and θn = 2b(0) + l. Let
µi, i = 1, . . . , n be point measures at points θi and let again Un := {∑n

i=1 aiµi | a ∈ Rn
+}

denote the positive cone generated by the measures µi, i = 1, . . . , n. Recall the restriction
of the linear program (P2,n) to measures in Un:

minimise
∫
rθ(t0, x0)µ(dθ)

subject to µ ∈ Un,∫
rθ(t, b(t))µ(dθ) ≥ 1 for any t ∈ (0, t0].

(P ′2,n)

This can then be simplified as

minimise
n∑
i=1

rθi(t0, x0)ai

subject to a ∈ Rn
+,

n∑
i=1

rθi(t, b(t))ai ≥ 1 for any t ∈ (0, t0].

(3.2)

In order to implement this, we make use of the cutting plane algorithm described in
[LW92] and [Ito+10]. These two papers also provide good convergence results. We can
now outline the following algorithm:

Step 1: Let the set of initial constraints Γ1 ⊂ (0, t0] be the set {t0}. Choose a maximum
number of iterations kmax and set k = 1.
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Step 2: Calculate the solution a(k) ∈ Rn
+ of the following finite dimensional linear program

minimise
n∑
i=1

rθi(t0, x0)a(k)
i µ(θi)

subject to a(k) ∈ Rn
+,

n∑
i=1

rθi(t, b(t))a
(k)
i µ(θi) ≥ 1 for all t ∈ Γk.

(3.3)

Step 3: Calculate the point t(k) ∈ (0, t0] where the constraint is most severely violated,
i.e.,

t(k) := arg min
t∈(0,t0]

{
n∑
i=1

rθi(t, b(t))a
(k)
i µ(θi)

}
.

Step 4: Add the point t(k) of the most severe violation of the constraints to the set of
constraints, i.e., set Γk+1 := Γk ∪ {t(k)}.

Step 5: If the maximum number of iterations is reached, i.e., k = kmax, terminate the
algorithm and output the approximate solution

ã := a(k).

Otherwise, increase the iteration counter k  k+ 1 and return to the second step.

Note that in Proposition 3.1 we do not assume the measures µi, i ∈ N, to be point
measures as we assume in the algorithm. This indicates that the algorithm also works
for a much larger class of “auxiliary measures” µi. Moreover, the proposed algorithm
uses fewer assumptions than the algorithm proposed in [Zip13] as we only choose points
in [2b(0),∞) where the algorithm can put point masses and the initial constraint at
t0. Then, the algorithm “chooses” the next points where the constraint is evaluated.
In [Zip13], both the division of [2b(0),∞) as well as the points t1, . . . , tm where the
constraint is evaluated have to be chosen.

For the linear program (D1), we use analogous simplifications and an analogous
algorithm. For the linear programs (D2) and (P1), i.e., for the “λ”-problems, we divide
the interval (0, t0] into nλ equidistant points 0 < t1 < . . . < tnλ = t0. Again, we choose
the measures λi for i = 1, . . . , nλ to be the point measures in ti. We can then use
analogous algorithms which are initialised with Γ1 = {2b(0)}.
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If we have obtained a candidate representing measure from one of the above outlined
algorithms, it is interesting to know how far apart the cumulative distribution function
generated by this measure is from the actual cumulative distribution function. Recall
that if a measure µ represents b in the sense that r(t, b(t)) = 1 for all t ∈ (0, t0], then
r(t, x) = P (τ ≤ t|Wt = x) and therefore the cumulative distribution function F of τ is
given by

F (t) = P (Wt ≥ b(t)) +
∫ b(t)

−∞
P (τ ≤ t|Wt = x)pt(0, x)dx

= 1− Φ
(
b(t)√
t

)
+
∫ b(t)

−∞
r(t, x)pt(0, x)dx.

If we now have obtained a measure µ̃ from our algorithms, we define r̃(t, x) =∫
[2b(0),∞) rθ(t, x)µ̃(dθ) and approximate the true cumulative distribution function F

with

F̃ (t) = 1− Φ
(
b(t)√
t

)
+
∫ b(t)

−∞
r̃(t, x)pt(0, x)dx.

Now, we can give the following result on the approximation of F with F̃ .

Proposition 3.3. Let F be the true first hitting time distribution to a boundary b and
µ̃ a measure such that for all t ∈ (0, t0]

1− δ1 ≤ r̃(t, b(t))−1 ≤ 1 + δ2

for some δ1 ∈ [0, 1) and δ2 > 0. Then,

sup
t∈(0,t0]

|F (t)− F̃ (t)| ≤ max (δ1, δ2) .

In particular, we have

lim
δ1↘0
δ2↘0

sup
t∈(0,t0]

|F (t)− F̃ (t)| = 0.

Proof. Let t ∈ (0, t0]. By assumption, we have for all t ∈ (0, t0]

1− δ1 ≤ r̃(t, b(t))−1 ≤ 1 + δ2
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for some δ1 ∈ [0, 1) and δ2 > 0. Then, Proposition 1.3 tells us that

(1− δ1)r̃(t, x) ≤ P(0,0)(τ ≤ t|Wt = x) ≤ (1 + δ2)r̃(t, x)

for all x ≤ b(t). Then, we find

F (t) = 1− Φ
(
b(t)√
t

)
+
∫ b(t)

−∞
P (τ ≤ t|Wt = x)pt(0, x)dx

≤ 1− Φ
(
b(t)√
t

)
+
∫ b(t)

−∞
(1 + δ2)r̃(t, x)pt(0, x)dx

= (1 + δ2)F̃ (t)− δ2

(
1− Φ

(
b(t)√
t

))

≤ (1 + δ2)F̃ (t)

where pt(0, x) is the transition kernel of a Brownian motion going from 0 to x in a time
span t. In particular, we can conclude

F (t)− F̃ (t) ≤ δ2.

Analogously, we find

F (t)− F̃ (t) ≥ −δ1.

Together, we obtain

sup
t∈(0,t0]

|F (t)− F̃ (t)| ≤ max (δ1, δ2) .

3.3 Numerical study of representability

In this section, we consider a number of concave, analytic boundaries b and investigate
their representability. To this end, we have implemented the four programs as laid
out at the end of Section 3.2. For all boundaries, we choose t0 = 1, x0 = b(t0) − 1
and the maximum number of iterations kmax = 20. Moreover, for the “µ-problems”
(D1) and (P2) we select a length of l = 5 and discretise the intervall [2b(0),∞) by
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setting n = 100 equidistant points in [2b(0), 2b(0) + l] where the algorithm can put
point mass. For the “λ-problems” (P1) and (D2) we discretise the interval (0, t0]
by choosing nλ = 100 equidistant points where the algorithm can put mass. Table
3.1 gives the optimal values of all these four programs as well as the computation
time for the implementation of (D1). The other programs have similar computation
times. All programs were implemented in R. In Step 3 of the algorithm above, we
have to determine the point where the constraint is most severely violated. In our
implementation we used the package “RcppDE” and the function DEoptim for finding
this extremal point. It is important to note that DEoptim is an implementation of the
differential evolution algorithm and its result is a random variable. Therefore, different
runs of our implementation may yield slightly different results. For more details on this
see the documentation of the package “RcppDE” which can be found in [Mul+11]. The
results from our runs can be found in Table 3.1. Moreover, we can consider the functions

b = b(t) d1,n p1,nλ d2,nλ p2,n Time (in sec)
1 + t 0.1353353 0.1353353 0.1353353 0.1353353 0.43√
1 + t 0.1274203 0.1274203 0.1274203 0.1274203 0.45

log(2 + t) 0.2364878 0.2364878 0.2364878 0.2364878 0.61
1 + t2 0.1353353 0.1353353 0.9801987 0.9980020 0.52

Table 3.1: Numerical results for the optimal values and computations times for (D1)
with discretisations as defined above

rµ1,n(t, b(t)) :=
∫

[2b(0),∞) rθ(t, b(t))µ1,n(dθ) and rµ2,n(t, b(t)) between 0 and t0 = 1 and can
consider the minima and maxima of the inverse of these functions, i.e., r−1

µ1,n and r−1
µ2,n .

According to Proposition 3.3, this will give us an idea of the quality of approximation
of the true c.d.f. F with the numerical c.d.f. F̃ . The results can be found in Table 3.2

b = b(t) min r−1
µ1,n max r−1

µ1,n min r−1
µ2,n max r−1

µ2,n

1 + t 0.999999999953 1.000000000016 0.999999999996 1.000000000037√
1 + t 0.999999986788 1.002635679587 0.992114401333 1.000003242113

log(2 + t) 0.999999954916 1.001276226376 0.998198226881 1.000000116299
1 + t2 1.000000005738 7.389040705848 0.135606226531 1.001999983886

Table 3.2: Numerical results for the minima and maxima of r−1
µ1,n and r−1

µ2,n on the
interval (0, t0, ]

We can immediately see in Table 3.1 that in the case of the linear boundary b(t) = 1+t
the values of d1,n, p1,nλ , d2,nλ and p2,n agree in the first 8 digits. So, we can heuristically
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confirm both strong duality in both set-ups and that the conditions for representability
from Theorem 2.15 are met, i.e., d1 = p2 and p2 = d1. This is, of course, not surprising
as we already know that linear boundaries b are representable. So, this case serves as a
sanity check on our algorithm.

Moreover, we can consider the boundaries bµ1,n and bµ2,n generated by the numerical
solutions µ1,n and µ2,n and compare these boundaries to the boundary b that was
the input for the optimisation problems. Figure 3.1 depicts the graphs of these three
boundaries in the first picture, show the value of rµ1,n(t, b(t)) and rµ2,n(t, b(t)) between
0 and 1 in the second subfigure and the distribution function obtained by substituting
the representing measure µ with the numerical solutions µ1,n and µ2,n, respectively, i.e.,

Fµi(t) := 1− Φ
(
b(t)√
t

)
+
∫ ∞

0
1− Φ

(
θ − b(t)√

t

)
µi(dθ)

for i = 1, 2. Note that Fµi yields an approximation of the true distribution function F
in analytical form. We can see in Figure 3.1 that both numerical boundaries perfectly
replicate the original boundary as the boundaries generated by µ1,n (red) and µ2,n

(blue) are completely overlapped by the original boundary. In particular, the graphs of
rµi,n(t, b(t)), i = 1, 2 which are equal to 1 support that b is represented by µi,n. This
is not very surprising as it is well known that linear boundaries are representable by
measures µ which only put mass into 2b(0) which both µ1,n and µ2,n do. Moreover, we
can see in Table 3.2 that r−1

µ1,n and r−1
µ2,n deviate from 1 by less than 10−10. The deviation

should be 0 and can probably be attributed to small numerical rounding errors. In
particular, we know due to Proposition 3.3 that we get a very good approximation of
the distribution function F .

