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Abstract 

The impacts of climate and land use change are increasing the frequency and magnitude of 

rainfall-triggered landslides, debris flows, and hillslope erosion hazards in regions of the world 

that have already experienced increasing levels of impact and disaster risk. Understanding these 

hazards and their interactions requires recognizing the interrelationships of the catchment's 

physical characteristics such as topography, hydrology, soil properties, and land with climate 

variables. Physically-based distributed multi-hazard models integrate these relationships; 

however, these models require a large number of input parameters that are challenging to obtain 

in catchments where no data are available to represent all relevant catchment physical 

characteristics. For regions with the highest levels of hazards and disaster risks, this type of model 

is associated with significant challenges related to data scarcity, uncertainty, model complexity, 

and possible over-parameterisation. Uncertainties arise due to the quality of the available data 

and the accessibility of different spatial resolution data to accurately represent these hazards 

within different catchment scales. This thesis addresses such uncertainties by developing a new 

modelling workflow that enables physically-based distributed multi-hazard models to be applied 

in data-scarce regions. Using this workflow, model parameterisation and uncertainty management 

were addressed to explore climate and land use scenarios in the two case study sites proposed 

in this thesis (Soufriere catchment, Saint Lucia, and The Maipo sub-catchment, Chile) to 

demonstrate the utility of this approach for informing resilient land use planning and policy. 

Applying the workflow to the two selected study sites identified the parameter-set values for land 

use and soil types that best approximated the spatial representation of rainfall-triggered 

landslides, debris flows, and hillslope erosion hazards for registered rainfall events, allowing the 

exploration of climate and land use scenarios at both study sites. This thesis has contributed by 

introducing a systematic modelling workflow that addresses the uncertainties in multi-hazard 

modelling, thereby improving the representation of hillslope hydrological hazard interactions for 

catchments with data scarcity.   
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1.1 Introduction 

1.1.1 Background and motivation  

There is evidence that the frequency and magnitude of rainfall-triggered landslides, debris flows, and 

hillslope erosion hazards is significantly increased by both land use change and climate change (Stoffel 

et al. 2014; Borrelli et al. 2020; Moreiras et al. 2021). These hazards are normally referred to as hillslope 

hydrological hazards because their occurrence is related to the interaction of slope surface and sub-

surface hydrological and stability processes (Caloiero 2018; Beevers et al. 2022). The occurrence and 

impacts of these hazards is greater in regions of the world where there is limited capacity to assess 

hazards under different climate and land use scenarios; or to design and enforce disaster-resilient land 

use planning and disaster risk reduction policies (Kelman et al. 2016; Rus et al. 2018; Mateos et al. 

2020). These regions are already experiencing increasing levels of disaster risk as hazards combine 

with increasing exposure and vulnerability of populations, economic infrastructure and environmental 

resources (De Angeli et al. 2022; Cremen et al. 2022). For example, between 2004 and 2016, the 

number of fatal rainfall-triggered landslide events increased by almost 95% on slopes occupied by 

informal settlements, especially in the mountainous catchments of China, Southeast Asia, Latin 

America, and the Caribbean (Sepúlveda and Petley 2015; Froude and Petley 2018). Similarly, between 

2005 and 2013, the records of fatalities and socio-economic losses associated with debris flows were 

higher in mountainous regions in developing countries (Lower and Middle-income Countries, LMICs, as 

defined by the World Bank, 2022) compared with countries with greater resources for hazard mitigation 

and risk planning (Turkington et al. 2016; Hirschberg et al. 2021; Moreiras et al. 2021). Likewise, 

between 2001 and 2015, the impacts of erosion hazards have been more evident in mountain 

catchments of China, India and some countries in Europe, Africa, and Latin America (Li and Fang 2016), 

where the hillslopes erosion rates have increased as a consequence of the impacts of land use change 

for economical purposes or, as a result of the direct effects of climate change such as droughts and 

wildfires (Anache et al. 2018; Borrelli et al. 2020).  

The Intergovernmental Panel on Climate Change (IPCC, 2022) remarks that in developing countries, 

settlements and infrastructure in mountain regions are already experiencing the impacts of more 

frequent and intense weather extremes. This coincides with the mountainous regions that are already 

most prone to rainfall-triggered landslides, debris flows, and hillslope erosion hazards (see Figure 1.1). 

Additionally, changes in land use within these regions have substantially impacted the frequency and 

magnitude of these hazards (Siriwardena et al. 2006; Mahat et al. 2016). Urban settlements have 

experienced the most significant impacts of rainfall-triggered landslides and debris flows due to 

unplanned urban expansion onto hillslopes and fluvial terraces that have a high degree of exposure to 

these hazards; and where urbanisation activities that change plant cover, topography and drainage 

patterns may increase the hazard (Alcántara-Ayala 2002; Johnston et al. 2021).  
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Figure 1.1 Global zonation of landslides and debris flow hotspots. Very high hazard regions can be 

found in Central America and the Caribbean, Central Asia, and the Middle East. Medium hazard 

regions can be found in South America and Central and Eastern Europe (Source: 

https://datacatalog.worldbank.org/search/dataset/0037584). 

Another important consideration is that hillslope hazard processes interact with each other – and 

these interactions need to be represented under both current and future climate and land use scenarios. 

It has been demonstrated that rainfall-triggered landslides, debris flows and hillslope erosion hazards 

do not occur as isolated processes but may be cascading, concurrent or compounding events (de Ruiter 

et al. 2020). For example, rainfall-triggered landslides and intensive hillslope erosion can influence 

debris flow magnitude, velocity, and runout (Cascini et al. 2013; Zhang et al. 2019). These hazard 

interactions are determined by the interrelationship between hydrological and stability processes that in 

majority are governed by lithological, topographical, and environmental factors (Guzzetti et al. 1996; 

Sidle and Ochiai 2006; Gill and Malamud 2014). These factors, also known as "preparatory factors”, 

configure the hillslope hydrology and stability and its susceptibility to hydrological hazards response to 

rainfall events (Fell et al. 2008; van Westen et al. 2008; Shano et al. 2020). In this thesis, the term 

"catchment physical characteristics" will be used from now on to refer to the preparatory factors that 

govern hillslope hydrology and stability and contribute to a hazard-forming environment with societal 

and environmental risk (Leonard et al. 2014; Liu et al. 2016). Identifying how hazard interactions are 

affected by climate and land use change is challenging, particularly in assessing their effects on the 

interrelationships between catchment physical characteristics and climate variables (Gill and Malamud 

2014). Physically-based models integrate these interrelationships by incorporating the catchment 

physical characteristics within their modelling structures through the integration of  the physical and 

mechanical laws of hillslope hydrology and stability (Terlien et al. 1995; Herrera et al. 2022). These 

models allow for simulating the interrelationships between catchment properties and climate variables, 

thus enabling the modelling of hydrological and stability processes that influence the interaction of 

hillslope hydrological hazards (Van den Bout et al. 2018).  

Assessing these interactions requires the characterisation of the hazard location, frequency, and 

magnitude (van Westen et al. 2006; Van den Bout et al. 2021). Therefore, modelling hillslope 

hydrological hazard interactions must be performed using models that consider both time and space 
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(De Angeli et al. 2022). Physically-based distributed models integrate these two approaches to model 

the temporal and spatial probability of occurrence of hillslope hydrological hazards (Terlien et al. 1995; 

van Westen et al. 2006). In this type of models, the spatial representation of these hazards introduces 

several issues that need to be addressed (Beven and Binley 1992; Pogson and Smith 2015). These 

issues can be grouped into model complexities, over-parameterisation, input uncertainties and data 

quality (Koo et al. 2020). Model complexities refer to the effects of model structures in relation to the 

number of parameters required to represent the catchment's physical processes and hillslope hydrology 

and stability (Uusitalo et al. 2015; Beven et al. 2018). Model complexities results from the inability of the 

model structure to mimic the real world (Yen et al. 2014). Whereas, input uncertainty is associated with 

the quality of the input data and model parameters (Pogson and Smith 2015). The input uncertainty, 

also known as "epistemic uncertainty," stems from the lack of knowledge and information available in 

input datasets to characterised the model parameters (Almeida et al. 2017; Herrera et al. 2022). 

Uncertainties regarding input datasets and model parameters are manageable by implementing 

conceptual frameworks that evaluate the available information in input datasets, identify sources of 

uncertainty by adjusting input parameters around their nominal values, and establish workflows to 

assess the impact of uncertainty on model outcomes, ensuring the appropriate application of the model 

(Walker et al. 2003; Refsgaard et al. 2007; Uusitalo et al. 2015; Beven et al. 2018). When physically-

based models are applied as a tool to forecast or support decision-making processes at regional or local 

scales, it is important to quantify and reduce uncertainty and their results (Matott et al. 2009; Beven et 

al. 2018; Herrera et al. 2022). Managing these uncertainties is considered a “good practice” in hillslope 

hydrological hazard modelling, particularly in the context of climate and land use change (Beven et al. 

2018; Wagener and Pianosi 2019). It involves evaluating multiple model configurations that reasonably 

fit observed hazards, improving the modelling of hillslope hydrological hazards through ex-ante 

evaluations (Walker et al. 2003; Williams et al. 2020). This approach enables modellers to make 

consistent and justifiable decisions, selecting model outcomes that best fit the requirements to support 

decision-makers in formulating more effective disaster risk reduction policies and adaptation 

strategies for settlements and infrastructures in urban and rural areas, incorporating the representation 

and assessment of rainfall-triggered landslides, debris flows, and hillslope erosion hazards under 

different land use and climate scenarios (Schmidt et al. 2011; de Ruiter et al. 2020). Addressing the 

potential impacts of interacting hazards must be conducted in a multidisciplinary framework between 

researchers, policymakers, governmental institutions, and private organizations to provide better 

insights into understanding these hazards from their perspective and reduce their impacts under future 

climate extremes (Gallina et al. 2016; De Angeli et al. 2022). 

The overall aim of this thesis is to elaborate a modelling workflow that handles issues in 

parameterisation and uncertainties arising in hillslope hydrological hazard interaction modelling to 

investigate their potential effects on climate and land use change in two multi-hazard-prone catchments 

in Saint Lucia and Chile. This requires the development of a new modelling workflow that enables 

physically-based distributed multi-hazard models to be applied in data-scarce regions, transparently 

accounting for issues such as parameter uncertainties and equifinality. Using this workflow, hazard 
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scenarios will be explored in the two case study locations to demonstrate the utility of this approach for 

informing resilient planning and policy. The rest of this introductory section outlines the importance of 

accounting for catchment physical characteristics that drive hillslope hydrological hazard interactions 

(section 1.1.2) and the impacts of climate and land use change in the occurrence of these hazards 

(section 1.1.3). Section 1.2 provides a brief overview of current approaches to hillslope hazard 

assessment and outlines the need for new approaches to applying hillslope hydrological multi-hazard 

models. To address these challenges, the detailed research aims, and objectives of this thesis are 

introduced (section 1.3) and an overview of the thesis structure is provided (section 1.4). 

1.1.2 The importance for accounting catchment physical characteristics 

Rainfall-triggered landslides and debris flows are classified as mass movement processes. 

According to Selby (1993), mass movements correspond to the movement of soil and/or rock down 

the slope under the influence of gravity and water. Various classifications of mass movement processes 

exist, with the most well-known being those of Varnes (1978); and Hungr et al. (2001). These 

classifications categorize mass movements based on the involved materials (e.g., mud, soil, rock and 

debris) and the type of movement (e.g., falls, topples, slides (rotational and translational), lateral spreads 

and flows) (Varnes 1978; Cruden and Varnes 1996). In the context of rainfall-triggered landslides, 

they can be defined as the displacement of soil and rock down hillslopes due to the combined forces of 

gravity and water This encompasses various types of slope movements, such as topples, rotational 

slides, and translational slides (Korup 2012). These types of movements can be classified as shallow 

and deep-seated (Hungr et al. 2014). Shallow landslides occur within approximately three meters or 

less from the ground surface, while deep-seated landslides occur at significant depths within the slope, 

ranging from about three meters to several hundred meters deep (Guerra et al. 2017; Shou and Chen 

2021). While landslides can also be triggered by earthquakes (Hungr et al. 2014), rainfall-triggered 

landslides are the most common globally, particularly in humid tropics and mountainous regions with 

high-intensity rainfall events (Aleotti 2004; Guzzetti et al. 2007). Debris flows, on the other hand, are a 

specific type of mass movement characterised by the movement of water-saturated mixtures of soil and 

sediment of varying sizes, ranging from clay to boulders (Varnes 1978; Sidle et al. 1985). These mixtures 

move downhill under the influence of gravity until reaching a point where the transported material is 

deposited (Montgomery and Dietrich 1994; Hungr et al. 2001; Iverson et al. 2002). Debris flows can be 

initiated by hillslope runoff, the transformation of landslides, or the gradual entrainment of material into 

the flow from the surface, leading to a significant increase in volume (Takahashi 1978; Chen and Zhang 

2015).  

Hillslope erosion occurs when water detaches, transports, and deposits particles of soil and rock 

material from the hillslope surface under similar condition (Aksoy and Kavvas 2005; Meng et al. 2021). 

According to Ellison (1948); Govers et al. (1990) and Cuomo et al. (2015), the process of hillslope 

erosion is initiated by the detachment of soil surface particles, either through runoff erosion caused by 

hillslope runoff or rainsplash erosion caused by rainfall characteristics. Runoff erosion is particularly 

significant on hillslopes with rainfall rates that exceed the soil's infiltration capacity, especially when the 

soil is thin and unconsolidated (Michaelides and Martin 2012). The consequences of runoff erosion 



Chapter 1. Introduction 

6 
 

include sheet erosion, which involves the uniform removal of a thin layer of soil over the slope, as well 

as rill and interrill erosion caused by the flow of water across the soil surface. Additionally, gully 

erosion occurs when surface runoff removes soil along drainage lines, forming deep channels or 

trenches (Merritt et al. 2003; Li et al. 2017). Rainsplash erosion, on the other hand, correspond to the 

detachment and mobilisation of soil particles resulting from raindrop impact (Aksoy and Kavvas 2005). 

This type of erosion depends on the impact forces such as rainfall intensity and soil mechanical 

properties (Guerra et al. 2017). Hillslopes are subject to erosion through various dominant mechanisms, 

including surface-water runoff and mass movement processes (van Beek et al. 2008). Landslides, such 

as debris flows, can act as agents of erosion, facilitating the movement and transport of material toward 

channels and alluvial fans (van Beek et al. 2008). As a result, rainfall-triggered landslides and debris 

flows are natural components of the hillslope erosion process (Korup 2009; Larsen et al. 2010). 