Let us now consider the boundaries b(t) =
√

1 + t and b(t) = log(2+t), i.e., boundaries
which are concave and monotone increasing. For both boundaries, we can observe
(compare Table 3.1) that the values of d1,n, p1,nλ , d2,nλ and p2,n agree in the first 8 digits,
i.e., we can again numerically confirm both strong duality in both set-ups as well as
the conditions for representability from Theorem 2.15. Even though we choose t0 = 1
we observe in Figure 3.2 that the boundary is very well replicated by the boundaries
generated by µ2,n and µ1,n up to t = 3 with just slight deviations between t = 2 and
t = 3. The graphs for rµ1,n(t, b(t)) and rµ2,n(t, b(t)) are virtually indistinguishable from
1 and we can see in Table 3.2 that r−1

µ1,n and r−1
µ2,n deviate from 1 by less than 10−2.

Thus, the graphs of the numerical distribution functions Fµi , i = 1, 2 are very exact
approximations for F due to Proposition 3.3. Moreover, note that Proposition 3.3 gives
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Figure 3.1: Numerical results for b(t) = 1 + t.
Top: graphs of the original boundary (black) which overlaps the boundaries generated
by µ1,n (red) and µ2,n (blue).
Middle: corresponding values of rµ1,n(t, b(t)) (red) and rµ2,n(t, b(t)) (blue) between 0
and 1 overlapped by the function constant 1 (black).
Bottom: numerical approximations of the distribution functions Fµ1 (red) and Fµ2

(blue).
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Figure 3.2: Numerical results for b(t) =
√

1 + t
Top: graphs of the original boundary (black) which overlaps the boundaries generated
by µ1,n (red) and µ2,n (blue).
Middle: corresponding values of rµ1,n(t, b(t)) (red) and rµ2,n(t, b(t)) (blue) between 0
and 1 compared with the function constant 1 (black).
Bottom: numerical approximations of the distribution functions Fµ1 (red) and Fµ2

(blue).
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a rather conservative estimate of the approximation error, so the true approximation
error is probably much less.

For b(t) = log(2 + t) we observe very similar results in Figure 3.3. The boundaries
generated by µi,n, i = 1, 2 start to deviate slightly from the original b around t = 2. In
much the same way as before, rµ1,n(t, b(t)) and rµ2,n(t, b(t)) are virtually indistinguishable
from 1 and we can see in Table 3.2 that r−1

µ1,n and r−1
µ2,n deviate from 1 by less than 10−2.

So, the graphs of the numerical distribution functions Fµi are very exact approximations
for F due to Proposition 3.3. Finally, we turn our attention to b(t) = 1 + t2. We
immediately see from Table 3.1 that d1,n and p1,nλ agree in the first 8 digits and d2,nλ

and p2,n agree in the first 2 digits, so we can safely assume that strong duality holds
in both set-ups. However, the gaps between the two different set-ups are very large.
We immediately see in Figure 3.4 why the algorithms does not produce sensible results:
both programs only allow for concave boundaries and the “most convex” the program
can do is a linear boundary. Unsurprisingly, rµ1,n(t, b(t)) is for the most part very far
away from 1. The same holds true for rµ2,n(t, b(t)) which is of course above 1 and not
below as is rµ1,n(t, b(t)). Expectedly, the numerical versions of the distribution functions
are vastly different from one another.

Finally, we will investigate whether the conditions of Theorem 2.19 are numerically
met. Whether λ1,nλ does not put mass into t0 is hard to verify numerically, since the
mass could be so small that it numerically vanishes. But we can investigate the mass
which λ2,nλ puts close to t0 for increasing nλ. Due to the discretisation of the t axis,
we look for mass in the interval ((n− 1)t0/n, t0]. In order to make sure that the mass
near t0 does not vanish, we need to ensure that x0 is not too far below b(t0) as the
hitting probability might become 0 numerically. So, we choose x0 = b(t0) − 0.1. All
other parameters are chosen in the same way as before. Linear b are omitted in this
test, as we already know that λ̄, the conditional last hitting time distribution of W
to b, is the optimal measure in this case (see Corollary 2.16 above). We obtain the
values in Table 3.3 We can immediately see in Table 3.3 that for the concave boundaries

b = b(t) nλ = 100 nλ = 200 nλ = 500 nλ = 1000√
1 + t 0.233 0.282 0.276 0.283

log(2 + t) 0.293 0.290 0.296 0.055
1 + t2 0.000 0.000 0.000 0.000

Table 3.3: Numerical results for λ2,nλ((nλ − 1)t0/nλ, t0]. Values rounded to 3 decimal
points.
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Figure 3.3: Numerical results for b(t) = log(2 + t)
Top: graphs of the original boundary (black) which overlaps the boundaries generated
by µ1,n (red) and µ2,n (blue).
Middle: corresponding values of rµ1,n(t, b(t)) (red) and rµ2,n(t, b(t)) (blue) between 0
and 1 compared with the function constant 1 (black).
Bottom: numerical approximations of the distribution functions Fµ1 (red) and Fµ2

(blue).
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Figure 3.4: Numerical results for b(t) = 1 + t2

Top: graphs of the original boundary (black) and the boundaries generated by µ1,n
(red) and µ2,n (blue).
Middle: corresponding values of rµ1,n(t, b(t)) (red) and rµ2,n(t, b(t)) (blue) between 0
and 1 compared with the function constant 1 (black).
Bottom: numerical approximations of the distribution functions Fµ1 (red) and Fµ2

(blue).
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the measure λ2,n always puts mass near t0 while we increase nλ. This is yet another
very good indicator that these boundaries are representable according to Theorem 2.19.
Considering the fact that for the convex boundary there is no mass near t0 for any
choice of nλ, this is an indicator that the condition from Theorem 2.19 is not only
sufficient but might also be necessary.

Overall, the algorithm shows perfect replication of linear boundaries and very good
replication of concave boundaries even beyond the controlled interval (0, t0]. Unsur-
prisingly, for convex boundaries the programs do not find reasonable measures. The
convergence times for the algorithms were in all cases very fast. In total, we found
strong numerical evidence that concave boundaries are indeed representable in the sense
of the method of images. Moreover, we obtain an approximation of the distribution
function in analytical form which makes it easy to use in applications.

The algorithm also compares favourably with the algorithms from [LRD02] and
[Zip13] as we only require a discretisation of the approximating measures but not of the
time axis. The replication of the boundaries is very accurate even beyond the controlled
interval (0, t0], something neither [LRD02] nor [Zip13] achieved. Finally, we also provide
convergence results for the algorithms (cf. Prop. 3.1 and 3.2 above) which were also
missing in both [LRD02] and [Zip13].

3.4 Numerical investigation of two-sided boundaries

At the end of Section 1.3, we have seen that the method of images extends to two-sided
boundaries. We can therefore formulate linear programs for this problem which are
stated analogously to the problems for the classic method of images with one boundary.
Again, we can give two linear programs:

maximise
∫
rθ(t0, x0)µ(dθ)

subject to µ ∈M+((−∞, 2b1(0)] ∪ [2b2(0),∞)),∫
rθ(t, b1(t))µ(dθ) ≤ 1 for any t ∈ (0, t0]∫
rθ(t, b2(t))µ(dθ) ≤ 1 for any t ∈ (0, t0]

(D̃1)
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where we approximate the measure µ representing b1 and b2 “from below” as well as

minimise
∫
rθ(t0, x0)µ(dθ)

subject to µ ∈M+((−∞, 2b1(0)] ∪ [2b2(0),∞)),∫
rθ(t, b1(t))µ(dθ) ≥ 1 for any t ∈ (0, t0]∫
rθ(t, b2(t))µ(dθ) ≥ 1 for any t ∈ (0, t0]

(P̃2)

where we approximate the measure µ representing b1 and b2 “from above”. The following
proposition, which is an extension of Theorem 2.1 to the two-sided case, shows that the
programs (D̃1) and (P̃2) indeed approximate the boundaries b1 and b2 from below and
from above in a certain sense.

Proposition 3.4. For each (D̃1)-admissible µ̃1, we find that

rµ1(t0, x0) :=
∫
rθ(t0, x0)µ̃1(dθ) ≤ P(0,0)(τ ≤ t0|Wt0 = x0)

and for each (P̃2)-admissible solution µ̃2 it holds

rµ2(t0, x0) :=
∫
rθ(t0, x0)µ̃2(dθ) ≥ P(0,0)(τ ≤ t0|Wt0 = x0)

Moreover, if there exists a representing measure µ̃, i.e.,
∫
rθ(t, b(t))µ̃(dθ) = 1 for any t ∈ (0, t0],

then this is a maximiser in (D̃1) and a minimiser in (P̃2).

Proof. The proof follows along the same lines as the proof of Theorem 2.1 but now of
course using Proposition 1.7 instead of Proposition 1.3.

To further analyse the problems (D̃1) and (P̃2), we can again consider the associated
formal dual problems. For (D̃1) the dual program is

minimise ‖λ1‖+ ‖λ2‖

subject to λ ∈M+(0, t0],∫
rθ(t, b1(t))λ1(dt) +

∫
rθ(t, b2(t))λ2(dt) ≥ rθ(t0, x0)

for any θ ∈ (−∞, 2b1(0)] ∪ [2b2(0),∞)

(P̃1)
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and for (P̃2) the dual program is

maximise ‖λ1‖+ ‖λ2‖

subject to λ ∈M+(0, t0],∫
rθ(t, b(t))λ(dt) +

∫
rθ(t, b2(t))λ2(dt) ≤ rθ(t0, x0)

for any θ ∈ (−∞, 2b1(0)] ∪ [2b2(0),∞).

(D̃2)

Finally, we can implement these problems in the same way as in Section 3.3. We choose
again t0 = 1 but now x0 = 0 to land “in the middle” between b1(t0) and b2(t0). Moreover,
we choose the maximum number of iterations as kmax = 20, the length of the intervals
[2b1(0)− l, 2b1(0)] and [2b2(0), 2b2(0) + l] as l = 5 with n = 100 discretisations for the
point measures. For the corresponding “λ-problems” we again let nλ = 100. Denote the
optimal values as d̃1,n for the numerical discretisation of (D̃1) and analogously for the
other programs. Then, the numerical results can be found in Table 3.4. First, we note

b1 = b1(t) b2 = b2(t) d̃1,n p̃1,nλ d̃2,nλ p̃2,n
Time
(in sec)

−1− t 1 + t 0.0366190 0.0366190 0.0366313 0.0366313 0.80
−
√

1 + t
√

1 + t 0.1096176 0.1096176 0.1096176 0.1096176 0.95
− log(2 + t) log(2 + t) 0.4067019 0.4067085 0.4077246 0.4077253 0.89
−
√

1 + t 1 + t 0.0731130 0.0731130 0.0731307 0.0731307 0.80
− log(2 + t)

√
1 + t 0.2600515 0.2600521 0.2600767 0.2600768 0.89

Table 3.4: Numerical results for the optimal values in the case with two boundaries b1
and b2 and computation times for (D̃1) with discretisations as defined above

that the computation times are again very fast. We do not consider convex boundaries
as we already saw very poor results in the set-up with one boundary in Section 3.3.
Moreover, we only consider decreasing b1 and increasing b2 in order to avoid the case
that b1 and b2 intersect in which case the Brownian motion inevitably hits one of the
boundaries.

Now, considering the first case of symmetric linear boundaries, we can see that d̃1,n

and p̃1,nλ as well as d̃2,nλ and p̃2,n agree in the first 7 digits, so we can safely assume
that we have strong duality in both set-ups. The gap between the two set-ups is not
0 but smaller than 2 · 10−5 which could be due to our implementation of the code.
There is no good reason why the algorithm should assign different masses in the two
set-ups. It can be noted however that the implementation of (D̃1) assigns the correct
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mass to the point measures in (analogous to the one-sided case as noted in Remark
1.4) while the implementation of (P̃2) assigns a little too less mass. We now consider
as in Section 3.3 the plots of the boundaries b1 and b2 compared with the boundaries
bµ1,n and bµ2,n , i.e., the boundaries generated by the numerical solutions to (D̃1) and
(P̃2), the plots of rµ1,n(t, b1(t)) and rµ1,n(t, b2(t)) between 0 and 1 and the plots of the
numerical distribution functions Fµi . We see in Figure 3.5 that both µ1,n as well as
µ2,n replicate the symmetric linear bounds perfectly. The graphs for rµ1,n(t, b1(t)) and
rµ1,n(t, b2(t)) both are constant at 1 which supports that the boundaries b1 and b2 are
indeed represented by µ1,n. Again, this is not very surprising since we know that linear
boundaries are representable by measures µ that put the right amount of mass into both
2b1(0) and 2b2(0). We only show the values of rµ1,n(t, b1(t)) and rµ1,n(t, b2(t)) and not
of rµ2,n(t, b1(t)) and rµ2,n(t, b2(t)) as the latter behave the same as the former (except
the latter possibly deviate from 1 upwards and not downwards like the former).

Let us now turn our attention to the case of symmetric square root boundaries.
Looking at Table 3.4 we see that all four values d̃1,n, p̃1,nλ , d̃2,nλ , and p̃2,n agree. So,
we can numerically confirm that we have strong duality in both set-ups as well as
d̃1 = p̃2 and p̃1 = d̃2. The latter fact is a good indicator that the boundaries are indeed
representable (as an analogue to the conditions from Theorem 2.15). We see in Figure
3.6 that both boundaries are incredibly well replicated by the boundaries generated by
µ1,n and µ2,n, respectively, even beyond the controlled interval up to t0 = 1. Moreover,
rµ1,n(t, b1(t)) and rµ1,n(t, b2(t)) are constant 1 which is again a strong indicator that
these boundaries are indeed representable.

For the symmetric, logarithmic boundaries, we can see in Table 3.4 that the optimal
values in both set-ups agree, i.e., we can numerically confirm strong duality in both
set-ups but there is a slight gap of ≈ 10−3 between the set-ups. We observe in Figure
3.7 that the boundaries b1 and b2 are very well replicated by the bounds generated by
µ1,n and µ2,n within the controlled interval up to t0 = 1. Beyond that point we do see
growing deviations. But again, we see that rµ1,n(t, b1(t)) and rµ1,n(t, b2(t)) are very close
to 1 with just slight deviations which is a strong indicator that these boundaries are
representable by the method of images.

We now consider the last two cases in Table 3.4, where we considered asymmetric
boundaries. In both cases we see that we can numerically confirm strong duality but
there is a slight gap of ≈ 2 · 10−5 in both set-ups. Nevertheless, this is again a good
indicator that these bounds are representable as well. We observe in Figure 3.8 that the
asymmetric boundaries b1(t) = −

√
1 + t and b2(t) = 1+ t are very well replicated by the
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Figure 3.5: Numerical results for b1(t) = −1− t and b2(t) = 1 + t
Top: graphs of the original boundaries (black) which overlaps the boundaries generated
by µ1,n (red) and µ2,n (blue).
Middle: corresponding values of rµ1,n(t, b1(t)) (red) and rµ1,n(t, b2(t)) (blue) between 0
and 1 compared with the function constant 1 (black).
Bottom: numerical approximations of the distribution functions Fµ1 (red) and Fµ2

(blue).
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Figure 3.6: Numerical results for b1(t) = −
√

1 + t and b2(t) =
√

1 + t
Top: graphs of the original boundaries (black) which overlaps the boundaries generated
by µ1,n (red) and µ2,n (blue).
Middle: corresponding values of rµ1,n(t, b1(t)) (red) and rµ1,n(t, b2(t)) (blue) between 0
and 1 compared with the function constant 1 (black).
Bottom: numerical approximations of distribution functions Fµ1 (red) and Fµ2 (blue).
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Figure 3.7: Numerical results for b1(t) = − log(2 + t) and b2(t) = log(2 + t)
Top: graphs of the original boundaries (black) which overlaps the boundaries generated
by µ1,n (red) and µ2,n (blue).
Middle: corresponding values of rµ1,n(t, b1(t)) (red) and rµ1,n(t, b2(t)) (blue) between 0
and 1 compared with the function constant 1 (black).
Bottom: numerical approximations of distribution functions Fµ1 (red) and Fµ2 (blue).
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Figure 3.8: Numerical results for b1(t) = −
√

1 + t and b2(t) = 1 + t
Top: graphs of the original boundaries (black) which overlaps the boundaries generated
by µ1,n (red) and µ2,n (blue).
Middle: corresponding values of rµ1,n(t, b1(t)) (red) and rµ1,n(t, b2(t)) (blue) between 0
and 1 compared with the function constant 1 (black).
Bottom: numerical approximations of distribution functions Fµ1 (red) and Fµ2 (blue).
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boundaries generated by µ1,n well beyond the controlled interval up to t0 = 1 and also
very well by the boundaries generated by µ2,n up to t = 2. The values of rµ1,n(t, b1(t))
and rµ1,n(t, b2(t)) are both constant at 1 which implies that these boundaries are indeed
representable.

In Figure 3.9 we observe that the boundaries b1(t) = − log(2 + t) and b2(t) =
√

1 + t are also very well replicated even beyond the controlled interval. The values
of rµ1,n(t, b1(t)) and rµ1,n(t, b2(t)) are constant at 1 for the most time with only slight
deviations around t = 0. In several examples above we have observed that there are
slight gaps between the optimal values of the different set-ups. While for the case of
linear, symmetric boundaries this should just not be the case and is most likely due
to our implementation (or maybe peculiarities of the DEoptim function), some of the
gaps can probably be explained by the fact that we choose the same discretisations
for all boundaries and limited ourselves to n = 100 points in each of the intervals
[2b1(0)− l, 2b1(0)] and [2b2(0), 2b2(0) + l]. Indeed, choosing different interval lengths
l and different numbers of discretisations n (and nλ) lead to larger or smaller gaps
between the two set-ups. Different boundaries require different amounts of mass points
in different places. So the length of the intervals [2b1(0)− l, 2b1(0)] and [2b2(0), 2b2(0)+ l]
and the number of discretisation points do matter for the algorithms. As we wanted to
make comparable results available, we limited ourselves to the same l, n and nλ for all
problems.

Overall, it can be said that in the set-up with two boundaries there is a strong
indication that analogous duality results to those presented in Chapter 2 for one-sided
boundaries hold as well as that these boundaries are representable in the sense of the
method of images.
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Figure 3.9: Numerical results for b1(t) = − log(2 + t) and b2(t) =
√

1 + t
Top: graphs of the original boundaries (black) which overlaps the boundaries generated
by µ1,n (red) and µ2,n (blue).
Middle: corresponding values of rµ1,n(t, b1(t)) (red) and rµ1,n(t, b2(t)) (blue) between 0
and 1 compared with the function constant 1 (black).
Bottom: numerical approximations of distribution functions Fµ1 (red) and Fµ2 (blue).
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Chapter 4

Boundary Hitting of Brownian
Motion and Prices of American
Options

In their articles [JM01] and [JM02], Jourdain and Martini explore how prices of American
options can be replicated by prices of European options. The former are often hard
or even impossible to obtain explicitly, while the latter can be derived more easily.
While their first article [JM01] offers a theoretical framework to approximate prices
of American options via European options, their second article [JM02] applies the
framework to the American put option with pay-off ψ : x 7→ (K − x)+ for some K > 0
in the Black-Scholes framework. In this section we will explore the connection between
the results in [JM02] and the method of images.

4.1 Representability of American options

In this section we introduce the concept of an European option representing an American
option as set out in [JM01], [JM02], and [CKL22]. We quote the main results from these
sources as necessary for our work. To this end, we look at the well-known Black-Scholes
model (cf. [JM01])

dXt = rXtdt+ σXtdWt

X0 = x,
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where Xt is the stock price at time t under the equivalent martingale measure, x > 0
is the initial stock price, r is the interest rate, σ > 0 is the volatility and (Wt)t≥0 is a
standard Brownian motion. Then,

AXf(x) = σ2x2

2 f ′′(x) + rxf ′(x)− rf(x)

is the infinitesimal generator of the stochastic process (Xt)t≥0 in the Black-Scholes
model. For a pay-off function g : R → R+ the price of the corresponding American
option with maturity t is given by

vgam(t, x) = sup
τ≤t

Ex
(
e−rτg (Xτ )

)
,

where the supremum is taken over all stopping times such that τ ≤ t almost surely. The
continuation set C is the set of all (t, x) such that vgam(t, x) > g(x) (i.e., the set of all
points (t, x) for which the holder of the American option with pay-off g does not yet want
to exercise) and the stopping region Cc is the set of all (t, x) such that vgam(t, x) = g(x)
(i.e., the set of all (t, x) for which the holder of the American option with pay-off g

wants to exercise immediately). Note that C and Cc are indeed complements of each
other.

On the other hand, the price of an European option with pay-off function f : R→ R+

and maturity t is given by

vfeu(t, x) = Ex
(
e−rtf(Xt)

)
.

Note that we adapted the notation of [CKL22]. For a given European pay-off function
f , Jourdain and Martini found under certain conditions an American pay-off function g
embedded in the European pay-off f such that f represents g in the following sense (cf.
[JM01], Theorem 5)

1. vfeu(t, x) ≥ vgam(t, x) for all t, x,

2. vfeu(t, x) = vgam(t, x) for all (t, x) ∈ ∂C.

The second statement is phrased a bit differently in [JM01]: If there exists a continuous
t̂(x) : R+ → [0, T ] such that for some T > 0

∀x > 0 : inf
0≤t≤T

vfeu(t, x) = vfeu(t̂(x), x),
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then for all (t, x) ∈ [0, T ] × R̄+ we have vgam(t, x) = vfeu(t ∨ t̂(x), x) and t̂ is the
stopping boundary associated with the stopping problem (cf. [JM01], Theorem 5). In
particular, the stopping boundary divides the space into the continuation set C and its
complementary stopping set. A sufficient condition for the existence of the stopping
boundary t̂ is given in Proposition 7 in [JM01].