The occurrence of rainfall-triggered landslides, debris flows, and hillslope erosion hazards is governed 

by the interrelationship between the catchment physical characteristics, such as topography, soil 

properties and surface cover, and triggering factors, such as rainfall (Coe and Godt 2012; Pardeshi et 

al. 2013). According to Montgomery and Dietrich (1994) and Bogaard and Greco (2014), to identify 

these  interrelationships, it is necessary to understand their roles in hillslope hydrology and stability. 

Figure 1.2 illustrates the catchment's physical characteristics including soil types and their properties 

such as soil depths, hydrological and geomechanically properties, topography comprising slope angles 

and drainage patterns, and land use/land cover. The interplay between these catchment physical 

characteristic and rainfall determines the frequency and magnitude of hillslope hydrological hazards. 

Hillslope hydrological hazards are typically observed in unsaturated and saturated soils (Figure 1.2) 

(Cuomo and Della Sala 2015; Sidle et al. 2019). In these soils, hydrological and stability processes 

initiated by rainfall on hillslope surfaces and subsurfaces depend on the soil structure in terms of grain, 

porosity, and depth variability of hillslope soil deposits (Bogaard and Greco 2016; Rahardjo et al. 2019). 

These soil characteristics determine hydrological and geomechanically properties such as moisture 

content, matric potential, hydraulic properties, cohesion, and angle of friction (Townsend 1985; Fan et 

al. 2016). For example, saturated hydraulic conductivity determines infiltration rates, soils with higher 

porosity influence greater infiltration rates than soils with lower porosities (Farrell and Larson 1972; 

Muntohar and Liao 2010).  In addition, pore size influences the soil saturated moisture content, which is 

the maximum amount of water contained in the pore space, and soil water-holding capacity, which is a 

key aspect for partitioning rainfall into infiltration and runoff in unsaturated soils (Kirkby 1988; Bogaard 

and Greco 2016). As rainfall infiltrates, the soil matric suction is reduced due to an increase in moisture 

content as the soil becomes saturated by the advance of wetting front (Muntohar and Liao 2010; Zhang 

et al. 2011). The preceding, results in positive pore water pressures that affect the strength and stability 

of the soil (Bogaard and Greco 2016). Slope failure occurs when the weight of the saturated soil 

increases the slope shear forces, which reach a limit because of the reduction in the slope shear strength 

(Montgomery and Dietrich 1994). 

Moreover, as the soil becomes saturated, rainfall intensity surpasses the soil infiltration capacity 

accumulating water in the soil surface micro-depressions and initiating runoff by the action of gravity (Lu 
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and Godt 2013). The term hillslope runoff will be used to denote surface water flow on hillslopes 

(Michaelides and Martin 2012). Hillslope runoff can also originate from infiltration excess which occurs 

when the rainfall intensity exceeds the soil infiltration capacity (Aksoy and Kavvas 2005). Soil depth 

(Figure 1.2) plays an important factor in hillslope runoff, especially in hillslope hydrology because it 

determines the subsurface flow processes that control the connectivity of saturated areas at the soil-

bedrock interface, thereby determining landslide failure depth surfaces and surface flow generation 

(Lanni et al. 2013; Kim et al. 2016). Hillslope runoff is also one of the main initiation mechanisms of 

debris flows and hillslope erosion (Liu et al. 2021). The effects of hillslope runoff on debris flow motion 

are expressed by the entrainment of both landslide material and bed erosion according to the magnitude 

of the surface flow generated in terms of depth and velocity (Hutter et al. 1994; Iverson 1997). In the 

case of hillslope erosion, the erosion rates depend on the flow velocity and soil properties such as depth, 

cohesion, and vegetation (Michaelides and Martin 2012; Cuomo and Della Sala 2015). 

Topography also plays an important role in controlling hydrology and slope stability (Figure 1.2), 

particularly slope gradient influences the concentration of subsurface flow and the routing of surface 

flow into channels (Kiani-Harchegani et al. 2022). The slope geometry and its length are key influential 

topographic factors that affect the runoff initiation, volume and intensity of the flow, and travel distance 

of the landslide and debris flows as steeper slopes promotes more gravitational energy of the flowing 

mass (Gao 1993; Gao et al. 2021). For example, steep slopes increase the surface flow velocity and 

demand forces that move soil material down the slope (Montgomery and Dietrich 1994). The calculation 

of slope stability relies on the infinite slope model, which assumes that slope failure occurs along a 

sliding surface parallel to the ground surface (Mergili et al. 2014). The fraction of forces acting on the 

failure plane is expressed in terms of the Factor of Safety (FoS) which under an infinite slope approach 

can be assessed as the ratio of shear strength forces (force capacity) to shear forces (force demand) 

(Van den Bout et al. 2021). The travel distance of rainfall-triggered landslides and debris flows is 

governed by the properties of the soil materials and movement paths (e.g., drainage direction paths) 

(Takahashi 1978; Miller and Burnett 2007). Therefore, topography and lithological conditions have direct 

impacts on landslide and debris flows runout distances (Gao et al. 2021). Additionally, land use (Figure 

1.2) affects the physical properties of soil (Giertz et al. 2005). The impacts are evidenced in the reduction 

and modification of natural land cover, which has a role in controlling hydrology and stability (Sidle et al. 

1985; Persichillo et al. 2017).  
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Figure 1.2 Catchment physical characteristics.  

1.1.3 Understanding hillslope hydrological hazard interactions under land use and climate 

change 

The impacts of climate and land use change on hillslope hydrological hazards are not isolated 

phenomena (Van Beek and Van Asch 2004; Caloiero 2018). These hazards occur across a range of 

geological, environmental, and climatic conditions, which constantly change because of climate and 

land use changes (Dai et al. 2001; Guzzetti et al. 2007). Consequently, the occurrence of these hazards 

is highly variable and complex at all scales, especially when the catchment is highly sensitive to changes 

in its hydrological and stability conditions because of the impacts of climate and land use change (Beven 

2001; Sivakumar and Singh 2012). In other words, hillslope hydrological hazards are stochastic because 

their occurrence is dynamic and varies over time making it difficult to predict when and where they will 

occur as a consequence of these impacts (Montgomery and Dietrich 1994; Beven 2021). To understand 

the influence of these changes on the occurrence of rainfall-triggered landslides, debris flows, and 

hillslope erosion hazards across different magnitudes, it is necessary to assess the response of 

hydrological and stability processes to various climate and land use scenarios. This assessment helps 

identify how hillslope hydrological and stability characteristics respond to the occurrence and interaction 

of one or more hazards (Van Beek and Van Asch 2004; Van den Bout et al. 2018).  
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Impact of climate change on hillslope hydrological hazards 

Rainfall-triggered landslides, debris flows, and hillslope erosion share the same trigger and all three 

occur predominantly during extreme rainfall events (Larsen and Simon 1993; Shen et al. 2018). Climate 

change-induced variations in rainfall patterns, such as intensity, duration, and total volume, affect 

hillslope hydrological and stability processes differently (Huggel et al. 2012). Short and intense 

rainstorms are commonly observed as significant triggers for debris flows and shallow landslides 

(Martelloni et al. 2011; Turkington et al. 2016). Similarly, high-intensity storm events are associated with 

the severity of hillslope erosion, resulting in rapid hillslope runoff generation and increased detachment, 

transport, and deposition of sediment material (Li and Fang 2016; Meng et al. 2021). The response to 

hillslope hydrological hazards is particularly evident in mountainous regions, where spatiotemporal 

rainfall patterns have become more extreme in terms of intensity and duration (Caloiero 2018; Vergara 

et al. 2020). For instance, humid tropical catchments in the Caribbean, India, and South Asia have 

experienced increased rainfall intensities during hurricanes, cyclones, and typhoons (Reed et al. 2022). 

In contrast, Mediterranean regions are projected to face more extreme events, including heatwaves and 

prolonged drought periods, accompanied by a significant reduction in annual precipitation (Giorgi and 

Lionello 2008; Zittis et al. 2019). However, in these regions, heavy rainfall can still occur in short time 

periods following extended dry periods due to interannual variability associated with the El Niño–

Southern Oscillation (ENSO) (Lionello et al. 2014; Vergara et al. 2020; Moreiras and Sepúlveda 2022). 

These short and intensive rainfall events after extended dry or drought periods lead to increased 

infiltration-excess runoff by altering soil properties, such as reducing pore spaces (Luterbacher et al. 

2006; Soto et al. 2017). 

The impacts of rainfall variability on hillslope hydrological hazards are closely related to the response of 

the lithological setting in different environments (Guzzetti et al. 1996; Rahardjo et al. 2019). In humid-

tropic environments, the lithological setting is characterised by residual soils with varying textural 

characteristics, ranging from clay to gravel (Townsend 1985). These soils result from the accumulation 

of weathered material on top of the bedrock, which occurs through mechanical, chemical, and biological 

weathering processes (Bicocchi et al. 2019). On the other hand, Mediterranean environments have 

sedimentary soils that form from shallow colluvial and alluvial deposits of different sizes (Yaalon 1997). 

These deposits originate from weathering, fluvial, and gravitational processes (Townsend 1985). The 

response of both lithological settings to spatiotemporal rainfall variability depends on the type of soil and 

its hydrological and geotechnical properties, including soil water content, infiltration rates, soil cohesion, 

and internal friction angle. These properties vary according to the climatic characteristics of the 

respective environments  (Wohl et al. 2012; Vereecken et al. 2015). 

The soil water content in humid-tropic regions increases during extended rainfall periods and wet 

seasons, leading to elevated pore water pressures (Wohl et al. 2012). This increase in pressure can 

induce slope instability and trigger various processes, including hillslope runoff, debris flow generation, 

and hillslope erosion (Reading 1991; Garland and Olivier 1993). Conversely, Mediterranean regions 

experience seasonal and annual rainfall variability, resulting in reduced soil moisture. Extended dry 

periods in these regions can cause soil desiccation, leading to reduced soil cohesion and strength (Ruiz 
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Sinoga et al. 2010; Moreiras and Sepúlveda 2022). Consequently, during short and intense rainfall 

events, rapid soil saturation occurs, leading to increased surface runoff and influencing the generation 

of debris flows, hillslope erosion, and the initiation of shallow landslides (Sillero-Medina et al. 2020). In 

particular, mountainous catchments within these regions have exhibited different slope hydrological and 

stability response to changes in rainfall intensity and duration that has been translated into more frequent 

shallow landslides, extensive debris flows, and severe hillslope erosion (see Figure 1.3) (Leonard et al. 

2014; Moreiras et al. 2021).  

 

 

Figure 1.3 Effects of Hurricane Tomas in Saint Lucia, Eastern Caribbean, and effects of 

exceptional rainfall event during summer in Maipo sub-catchment, Santiago metropolitan 

region, Chile. (a) Fond St. Jacques debris flow (rural settlement) (ECLAC 2011); (b) 

Melocoton ravine Maipo sub-catchment, Chile (Marín et al. 2017). 

Impact of land use change on hillslope hydrological hazards 

Land use change (LUC) represents the second dynamic influence on hillslope hydrological hazards 

(Persichillo et al. 2017; Johnston et al. 2021). Anthropogenic activities, including urbanization, 

agriculture, and deforestation, exert growing pressure on hillslopes, leading to the loss of natural land 

cover that impacts the hillslope soil properties (Ávila et al. 2020; Moreiras et al. 2021). For example, 

informal urban expansion into slopes prone to landslides influences deforestation and hillslope cutting, 

leading to negative consequences for slope stability (Dai et al. 2001; Dai et al. 2002). This was 

highlighted by Bozzolan et al. (2020), who studied the effects of informal housing on slope stability, 

identifying that the presence of informal housing modifies the natural slope angle, soil cohesion, and 

soil thickness modifying the natural role of the slope in maintaining stability. Moreover, the expansion of 

farmlands into hillslopes also has essential effects on hydrological processes and soil mechanical 

structures (Persichillo et al. 2017). Natural land covers, such as scrubs and forests are the most 

sensitive to the effects of urbanisation and deforestation, as they play a crucial role in enhancing soil 

stability and hydrology (Sidle et al. 1985; Schmaltz et al. 2017). Their role in stability is the aggregates 

of soil particles, increasing the shear strength and bonding of soil particles, particularly in the upper few 

centimetres of the soil layers, which helps prevent surface erosion (Masi et al. 2021; Murgia et al. 2022). 

Moreover, natural land cover regulates the hydrological regime of slopes by influencing moisture 

content, infiltration, and rainfall-runoff dynamics (Wohl et al. 2012; Zhang et al. 2022). Additionally, it 
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adds roughness and friction to flow propagation, thereby reducing flow velocity and energy (Nepf and 

Koch 1999). Therefore, the response of hydrological and stability processes to changes in rainfall 

intensity and duration is associated with the impact of land use changes on soil properties (Vanacker et 

al. 2003; Giertz et al. 2005). 

According to Marhaento et al. (2018), humid tropical regions are more susceptible to the impacts of land 

use change. Deforestation for agriculture and urbanisation are the main drivers of land use change in 

these regions (Foley et al. 2005; Wu et al. 2011). However, according to Guns and Vanacker (2013), 

changes in land cover from forest to pasture on steep slopes (e.g., crop rotation) have been the main 

drivers of changes in soil properties and hydrology, reducing slope stability. Moreover, soil erosion in 

humid tropics is dramatically concentrated over deforested hillslopes where bare soil and agricultural 

landscapes are predominant (Labrière et al. 2015). Alternatively, in Mediterranean regions land use 

change is highly dominated by the direct impacts of climate change due to extended drought periods 

and more intense wildfires (Parise and Cannon 2012). For example, in mountainous catchments, the 

severity of drought periods reduces the covered-trees areas in favour of scrubs or grasslands (Akinyemi 

2021). Whereas wildfires remove all types of natural land cover, creating water-repellent soils that 

increase surface runoff and hillslope erosion (Fraser et al. 2022). These factors increase the severity of 

shallow landslides and debris flow activity (Glade and Crozier 2010; Moreiras et al. 2021). However, 

agriculture for economic purposes is also a driver of land use change in the Mediterranean regions. 

According to Schulz et al. (2010), in the last decade, the major trends in landscape changes were due 

to the reduction of forests and conversion of shrublands to intensive land uses such as farmlands, 

increasing erosion, and impacting the hydrological regimes of these environments. 