The conditions can be relaxed a bit further, in particular, it can be shown that if

1. vfeu(t, x) ≥ g(x) for all t, x,

2. vfeu(t, x) = g(x) for all (t, x) ∈ ∂C,

then, we obtain representability in the above sense (cf. [CKL22], Prop. 2.2, Assertion 2,
as well as [JM01], Theorem 5).

In [CKL22] the concept of an embedded American option is introduced: for a given
European pay-off f a corresponding American pay-off g is defined such that f represents
g in the above sense. As prices of American options are often hard to obtain, the reverse
question seems to be more interesting, i.e., given an American pay-off g can we find
a European pay-off f such that f represents g. In order to obtain this representing
pay-off f , [CKL22] uses the notion of a European option representing an American
option to formulate the following optimisation problem (cf. [CKL22], 3.8) for time to
maturity T ≥ 0 and initial stock price X0 = x0

minimise veu,µ(T, x0)

subject to µ ∈M+(R)

veu,µ(θ, x) ≥ g(x) for all (θ, x) ∈ [0, T ]× R.

(4.1)

Note that in this problem the notion of a pay-off function f was extended to include
measures µ ∈M+(R), as well. The value of the European option is therefore denoted
by veu,µ and not by vfeu. If such a minimiser µ of this optimisation problem exists, it is
called the cheapest dominating European option (CDEO) of g relative to (T, x0). The
optimisation problem was originally formulated in [Chr14]. Then, [CKL22] sets out
a dual problem to the above linear program as well as a duality result (cf. Lemma
3.4 and Lemma 3.8, [CKL22]). With that in mind, it can be shown that a CDEO of
g relative to (T, x0) exists (cf. Theorem 3.1, [CKL22]) as well as that under certain
sufficient conditions the CDEO actually represents the American option g (cf. Theorem
3.2, [CKL22]).
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Note that the linear program (4.1) is similar to the programs (D1) and (P2) considered
in Chapter 2. But while the proof of duality in Theorems 2.7 and 2.13 is similar to the
proof of duality in [CKL22], there are some differences in the approach. Apart from
minor differences (note for example the different roles played by g in [CKL22] compared
to the role of g in the set-up of Chapter 2 above), there are two main differences. While
in [CKL22] the problem is only approached “from above”, the linear problems (D1) and
(P2) approached the solution “from above” and “from below”. Moreover, the stopping
boundary in [CKL22] is just implicitly given and part of the solution of the optimisation
problem, the boundary in our case is of course explicitly given. So while the basic
structure of the proof could be retained, this necessitated changes and adaptations
throughout the proofs.

In their second paper [JM02], Jourdain and Martini approach the question which (if
any) European pay-off f represents the “classical” American put, i.e., the American
option with pay-off function g(x) = (K−x)+, where K > 0 is the so-called strike. They
argue that if there was any hope to represent g, then the representing European pay-off
f = fm should fulfil

AXf = m

for some measure m and find ([JM02], Lemma 1) that m has to be of the form

m(dr) = 1
2σ

2K2δK(dr)− 1
2σ

2αKh(dr)

where h is a positive measure on (0, K) such that certain regularity conditions are
fulfilled.

4.2 Connecting American options and the method
of images

In this section, we connect the above concept of European options representing American
options to the concept of representable boundaries in the sense of the method of images.
In particular, we show that the candidate stopping boundary for the American option is
representable in the sense of the method of images. To this end, we will transform the
value function of an American option which is represented by some European pay-off
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f = fm fulfilling AXf = m. We start by considering the simplified stopping problem

v(t, x) = sup
τ≤t

Ex
(
e−rτg(Wτ )

)
,

where t ∈ [0,∞), x ∈ R, r > 0 and g : R → R is a function with g(x) = 0 for x ≤ 0,
g′(0+) > 0 and Ag(x) < 0 for x > 0. Here, the operator A is given by Ah = 1

2h
′′ − rh

(cf. [PS06], 7.4.14). Denote by C the continuation region of the stopping problem. Note
that this is the same problem as considered by Jourdain and Martini after a change of
measure and a change of space. We consider this problem as it inhibits a connection to
the method of image as we prove later on.

In order to see that we can rewrite the value function of an American option with
pay-off g in this way, note that a geometric Brownian motion is of the form

Xt = X0e
at+σWt = X0

(
ebt+Wt

)σ
where a = r − σ2

2 and b = r−σ2/2
σ

. In particular, we can rewrite the original problem as

v(t, x) = sup
τ≤t

Ex
(
e−rτg (Xτ )

)
= sup

τ≤t
Ex
(
e−rτ g̃

(
W b
τ

))
,

where (W b
t )t is a Brownian motion with drift b and for some function g̃. Moreover, we

use a Girsanov transformation and further rewrite this problem as

sup
τ≤t

Ex
(
e−rτ g̃

(
W b
τ

))
= 1
h(x) sup

τ≤t
Ex
(
e−r̃τ ˜̃g (Wτ )

)

for some r̃ > 0 and some functions h and ˜̃g. So, it is enough to consider the simplified
stopping problem

v(t, x) = sup
τ≤t

Ex
(
e−rτg(Wτ )

)
.

Now, we will consider an analogue to the value function of a European option: for
functions f supported on [0,∞) consider

hf (t, x) = Ex
(
e−rtf(Wt)

)
.

Analogous to the approach in [JM01], we are now looking for a representing function
h = hf for v, i.e., for a function h such that
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1. for all t ∈ [0,∞), x ∈ R: h(t, x) ≥ g(x),

2. for all x ∈ R there exists a unique t̂ = t̂(x): h(t̂(x), x) = g(x).

We also assume that the function t̂ is continuous and increasing in x (which can be
shown to hold under certain regularity conditions, cf. [JM01], Prop. 7). Indeed, if we
have found such a representing function h then we already obtain representability in
the sense of the previous section, i.e., we obtain

1. h(t, x) ≥ v(t, x) for all t ∈ [0,∞), x ∈ R (cf. [CKL22], Prop. 2.2, Assertion 2),

2. h(t, x) = v(t, x) for all (t, x) ∈ C (cf. [JM01], Theorem 5).

We now only take those f in account that [JM01] uses. In particular, f = fm is the
solution of the (ordinary) differential equation Af = m, where m is a measure on
[0,∞) which can be decomposed in a (generalised) non-positive function on (0,∞) plus
mass in 0. Recall that Af = 1

2f
′′ − rf . Then, the fundamental solutions of Af = 0

are eλx, e−λx where λ :=
√

2r. Thus, we obtain the general solution of Af = m as (cf.
[Wal00], 19.VII)

fm(x) = aeλx + be−λx +
∫ x

0

eλ(x−y) − e−λ(x−y)

λ
m(dy).

Now, we make use of the fact that fm(x) = 0 for x = 0 and therefore the constants a
and b have to be zero. Then, we obtain fm for x > 0 as

fm(x) =
∫ x

0

eλ(x−y) − e−λ(x−y)

λ
m(dy).

Moreover, note that m puts mass g′(0+)
2 into 0.

The candidate t̂(x) for the stopping boundary is given as the critical points of
t 7→ hfm(t, x), i.e. as the solution of

0 = ∂

∂t
hfm .

We will call these critical points the candidate stopping boundary. Now, let p be the
transition kernel of a Brownian motion, i.e.,

p((0, x), (t, y)) = 1√
2πt

e−
(x−y)2

2t .
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Using the Kolmogorov forward equation (cf. for example [Øks00], Equation 8.6.35)
which states that ∂

∂t
p((0, x), (t, y)) = 1

2
∂2

∂y2p((0, x), (t, y)), we find that

∂

∂t
hfm = ∂

∂t

(
e−rt

∫ ∞
−∞

p((0, x), (t, y))fm(y)dy
)

= −re−rt
∫ ∞
−∞

p((0, x), (t, y))fm(y)dy + e−rt
∫ ∞
−∞

∂

∂t
p((0, x), (t, y)fm(y)dy

= e−rt
∫ ∞
−∞
Ap((0, x), (t, y))fm(y)dy

= e−rt
∫ ∞
−∞

p((0, x), (t, y))m(dy),

where we can interchange integration and differentiation in the second step due to
Lebesgue’s theorem and where the last step follows since we assumed Afm = m. Note
that fm does not have to be in C2 but that Afm = m is defined in a “reasonable sense”,
i.e., for example in the sense of embedding functions and measures into the space of
distributions (for more on this, cf. [Rud91], Section 6.11 onwards). The last step then
essentially boils down to taking the derivative of a distribution (cf. [Rud91], Section
6.13). Note that p does not have compact support but can of course be approximated by
test functions with compact support as p((0, x), (t, y))→ 0 for y → ±∞ exponentially
fast.

Thus, in order to find the candidate stopping boundary, we have to solve

0 =
∫
p((0, x), (t, y))m(dy)

= 1√
2πt

(
e−

x2
2t
g′(0)

2 −
∫

(0,∞)
e−

(x−y)2
2t (−m̃)(dy)

)

where m̃ denotes the measure m minus the mass in 0. Recall that m is a non-positive
measure on (0,∞) and therefore −m̃ is a non-negative measure on (0,∞). So, we
obtain

a =
∫

(0,∞)
e−

y2−2yx
2t (−m̃)(dy)

where a = g′(0)
2 . But this is exactly the integral equation from the method of images.

This means that if f = fm represents g in the above sense we find that bg = t̂−1 fulfils
the integral equation from the method of images (recall that we can assume t̂ to be
continuous and increasing, so indeed invertible). Let us summarise our findings in the
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following theorem.

Theorem 4.1. For European reward functions f = fm satisfying Af = m, the candidate
stopping boundary t̂ of the American option g represented by f is always representable
in the sense of the method of images.

In particular, we can now immediately transfer the properties which boundaries from
the method of images show to the stopping boundaries in the Jourdain and Martini
context. In particular, these are concave and analytic (as functions in t).

Corollary 4.2. Let now tm be the stopping boundary (parametrised in x) from the
method of images applied to m̃. Then, we have that g is represented by h = hf = hfm if
and only if

g(x) = hfm (tm(x), x) = Ex
(
e−rtm(x)fm

(
Wtm(x)

))
.

So, there exists a close connection of the stopping boundaries from the context of
Jourdain and Martini and the stopping boundaries from the method of images. Indeed,
given an American pay-off g, one would now like to apply the inverse method of images
to obtain the measure m to then find the European pay-off f = fm that represents g in
the sense of Jourdain and Martini. But alas, we have only shown that the following
holds: given f = fm representing g in the sense of Jourdain and Martini, the resulting
stopping boundary bg also is the stopping boundary of the method of images applied to
the measure −m̃.

In order to show the existence of representing European options, it now seems natural
to show representability (in the sense of the method of images) of the stopping boundary
associated to an American pay-off. This then immediately gives the candidate for the
representing European option. Therefore, relevant open questions remaining are: Which
curves are representable in the sense of the method of images (Chapter 2 gave sufficient
conditions)? What is then a sufficient condition for a representing European to exist?
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Chapter 5

Boundary Hitting of Brownian
Motion via Integral Equations

This chapter is based on the article “Uniqueness of First Passage Time Distributions
via Fredholm Integral Equations” which is available as a pre-print here: [CFH23].
The paper has been slightly adapted to fit the other chapters.

In this chapter, we return to the FPT problem and investigate Fredholm integral
equations connected to the first hitting distribution. We will first derive known Fredholm
equations and then show that these determine the first hitting distribution uniquely.
Finally, we will discuss possible extensions.

5.1 The first passage time problem and Fredholm
integral equations

LetW be a standard Brownian motion withW0 = 0 and let b : R+ → R be a continuous
function with b(0) > 0. Recall that the first passage time (from below) is defined as

τ := inf{t ≥ 0|Wt ≥ b(t)}

and that we seek to determine the distribution F of τ , i.e., F (t) = P (τ ≤ t).
We denote the transition kernel of W by p and assume b : R+ → R to be Lipschitz

continuous with constant L and b to have linear growth, i.e., lim supt→∞
b(t)
t
≤ d for

some d ∈ R. This implies that there exist M,m > 0 such that b(t) ≤M +mt. There
are different approaches to establishing a Fredholm-type integral equation for the
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distribution F of τ . A direct way is as follows: Using the strong Markov property, we
obtain

p((0, 0), (t, x)) = P (Wt ∈ dx)

=
∫ t

0
P(s,b(s))(Wt ∈ dx)P (τ ∈ ds) + P (Wt ∈ x. , τ > t). (5.1)

Since b is continuously differentiable, P (τ ∈ ds) has a continuous density function f
(see e.g., [Fer82b]). Then,

1 = p((0, 0), (t, x))
p((0, 0), (t, x)) =

∫ t
0 P(s,b(s))(Wt ∈ dx)f(s)ds

p((0, 0), (t, x)) + P (Wt ∈ dx, τ > t)
p((0, 0), (t, x)) . (5.2)

For c > d we set x = ct and let t→∞. The last term can be reformulated as

P (Wt ∈ d(ct), τ > t)
p((0, 0), (t, ct)) = P (τ > t | Wt = ct) t→∞−−−→ 0

since lim supt→∞
b(t)
t
≤ d and c > d. On the other hand, using linear growth of b and

the dominated convergence theorem, the first term can be rewritten as

lim
t→∞

∫ t
0 P(s,b(s))(Wt ∈ d(ct))f(s)ds

p((0, 0), (t, ct)) = lim
t→∞

∫ t

0

p((s, b(s)), (t, ct))f(s)
p((0, 0), (t, ct)) ds

=
∫ ∞

0
e−

c2
2 s+cb(s)f(s)ds.

Combining this, we obtain

1 =
∫ ∞

0
e−

c2
2 s+cb(s)f(s)ds (5.3)

for all c > d such that the integral exists. A visualization of the setting can be seen
in Figure 5.1. Now, the task is: For a given boundary b we would like to find f with∫∞

0 f(s)ds = P (τ <∞), such that (5.3) holds for all c.

5.2 Uniqueness

A central question is if solutions to (5.3) are unique, i.e., if (5.3) fully characterizes the
distribution of τ . Our ansatz is inspired by recent results for the Fredholm representation
for discounted stopping problems with finite time horizon in [CF21]. We use the following
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Figure 5.1: Visualization of the setting

notation for J ⊂ (−∞, 0] measurable and n ∈ N0:

IfJ (n)(c) :=
∫
J
e−

c2
2 s+cb(s)snf(s)ds

If (n)(c) := If[0,∞)(n)(c)

IfJ (c) := IfJ (0)(c),

and for two different continuous functions f and f̃

DJ(n)(c) := IfJ (n)(c)− I f̃J (n)(c)

D(n)(c) := D[0,∞)(n)(c).

Lemma 5.1. Let t ≥ 0 be fixed and ε > 0, then

lim
c→∞

If[t,∞)(n)(c)
If[t,t+ε](n)(c)

= 1.

If additionally f(t) 6= f̃(t), then

lim
c→∞

D[t,∞)(n)(c)
D[t,t+ε](n)(c) = 1.

Proof. Let (ci) be a sequence such that ci →∞ for i→∞. We first show that for all
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ε > 0 and t ≥ 0 it holds

lim
i→∞

If[t,∞)(n)(ci)
If[t,t+ε](n)(ci)

= 1. (5.4)

Equation (5.4) is equivalent to

lim
i→∞

If[t+ε,∞)(n)(ci)
If[t,t+ε](n)(ci)

= 0.

The numerator and denominator are positive. Let us derive an upper bound for
If[t+ε,∞)(n)(c). Since f is continuous and integrable we can set f1 = max{f(s) | s ∈
[t+ ε,∞)}. For positive s and n, the function sne−s has its maximum value at s = n,
hence we can use that sne−s ≤ nne−n. For c large enough we have

If[t+ε,∞)(n)(c) =
∫ ∞
t+ε

e−
1
2 c

2s+cb(s)snf(s)s.

≤ nne−nf1

∫ ∞
t+ε

e−
1
2 c

2s+c(M+ms)+ss.

= nne−nf1
c2

2 − 1− cm
e(t+ε)(cm− c

2
2 −1)+cM .

We now derive a lower bound for If[t,t+ε](n)(ci). The function b is continuous, so we can
set b1 := min{b(s) | s ∈ [t+ ε

2 , t+ε]}. Furthermore, let f2 := min{f(s) | s ∈ [t+ ε
2 , t+ε]}.

Note that f2 > 0, since b is locally Lipschitz continuous. We have

If[t,t+ε](n)(c) =
∫ t+ε

t
e−

1
2 c

2s+cb(s)snf(s)s.

≥
(
t+ ε

2

)n
f2

∫ t+ε

t+ ε
2

e−
1
2 c

2s+cb1s.

=
(
t+ ε

2

)n
f2

2
c2

(
e−

c2
2 (t+ ε

2)+cb1 − e−
c2
2 (t+ε)+cb1

)
.

Putting these results together we find

0 ≤ lim
i→∞

If[t+ε,∞)(n)(ci)
If[t,t+ε](n)(ci)

≤ lim
i→∞

nne−nf1
c2
i
2 +1−cm

e(t+ε)(cim−
c2
i
2 −1)+ciM

(
t+ ε

2

)n
f2

2
c2
i

(
e−

c2
i
2 (t+ ε

2)+cib1 − e−
c2
i
2 (t+ε)+cib1

) = 0
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which shows the first claim.
Let now f(t) 6= f̃(t). We assume w.l.o.g. that f(t) > f̃(t). Since f and f̃ are continuous,
there exists δ > 0 such that f(s) > f̃(s) for all s ∈ [t, t+ δ]. Then, the term

D[t,t+δ](n)(ci) =
∫ t+δ

t
e−

1
2 c

2s+cb(s)sn(f(s)− f̃(s))s.

is positive and analogously to the calculations above we obtain

lim
i→∞

|D[t+δ,∞)(n)(ci)|
D[t,t+δ](n)(ci)

≤ lim
i→∞

I
max(f,f̃)
[t+δ,∞) (n)(ci)
D[t,t+δ](n)(ci)

= 0.

If ε ≤ δ we can set δ = ε and we are done. If ε > δ, we have

D[t,t+ε](n)(ci) =
∫ t+δ

t
e−

1
2 c

2
i s+cib(s)sn(f(s)− f̃(s))s.

+
∫ t+ε

t+δ
e−

1
2 c

2
i s+cib(s)sn(f(s)− f̃(s))s.

≥
∫ t+δ

t
e−

1
2 c

2
i s+cib(s)sn(f(s)− f̃(s))s.

−
∫ t+ε

t+δ
e−

1
2 c

2
i s+cib(s)sn max(f(s), f̃(s))s.

where the integrand of the first term is non-negative and for ci large enough the whole
rhs term is non-negative. Using this inequality, we obtain

lim
i→∞

|D[t+ε,∞)(n)(ci)|
D[t,t+ε](n)(ci)

≤ lim
i→∞

|D[t+ε,∞)(n)(ci)|
D[t,t+δ](n)(ci)− Imax(f,f̃)

[t+δ,∞) (n)(ci)
= 0.

For c large enough the denominator is positive, hence, it follows

lim
i→∞

D[t,∞)(n)(ci)
D[t,t+ε](n)(ci)

= 1.

Lemma 5.2. If If (c) = I f̃ (c) for all c > C for some constant C > 0, then

If (n)(c) = I f̃ (n)(c),

for all n ∈ N0 and c > C s.t. the integral exists.
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Proof. The proof is by induction, i.e., we assume that
∫ ∞

0
e−

c2
2 s+cb(s)snf(s)ds =

∫ ∞
0

e−
c2
2 s+cb(s)snf̃(s)ds

for all c > C. Multiplying both sides with e−cb(0) we obtain
∫ ∞

0
e−

c2
2 s+c(b(s)−b(0))snf(s)ds =

∫ ∞
0

e−
c2
2 s+c(b(s)−b(0))snf̃(s)ds.

Taking derivatives w.r.t. c on both sides, it follows
∫ ∞

0
(−cs+ b(s)− b(0))e− c

2
2 s+c(b(s)−b(0))snf(s)ds

=
∫ ∞

0
(−cs+ b(s)− b(0))e− c

2
2 s+c(b(s)−b(0))snf̃(s)ds. (5.5)

We assume that If (n+ 1) 6= I f̃ (n+ 1). Since If (n+ 1)(c) is analytic, we find a sequence
ci →∞ such that If (n+ 1)(ci) 6= I f̃ (n+ 1)(ci). Rearranging (5.5) this leads to

ci =
∫∞

0 e−
c2
i
2 s+ci(b(s)−b(0))(b(s)− b(0))sn(f̃(s)− f(s))ds∫∞
0 e−

c2
i
2 s+ci(b(s)−b(0))sn+1(f(s)− f̃(s))ds

. (5.6)

Since b is Lipschitz continuous, we find L > 0 such that |b(t) − b(0)| ≤ Lt. Let us
assume that f(0) 6= f̃(0). Using Lemma 5.1, we obtain

∞ = lim
i→∞

ci = lim
i→∞

∫∞
0 e−

c2
i
2 s+cib(s)(b(s)− b(0))sn(f̃(s)− f(s))s.∫∞
0 e−

c2
i
2 s+cib(s)sn+1(f(s)− f̃(s))s.

≤ lim
i→∞

∫ ε
0 e
−
c2
i
2 s+cib(s))Lsn+1(f̃(s)− f(s))s.

D(n+ 1)

+ lim
i→∞

∫∞
ε e−

c2
i
2 s+cib(s))

(
(M +ms)sn

)
(f̃(s)− f(s))s.

D(n+ 1)

= L+ 0 <∞.