1.2 Hillslope hydrological multi-hazard modelling approaches 

According to Malamud et al. (2004); Fell et al. (2008) and Corominas et al. (2014), rainfall-triggered 

landslides, debris flows, and hillslope erosion hazards can be defined as potentially damaging physical 

events that may negatively impact society and the natural environment. These impacts are assessed by 

calculating the “Risk (𝑹𝒔)” (Equation 1.1) that measures the probability of potential consequences of 

these hazards over the population (life expected losses), infrastructure and economic activities in areas 

highly exposed to hillslope hydrological hazards (van Westen et al. 2006; Corominas and Moya 2008). 

The risk is often estimated by calculating the “Hazard (H)” which corresponds to the probability of 

occurrence of a landslide, debris flow or hillslope erosion hazard within a determined area and period 

(e.g., hours, days, months). The “Vulnerability (V)” which is the degree of physical, social, economic 

and environmental factors that increase the susceptibility of a community to the impacts of these hazards 

and the "Exposure (E)" which is the set of elements (e.g., population, buildings, public services such 

as hospitals and schools) or any other critical infrastructure potentially affected by the hazard (Fell et al. 

2008; UNDDR 2020; De Angeli et al. 2022). 

Risk (Rୱ) =  H ∗ V ∗ E 
Equation 1.1 
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The assessment of hillslope hydrological hazard interactions requires models that can integrate 

catchment physical characteristics and climatic variables to analyse their spatiotemporal 

interrelationships (van den Bout 2020; van Westen et al. 2021). According to Gill and Malamud (2014), 

the impacts of natural hazards on the natural environment cover different temporal and spatial scales. 

The first one corresponds to the duration in which the hazard acts and the second one is the area in 

which the hazard impacts (Corominas et al. 2014). Physically-based models are capable of evaluating 

these interrelationships by incorporating relevant physical and climatic variables and processes, such 

as slope hydrology, stability, and rainfall characteristics (Terlien et al. 1995; Herrera et al. 2022). These 

models can represent the drivers of landslides or debris flows and their responses to historical, current, 

and potential climate scenarios. However, describing hazard interactions within these models becomes 

challenging at different spatial scales, especially at the catchment level (Van den Bout et al. 2018). For 

example, hydrological or slope stability process representation requires catchment physical 

characteristics, such as soil depth, cohesion, and angle of friction, which are site-specific and can only 

be modelled properly using site-specific mechanistic models (van Westen et al. 2006). These 

characteristics make these models more suitable for assessing the temporal probability of landslides or 

debris flows on individual slopes by relating the slope hydrology and stability to triggering factors such 

as rainfall (Von Ruette et al. 2013; Van den Bout et al. 2021). 

GIS-based models, instead, can be used to identify the spatial distribution of hazards at different scales 

(van Westen et al. 2006). These models use various approaches, including qualitative methods like field 

geomorphological analysis and heuristic methods that rely on expert opinions (Pardeshi et al. 2013; 

Shano et al. 2020). In geomorphological methods, experts create detailed maps of landslide sizes and 

debris flow runout areas while identifying the factors responsible for these hazards (Aleotti and 

Chowdhury 1999). Heuristic methods involve mapping and weighting factors based on experts’ personal 

experiences and their expected contributions to landslides or debris flows (Dragićević et al. 2015). 

Quantitative methods, such as statistically-based approaches, predict the probability of landslide, debris 

flow, or hillslope erosion occurrence based on the relationship between spatially distributed factors such 

as topography, geology, soil types, and land use/land cover, considering past observed hazards 

(Guzzetti et al. 1999; Reichenbach et al. 2018). These approaches offer the advantage of cost-

effectively assessing the susceptibility of different areas at various spatial scales, especially for land use 

planning purposes (Fell et al. 2008). However, when it comes to landslides and debris flows, these 

models are limited to susceptibility analysis and do not incorporate physical and climatic properties or 

hazard drivers  (Guzzetti et al. 1999; van Westen et al. 2006). As a result, they cannot quantify the 

frequency and magnitude of these events under different triggering conditions, which is crucial for a 

comprehensive hazard assessment (Van den Bout et al. 2021).  

Physically-based methods can be integrated into GIS environments to create physically-based 

distributed hazard models, allowing the spatiotemporal representation of rainfall triggered, landslides, 

debris flows and hillslope erosion hazards  (Aleotti and Chowdhury 1999; Aksoy and Kavvas 2005). 

These models offer the advantage of incorporating the spatial variability of topography, geology, 

environment, land use, and other drivers to simulate hillslope hydrology and stability at different 



Chapter 1. Introduction 

13 
 

catchment scales (van den Bout 2020). They can provide information on landslide locations, areas, 

depths, debris flow runout areas, and erosion and deposition volumes (Crosta and Frattini 2003; 

Starkloff et al. 2018). However, a well-known challenge with these models is the need for a substantial 

amount of data to represent hydrological and stability processes (Fisher 1986; Almeida et al. 2017; 

Beven et al. 2018). The complexity of simulating real hazards e.g., landslides, debris flows, and hillslope 

erosion requires extensive data to set model parameters (van den Bout 2020). Collecting or estimating 

such data is particularly difficult, especially over large spatial scales and in data-scarce environments 

(Lilburne and Tarantola 2009; Herrera et al. 2022). Furthermore, the spatial representation of these 

hazards depends on the catchment scale and the resolution of the input data (van Westen et al. 2008). 

When dealing with large areas, high-resolution data and simulations can be computationally expensive 

in these models, and coarse-resolution simulations may not accurately identify specific slope failures or 

debris flow runout areas (Van den Bout et al. 2021; Mead et al. 2021). 

1.2.1 Assessment of hillslope hydrological hazard interactions 

According to van Westen et al. (2006); Cascini et al. (2011); Mergili et al. (2012) and Pudasaini and 

Fischer (2020), physically-based models provide a better understanding of the physical and climatic 

interrelationships that contribute to multi-hazard interactions compared to empirical-statistical models. 

Recent advancements in physically-based distributed modelling have focused on climate, hydrological, 

and stability-related hazards (van den Bout 2020). The work of Godt et al. (2008); Chen and Zhang 

(2015); He et al.(2016); Mergili et al. (2017); Salvatici et al. (2018) and van den Bout (2020), introduced 

new improvements to assess the initiation of rainfall-triggered landslides and their interactions with 

debris flows, as well as the occurrence of debris flows and their impacts on erosion at regional and 

catchment scales. These advancements involve the coupling of hydrological and stability models, which 

refers to the exchange of information between models to address complex interrelationships among 

climatic, hydrological, and stability processes (Panday and Huyakorn 2004; Flato 2011). The coupling 

of models includes catchment-scale infiltration and rainfall-runoff models, differential and kinematic 

wave equations for flow simulation and routing, sediment equations for detachment, transport capacity 

and deposition, regional slope failure models for assessing potential slip surfaces on a regional scale, 

and numerical runout models for simulating solid and fluid interactions on larger spatial scales (Van 

Beek and Van Asch 2004; von Ruette et al. 2016; Baumann et al. 2020; Cuomo et al. 2021). As a result, 

physically-based distributed models can be regarded as "multi-hazard models" since they enable the 

integrated modelling of two or more hazards providing a comprehensive framework for studying and 

understanding the complex interactions between various hazards in an integrated manner (van den Bout 

2020).  

In the case of hillslope hydrological hazards, the assessment of interactions involves identifying the key 

interrelationships between hydrological and stability processes that contribute to the transition of rainfall-

triggered landslides into debris flows and their combined impact on hillslope erosion (Cascini et al. 2013; 

Fan et al. 2017; Van den Bout et al. 2018) (Figure 1.4). It provides valuable insights into the catchment 

sensitivity to land use and climate change on hydrological and stability interrelationships driving multi-

hazard interactions (Van Beek and Van Asch 2004; Malet et al. 2005). To evaluate these 
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interrelationships, it is necessary to couple regional- or catchment-scale models for hillslope hydrology 

and stability. For catchment scales, slope stability assessment involves integrating physically-based 

distributed slope stability models with spatially distributed hydrological and infiltration models (Wilkinson 

et al. 2002; Muntohar and Liao 2010). The integration of the infinite slope method into GIS raster formats 

has facilitated slope stability calculations for large scales in one- or two-dimensional space (Terlien et 

al. 1995; Guzzetti et al. 1999; Corominas et al. 2014). This coupling enables the incorporation of slope 

stability models with infiltration models for vertical water flow and hydrological models for surface flow, 

thereby improving the quantification of interrelationships between slope stability and catchment 

hydrological surface and subsurface processes (Muntohar and Liao 2010; Arnone et al. 2011).  

Establishing the link between rainfall-triggered landslides and debris flows requires coupling distributed 

slope failure models to search for potential slip surfaces with numerical runout models (von Ruette et al. 

2016; Fan et al. 2017; Cuomo et al. 2021). Current slope failure methods, such as iterative failure 

methods, random ellipsoids method, and random sampling methods, provide detailed information about 

the Factor of Safety (FoS), potential failure surfaces, and associated volumes (Michel et al. 2020; Van 

den Bout et al. 2021). The coupling of slope failure methods to estimate failure depths and volumes can 

easily be coupled with physically-based numerical models (Figure 1.4) capable of describing the 

competitive fluid and solid forces that influence the transition from failure volumes to debris flow. These 

models incorporate entrainment and rheological parameters to assess motion, magnitudes, and their 

impacts on erosion and deposition rates (Chen and Zhang 2015; Pudasaini 2019; Pudasaini and Fischer 

2020). However, the transition from rainfall-triggered landslides to debris flows and their impact on 

erosion depend on the volumetric sediment concentrations, flow depth, and velocity (Takahashi 1978; 

Iverson 1997; Liu et al. 2021). Therefore, the coupling of rainfall-runoff models is required to assess the 

effects of surface flow on the entrainment of bed material (surface erosion) and slope failure volumes 

on flow volumetric sediment concentrations (Mergili et al. 2017; Liu and He 2020). This is essential for 

assessing the flow mixture composition in terms of fluid phases (flow frictional forces) and solid phases 

(basal resistance forces), which determine the entrainment rates (erosion) and debris flow runout 

(deposition) (Pudasaini and Fischer 2020).  

Incorporating characteristics into regional- or catchment-scale physically-based distributed multi-hazard 

models faces several issues that must be addressed. The large number of hydrological and geotechnical 

parameters used to represent all relevant catchment processes for hydrology and stability requires a 

substantial amount of data, making multi-hazard modelling more complex in terms of process 

representation (Beven and O’connell 1982; Von Ruette et al. 2013; Liu et al. 2020). This complexity can 

degrade the applicability of multi-hazard models and increase uncertainty in their outcomes (van den 

Bout 2020). Furthermore, these models require proper spatial resolution to accurately represent the 

temporal frequency and spatial location of rainfall-triggered landslides, debris flows, and hillslope 

erosion hazards by incorporating all the hydrological and stability processes (Zhang et al. 2013; Fuchs 

et al. 2014). However, in regions, where the data accessibility or information available to estimate 

hydrological and geotechnical parameters for process modelling is scarce or limited, the modelling of 

hillslope hydrological hazards and quantifying their interactions poses a disadvantage in properly 
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assessing the impacts of climate and land use change on their frequency, magnitude, and location (van 

Westen et al. 2008; Kuriakose et al. 2009; Gorgoglione et al. 2020).  

Implementing workflows to parameterise complex multi-hazard models for modelling hillslope 

hydrological hazards requires considering the number of input parameters necessary to model hazard 

interactions and handle uncertainties arising from data representation. This is particularly important for 

countries with limited data accessibility, which hampers the spatial representation and quantification of 

these hazards and their interactions. To achieve this, it is crucial to identify a suitable multi-hazard model 

that incorporates various methods and techniques to model hydrological and stability interrelationships 

leading to hazard interactions. This enables the assessment of feedback mechanisms that define the 

type interaction and magnitude of hazards like rainfall-triggered landslides, debris flows, and hillslope 

erosion caused by climate and land use change (Figure 1.4). Therefore, according to Figure 1.4, 

regional- or catchment-scale physically-based distributed multi-hazard models are more suitable for 

assessing the impacts of climate and land use change on hillslope hydrological hazard interactions, as 

they can model the temporal frequency of these hazards, as well as their spatial location, allowing the 

quantification of their magnitudes and impacts for different scenarios. 

 

 

Figure 1.4 Overview of multi-hazard modelling framework for hillslope-hydrological hazards. 
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1.2.2 Challenges and gaps in hillslope-hydrological hazard interaction modelling 

In the previous section, it was proposed that assessing the impacts of climate and land use change on 

hillslope hydrological hazard interactions requires physically-based distributed multi-hazard modelling 

approach at catchment scales. In Chapter 2, the precise model selected for the task is discussed in 

detail. However, as discussed in section 1.2.1, the selection of a catchment-scale multi-hazard model 

to assess hillslope hydrological hazard interactions driven by climate and land use change faces several 

challenges that must be addressed. These challenges can be classified as, (i) model complexity: the 

coupling between models and methods for process representation increases the number of parameters 

required to model multi-hazard interactions (over-parameterisation); (ii) model parameterisation: the 

definition of values for the set of parameters of the chosen multi-hazard model to represent hydrological 

and stability processes that lead to hazard interaction; and (iii) the management of uncertainty that arises 

owing to the quality of the available data to estimate the required hydrological and geotechnical 

parameters for the chosen multi-hazard model, which impacts the representation of multiple-hazard 

interactions. 

One of the initial steps in addressing these challenges involves considering a methodology that helps 

bridge gaps in handling parameterisation of multi-hazard models and uncertainties arising from data 

quality. When assessing interactions between hillslope hydrological hazards, the objective is to quantify 

the influences between hazards resulting from climate and land use changes. For instance, this includes 

measuring the increase in debris flow runout areas due to heightened landslide activity during extreme 

rainfall events or the rise in hillslope erosion rates in deforested areas, leading to more landslides and 

debris flow during short and intense rainfall events. To accomplish this objective, it is necessary to frame 

the analysis of hillslope hydrological hazard interactions based on the desired outcomes for potential 

users such as researchers, modellers, decision-makers, and stakeholders (Refsgaard et al. 2007; van 

Vliet et al. 2016; Beven et al. 2018; Williams et al. 2020). This entails analysing the interactions within 

the catchment where they occur by examining the spatial distribution of rainfall-triggered landslides, 

debris flows, and hillslope erosion, and quantifying their magnitudes resulting from the interactions. 

Therefore, the parameterisation of the multi-hazard model should primarily focus on identifying the 

appropriate set of parameter values that accurately represent multiple hazard interactions under 

different climate and land use scenarios, while also identifying sources of uncertainty that may impact 

the representation of these interactions, such as inaccuracies in hazard locations and magnitudes 

compared to historical observations. 

According to Refsgaard (1997); Wooldridge et al. (2001) and Malone et al. (2015), the parameterisation 

and uncertainty of a model affect the model outcomes and are influenced by the quality of input data. 