This is a contradiction so the assumption f(0) 6= f̃(0) is false. Let us now consider
the second case that f(0) = f̃(0). We set t∗ := inf{s | f̃(s) 6= f(s)}. Since f and
f̃ are continuous, we find sequences tj and εj such that tj → t∗ and f(t) 6= f̃(t) for
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t ∈ [tj, tj + εj]. In the same way as before it follows that

lim
i→∞

∫∞
tj
e−

c2
i
2 s+cib(s)(b(s)− b(tj))sn(f̃(s)− f(s))s.∫∞
tj
e−

c2
i
2 s+cib(s)sn+1(f(s)− f̃(s))s.

≤ Lj <∞.

By the dominated convergence theorem we find that

lim
i→∞

∫∞
t∗ e

−
c2
i
2 s+cib(s)(b(s)− b(t∗))sn(f̃(s)− f(s))s.∫∞
t∗ e

−
c2
i
2 s+cib(s)sn+1(f(s)− f̃(s))s.

= lim
i→∞

lim
j→∞

∫∞
tj
e−

c2
i
2 s+cib(s)(b(s)− b(tj))sn(f̃(s)− f(s))s.∫∞
tj
e−

c2
i
2 s+cib(s)sn+1(f(s)− f̃(s))s.

= lim
j→∞

Lj <∞.

Again, this is a contradiction to (5.6) which concludes the proof.

We can now state the uniqueness theorem for (5.3).

Theorem 5.3. Let b be continuously differentiable with linear growth and

−∞ < lim inf
t→0

b(t)− b(0)
t

≤ lim sup
t→0

b(t)− b(0)
t

<∞.

If there exist d ≥ 0 s.t. (5.3) holds for all c ≥ d then the representation defines f
uniquely in the class of continuous functions.

Proof. Let If (c) = I f̃ (c) for all c > d. By Lemma 5.2 we have If (n)(c) = I f̃ (n)(c) for
all c > d and n ∈ R. We rewrite If (n)(c) as

If (n)(c) =
∫ ∞

0
e−ssnµ(ds)

with a measure µ = g ◦ λ where g denotes the density function

g(s) := ese−
1
2 c

2s+cb(s)f(s)

and λ denotes the Lebesgue measure on R. A measure µ̃ with density function g̃ is
defined analogously via f̃ . Recall that the Laguerre exponential polynomials p(−s)e−s

lie dense in L2([0,∞)), see [AK72, Lemma 1. (ii)]. By Lemma 5.2 and linearity of the
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integral we have ∫
e−sq(s)g(s)ds =

∫
e−sq(s)g̃(s)ds

for all polynomials q. Let now h ∈ L2([0,∞)) and (qn) be a sequence of polynomials
with e−sqn

L2
→ h. For c large enough, g and g̃ are positive, bounded, and in L2. It

follows that
lim
n→∞

∫
e−sqn(s)g(s)ds =

∫
h(s)g(s)ds

and
lim
n→∞

∫
e−sqn(s)g̃(s)ds =

∫
h(s)g̃(s)ds,

hence, ∫
h(s)µ(ds) =

∫
h(s)µ̃(ds)

for all g ∈ L2(B).
It follows that µ = µ̃ a.e. Since f and f̃ are continuous we have f = f̃ .

Example 5.4. Let b(t) ≡ b0 > 0. Then

1 =
∫ ∞

0
e−

c2
2 s+cb0f(s)ds

for all c > 0. We set
f(s) = b0√

2πs3
e−

b20
2s ,

then
∫ ∞

0

b0√
2πs3

e−
c2
2 s+cb0−

b20
2s ds =

∫ ∞
0

b0√
2πs3

e−
(b0−cs)2

2s ds = 1,

so f indeed solves the problem. By Theorem 5.3 we can conclude that f is the density
function of the distribution of τ , which is of course a well known result.

5.3 Outlook and discussion

A main contribution of this paper is that the FPT problem has been reduced to the
solution of an integral equation because of the uniqueness result and thus the well
known methods for such equations can be applied. The integral equation we are faced
with here is a so-called Fredholm integral equation of the first kind. For these, numerical
approaches suffer from the fact that these integral equations are usually “ill-posed” in
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the sense of Hadamard. There are, however, quite a few approaches. The book [Waz11]
provides a detailed overview. Among these methods are the method of regularization
and the homotopy perturbation method. The more recent review article [YZ19] presents
even more methods such as the wavelet method. The paper [CMW19] presents an
algorithm to numerically solve Fredholm equations of the first kind and applies it to
the FPT problem and the same integral equation as used in this paper (although the
notation differs slightly). Due to the large number of results and methods, we also refer
the interested reader to the literature cited in the above sources.

From a mathematical perspective, it seems natural to generalise this approach to the
n-dimensional case, i.e., to the case of determining the distribution of the first passage
time of a n-dimensional Brownian motion to some n-dimensional surface. As there is no
canonical generalisation, we will present a possible approach in this section for future
research. To this end, let Wt = (W 1

t , . . . ,W
n
t ) be an n-dimensional standard Brownian

motion. Let d : Rn → [0,∞] be a continuous function such that τ := inf{t | d(Wt) ≥ t}
is an almost surely finite stopping time. A visualization of the setting can be seen in
Figure 5.2. We denote by h : Rn → R the density of the distribution of Wτ . As above
we decompose the transition kernel p via first passage of d. Note that in contrast to the
function b above, d maps from space to time. We have

p((0, 0), (t,x)) =
∫
d−1([0,t])

p
(
(d(y),y), (t,x)

)
P (Wτ ∈ dy)

+ P (Wt ∈ dx, τ > t)

and

1 =
∫
d−1([0,t]) p((d(y),y), (t,x)h(y)dy

p((0, 0), (t,x)) + P (Wt ∈ dx, τ > t)
p((0, 0), (t,x)) .

We set c ∈ Rn, x = ct and let t→∞. As before the last term vanishes, if we choose c
appropriately. We are left with

lim
t→∞

∫
d−1([0,t])

p((d(y),y), (t, ct)
p((0, 0), (t, ct)) h(y)dy =

∫
d−1([0,∞))

e−
‖c‖2

2 d(y)+c·yh(y)dy,

where · denotes the standard scalar product and ‖ ‖ the corresponding norm. If
d(y) =∞ the integrand vanishes, so we can write the resulting equation as

1 =
∫
Rn
e−
‖c‖2

2 d(y)+c·yh(y)dy (5.7)
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for c ∈ Rn such that the integral exists. The density f of the distribution of τ can be
obtained via

f(t) =
∫
h−1(t)

h(y)dσ

where dσ denotes integration over the (hyper) surface h−1(t). The proof of uniqueness
seems to us to be possible in principle under suitable additional preconditions with the
methods presented here, but it is beyond the scope of this chapter.

Figure 5.2: One-dimensional visualization of the parametrization via x
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Chapter 6

Conclusion

This thesis gives deeper insight into the FPT problem for Brownian motion and in
particular into the method of images. Proposition 1.3 is an extension of a classical
result from the method of images and establishes straightforward error bounds on the
first hitting time distribution of a boundary b up to some point t0 if we can bound
the function t 7→ rµ(t, b(t))−1 up to t0. This proposition is helpful to show that the
linear programs (D1) and (P2) yield upper and lower bounds on the first hitting time
distribution as seen in Theorem 2.1. Note we do not use that b is concave or analytic
in the proof of Proposition 1.3 or in the proof of Theorem 2.1. In particular, the
linear programs give upper and lower bounds for the first hitting time distribution to
boundaries b that do not need to be concave or analytic.

For concave, analytic b we see a new duality structure that has not been given
before. Strong duality results are established in Theorems 2.7 and 2.13 and help to
give sufficient conditions for b to be representable by a positive, σ-finite measure µ. In
particular, the duality structure may reveal a close connection of the first hitting time
and the last hitting time as seen above with the measure λ̄ of the conditional last hitting
time distribution in Theorem 2.15. More sufficient conditions for b to be representable
are based mainly on the analyticity of b in Theorem 2.19. The duality structures
as well as the sufficient conditions merit future research. In particular, the measure
λ̄ seems to be very promising to hopefully dispose of sufficient conditions and show
representability of all concave, analytic b. Moreover, the duality results and sufficient
conditions from Chapter 2 should carry over to the case of two-sided boundaries with
appropriate adaptations based on the programs for two-sided boundaries which we
formulated above as (D̃1), (P̃1), (D̃2), and (P̃2).

In Chapter 3, we establish convergence results for our linear programs and an explicit
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error bound for the approximation of the c.d.f. F of the first hitting time τ . The error
bound is given in Proposition 3.3 and again builds upon Proposition 1.3 which shows its
usefulness throughout this thesis. A new algorithm is given which substantially improves
upon existing algorithms by requiring less discretisations and offering considerably
faster convergence speeds than existing algorithms. The qualitative study of concave,
analytic boundaries b conducted in Section 3.3 confirm that the sufficient conditions for
representability given in Theorems 2.15 and 2.19 are easily checked numerically.

The use of representability goes beyond the FPT problem, as we see in Chapter 4.
We establish a connection to the representability of American options by European
options where the candidate stopping boundaries are shown to be representable in the
sense of the method of images in Theorem 4.1. This connection may be useful for future
research trying to determine whether American options or, in particular, the American
put are representable by European options.

Finally, Chapter 5 establishes the important result that the first hitting time dis-
tribution is actually uniquely determined by the set of Fredholm equations given in
(5.3). This result, which is given in Theorem 5.3, validates the use of Fredholm integral
equations to determine the first hitting time distribution. Moreover, an ansatz is given
how this approach may carry over to the multi-dimensional case but this requires future
research to establish sensible conditions on the multi-dimensional surface to be hit.
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Appendix

A.1 Auxiliary results

Lemma A.1. Let f : R → R be a continuous function vanishing at infinity. Let
(µn)n∈N be a sequence of measures on R converging vaguely to some measure µ. Assume
there exists some 0 < C <∞ such that the total variations of µn and µ are bounded by
C, i.e., ‖µn‖ < C for all n ∈ N and also ‖µ‖ < C. Then,

lim
n→∞

∫
R
f(x)µn(dx) =

∫
R
f(x)µ(dx).

Proof. Let ε > 0. As f is vanishing at infinity, we find 0 < K < ∞ such that
|f(x)| < ε/(4 · C) for all x with |x| > K. Moreover, we have by vague convergence

lim
n→∞

∫ K

−K
f(x)µn(dx) =

∫ K

−K
f(x)µ(dx).