To accurately represent interactions between hillslope hydrological hazards, detailed data on physical 

site characteristics is necessary. This data is typically obtained from field measurements and is used to 

estimate the physical properties of the catchment (van Westen et al. 2008; Kuriakose et al. 2009; Tofani 

et al. 2017). However, data scarcity is a limitation in certain regions, particularly in the Global South 

(Gentile et al. 2022). In these regions, information is often derived from literature reviews, existing 

databases, or published data due to the high cost of accessing field-measured data for estimating 
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hydrological and geotechnical parameters in large catchments (Pellicani et al. 2013; Bicocchi et al. 

2019). Therefore, it is crucial to design a modelling workflow that guides the parameterisation of complex 

multi-hazard models and helps identify and control sources of uncertainty arising from the quality of 

input data. This approach contributes to improving the modelling of multiple hazard interactions in data-

poor regions under different climate and land use scenarios Consequently, any analysis and decisions 

regarding the impacts of potential climate and land use changes on hillslope hydrological hazard 

interactions rely on both parameterisation and uncertainty control (Uusitalo et al. 2015; Williams et al. 

2020). The recommendations for disaster-risk policies are dependent on how these processes are 

handled in multi-hazard modelling (Beven et al. 2018; van den Bout 2020). The design of a modelling 

workflow for multi-hazard interactions should consider methodological steps encompassing 

parameterisation, uncertainty analysis, and model application for climate and land use scenarios. It 

should also address challenges related to data gathering in data-poor contexts, as well as parsimony, 

equifinality, and model verification. In the subsequent paragraphs, these challenges will be explored in 

more detail. 

Data assembling and spatial distribution of input parameter values: According to Beven (2001); 

Fan et al. (2016) and Herrera et al. (2022), understanding the physical boundaries of a catchment is 

essential for determining the spatial distribution of hydrological and geotechnical parameter values. 

These boundaries can be defined by encompassing the entire catchment area or dividing it into sub-

catchments (Summerell et al. 2005).  Within the catchment boundaries, the distribution of parameter 

values can be estimated using representative data for catchment soil types, 

geological/geomorphological features, and land cover/use using literature reviews or various sources of 

data  (Refsgaard 1997; Feyen et al. 2000; Wooldridge et al. 2001). The collected information is 

associated with possible values for hydrological and geotechnical parameters based on their spatial 

distribution, such as soil texture classes and land use categories (Burton et al. 1998; Feyen et al. 2000). 

When estimating spatially distributed values for different soil type features or land use classes, certain 

factors need to be considered. The first factor is uniqueness. According to Beven (2000), each 

catchment's hydrological system is unique due to its physical characteristics, including soil type, 

geology, topography, and vegetation. These characteristics influence how the catchment responds to 

rainfall, such as infiltration and surface runoff generation. As a result, catchments with different 

characteristics may exhibit diverse responses to rainfall events in terms of hydrological processes and 

stability (Beven 2001). Considering these factors is crucial, particularly when assessing the catchment's 

hydrological response to various climate and land use scenarios. 

The second concept is nonlinearity. This concept refers to the fact that the relationship between input 

parameters and model outcomes is not proportional (Beven and Binley 1992). This means that changes 

in certain input parameters can cause significant variations in the model results, affecting the 

catchment's hydrological and stability responses (Sivakumar and Singh 2012). To account for 

nonlinearity, input parameter value estimation should consider a range of values for a specific 

parameter, such as saturated hydraulic conductivity or soil cohesion for a particular soil type (Herrera 

et al. 2022). This allows to understand how the catchment responds to different parameter values, 
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especially to identify the most sensitive values that influence the hydrological and stability responses to 

rainfall-triggered landslides, debris flows, and hillslope erosion (Song et al. 2015). The influence of 

spatial scale and resolution of data is the third concept to consider. Estimating parameter values at 

different spatial scales can lead to distortions in the heterogeneity and variability of soil properties and 

vegetation within the catchment, affecting the modelled hydrological and stability processes (Leavesley 

et al. 2002; White et al. 2003; Brunner et al. 2012). At smaller scales, more detail and variability can be 

captured, providing a better representation of processes like infiltration. However, at larger scales, these 

processes are simplified and represented as a single unit of homogeneous properties (Beven 2001). 

This simplification hinders the modelling process as it fails to capture the spatial variability of infiltration 

rates over large areas, limiting the accuracy of the modelled process (Beven 2000; Zhang et al. 2013). 

On the other hand, obtaining a detailed representation of hydrological processes at higher resolutions 

can be computationally demanding, requiring more significant computational resources (van Westen et 

al. 2008). According to Hessel (2005) and van den Bout and Jetten (2020), one of the limitations of 

physically-based distributed modelling is that the results obtained depend on the spatial resolution of 

the input data and timestep length. Higher-resolution input data over large areas will require a longer 

simulation time, limiting the usability of this type of model when computer resources are not available 

(Vázquez et al. 2002; De Sy et al. 2013). Conversely, lower-resolution data may not adequately 

represent individual hazards and their interactions since the resolution of input parameters extends 

beyond the process domain (Beven 2001; Claessens et al. 2005). 

Model parameterisation and equifinality: Parameterisation refers to the process of selecting 

parameter values for a model to simulate the catchment hydrological system based on available data 

(Refsgaard 1997; Cullmann et al. 2011). Physically-based distributed models offer the flexibility to vary 

the values of initial parameters, allowing exploration of the parameter space to find the optimal values 

that yield high consistency between model outcomes and observations (Beven and Binley 1992; 

Oreskes et al. 1994; Herrera et al. 2022). Estimating parameter values is a standard procedure, 

especially in data-scarce environments where measured data to characterised the spatial variability of 

hydrological and geotechnical soil properties are lacking (Almeida et al. 2017; Beven et al. 2018). The 

assessment of parameter value variation requires methodologies that quantify the range of values within 

which initial parameter values can vary to best represent hillslope hydrological hazards (Guinot and 

Gourbesville 2003). However, it is neither feasible nor desirable to allow parameter values to vary freely 

(Refsgaard 1997). Inaccurate variation of parameter values can constrain the modelling of catchment 

hydrology and stability, leading to unrealistic hazard representations that do not align with observations 

(Malone et al. 2015). To assess the variation of input parameter values, several methodologies exist, 

such as sensitivity analysis techniques (Wagener and Pianosi 2019). One approach is the One-At-a-

Time (OAT) method, which varies one input parameter value at a time while keeping other parameter 

values fixed to observe the effects on model outputs. Another method is the All-At-a-Time (ATT) method, 

where all parameter values vary simultaneously to evaluate the relative importance of each parameter 

in influencing model outputs (Song et al. 2015; Pianosi et al. 2016). Additional methods include Latin 

Hypercube Sampling (LHS) and Monte Carlo simulation, which generate random sampling parameter 

values covering a range of possibilities (Douglas-Smith et al. 2020).  
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When assessing variations in input parameter values during the parameterisation process, it is important 

to consider equifinality. Equifinality suggests that different combinations of parameter values can lead 

to similar model outputs and predictions (Beven 2001; Herrera et al. 2022). Therefore, there won't be a 

single representation of catchment hydrological and stability processes, but rather an ensemble of 

parameter-set values that are considered acceptable for predicting rainfall-triggered landslides, debris 

flows, and hillslope erosion hazards (Beven 2019). As new information becomes available over time, 

the ensemble of acceptable parameter-set values may evolve. Considering equifinality in the 

parameterisation process goes beyond fitting model results to observations. It aims to identify 

parameter-set values that not only align with observations but also provide meaningful and accurate 

representations of the modelled hazard (Refsgaard 1997; Beven 2006). This approach enhances the 

robustness of the model outputs by accounting for the uncertainty introduced by the model's input 

parameters (Uusitalo et al. 2015). Furthermore, incorporating equifinality improves the accuracy and 

reliability of the model's predictions, making them valuable for decision-making and risk assessment 

(Oreskes et al. 1994; van Vliet et al. 2016). By acknowledging the concept of equifinality and selecting 

parameter-set values that capture the inherent uncertainty in the system, the parameterisation process 

becomes more robust, and the model's predictions become more trustworthy and useful (Malone et al. 

2015). 

Model verification and sensitivity analysis (SA): During the model parameterisation process, 

verification is essential for selecting parameter-set values that accurately represent hazards in relation 

to observations (Oreskes et al. 1994; Beven 2019). This process is particularly important when selecting 

hydrological and geotechnical parameter-set values for different soil types and land use categories. 

Model verification can be divided into two procedures. The first is model internal verification, which 

evaluates the consistency and accuracy of a model's internal logic and calculations (Fawcett et al. 1995). 

This step helps identify parameter sets that provide an acceptable representation of observed hazards, 

considering the uncertainty and equifinality in the model results (Hofmann 2005; Beven 2019). The 

second procedure is model verification, which assesses the accuracy, consistency, and reliability of 

model outcomes (Guzzetti et al. 1999; Chung and Fabbri 2003). This involves applying verification 

techniques and analysing the agreement between model results and observed data using accuracy 

statistics (Guzzetti et al. 2006; Frattini et al. 2010). Both verification procedures are crucial for the 

parameterisation process as they establish criteria for selecting the parameter set that best represents 

observations. Assessing the sensitivities of the selected parameter set is also important because it 

identifies the input parameters that have the greatest impact on the model outcome (Crosetto et al. 

2000; Đukić and Radić 2016). According to Refsgaard et al. (2007); Lilburne and Tarantola (2009) and 

Beven et al. (2018), parameter sets should properly reflect the uncertainties that arise from the 

estimation of their values, especially in data-scarce environments. To address uncertainties and improve 

accuracy, sensitivity analysis (SA) techniques can be integrated. Sensitivity analysis (SA)  evaluates 

the sensitivity of model outputs to changes in input parameters, providing a means to identify 

uncertainties and reduce uncertainty in the model results (Pianosi et al. 2016; Wagener and Pianosi 

2019; Douglas-Smith et al. 2020). By combining model verification and sensitivity analysis, the 
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parameterisation process becomes more robust, ensuring that the selected parameter-set accurately 

represents hazards and reduces uncertainties. 

Model application for climate and land use change scenarios: This process involves the selection 

of parameter-set values for soil types and land use categories in various catchment settings. This 

selection provides valuable insights into the effects of climate and land use change on hillslope 

hydrological hazards under different scenarios. Changes in land use and projected climate can modify 

the response of catchments to rainfall-triggered landslides, debris flows, and hillslope erosion, either at 

the scale of a single slope or the entire catchment (Van Beek and Van Asch 2004; Merritt et al. 2006; 

Crozier 2010). To assess the impacts of climate change, one approach is to create synthetic rainfall 

events of varying intensities and durations based on historical observations that triggered hillslope 

hydrological hazards in the past (Gariano and Guzzetti 2016; Alvioli et al. 2018). Another approach 

involves developing hypothetical land use scenarios based on the documented impacts of land use 

change, such as urbanization, agriculture, and deforestation (Van Beek and Van Asch 2004; Persichillo 

et al. 2017). Land use change is a dynamic anthropogenic process that varies over time (Reichenbach 

et al. 2014). Quantifying its impact on a catchment's physical characteristics is crucial for understanding 

how the catchment responds to different rainfall events and the subsequent occurrence of hillslope 

hydrological hazards. By identifying and selecting hydrological and geotechnical parameter set values, 

it is possible to assess the physical characteristics of a catchment that influence the occurrence of 

rainfall-triggered landslides, debris flows, and hillslope erosion under various sets of rainfall events and 

hypothetical land use scenarios. These findings contribute to the development of disaster risk reduction 

policies, infrastructure resilience, and decision-making processes aimed at effective land use planning 

and adaptation to climate change (Uusitalo et al. 2015; van Westen et al. 2021).   
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1.3  Research aims and objectives 

The overall aim of this thesis is to investigate the potential effects of land use and climate change on 

the occurrence and interactions of the rainfall-triggered landslide, debris flow and hillslope erosion 

hazards in two multi-hazard-prone and data-scarce catchments. Specifically, to achieve this aim, a new 

modelling workflow will be developed that enables physically-based distributed multi-hazard model to 

be selected and applied in such regions whilst accounting for issues of parameterisation, uncertainty 

and equifinality. The aim will be addressed through the following research objectives:  

RQ1: What are the physical characteristics of catchments that drive hillslope hydrological 

multi-hazards and their interactions? 

 

RQ2: What is the influence of catchment parameter variations and uncertainties on multi-

hazard assessments? 

 

RQ3: How do hillslope hydrological multi-hazards and their interactions respond to changes 

in land use and rainfall characteristics? 

Two study sites are selected to address these research questions as typical multi-hazard forming 

environments and data-scarce contexts: the Soufriere catchment in Saint Lucia, Eastern Caribbean, and 

a sub-catchment corresponding to the Maipo basin in central Chile. The Soufriere catchment has a 

humid tropical climate that has experienced a considerable increase in extreme rainfall events, such as 

hurricanes and tropical storms, because of the effects of climate change (Anderson et al. 2011; Bozzolan 

et al. 2020). Moreover, anthropogenic processes such as land use change have increased the 

deforestation of natural tropical forests for agricultural and urbanisation purposes (Bégin et al. 2014). In 

recent decades, both climate and land use changes have increased the frequency of hillslope 

hydrological hazards within the Soufriere catchment area (Anderson et al. 2008; Walters 2016). In 

October 2010, Hurricane Tomas triggered shallow landslides, debris flows, flooding, and erosion with 

significant impacts on urban and rural settlements (ECLAC 2011). 

The Maipo sub-catchment has a Mediterranean climate with dry summers and rainy periods during 

winter; however, the impacts of climate change on the fluctuations of the El Niño–Southern Oscillation 

(ENSO) in central Chile have affected the variability of rainfall, increasing the occurrence of short and 

intense rainfall events (Vergara et al. 2020; Moreiras et al. 2021). In February 2017, an extraordinary 

rainfall event during the summer caused multiple shallow landslides and debris flow, resulting in multiple 

fatalities and infrastructure damage, particularly to houses, roads, and bridges (Marín et al. 2017). In 

addition, land use changes in recent decades have replaced the natural land cover, such as scrubs and 

natural forests, with intensive agricultural systems and urbanisation of rural areas (Schulz et al. 2010; 

Benavidez-Silva et al. 2021). These changes, along with the direct impacts of climate change expressed 

in extensive drought periods have increased the occurrence of wildfires in the area, reducing the slope 

vegetation and increasing the impact on hillslope erosion rates and the magnitude of the observed 

shallow landslides and debris flows (Garreaud et al. 2017; Moreiras et al. 2021; Vergara et al. 2022). 
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In the two study sites, the research questions will be addressed through the setting of specific objectives 

for each question. To address research question 1 (RQ1), the following objectives were proposed:  

Obj. 1.1: Choose a physics-based multi-hazard model with an appropriate level of process-

representation.  

Obj. 1.2: Define and apply a modelling workflow for experimental design and parameter 

exploration in data-scarce locations. 

The purpose of objective 1.1 (obj. 1.1) is to select a physically-based multi-hazard model that can 

represent individual hazards at the catchment scale, the mechanisms that influence multi-hazard 

interactions, and the magnitude and impact of each hazard to simulate hillslope hydrological hazard 

interactions for climate and land use scenarios in the two selected study sites. The purpose of objective 

1.2 (obj. 1.2) is to design a modelling workflow to parameterise the selected physically-based multi-

hazard model. The aim is to explore the variation in the model's initial parameter values by running 

parametric simulations with different parameter-set values combinations to identify the catchment's 

physical characteristics that drive hillslope hydrological hazard interactions. The modelling workflow will 

allow the identification of the parametric simulations with the best approximation in the representation 

of the rainfall-triggered landslides, debris flows, and hillslope erosion hazards observed during the 

rainfall events of October 2010 and February 2017 in the two study sites. Once applied the modelling 

workflow, the parametric simulations with the best proximity to observed hazards will be selected to 

address research question 2 (RQ2). To address research question 2 (RQ2), the following objectives 

were proposed: 

Obj. 2.1: Define and apply a modelling workflow for model verification and parameter-set 

selection.  

Obj. 2.2: Assess catchment sensitivities to parameter value variations for soil types and land use. 

The purpose of objective 2.1 (obj. 2.1) is to continue applying the modelling workflow by establishing a 

sequence of verification steps to select the parametric simulation with the best parameter-set values to 

represent hillslope hydrological hazard interactions. The foregoing will allow the identification of the 

spatial distribution of hydrological and geotechnical parameter values for different land use classes and 

soil types for the two study sites. The purpose of objective 2.2 (obj. 2.2) is to assess the sensitivities 

introduced by the variation of initial values of the selected parameter-set to quantify its impacts on the 

representation of the interaction and magnitude of hillslope hydrological hazards. This will allow the 

identification of the most sensitive parameters for land use classes and soil types. Once applied the 

modelling workflow, the selected parameter-set can then be used to address research question 3 (RQ3). 

To address research question 3 (RQ3), the following objectives were proposed: 

Obj. 3.1: For the selected and verified model parameter-set, investigate the catchment response 

to different land use and rainfall scenarios.  

Obj. 3.2: Compare multi-hazard interactions and responses for catchments and demonstrate 

applicability of modelling workflow. 
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The purpose of objective 3.1 (obj. 3.1) is to investigate the potential effects of different climate and land 

use change scenarios on hillslope hydrological hazard interactions using the selected parameter-set for 

the two study sites. This will allow the assessment of the potential magnitudes of rainfall-triggered 

landslides, debris flows and hillslope erosion hazards according to hypothetical climate and land use 

scenarios. The purpose of objective 3.2 (obj. 3.2) is to compare the responses to hillslope hydrological 

hazard interactions of the two selected study sites and demonstrate the applicability of the modelling 

workflow to assess its effectiveness in two study sites with poor data accessibility. 

The two study sites represent two different climatic and lithological environments where the physical 

properties of the catchment may respond differently to different climate and land use scenarios. 

Therefore, the application of a modelling workflow to parameterise and handle uncertainties in multi-

hazard modelling, and thus identify appropriate parameters for soil types and land use categories to 

represent individual hazards and their interactions, can introduce better practices in disaster risk 

reduction policies and decision-making to reduce the impacts of hillslope hydrological hazards under 

potential climate and land use change scenarios. Addressing the research questions with their 

respective objectives will be done according to the following thesis structure, which is outlined in the 

next section. 
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1.4 Thesis outline 

The thesis outline is structured according to research question and objectives as follows: 

Chapter 2: Hillslope hydrological hazard interactions: in search of an integrated hazard 
modelling approach 

Multi-hazard interaction types and feedback mechanisms that influence hazard interactions 
are reviewed. Current hazard modelling methods are also reviewed, and a suitable physically 

based multi-hazard model, the OpenLISEM Hazard model, is selected to assess hillslope 
hydrological hazard interactions. 

A modelling workflow is proposed to address the parameterisation and uncertainties that 
arise in complex multi-hazard models, which limits the assessment of hillslope hydrological 

hazard interactions for land use and climate change scenarios.  

[This chapter addresses RQ1, Objective 1.1] 

 

Chapter 3: Developing the workflow for parameter exploration and experimental 
design 

A modelling workflow for experimental design is developed and implemented to explore 
parametric simulations using the OpenLISEM hazard model to identify the input parameter 
value ranges that influence the spatial representation and interactions of rainfall-triggered 

landslides, debris flows, and hillslope erosion hazards at the catchment scale.  

[This chapter addresses RQ1, Objective 1.2] 

 

Chapter 4: Developing the workflow for model verification and investigation of 
catchment response to climate and land use change 

 
A modelling workflow for model verification and sensitivity analysis (SA) and for climate and 

land use scenarios is implemented and applied to select and verify the behavioural 
simulations with the parameter-set that provides the best representation and similarity of 

rainfall-triggered landslides, debris flows, and hillslope erosion to observed hazards. 
 

The most sensitive input parameters for land use categories and soil types units are identified 
to assess their responsiveness to different land use and rainfall scenarios. 

 
[This chapter addresses RQ2, Objective 2.1 and Objective 2.2] 

 

Chapter 5: Assessing hillslope hydrological hazards and interactions under changing 
climate and land use in Maipo, Chile 

 
Apply the full extent of the modelling workflow for experimental design and model verification 

in a data scarce catchment to assess how landslides, debris flows, and erosion hazard 
interact and respond to different land use and rainfall scenarios. 

 
[This chapter addresses RQ3, Objective 3.1] 
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Chapter VI: Summary and conclusions 

 
The modelling workflow developed and applied for both study sites selected in this thesis is 
discussed, and recommendations and future outlooks are discussed for the implemented 

modelling workflow. 
 

[This chapter addresses RQ3, Objective 3.2] 
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Chapter 2 Hillslope hydrological hazard interaction: in 

search of an integrated hazard modelling approach 
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Introduction 

This chapter aims to identify and select a physically-based distributed multi-hazard modelling method 

to represent hillslope hydrological hazard interactions according to different climate and land use change 

scenarios and propose a modelling workflow to address issues of parameterisation and uncertainty of 

the selected model. To achieve this aim, it is first necessary to determine the type of hazard interaction 

to be modelled to identify a proper multi-hazard modelling approach. Hillslope hydrological hazards can 

interact in unidirectional and bidirectional relationships that determine the compounding, cascading, 

concurrent or coincidence of two or more hazards (Gill and Malamud 2016; Pescaroli and Alexander 

2018). Therefore, it is necessary to identify the interrelationships and feedback between hydrological 

and stability processes that influence this type of interactions between hillslope hydrological hazards, 

and how these interrelationships are integrated into different multi-hazard modelling approaches. This 

chapter focuses on reviewing the multi-hazard interactions in hydrological and stability hazards. In 

particular, it will focus on reviewing the interconnection between hydrological and stability processes 

that determine different types of interactions between these hazards and review the most suitable 

current multi-hazard models available to assess and quantify these interactions. 

As discussed in Chapter 1, assessing the impacts of climate and land use change on the interaction 

between rainfall-triggered landslides, debris flows, and hillslope erosion hazards requires multi-hazard 

modelling approaches capable of assessing the interrelationships between the catchment's physical 

properties and climatic factors that influence the interaction of these hazards (Delmonaco et al. 2006). 

Catchment-scale multi-hazard models assess these interrelationships by coupling slope stability and 

failure models, numerical runout models, and rainfall-runoff models to assess, for example, the influence 

of landslide mobilization and volume on debris flow magnitude and runout and their impacts on hillslope 

erosion (van den Bout 2020). However, the coupling of diverse hydrological and stability models makes 

current multi-hazard models highly complex in terms of the number of input parameters and data 

required for hydrological and stability process representations (Hofmann 2005; Beven et al. 2018). 

Moreover, the estimation of input parameter values for these types of models in data-scarce contexts 

increases the uncertainty in model outcomes, impacting the representation of hillslope hydrological 

hazards for different climate and land use scenarios. Therefore, in addition to selecting a multi-hazard 

model to represent hazard interactions, a modelling workflow that guides the parameterisation of multi-

hazard models is necessary to identify and select parameter-set values suitable for catchments with 

different climatic and lithological settings, and to handle the uncertainties that arise in input parameters 

owing to data scarcity. Using this modelling workflow, climate and land use scenarios will be explored 

to assess the impacts of hillslope hydrological hazards in the two selected study sites (Soufriere 

catchment and Maipo sub-catchment) to demonstrate the utility of this workflow in developing disaster-

risk reduction policies and resilient land use planning to reduce the impacts of these hazards due to 

climate change. 
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2.1 Integrated physically-based multi-hazard modelling  

2.1.1 The multi-hazard approach in hydrological and stability hazards 

In general terms "multi-hazard" refers to the totality of relevant hazards and their potential interactions 

in a determined region (Kappes et al. 2012; Gill and Malamud 2014). However, no single unified 

definition has been established to refer to the multi-hazard concept (Pescaroli and Alexander 2018). For 

instance, UNDDR (2020) defines multi-hazard as the simultaneous, cascading, or compounding 

occurrence of multiple major hazards in a particular area, considering their interrelated effects. 

Delmonaco et al. (2006), defined multi-hazard as the utilization of various modelling methods to assess 

and map the potential occurrence of different types of natural hazards and quantify their interactions in 

a specific spatial and temporal context. The common aspect among these definitions is the recognition 

of interactions between individual hazards (Cutter 2018; De Angeli et al. 2022). The available literature 

on multi-hazard assessments is extensive, with a focus on hydrological, geological, and climate hazards 

(Tilloy et al. 2019). The work of van Westen et al. (2014); Zhang et al. (2014); de Brito (2021); McNamee 

et al. (2022); Ming et al. (2022) and Sharma et al. (2022) have employed various multi-hazard modelling 

methods to assess the compounding and cascading interactions among hazards, for instance, 

earthquakes, flooding, landslides, debris flows, wildfires, and droughts for multi-hazard risk assessment 

and climate change scenarios. However, one of the main challenges in multi-hazard assessment is the 

establishment of clear frameworks and guidelines for comprehensive multi-hazard modelling, which is 

essential for risk assessment and disaster risk reduction (DDR) policies (de Ruiter et al. 2020; Ward et 

al. 2022).  

The term multi-hazard interaction refers to the interrelationships that arise from a combination of 

multiple drivers, including physical processes and climate variables, which determine the type of 

interaction between multiple hazards (Gill and Malamud 2017; de Ruiter et al. 2020). According to 

Kappes et al. (2012); Terzi et al. (2019) and van Westen et al. (2021) the potential interaction of multiple 

hazard events can significantly influence the behaviour of other hazards in terms of magnitude. These 

hazards can interact in various ways, including one hazard event triggering another, two hazard events 

occurring independently but in close spatial and temporal proximity, or two hazards overlapping during 

the same period (Marzocchi et al. 2012; Liu et al. 2016). Therefore, multi-hazard models should ideally 

consider all relevant individual hazards to characterise the possible interrelationships that influence the 

type of interactions that increase their magnitude and impact when combined (Sadegh et al. 2018; 

Raymond et al. 2020). Consequently, for the purpose of this thesis multi-hazard interactions will be 

classified according to their interaction type, as follows: 

Cascading hazards: This type of interaction, also known as 'coupled hazards' or 'triggering hazards,' 

involve a sequential process in which a primary hazard triggers a secondary hazard, which in turn 

triggers a tertiary hazard (Kappes et al. 2010; Marzocchi et al. 2012; Tilloy et al. 2019). This process is 

often referred to as the domino effect because the occurrence of multiple hazards is interconnected in 

a cause-and-effect chain, where the magnitude of one hazard influences the magnitude of another 

hazard (Delmonaco et al. 2006; Pescaroli and Alexander 2018). The characteristic of cascading hazards 
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is their close proximity in both time and space, indicating that the primary hazard possesses enough 

energy to trigger subsequent events (Cutter 2018). For instance, in the context of hillslope hydrological 

hazards, the occurrence of rainfall-triggered landslides during a rainfall event increases the likelihood of 

triggering debris flows and hillslope erosion (Korup 2009; van Westen et al. 2014). In some cases, 

hillslope erosion can also initiate debris flows by contributing eroded material, resulting in increased 

erosion rates and deposition (van Beek et al. 2008; Chen and Zhang 2015). 

Concurrent hazards: This type of hazard involves the simultaneous occurrence of two or more 

unrelated hazards in close proximity during the same time period without necessarily amplifying their 

magnitudes and impacts (Hillier et al. 2020; Wang et al. 2020). These hazards can have the same or 

different triggers and do not depend on each other for occurrence (Raymond et al. 2020).  

Compounding hazards: This type of interaction arises when two or more hazards originating from the 

same or different triggers occur simultaneously or successively in a specific area (Leonard et al. 2014; 

Pescaroli and Alexander 2018). While compounding hazards do not necessarily occur in the same time 

period, they amplified their magnitude and impact when combined or overlapped (Cutter 2018; 

Zscheischler et al. 2018). For example, within a catchment, an extreme rainfall event can trigger 

landslides, and if flash floods are also triggered in specific zones of the catchment where landslides 

occurred, the two hazards can spatially overlap, potentially initiating debris flows (van Westen et al. 

2014). 

Coincident hazards: This type of hazard also known as “independent hazards” occur when two or more 

hazards without a common cause occur simultaneously in close spatial proximity or overlap temporarily 

during the same time period (Liu et al. 2016; Gentile et al. 2022). These hazardous events do not 

influence each other and differ in terms of their origin and trigger. However, when they coincidence, their 

magnitude and impact increase (van Westen et al. 2021). For instance, an  extreme rainfall event can 

trigger the simultaneous occurrence of flash floods and landslides that might lead to significant impacts 

if these two hazards occur in close spatial proximity (Ming et al. 2022).   

Conditional hazards: This type of hazards are related to the susceptibility or likelihood of increasing 

the intensity and magnitude of other hazards by changes in the underlying conditions such as 

topography and vegetation modified by the primary hazard (van Westen et al. 2021). This means that 

when a hazard occurs of geophysical, hydrological or climatic origin, it can alter the environmental 

parameters of a given area and determine the occurrence of another hazard through different triggering 

mechanisms (e.g., earthquakes and storms) (Wu et al. 2015). For example, wildfires reduce the 

vegetation on slopes, creating conditions that increase surface runoff and trigger debris flows during 

rainfall events (Parise and Cannon 2012; Fraser et al. 2022). 