With this in mind, we obtain

lim
n→∞

∣∣∣∣∫
R
f(x)µn(dx)−

∫
R
f(x)µ(dx)

∣∣∣∣
≤ lim

n→∞

( ∫ −K
−∞
|f(x)|µn(dx) +

∫ −K
−∞
|f(x)|µ(dx) +

∣∣∣∣∣
∫ K

−K
f(x)µn(dx)−

∫ K

−K
f(x)µ(dx)

∣∣∣∣∣
+
∫ ∞
K
|f(x)|µn(dx) +

∫ ∞
K
|f(x)|µ(dx)

)
≤4 · C · ε

4 · C = ε.
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Lemma A.2. Let b1, b2 : R+ → R be two boundaries with b1(t) ≤ b2(t) for all t ∈ (0, t0],
b1(0) < W0 < b2(0) and define τ := inf{t ≥ 0 : Wt /∈ (b1(t), b2(t))}. If µ is a measure
on R with µ({0}) = 0 and we have that both r(t, b1(t)) = 1 and r(t, b2(t)) = 1 for all
t ≤ t0, where

r(t, x) =
∫

(−∞,∞)
rθ(t, x)µ(dθ),

then, the distribution function of τ is given by

F (t) = 1− Φ
(
b2(t)√
t

)
+ Φ

(
b1(t)√
t

)
+
∫ ∞
−∞

(
Φ
(
θ − b1(t)√

t

)
− Φ

(
θ − b2(t)√

t

))
µ(dθ).

Proof. We find with the help of Proposition 1.7 that

F (t) = P (τ ≤ t,Wt ∈ (−∞, b1(t)) ∪ (b2(t),∞)) + P (τ ≤ t,Wt ∈ [b1(t), b2(t)])

= P (Wt ∈ (−∞, b1(t)) ∪Wt ∈ (b2(t),∞)) +
∫ b2(t)

b1(t)
P (τ ≤ t|Wt = y)fWt(y)dy

= Φ
(
b1(t)√
t

)
+ 1− Φ

(
b2(t)√
t

)
+
∫ b2(t)

b1(t)

∫ ∞
−∞

rθ(t, y)µ(dθ) 1√
2πt

exp
(
−1

2
y2

t

)
dy

= 1− Φ
(
b2(t)√
t

)
+ Φ

(
b1(t)√
t

)
+
∫ ∞
−∞

∫ b2(t)

b1(t)

1√
2πt

exp
(
−1

2
(y − θ)2

t

)
dyµ(dθ)

= 1− Φ
(
b2(t)√
t

)
+ Φ

(
b1(t)√
t

)
+
∫ ∞
−∞

Φ
(
θ − b1(t)√

t

)
− Φ

(
θ − b2(t)√

t

)
µ(dθ).

A.2 Additional convergence results

In Section 3.2 we stated and proved convergence results for (P2) and for (D1), the
“µ-problems”. Analogous results can be given for (P1) and (D2), the “λ-problems”.

Proposition A.3. Assume λi ∈ M+(R), i ∈ N, to be positive measures. Set Vn :=
{∑n

i=1 aiλi | a ∈ Rn
≥0} and denote by V∞ the closure of ⋃n∈N Vn with respect to the vague
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topology. For n ∈ N ∪ {∞} consider the linear program

minimise ‖λ‖

subject to λ ∈ Vn,∫
rθ(t, b(t))λ(dt) ≥ rθ(t0, x0) for any θ ∈ [2b(0),∞)

(P1,n)

and assume that there exists C ∈ R>0 such that C · λ1 is admissible in (P1,1) and
therefore in any (P1,n) for n ∈ N ∪ {∞} and that C · ‖λ1‖ <∞. Then,

(a) Let n ∈ N ∪ {∞}. Then the linear program (P1,n) attains its optimal value
p1,n at some admissible measure λ∗1,n. The optimal value satisfies p1,n ≤ k · ‖λ1‖.
Moreover, for m ≤ n the measure λ∗1,m is (P1,n)-admissible and it holds p1,m ≥ p1,n.

(b) There exists a subsequence of optimisers (λ∗1,nk)k and a (P1,∞)-admissible measure
κ∞ such that (λ∗1,nk)k → κ∞ vaguely. Moreover,

p1,∞ ≤
∫
rθ(t0, x0)κ∞(dt) ≤ inf

n∈N
p1,n = lim

n→∞
p1,n.

(c) If there exists a sequence (ξn)n with ξn ∈ Vn converging weakly to some (P1,∞)-
admissible measure λ∗∞ as n→∞ and if

lim
n→∞

sup
θ∈[2b(0),∞)

|
∫
rθ(t, b(t))λ∞(dt)−

∫
rθ(t, b(t))ξn(dt)|∫

rθ(t, b(t))λ1(dt) = 0,

then κ∞ from Assertion (b) is (P1,∞)-optimal and (λ∗1,nk)k converges weakly to κ∞.
Moreover, we find

p1,∞ =
∫
rθ(t0, x0)κ∞(dt) = inf

n∈N
p1,n = lim

n→∞
p1,n.

Proof. The proof is analogous to the proof of Proposition 3.1.

Proposition A.4. Assume λi ∈ M+(R), i ∈ N, to be positive measures. Set Vn :=
{∑n

i=1 aiλi | a ∈ Rn
≥0} and denote by V∞ the closure of ⋃n∈N Vn with respect to the vague
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topology. For n ∈ N ∪ {∞} consider the linear program

maximise ‖λ‖

subject to λ ∈ Vn,∫
rθ(t, b(t))λ(dt) ≤ rθ(t0, x0) for any θ ∈ [2b(0),∞)

(D2,n)

and assume that there exists C ∈ R>0 such that C · λ1 is admissible in (D2,1) and
therefore in any (D2,n) for n ∈ N ∪ {∞} and that C · ‖λ1‖ <∞. Then,

(a) Let n ∈ N ∪ {∞}. Then, the linear program (D2,n) attains its optimal value
d2,n at some admissible measure λ∗2,n. Moreover, for m ≤ n the measure λ∗2,m is
(D2,n)-admissible and we have d2,m ≤ d2,n.

(b) There exists a subsequence of optimisers (λ∗2,nk)k and a (D2,∞)-admissible measure
κ∞ such that (λ∗2,nk)k → κ∞ vaguely. Moreover,

d2,∞ ≥
∫
rθ(t0, x0)κ∞(dt) ≥ inf

n∈N
d2,n = lim

n→∞
d2,n.

(c) If there exists a sequence (ξn)n with ξn ∈ Vn converging weakly to some (D2,∞)-
admissible measure λ∗∞ as n→∞ and if

lim
n→∞

inf
θ∈[2b(0),∞)

|
∫
rθ(t, b(t))λ∞(dt)−

∫
rθ(t, b(t))ξn(dt)|∫

rθ(t, b(t))λ1(dθ) = 0,

then κ∞ from Assertion (b) is (D2,∞)-optimal and λ∗2,nk converges weakly to κ∞.
Moreover, we find

d2,∞ =
∫
rθ(t0, x0)κ∞(dt) = inf

n∈N
d2,n = lim

n→∞
d2,n.

Proof. Note that for all (D2,n)-admissible λ we find by evaluating the constraint at
θ = 2b(0) that

exp
(
−2b(0)2

t0
+ 2b(0)x0

t0

)
≥
∫

Ω
exp

(
2b(0)b(t)− b(0)

t

)
λ(dt)

≥ exp
(

2b(0)b(t0)− b(0)
t0

)
‖λ‖

where we use in the last step that t→ b(t)−b(0)
t

is a decreasing function. But then, we
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obtain

‖λ‖ ≤ exp
(

2b(0)x0 − b(t0)
t0

)
=: C.

Thus, all admissible solutions of (D2,n) must be contained in BM(C) = {λ ∈M(0, t0] |
‖λ‖ ≤ C}. The rest of the proof follows along the same lines as the proof of Proposition
3.1.

A.3 Some concepts from functional analysis

This section aims at introducing some results from functional analysis that are necessary
for the proofs in the main thesis above or help to understand the concepts of infinite-
dimensional linear programming that are introduced in Section A.4 below. These results
are well-known and a reader well-versed in these subjects may skip this section or use it
as a reference to refresh her knowledge on these results. This section uses definitions
and results from [Roc74], [Con90], [MV92] and [Len17] and quotes these as necessary.

We start by considering lower semi-continuous functions. The definition and their
properties can be found in [Roc74], Chapter 3. Let X be a topological space and let
f : X → [−∞,∞] be an extended real-valued function on X. Then, f is called lower
semi-continuous if the set {x|f(x) ≤ α} is closed for all α ∈ R. A function is called
upper semi-continuous if −f is lower semi-continuous. If X is a metric space, then f is
lower semi-continuous if and only if

f(x) ≤ lim inf
x′→x

f(x′)

for all x ∈ X. One can show that lower semi-continuous functions have the following
properties.

Lemma A.5. Let f , g and (fi)i∈I be lower semi-continuous functions on X and I
some non-empty index set. Then,

(i) The functions f + g, f ∧ g and f ∨ g are lower semi-continuous.

(ii) The function x 7→ supi∈I fi(x) is lower semi-continuous.

(iii) If f is bounded from below on some compact set K ⊂ X, then f attains its
minimum on K.
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(iv) The function f is lower semi-continuous if and only if its epigraph, i.e.,

epi(f) := {(x, s) ∈ X × R|f(x) ≤ s}

is closed with respect to the product topology on X × R.

Now, we turn our attention to locally convex spaces. Let K = R or K = C and let V
be a vector space over K. Recall that a semi-norm p on V fulfils p(λx) = |λ|p(x) and
p(x+ y) ≤ p(x) + p(y) for all x, y ∈ V and all λ ∈ K. Let I be an arbitrary index set
and let P := (pi)i∈I be a family of semi-norms on V . Then, the initial topology induced
by these semi-norms is given by

TP := {O ⊂ V |∀x0 ∈ O∃F ⊂ I finite ∃ε ∈ (0,∞)F : BF
ε (x0) ⊂ O},

where BF
ε (x0) := ⋂

i∈F{x ∈ V |pi(x − x0) < εi}. The initial topology is the coarsest
topology on V such that x 7→ pi(x− x0) is continuous for all i ∈ I, x0 ∈ X. We call TP
the locally convex topology on V generated by P and (V, TP ) a locally convex space. Note
that the definition given above differs from the definition given in [Con90], Chapter 4,
where locally convex spaces are introduced to be always Hausdorff which they do not
have to be in our definition given above.

As usual, the space of all TP -continuous linear functionals on V is called dual space
and is denoted by (V, TP )∗ or shortly V ∗. Moreover, for K-vector spaces V and W

let 〈V,W 〉 be an algebraic pairing, i.e., a bilinear mapping 〈·, ·〉 : V ×W → K. Then,
P := {x 7→ |〈x, y〉| | y ∈ W} is a family of semi-norms as can be easily verified. Now,
we can consider the locally convex topology on V induced by P . This topology is called
the weak topology on V induced by W and is denoted by σ(V,W ).

Now, we can define dual operators. Let 〈V1,W1〉1 and 〈V2,W2〉2 be algebraic pairings of
vector space V1,W1, V2, andW2 and let T : V1 → V2 be a σ(V1,W1)-σ(V2,W2)-continuous
mapping. Then, it can be shown that there exists a unique σ(W2, V2) − σ(W1, V1)-
continuous, linear operator T ∗ such that

〈Tx, y〉2 = 〈x, T ∗y〉1

for all x ∈ V1, y ∈ W2. The following lemma can for example be found as Lemma 5.17
in [Len17].