The occurrence of rainfall-triggered landslides, debris flows, and hillslope erosion hazards is determined 

by the same trigger, which corresponds to rainfall events of different intensities and durations (Larsen 

and Simon 1993; Saito et al. 2010). While these hazards can happen independently during the same 

rainfall event, their occurrence can lead to cascading, concurrent, and compounding interactions (Figure 

2.1). The specific type of interaction depends on the hydrological and stability conditions when these 
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hazards take place. When these hazards happen in close proximity during the same rainfall event, they 

can result in concurrent events or can create compounding interactions when spatially overlap (Figure 

2.1). in addition, landslide occurrences can initiate cascading interactions, triggering secondary hazards 

e.g., debris flows and tertiary hazards such as hillslope erosion (Figure 2.1). The feedbacks mechanisms 

that influence these types of interactions is reviewed in the next section. 

 

Figure 2.1 Conceptual framework for hazard interactions. 

 

2.1.2 Understanding hazard interactions between hillslope hydrological hazards 

As identified in the previous section, hillslope hydrological hazard interactions can be defined as the 

cascading, concurrent and compounding of rainfall-triggered landslides, debris flows, and hillslope 

erosion. Therefore, for the purpose of this thesis, the term hillslope hydrological hazard interactions will 

be used from now on to refer to these types of interactions between these hazards. Hydrology plays an 

important role in this type of interactions between hillslope hydrological hazards (Bogaard and Greco 

2016; Sidle et al. 2019). To asses these types of interactions, first, it is necessary to identify the role of 

hydrology in the interconnection or feedback between the hydrological and stability processes (Ciabatta 

et al. 2016; Liu et al. 2016). As discussed in Chapter 1, section 1.1.2, hydrological and stability process 

representations are governed by the interrelationships between catchment physical characteristics 



Chapter 2. Hillslope hydrological hazard interactions: in search of an integrated modelling approach 

31 
 

including soil types and their hydrological and geotechnical properties, vegetation, topography with 

climate variables. These characteristics determine the feedback mechanisms that influence the initiation 

of different types of hazard interactions (Gill et al. 2020; van Westen et al. 2021). To understand how 

the feedback mechanisms that lead to hazard interactions between hillslope hydrological hazards occur, 

different stages are proposed to describe their initiation. These are described as follows: 

At the beginning of a rainfall event of specific intensity and duration (Figure 2.2a), rainfall infiltrates the 

hillslope soil based on its physical characteristics such as hydraulic conductivity and initial moisture 

content (Muntohar and Liao 2010; Lu and Godt 2013). As rainfall intensity increases, rainsplash erosion 

occurs by detaching soil particles due to raindrop impacts (Cuomo et al. 2015). In unsaturated soils, the 

infiltration rates depend on the initial moisture content (Rahardjo et al. 2019). Soils having low initial 

moisture content shows low infiltration rates compared to those with high initial moisture content (Hino 

et al. 1988; Wei et al. 2022). Consequently, the different initial moisture content percentages on 

hillslopes within the catchment determine the time it takes for rainfall to infiltrate and become soil-

saturated (Lee et al. 2020). This affects the time in which hillslope runoff is generated by infiltration or 

saturation excess depending on the initial moisture content distributed within the catchment at the 

moment the rainfall occurs (Lu and Godt 2013). 

As rainfall increases in intensity and duration (Figure 2.2b), in some parts of the catchment with low 

initial moisture content, hillslope runoff is initiated by infiltration excess, leading to a flow discharge 

generated by Horton overland flow (Kirkby 1988; Bogaard and Greco 2016). In addition, in other parts 

of the catchment, hillslope runoff is initiated by saturation excess, especially in hillslopes with high initial 

moisture content (Lee and Kim 2021). When hillslope runoff is generated by both mechanisms in 

different parts of the catchment, the flow is routed into channels to initiate channel flow (Kirkby 1988; 

Liu et al. 2004). The presence of hillslope runoff results in hillslope erosion in different parts of the 

catchment (Wang et al. 2019). The erosion starts when the generated hillslope runoff begins to detach 

and transport poorly sorted sediment material from the hillslope bed (Ellison 1948; Hessel and Jetten 

2007; Cuomo et al. 2015). Detachment occurs when the hydraulic shear stress, exerted by the flow on 

the hillslope surface, exceeds the cohesive strength of the surface material (De Roo and Offermans 

1995; Xiao et al. 2017). The detached material is loaded by the flow, influenced by the characteristics 

of the sediment particles such as grain sizes, density, and settling velocity (Goossens and Buck 2011; 

Nguyen et al. 2016). The transport of sediment material depends on the sediment concentration, which 

is determined by the flow's transport capacity (Julien and Simons 1985; Aksoy and Kavvas 2005). The 

transport capacity refers to the maximum equilibrium sediment load that a flow can transport (Govers 

et al. 1990). The foregoing is determined by the flow stream power and density of sediment particles 

(De Roo et al. 1994; van den Bout et al. 2018). According to this approach, soil erosion (detachment) 

occurs only when the sediment concentration is less than the hillslope runoff transport capacity, and 

deposition occurs when the sediment concentration exceeds this transport capacity (De Roo et al. 1996; 

Zhang et al. 2011). Therefore, at this stage, hillslope erosion is determined by the hillslope runoff 

transport capacity, which influences the rates of detachment and deposition that increases as rainfall 

increment in intensity and duration.  
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At the same time, in different zones of the catchment (Figure 2.2c), flash floods are generated as rainfall 

intensity and hillslope runoff increase into the channels. Flash floods correspond to the overflow of 

hillslope channels caused by the coupling of the hillslope runoff and channel flow (van den Bout and 

Jetten 2018). Moreover, the hillslope reaches saturation levels that increase the pore water pressure 

which initiates slope failure in some parts of the catchment as a consequence of the reduction in soil 

shear strength (Figure 2.2d) (Lanni et al. 2012; Bordoni et al. 2015). After the slope failure occurs, the 

rapid generation of plastic strains influences the deformation and rapid acceleration of the saturated 

failure mass volume, which increases the landslide mobility and magnitude (Figure 2.2d) (Sassa and 

Wang 2007; Cascini et al. 2013). Simultaneously, flash floods increase their volume and discharge 

towards the channels, increasing the channel flow velocity and depth (De Roo and Offermans 1995; 

Van den Bout et al. 2018). In zones of the catchment in which both processes occur in close spatial 

proximity (Figure 2.2d), the concurrence or compounding of triggered hazards is initiated. In the first 

case, both hazards can increase the impacts in the area in which they occur by the magnitude of the 

flooded area and landslide runout area. In the second case, these hazards can produce compounding 

events when they overlap (van Westen et al. 2014). The spatial overlapping between these hazards can 

influence the formation of debris flows and subsequent compounding with hillslope erosion, amplifying 

their overall impacts (Figure 2.2e). 

In addition, when the magnitude of flash floods increases in zones of the catchment where landslides 

are triggered or in zones where the hillslope is highly eroded cascading interactions begin to reproduce 

(Figure 2.2f). These feedback mechanisms are provided by the interaction between the solid and fluid 

forces influenced by the saturated failure mass volumes, bed eroded material and flash floods (Iverson 

et al. 2002; Liu et al. 2020). The interaction mechanism between these two forces is determined by the 

force exerted by the flash floods down the slope in terms of its velocity and depth, and the force exerted 

by the hillslope surface opposite to the flow direction (Pudasaini 2012; Meng and Wang 2016). Both 

forces apply net shear stresses along the flow interface, which influence the entrainment rates of the 

saturated failure mass volumes (Takahashi 1978; Iverson 1997). Entrainment occurs when the erodible 

substrate is mechanically weaker than the flowing material (Iverson and Ouyang 2015; Liu et al. 2021). 

The antecedent temporarily and spatially changes the fluid properties (e.g., viscosity, volume, and 

density) by adding the saturated failure mass volumes, as well as the eroded bed material by transport 

capacity at the beginning of the rainfall event  (Shen et al. 2020). The deposition process begins as soon 

as the bed starts to decelerate the frontal part of the debris flow because of the higher frictional 

resistance of the bed than that of the flowing material (Pudasaini and Fischer 2020). During deposition, 

the basal surface begins to gain sediment material, which increases the volume of sediment in the 

deposited area (Prancevic et al. 2020).  

Cascading interactions can also occur in some parts of the catchment where the landslide failure volume 

displacement is influenced by the amount of eroded bed material. According to Pudasaini and 

Krautblatter (2021), the influence of hillslope erosion on landslide failure volume mobility is associated 

with the excessive volume of eroded material, which influences the momentum exchange mechanisms 

between the eroded basal substrate and the velocity of the mobilised volumes. This effectively reduces 
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frictional stresses in the erodible substrate by adding sediment material (entraining) that immediately 

accelerates and influences landslide surface area and distance (Pudasaini and Fischer 2020). Hillslope 

erosion can significantly increase the destructive power of landslides by amplifying their volume, 

mobility, and impact force (Cuomo and Della Sala 2015; Pudasaini and Krautblatter 2021). The 

magnitude of these hazard interactions is evident at the end of the rainfall event by the cumulative 

magnitude resulting from the interactions. The cumulative magnitude can be expressed as the total 

landslide surface area, including mobilized failure volumes, debris flow runout areas, and volumes of 

eroded and deposited sediment material influenced by cascading interactions. Finally, at this stage, the 

cumulative hillslope erosion rates are determined by rainfall-triggered landslides, debris flows, and 

transport capacity (Korup et al. 2007; Larsen et al. 2010). Cumulative erosion is caused by an increase 

in the volume of eroded material where landslides and debris flows occur (Korup 2009).  

 

 

 Figure 2.2 Conceptual framework for hillslope hydrological hazard interaction modelling. 
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2.1.3 Frequency-magnitude relationships of interacting hazards  

The measurement of hazard magnitudes allows for assessing the cumulative effect of interacting 

hazards, enabling the identification of the frequency-magnitude relationship for each hazard. The 

frequency-magnitude relationship describes the correlation between the frequency of hazard events 

and their magnitudes (Malamud et al. 2004; Guthrie and Evans 2005). Frequency refers to the number 

of times a hazard occurs within a specific interval, while hazard magnitude is related to the energy 

released during the event (Guzzetti et al. 2002; Guthrie et al. 2008). Studying the frequency-magnitude 

relationship of rainfall-triggered landslides, debris flows, and hillslope erosion provides valuable 

information about the factors and triggers influencing their occurrence and the conditions leading to 

larger or more frequent magnitudes (Hurst et al. 2013; Tanyaş et al. 2019). Rainfall-triggered landslides 

can be measured in terms of surface area and failure volumes (Galli et al. 2008; Santangelo et al. 2015). 

Failure volumes play a critical role in determining the distance and propagation of landslides and debris 

flows, the extent of eroded areas, and the potential impacts and damages (Corominas 2011; Michel et 

al. 2020). However, determining failure volumes is a more difficult task because it requires information 

about the slope failure geometry (e.g., depth, length, width, and area) (Guzzetti et al. 2009; Lombardo 

et al. 2021). On the other hand, estimating the surface area of landslides is more accessible as it 

encompasses the failure area, propagation distance, and deposition (runout) (Taylor et al. 2018).  

The impact of debris flows can be measured by assessing the runout area, which represents the 

maximum distance travelled by the debris flow from its source to the deposition zone (De Haas et al. 

2015; Nishiguchi and Uchida 2022). Similarly, for rainfall-triggered landslides, the runout area of debris 

flows can be determined by considering the surface area of the runout (Van den Bout et al. 2021). The 

size and shape of the runout surface area provide valuable information about the initiation and 

deposition areas of debris flows (Mead et al. 2021). The magnitude of hillslope erosion can be evaluated 

based on the rates of detachment and deposition of sediment material within a specific surface area (De 

Roo et al. 1996; Jetten et al. 2003). This can be estimated using total net erosion, which is a measure 

that takes into account the amount of soil or sediment material eroded from a surface, considering both 

erosion and deposition processes (Xiao et al. 2017). Net erosion is calculated by subtracting the sum of 

particles arriving at the surface from the sum of particles leaving the surface (Goossens and Buck 2011). 

The magnitude of erosion can be quantified using various units depending on the type of erosion under 

investigation. For example, surface erosion is often measured by the volume of soil losses in kilograms 

or tonnes per square meter (kg/tonnes per square meter) (Aksoy and Kavvas 2005). These magnitudes 

can be assessed using hazard metrics to measure the shape and form of the topographic surface 

modified by landslides, debris flows, and hillslope erosion volumes at a particular point in time (Taylor 

et al. 2018). Different approaches and metrics have been proposed to determine the "magnitude" of a 

single landslide, debris flow, or erosion volume within a specific area resulting from a single event or 

multiple events over a certain period (Lombardo et al. 2021). In this thesis, a hazard metric is defined 

as the quantification of the landslide surface area, debris flow runout area and hillslope net erosion rates 

resulting from a rainfall event.  
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2.2  Identifying a suitable method for hillslope-hydrological hazard 

interaction modelling 

2.2.1 Multi-hazard modelling approaches for hillslope hydrological hazards  

Table 2.1 summarizes a number of available models for hillslope hydrological hazard modelling. Most 

available physically-based models to assess rainfall-triggered landslides, debris flows, and hillslope 

erosion hazards have advantages in simulating and representing a single hazard or more than one 

hazard at a time incorporating temporal and spatial approaches. For landslide hazard modelling, 

CHASM is a model that couples hydrological and geomechanically models to simulate landslide initiation 

and propagation at the hillslope scale, considering dynamic slope hydrology and soil properties. 

However, its analysis is limited to local scales < 1:5.000  (Bozzolan et al. 2023). On the other hand, 

physically-based distributed models like STARWARS, TRIGRS 2.0, SCOOP3D, OpenLISEM hazard, 

r.rotstab, r.slope.stability, Landslide Hydro-mechanical Triggering (LHT), and Step-Tramm are more 

suitable for regional or catchment scales. These models incorporate spatiotemporal modelling of 

hydrological and stability processes to assess slope stability and failure (Baum et al. 2008; Mergili et al. 

2014; Reid et al. 2015; Fan et al. 2017; van den Bout et al. 2018). The models differ in how they calculate 

slope stability and failure. For example, STARWARS uses a finite element method to assess slope 

stability and predict slope failure by analysing the mechanical behaviour of the slope during a landslide 

event, simulating the location and magnitude of shallow and deep-seated landslides (Malet et al. 2005; 

Von Ruette et al. 2013). In the TRIGRS 2.0 model, the Factor of Safety (FoS) is calculated using a grid-

based slope stability analysis method based on slope geometry, soil properties, and rainfall intensity 

and duration. Slope failure is determined by employing a block sliding and continuum method to 

calculate the displacement and deformation of the sliding mass (Salciarini et al. 2006; Baum et al. 2008). 

Models like SCOOP-3D utilize a three-dimensional limit equilibrium method to evaluate slope stability. 

They employ spheres as potential slip surfaces to estimate landslide material volumes (Reid et al. 2015; 

Van den Bout et al. 2021). Furthermore, models such as Landslide Hydro-mechanical Triggering (LHT) 

and Step-Tramm adopt hydro-mechanical methods to assess landslide initiation and propagation under 

hydrological conditions (Fan et al. 2017; van Westen et al. 2021). 

Alternatively, models such as OpenLISEM hazard, r.rotstab, and its extension r.slope.stability calculate 

the slope stability Factor of Safety (FoS) using an infinite slope method integrated into a GIS 

environment (Mergili et al. 2014; van den Bout et al. 2018). OpenLISEM Hazard integrates an iterative 

failure method to estimate failure volumes by assessing the progressive failure of soil materials down 

the slope (Van den Bout et al. 2021). In this method, the failure volume is calculated using several 

primary steps. First, slope stability is calculated to identify all raster grid cells with an FoS lower than 1; 

then, unstable pixels are removed by assuming stability can be achieved by decreasing elevations 

(removing failure depths) of those pixels. This is done by defining a slope between unstable and 

surrounding stable pixels to identify force demand and capacity of the slope. The process continues until 

the FoS for unstable cells exceeds 1. For r.rotstab and r.slope.stability, both models calculate the 
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probability of slope failure using randomly selected ellipsoidal or truncated slip surfaces, predicting areas 

with a greater potential for slope failure (Mergili et al. 2014; Van den Bout et al. 2021). 

Although the aforementioned models have the potential to calculate slope stability and failure, gaps 

remain in how slope failure is calculated to estimate failure depths and volumes to link with runout 

models for assessing motion and behaviour down the slope (Mergili et al. 2017; Van den Bout et al. 

2018). The assessment of failure surface and volume is important to analyse their behaviour, motion, 

routing, impact areas, and potential impacts on the population and infrastructure (Iverson et al. 2002; 

Gabet and Mudd 2006; Michel et al. 2020). Debris flow runout models like RAMMS 2-D, Flow-R, 

LaharFlow, r.avaflow, FLO-2D, and EDDA 1.0/2.0 directly incorporate slope failure volumes as key input 

parameters to determine debris flow behaviour (Mergili et al. 2017; Stancanelli et al. 2017; Shen et al. 

2018). Some of these models also assess the impacts of debris flow on hillslope erosion. RAMMS 2-D, 

Flow-R, and LaharFlow focus on the motion and deposition of debris flow and lahars, indirectly helping 

estimate erosion rates through the path and deposition of debris flows, which can lead to changes in 

topography (Chen and Zhang 2015; Tang et al. 2019; Pudasaini and Krautblatter 2021). However, these 

models do not explicitly simulate hydrological processes such as infiltration, runoff, or surface and 

subsurface flow, limiting their usability in assessing the impact of landslides or debris flow on hillslope 

erosion. 

Models such as OpenLISEM hazard, r.avaflow, FLO-2D, and EDDA 1.0/2.0 can simulate the effects of 

landslide volumes on debris flow and their impacts on hillslope erosion. These models integrate 

catchment-scale hydrology to simulate infiltration and surface flow, allowing them to simulate erosion, 

sediment transport, and deposition (Mergili et al. 2017; Shen et al. 2018; van den Bout 2020). The 

integration of numerical solutions, such as two-phase equations describing fluid and solid interactions, 

mass and momentum exchange, Mohr-Coulomb plasticity, and non-Newtonian viscous stress, enables 

these models to simulate the entrainment of landslide volumes and bed erosion into surface flow, 

assessing their impacts on debris flow and hillslope erosion (Pudasaini 2012; Chen and Zhang 2015). 

However, although these models incorporate catchment-scale hydrology and failure volumes to assess 

their impacts on debris flow and hillslope erosion, they have the disadvantage (except for the 

OpenLISEM hazard model) of not being coupled with slope stability methods to estimate failure volumes 

during the modelling process (van den Bout 2020). This limitation arises because the incorporation of 

failure volumes in these models depends on simplified failure volume estimation from different sources, 

such as field observations and landslide inventories, which may not accurately reflect the identification 

of failure volumes (Blahut et al. 2010). Moreover, the spatial resolution and lack of validation of these 

sources may introduce uncertainty into model results, affecting their accuracy.  

Erosion models such as EUROSEM, EROSION 3-D, KINEROS, and LISEM (Table 2.1) assess temporal 

and spatial erosion through the transport and deposition of sediment according to the generation of 

surface flow (Aksoy and Kavvas 2005). Compared with slope stability and debris runout flow models, 

erosion models have the advantage of being spatially distributed and include catchment hydrology to 

assess the temporal impacts of rainfall on surface erosion (Merritt et al. 2003). Moreover, these models 

have the advantage of including land use or vegetation cover to determine the effects of land use change 
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on erosion (Baartman et al. 2013). However, these models do not consider the effects of landslides and 

debris flows on hillslope erosion within their modelling approach, limiting the assessment of these 

impacts on erosion and deposition rates within the catchment (Chen and Zhang 2015).  

From the models mentioned in Table 2.1, models such as OpenLISEM hazard, r.avaflow, FLO-2D, and 

EDDA 1.0/2.0 can be classified as multi-hazard models because they can simulate the interaction 

between rainfall-triggered landslides, debris flows, and hillslope erosion to some extent. However, the 

effectiveness of these models in assessing hazard interactions may vary due to the specific process 

representations in their modelling structures. Therefore, accurately representing the physical processes 

of each hazard is crucial for assessing their potential interactions. This requires models capable of 

simulating various physical processes, such as landslide initiation and propagation, sediment and debris 

transport by flows, sediment erosion and deposition, and catchment hydrological response. While 

r.avaflow, FLO-2D, and EDDA 1.0/2.0 are useful for simulating individual hazards, the OpenLISEM 

hazard model is better suited for assessing the complex interactions between multiple hazards and their 

impacts on landscapes and communities at different catchment scales. 
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Table 2.1. Overview of hillslope-hydrological hazard modelling approaches. 

Model Source 

Hazard modelling 

Spatial Temporal 
Catchment 

scale LS 
DF ER 

ST SF 

 

CHASM+ 
Anderson et al 

(2008)  ✓ x x x x ✓ x 

STARWARS Van Beek (2002) ✓ x x x x ✓ x 

SCOOP3D Reid et al. (2015) ✓ ✓ x x ✓ ✓ ✓ 

TRIGRS 2.0 Baum et al. (2008) ✓ x x x ✓ ✓ ✓ 

r.rotstab 
Mergili et al. (2014) 

✓ x x x ✓ x x 

r.slope.stability ✓ x x x ✓ x ✓ 

RAMMS 2-D 
Christen et al. 

(2010) 
x x ✓ x ✓ x x 

Flow-R Horton et al. (2013) x x ✓ x ✓ x ✓ 

LaharFlow 
 Woodhouse et al. 

(2021) 
x x ✓ x ✓ x x 

EUROSEM 
Morgan et al. 

(1993) 
x x x ✓ ✓ ✓ ✓ 

EROSION-3D 
Schmidt (1991); 
Werner (1995 

x  x x ✓ ✓ ✓ ✓ 

KINEROS 
Woolhiser et al. 

(1990) 
x x x ✓ ✓ ✓ ✓ 

LISEM  
De Roo et al. 

(1996) 
x x x ✓ ✓ ✓ ✓ 

 

OpenLISEM 
(Hazard) 

(Van den Bout et 
al. 2018) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

r.avaflow Mergili et al. (2017) x x ✓ ✓ ✓ x x 

FLO-2D 
O’Brien et al. 

(1993) x x ✓ x ✓ ✓ ✓ 

EDDA 1.0/2.0 (Shen et al. 2018) ✓ x ✓ ✓ ✓ ✓ ✓ 
Landslide 

Hydro-
mechanical 
Triggering 

(LHT) 

Lehmann and Or 
(2012) ✓ x ✓ x ✓ x ✓ 

 Step-Tramm 
Von Ruette et al. 

(2017) ✓ ✓ ✓ x ✓ ✓ ✓ 

 * LS = Landslides, ST = Slope stability (landslide initiation), LR = Landslide runout, DF = Debris flow, 

ER = erosion 
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2.2.2 Model selection: The OpenLISEM Hazard model 

The previous section identified the OpenLISEM hazard model as a comprehensive multi-hazard 

modelling approach for integrating hydrological and stability processes and representing hazards. The 

OpenLISEM hazard model is a Multi-hazard Land Surface Process Model developed by the International 

Institute for Geo-Information Science and Earth Observation (ITC) (van den Bout et al. 2018). This 

physically-based distributed multi-hazard model aims to simulate individual hazards and their 

interactions, including flooding, rainfall- and earthquake-triggered landslides, debris flows, and hillslope 

erosion. These hazards are simulated by integrating spatially distributed infiltration models, such as 

Green and Ampt (1911), Smith and Parlange (1978), and the SWATRE multi-layered soil water model 

(Bastiaanssen et al. 1996) which employ the empirical Darcy equation for vertical soil water movement. 

Overland flow and channel flow are simulated by incorporating kinematic flow, diffusive flow, and Saint-

Venant flow (van den Bout and Jetten 2018). The model also integrates a catchment-scale infinite slope 

approach to assess slope stability and an iterative slope failure method to estimate landslide failure 

depths and volumes (Van den Bout et al. 2021). A two-phase model by Pudasaini (2012) is coupled with 

this method, considering competitive forces to simulate the effects of landslide volumes and bed erosion 

on debris flow behaviour and magnitude, as well as their impacts on erosion and deposition rates. 

Hillslope erosion modelling is incorporated by integrating the transport capacity equation developed by 

Govers et al. (1990) to simulate the sediment load in overland flow. Erosion is modelled through splash 

and flow detachment that incorporate sediment into the flow through different bedload equations such 

as Van Rijn (1984a), Van Rijn (1984b) and Wu, Wang, and Jia (2000). The advantage of the OpenLISEM 

hazard model over other multi-hazard modelling approaches is its consideration of the spatial variability 

of soil types and land use, enabling the spatial distribution and variation of hydrological and geotechnical 

parameter values, as well as land use categories within the catchment. This feature makes the 

OpenLISEM hazard model highly suitable for assessing the impacts of climate and land use change on 

the occurrence and interaction of rainfall-triggered landslides, debris flow, and hillslope erosion at the 

catchment scale. 

Based on the above, the OpenLISEM hazard model was selected as the most appropriate model to 

simulate the hazard interaction between rainfall-triggered landslides, debris flows, and hillslope erosion 

hazards according to the level of representation of hydrological and stability processes for different 

catchment scales, and its ability to assess the effects of rainfall extremes and land use on the occurrence 

of these hazards. The main modelling approaches for three mentioned hazards are described as follows: 

Slope stability and slope failure: In the OpenLISEM hazard model, the slope stability estimation 

method is based on the infinite slope approach. This method assumes slope failure occurs along a 

failure surface parallel to the ground (Van Westen and Terlien 1996). The OpenLISEM hazard model 

assumes the slope consists of two layers: a bedrock material with high cohesion, considered a boundary 

condition for calculations, and a top layer of loose material (Van den Bout et al. 2021). Under this 

assumption, by considering a homogeneous slope and material across the entire catchment area, the 

expression for calculating both the local downslope (shear forces) and local resisting forces (strength 

forces) can be simplified (see Appendix A.1 ). Therefore, a fraction of forces acting on the failure plane 
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is expressed in terms of the Factor of Safety (FoS), which, under an infinite slope approach, can be 

assessed as the ratio of shear strength forces (force capacity) to shear forces (force demand) (Van den 

Bout et al. 2021). Once the slope stability is calculated over the entire catchment area, the slope failure 

is estimated according to the iterative slope failure method (see Appendix A.1 ) (Van den Bout et al. 

2018). This method was developed to calculate the progressive slope failure within a raster element that 

was determined to be unstable (Van den Bout et al. 2021).  

Debris flow modelling: In the OpenLISEM hazard model, the debris flow modelling approach consists 

of a fluid and solid phase modelled through a set of two-phase equations estimated by Pudasaini (2012). 

The fluid phase consists of a fluid volume fraction derived from the Saint-Venant equations for shallow 

water flow based on depth averaging, which includes mass conservation for flow velocity components 

and momentum balance for slope friction  (see Appendix A.1 ). The solid phase consists of a solid 

volume fraction (see Appendix A.1 ) derived from the volume of soil resulting from slope failure and 

entrained by the surface flow (Liu et al. 2020). The solid volume fraction also includes the volume of 

sediment concentrated within the flow due to bed erosion (Pudasaini and Fischer 2020). Additional 

forces within the solid phase, such as the Mohr-Coulomb plasticity criteria, are considered to account 

for the reaction of the surface to the weight of the flow material  (Van Den Bout et al. 2021). 

Hillslope erosion modelling: In OpenLISEM hazard model the erosion modelling is given under two 

approaches. The first one is according to sediment load in overland flow and channel flow using the 

transport capacity (𝑇௖) given by (Govers et al. 1990) (see Appendix A.1 ). From the transport capacity 

(𝑇௖), the sediment load in overland flow and channel flow will determine the detachment and deposition 

of the soil. The sediment is loaded into the flow according to a set of sediment load equations for bed 

and suspended sediment load for overland and channel flow from Van Rijn (1984a) and Van Rijn 

(1984b). The user chooses the most suitable equation for sediment load. It was used Van Rijn (1984a 

and 1984b) bed and suspended load full equations. Once the sediment is loaded into the flow, the 

sediment concentration will determine the flow transport capacity (𝑇௖), in which for sediment 

concentrations 𝐶௩ less than 𝑇௖  (𝑘𝑔. 𝑚ିଷ), flow detachment will take place (erosion), and for sediment 

concentrations, 𝐶௩ larger than 𝑇௖  (𝑘𝑔. 𝑚ିଷ) deposition will take place. 