Lemma A.6. Let 〈V1,W1〉1 and 〈V2,W2〉2 be algebraic pairings. Suppose that T : V1 →

106



A.3. SOME CONCEPTS FROM FUNCTIONAL ANALYSIS

V2 and T ∗ : W2 → W1 are linear mappings satisfying

〈Tx, y〉2 = 〈x, T ∗y〉1

for all x ∈ V1, y ∈ W2. Then, T is σ(V1,W1) − σ(V2,W2)-continuous and T ∗ is
σ(W2, V2)− σ(W1, V1)-continuous.

Moreover, we consider the following formulation of the Alaoglu-Bourbaki theorem
which is due to Theorem 23.5 in [MV92].

Theorem A.7 (Alaoglu-Bourbaki). Let V be a locally convex Hausdorff space and let
U ⊂ V be a neighbourhood of 0. Then, the set

U◦ := {x∗ ∈ V ∗|Re(x∗(x)) ≤ 1∀x ∈ U}

is σ(V ∗, V )-compact.

Now, we recall some results concerning conjugate functions. The following definitions
can for example be found in [Roc74], Chapter 3. Let (V, TP ) be a locally convex space
over R and f : V → [−∞,∞] a function. The conjugate f ∗ : V ∗ → [−∞,∞] of f is
defined as

f ∗(x∗) := sup
x∈V

(〈x, x∗〉 − f(x)).

The mapping f 7→ f ∗ is called the Fenchel transform. Going one step further, we can
define the biconjugate f ∗∗ : V → [−∞,∞] of f as

f ∗∗(x) := (f ∗)∗(x) = sup
x∗∈V ∗

(〈x, x∗〉 − f ∗(x∗)).

Moreover, the lower semi-continuous hull lsc(f) of f is the largest semi-continuous
function that is smaller than f , i.e.,

lsc(f)(x) := sup{h(x)|h lower semi-continuous and h ≤ f}.

The convex hull co(f) of f is the largest convex function smaller than f , i.e.,

co(f)(x) := sup{h(x)|h convex and h ≤ f}.
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Finally, the closure cl(f) of f is given by

cl(f) :=


lsc(f), if lsc(f)(x) > −∞ for all x ∈ V,

−∞, otherwise.

A function f is said to be closed if f = cl(f). Then, one can show the following
properties of these objects. For a proof, see for example Lemma 5.25 in [Len17].

Lemma A.8. The following assertions hold:

(i) For any x ∈ V and x∗ ∈ V ∗, it holds 〈x, x∗〉 ≤ f(x) + f ∗(x∗) and f ∗∗(x) ≤ f(x).

(ii) The conjugate and biconjugate of f are convex and lower semi-continuous.

(iii) The lower semi-continuous hull of f is the largest lower semi-continuous minorant
of f . In other words, the function lsc(f) is lower semi-continuous, lsc(f) ≤ f and
h ≤ lsc(f) for any other lower semi-continuous function h satisfying h ≤ f . For
any x ∈ V , we have

lsc(f)(x) = sup
O∈U(x)

inf
y∈O

f(y)

where U(x) denotes the collection of all open sets containing x. Moreover, the
epigraph of lsc(f) coincides with the closure of epi(f) with respect to the product
topology TP ⊗ TR on V × R, i.e.,

epi(lsc(f)) = cl(epi(f)).

(iv) The convex envelope of f is the largest convex minorant of f . In other words, the
function co(f) is convex, co(f) ≤ f and h ≤ co(f) for any other convex function
h satisfying h ≤ f . Moreover, the epigraph of co(f) coincides with the convex
hull of epi(f), i.e.,

epi(co(f)) = co(epi(f)).

The following theorem can be found as Theorem 5, [Roc74] and gives the connection
between f and f ∗∗.

Theorem A.9 (Fenchel-Moreau). Let f : V → [−∞,∞] be an extended real-valued
mapping. Then,
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(i) The conjugate f ∗ constitutes a closed, convex function on the dual space V ∗ and
we have f ∗∗ = cl(co(f)).

(ii) The Fenchel transform induces a one-to-one correspondence between the closed,
convex functions on V and closed, convex functions on V ∗.

A.4 Introduction to infinite-dimensional optimisa-
tion

In this section, we will introduce some concepts from infinite-dimensional optimisation.
It is relying on [Roc74] which Rockafellar wants to be understood as complementary
reading to [Roc70]. Indeed, [Roc74] sets out the same concepts as [Roc70] but refrains
from introducing most concepts of convex analysis and rather concentrates on setting
out the theory in more general terms.

We start by defining an abstract optimization problem: Let X be a real linear space
and C ⊂ X a subset of X. Furthermore, let f : C → [−∞,∞]. Then, the abstract
optimization problem is to minimise f(x) for x ∈ C. The problem is said to be convex
if f is convex. Often, f is set to ∞ outside of C so we can consider minimising f over
all of X.

We now embed this problem into a class of optimisation problems depending on
a parameter u ∈ U for some vector space U : minimise F (x, u) over all x ∈ X. The
representation F is chosen in such a way that f(x) = F (x, 0) for all x ∈ X. We will
consider an example to illustrate this embedding.

Example A.10. Let fi be real-valued convex functions on a non-empty convex set C in
the linear space X for all i = 0, 1, . . . ,m. The problem is to minimise f over X where

f(x) =


f0(x), if x ∈ C, fi(x) ≤ 0 for all i = 1, . . . ,m

∞, else.

This represents our “usual” convex problems in the finite dimensional case. Now, a way
to parametrise this problem for u ∈ U = Rm is to set

F (x, u) =


f0(x), if x ∈ C, fi(x) ≤ ui for all i = 1, . . . ,m

∞, else.
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Then, F (x, 0) = f(x).

Now return to the problem of minimising a function f over X and suppose we have
chosen a representation F (x, 0) = f(x) with F : X × U → [−∞,∞]. Furthermore,
assume that X is paired with a space V and U is paired with a space Y in the sense of
algebraic pairings considered in Section A.3. A topology on x is said to be compatible
with the pairing if it turns X into a locally convex space and all linear functions of the
form

〈·, v〉 : x→ 〈x, v〉

for v ∈ V are continuous. A topology on V is compatible if the analogous of the above
holds. That means if X and V are called paired spaces, we will assume that not only a
pairing has been selected but also that compatible topologies for X and V in accordance
with the pairing have been chosen.

We can now define the Lagrangian function L on X × Y by

L(x, y) = inf{F (x, u) + 〈u, y〉|u ∈ U}

This definition of the Lagrangian indeed breaks down into the “usual” definition of the
Lagrangian. In order to illustrate this, we will take a look back at our example.

Example A.11. Consider f and F as in Example A.10, i.e., in particular

F (x, u) =


f0(x), if x ∈ C, fi(x) ≤ ui for all i = 1, . . . ,m

∞, else.

Then, it is easy to see that

L(x, y) =


f0(x) + y1f1(x) + . . .+ ymfm(x), if x ∈ C, y ∈ Rm

+

−∞ if x ∈ C, y /∈ Rm
+

∞ if x /∈ C.

It can now be shown that

f(x) = sup
y∈Y

L(x, y).

Indeed, [Roc74] establishes this in Theorem 6 (which in turn is based on a far more
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general statement in Theorem 5 in the same book). Now, the dual problem can be
defined by

maximise g(y)

over all y ∈ Y where

g(y) = inf
x∈X

L(x, y).

Now, we say that strong duality holds if

inf
x∈X

f(x) = sup
y∈Y

g(y)

and therefore to the problem of finding a saddle-value of L, i.e., a pair (x̃, ỹ) such that

L(x, ỹ) ≥ L(x̃, ỹ) ≥ L(x̃, y) for all x ∈ X, y ∈ Y.

Note that by the definition of the subgradient ∂f of a function f we have that x̃ solves
the primal problem, i.e., minimises f if and only if 0 ∈ ∂f(x̃). This notation is necessary
as we cannot assume f to be differentiable everywhere or even anywhere. This notion
of course simplifies if f is differentiable.

Furthermore, note that (0, 0) ∈ ∂L(x̃, ỹ) if and only if (x̃, ỹ) is a saddle-point of L
(recall the slightly different definition of a subgradient for a concave function). The
relation (0, 0) ∈ ∂L(x̃, ỹ) is called the (abstract) Kuhn-Tucker conditions for the primal
problem. The abstract Kuhn-Tucker conditions can be shown to simplify to the “usual”
KKT conditions (cf. chapter 10 in [Roc74]).

Moreover, these abstract Kuhn-Tucker conditions behave in the same way as the
“usual” KKT conditions as the following theorem states (cf. Theorem 15, [Roc74]).

Theorem A.12. Let F be closed convex in u, then the following are equivalent.

1. x̃ solves the primal problem and ỹ solves the dual problem and strong duality holds
(i.e., inf f = sup g).

2. The pair (x̃, ỹ) satisfies the abstract Kuhn-Tucker condition.

If F is not closed convex, then the abstract Kuhn-Tucker conditions still remain a
necessary condition for strong duality and the existence of solutions x̃ and ỹ for the
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primal and dual problem. So like in the finite-dimensional case, the convexity of the
problem ensures equivalence of these statements. The following theorem is a generalised
version of the famous Slater’s condition (cf. Theorem 18, [Roc74]) which is a sufficient
condition for strong duality to hold.

Theorem A.13. Let F be convex. Assume there is an x ∈ X such that the function
u→ F (u, x) is bounded above on a neighbourhood of 0. Then, inf f = sup g (i.e., strong
duality holds) and there exists at least one ỹ at which g attains its supremum.

This condition is indeed equivalent to the “usual” Slater condition as shown in
Chapter 8 in [Roc74].
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Notations

N {1, 2, 3, . . .}
N0 {0, 1, 2, 3, . . .}
R set of real numbers
R+ (0,∞)
φ density of the standard normal distribution
Φ cumulative distribution function of the standard normal distribution
N (µ, σ2) normal distribution with mean µ ∈ R and variance σ2 > 0
P(0,x) probability measure of a Brownian motion started in x at time 0
P

(t,y)
(0,x) probability measure of a Brownian bridge running from x at time 0 to y

at time t
C(S) continuous functions from S to R
Cb(S) continuous, bounded functions from S to R
C0(S) continuous functions from S to R vanishing at infinity
Cc(S) continuous, compactly supported functions from S to R
C+(S) cone of non-negative elements of C(S), analogous notation for Cb(S) etc.
M(S) regular, σ-finite Borel measures on S
M+(S) cone of non-negative elements ofM(s)
σ(v,W ) weak topology on V induced by W
T ∗ dual operator of the operator T
f ∗ conjugate of the function f
f ∗∗ biconjugate of the function f
BV (x, r) closed ball of radius r around x in vector space V
U(x) system of all open sets containing x in some topological space
lsc(f) lower-semi-continuous hull of a function f
co(f) convex hull of a function f
cl(f) closure of a function f
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