However, some advantages and disadvantages must be considered for the use of this model (Table 

2.2). These are described as follows: 

Advantages: As shown in Table 2.2, in the OpenLISEM hazard model, rainfall-triggered landslides, 

debris flows, and hillslope erosion hazards are represented by coupling catchment-scale slope stability 

and failure methods, two-phase debris flow equations to simulate debris flow initiation and runout, and 

transport capacity equations to simulate erosion and deposition. The advantage of these methods is the 

low cost of their implementation in catchments of different sizes and scales. Moreover, these methods 

are coupled with catchment-scale hydrology, improving the representation and locations of these 

hazards for individual slopes and catchment scales. Another advantage is that the OpenLISEM hazard 

model is spatially distributed and integrated with GIS allowing the assessment of the spatial distribution 

and magnitude of the simulated hazards. Nevertheless, its major advantage over other multi-hazard 
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models is that it simulates the impacts of climate and land use change by including rainfall events of 

different intensities and durations and land use within its modelling structure. 

Disadvantages: According to Table 2.2, the representation of rainfall-triggered landslides, debris flows, 

and hillslope erosion hazards require the integration of multiple processes, such as hydrological, 

sediment, and stability processes that require extensive amounts of input parameters and data. This 

increases the model complexity in terms of the number of model parameters and the amount of data 

required to characterise these parameters. Therefore, the use of this type of model requires 

parameterisation guidelines to reach a proper representation of hazards, owing to the number of 

parameters to be calibrated. Moreover, as the OpenLISEM hazard model is spatially distributed, it 

introduces great spatial variability in the input parameter values. This introduces levels of uncertainty 

that are increased by data scarcity to characterise the input parameter values. In addition, the model is 

computationally expensive for high-resolution data, increasing the simulation time for large catchments 

and long-duration rainfall events. 

Table 2.2 Advantages and disadvantages of the OpenLISEM Hazard model. 

Hazard 

representation 
Process integration Data required Advantages Disadvantages 

Rainfall-triggered 

landslides 

 

Hydrological processes: 
 Infiltration 
 Hillslope runoff 
 Channel flow 
 Channel flooding 
 
Sediment processes: 
 Flow detachment 

(erosion) 
 Sediment transport 
 Entrainment  
 Deposition 
 
Stability processes: 
 Slope stability 
 Slope failure 
 Solid-fluid phase 
 Runout (landslides 

and debris flows) 
 

 

Rainfall data 
(intensity and 
duration) 
 
Land use/cover 
 
Topography  
(Digital elevation 
model DEM) 
 
Drainage network 
(width and depth) 
 
Soil depths 
 
Soil types 
(hydrological and 
geotechnical 
properties) 
 
Rheological 
parameters   

Catchment-scale 
hydrology, stability 
methods and two-
phase debris flow 

model (low simulation 
cost for catchments 
with different sizes). 

 
Model results for 

individual slopes and 
different catchment 

scales. 
 

Can simulate the 
impacts of climate 

and land use change. 
 

Spatially distributed 
integrated with GIS  
able to use different 

resolution data. 
 

Spatial location of 
hazard magnitudes. 

Model complexity: a 
large number of input 
parameters (gaps in 
parameterisation). 

 
Requires a lot of input 

data, which can be 
time-consuming and 
expensive to obtain. 

 
Spatial data 

variability: uncertainty 
propagation in inputs 

parameters and 
model outputs 

(effects on data-
scarce 

environments). 
 

High-resolution data 
is computationally 
expensive for large 
catchments (longer 
simulation times) 

 

Debris flows 

 

Hillslope erosion 
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2.3  Defining a modelling workflow for multi-hazard interaction modelling 

As discussed in Chapter 1, section 1.2.1 one of the most challenging aspects of multi-hazard modelling 

is addressing gaps in parameterisation and uncertainty caused by model complexities, such as the 

extensive number of parameters needed for representing hydrological and stability processes, and the 

quality of available data for estimating the required hydrological and geotechnical parameter values. 

Addressing these gaps in multi-hazard modelling is considered good practice, particularly when 

forecasting the impacts of climate and land use change on hillslope hydrological hazards. Managing 

complex models through an ex-ante evaluation improves the modelling of hillslope hydrological hazards 

by ensuring accurate hazard representations and assisting modellers in making consistent and 

justifiable decisions regarding model outputs for addressing research, practice, or policy questions of 

interest (van Vliet et al. 2016; Kremmydas et al. 2018). Several studies have addressed 

parameterisation, uncertainty, and equifinality Wooldridge et al. (2001); Walker et al. (2003); Aumann 

(2007); Tolson and Shoemaker (2008); Yen et al. (2014); Malone et al. (2015); Uusitalo et al. (2015); 

van Vliet et al. (2016); Koo et al. (2020) and Williams et al. (2020) have defined methodological 

workflows to guide the modelling of complex models to support the calibration and validation of 

hydrological models, decision-making in land use planning, and socio-environmental and agricultural 

policies.  

According to Beven et al. (2018) and Koo et al. (2020), workflows consist of sequential methodological 

steps that guide modellers in applying the method accurately and effectively for decision support. This 

section defines methodological steps as a modelling workflow to address parameterisation and 

uncertainty gaps in multi-hazard modelling. The proposed modelling workflow outlines the necessary 

steps for guiding model parameterisation and uncertainty analysis when assessing hillslope hydrological 

hazards under climate and land use scenarios. The development of a modelling workflow (Table 2.3) 

involves key strategies, including selecting a model with appropriate process representation for the 

problem of interest (the OpenLISEM hazard model selected in section 2.2.2), acquiring and estimating 

model parameter values, configuring and executing the model, verifying the model through equifinality 

analysis, identifying sensitive parameter values for uncertainty assessment, and applying the model to 

climate and land use scenarios. The key strategy steps are as follows: 
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Table 2.3 Strategies to address uncertainty in multi-hazard modelling. 

 

 

2.3.1  Stage 1: Model parameterisation 

The design of a modelling workflow for multi-hazard modelling involves developing strategies that cover 

data acquisition for estimating model parameter values and designing parameterisation methods to 

accurately represent the intended hazard while considering uncertainties in input parameters. However, 

estimating input parameter values for multi-hazard models can be impractical in many cases, particularly 

in large catchments and regions with limited data accessibility regarding catchment characteristics such 

as hydrological and geotechnical properties, soil depths, topography, and land cover (Tilloy et al. 2019; 

Neal 2022). This data limitation introduces uncertainties in input parameter estimation, leading to a 

cascade of epistemic uncertainties throughout the modelling process due to information gaps (White et 

al. 2003; Yen et al. 2014). These uncertainties affect the model outputs, including spatial distribution of 

landslides, failure depths, shape, and surface area, which restrict the representation of hazards and 

constrain the assessment of their magnitudes and potential impacts under different climate and land 

use change scenarios (Crossley et al. 2000; Marshall and Randhir 2008; Sadegh et al. 2018). 

Researchers have made significant contributions to improve the characterization of soil physical 

properties for hydrological hazard modelling. Notably, Iwashita et al. (2012); Fan et al. (2016); Tofani et 

al. (2017); Bicocchi et al. (2019) and Shepheard et al. (2019) have expanded methodologies and 

Stage 1: Model parameterisation

This stage involves gathering data to characterize the spatial 

distribution of catchment physical characterisics (hydrological and 

geotechnical parameter values) according to catchment soil types 

and land use classes. Design of a parameterisation strategy using 

the selected multi-hazard model to identify parameter-set values that 

best represent the hazard intended for modelling based on 

observations, considering the equifinality of the model results.

Stage 2: Model verification and sensitivity analysis (SA)

This stage involves the selection of model outcomes with parameter-set 

values that result in the best approximation with observed hazards. The 

application of verification techniques for internal model verification and 

accuracy assessment of model outcomes are required for parameter-sets 

selection. An assessment of parameter sensitivities with more impact on 

the model outcomes is required for the selected parameter-set.

Stage 3: Model application for climate and land use scenarios

This stage involves model application using the selected parameter-

set values to assess multi-hazard interactions according to climate and 

land use change scenarios. The creation of synthetic rainfall events 

and hypothetical land use scenarios is required to assess the 

response of the selected parameter set values to different rainfall 

events and land use scenarios.
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databases for estimating soil parameters in physically-based landslide and debris flow modelling, 

particularly in data-scarce environments where direct measurements and laboratory testing for 

hydrological and geotechnical information are limited and costly. 

One of the strategies to address input parameter uncertainty is to assess their value distribution through 

the definition of the minimum and maximum value ranges (Beven and Binley 1992; Refsgaard 1997). 

Statistical techniques such as Monte Carlo simulations, Latin Hypercube Sampling (LHS), Bayesian 

approaches, and random sampling methods can be used to explore parameter value distributions 

(Francos et al. 2003; Song et al. 2015; Wagener and Pianosi 2019). Physically-based distributed models 

offer the flexibility to define scaling factors that determine the range of variation for parameter values 

(Beven 2001; Guinot and Gourbesville 2003; Refsgaard et al. 2007). Scaling factors are multiplication 

factors used to adjust the initial value distribution of input parameters and define their minimum and 

maximum ranges (Brown et al. 2012). In developing a modelling workflow to address parameterisation, 

the first step is to identify the parameter sets in the selected multi-hazard model that influence the 

intended hazard representation. The second step involves estimating their values based on different soil 

types and land use classes, utilizing data from various sources such as literature reviews, published 

databases, and open-source information. Finally, the minimum and maximum distribution ranges for the 

estimated values of each input parameter are defined, allowing exploration of different parameter values 

until the model outputs align with observation (Guinot and Gourbesville 2003; Malone et al. 2015). 

2.3.1.1 Defining a parameterisation method 

One of the strategies in designing a modelling workflow involves defining a parameterisation 

methodology to ensure the multi-hazard models represents the physical and climatic factors governing 

hydrological and stability processes in a specific catchment environment (Wagener and Wheater 2006; 

Lane et al. 2021). Model parameterisation, as described by Refsgaard (1997) and Malone et al. (2015), 

determines suitable parameter values for the model in a specific catchment area, considering 

representative values for soil types, vegetation types, and geological layers. Proper parameterisation is 

crucial to avoid issues in model calibration and verification (Refsgaard and Storm 1996). Model 

calibration refers to the procedure of adjusting  or optimize model parameter values until the model 

outputs fit with observations (Beven and Binley 1992; Guinot and Gourbesville 2003). Therefore, the 

parameterisation process is focused on identifying the values of a set of input parameters for different 

catchment physical characteristics considered acceptable in reproducing an observed behaviour of the 

catchment system (Beven and Freer 2001). The parameterisation process should properly account for 

uncertainties arising from data scarcity and model complexities. This means accepting the possibility 

that multiple sets of parameter values can be considered acceptable in representing the behaviour of 

the hydrological and stability catchment (Beven 2001). This concept is known as "Equifinality," which 

suggests that there is no unique representation of the catchment system behaviour, but rather a range 

of parameter values that are deemed acceptable as data quality improves over time (Beven 2006; Beven 

2019). Equifinality allows for the identification of behavioural and non-behavioural simulations based on 

their similarity to observations. A behavioural simulation is defined as one in which the parameter sets 

are considered acceptable for representing observed hazards such as rainfall-triggered landslides, 
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debris flows, and hillslope erosion. On the other hand, non-behavioural simulations are those that fail 

to predict or accurately represent observed hazards (Beven and Binley 1992; Beven 2019). To achieve 

this, the parameterisation process involves designing parametric simulations, which entail searching 

for model parameter values by modifying their initial values (Lee et al. 2019). Parametric simulations 

allow for the combination of different parameter sets with varying value ranges, considering soil types 

and land use classes. This approach enables the selection of parameter values that are considered 

acceptable in representing hillslope hydrological hazards (Refsgaard 1997; Yen et al. 2014).  

One approach for designing parametric simulations to identify behavioural and non-behavioural 

simulations involves using a Global Sensitivity Analysis (GSA) method (Wagener et al. 2001; Song et 

al. 2015). GSA assesses how variations in parameter values affect the variability of model outputs, 

allowing for the combination of multiple parameter sets (Pianosi et al. 2016; Wagener and Pianosi 2019). 

This method offers the advantage of identifying parameter sets that are consistent with observations 

while considering the uncertainties propagated during the modelling process (Beven 2019). The All-

Factors-At-a-Time (AAT) method, a GSA sampling strategy, enables the simultaneous variation of input 

parameter values, providing insights into the sensitivity of each parameter within the set and its 

contribution to model output variability (Pianosi et al. 2016; Douglas-Smith et al. 2020). However, using 

this method, several to hundreds of simulations has to be performed until find acceptable parameter-set 

values (Herrera et al. 2022). Physically-based distributed multi-hazard models, such as the OpenLISEM 

hazard model selected in section 2.2.2, present challenges due to the number of required input 

parameters, data resolution, and catchment area extension, which make the simulation process time-

consuming (Hessel 2005; Lilburne and Tarantola 2009; Pogson and Smith 2015). In the modelling 

workflow, the parameterisation method is designed following a GSA approach, which involves 

developing an experimental design that includes parametric simulations with different combinations of 

parameter-set values. 

2.3.2 Stage 2: Model verification and sensitivity analysis (SA)  

Model verification is commonly used to assess a modelling structure's capability to reproduce 

observations or true values based on available data (Oreskes et al. 1994; Beven 2019). According to 

Oberkampf (2019), defines model verification as the process of confirming that an observation or true 

value corresponds to the exact solution of the model. However, this procedure does not focus on 

determining the modelling structure's ability to replicate a specific process of interest. Instead, it aims to 

estimate the numerical accuracy of the model structure given specific input data (Oberkampf and Barone 

2006). Model validation involves the assessment of the model performance by measuring the 

consistency of their outputs with observations through different statistical accuracy metric (Oreskes et 

al. 1994; Frattini et al. 2010).  Model accuracy is a performance metric used to evaluate the goodness 

of fit (GOF) by assessing the agreement between model outputs and observed data (Frattini et al. 2010; 

Formetta et al. 2016). When observations are available, they can be used to assess the accuracy of the 

model structure by comparing the model outputs to the observed data (Formetta et al. 2016).  
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Elaborating hazard inventories is a crucial stage before model verification (Guzzetti et al. 1999; Beguería 

2006). The inventory provides insights into the triggered hazard's type, location, magnitude, volumes, 

and date of occurrence (Guzzetti et al. 2012). According to Blahut et al. (2010), most rainfall-triggered 

occur during rainfall events with varying distributions, intensities, and durations. Therefore, the landslide 

or debris flow recorded in a hazard inventory should align with the rainfall event that generated these 

hazards (van Westen et al. 2008). Landslide inventories aim to furnish databases with crucial information 

about past landslide activity and its primary triggers (Pellicani et al. 2013). These inventories are 

compiled at different scales using techniques e.g., geomorphological analysis, Geographic Information 

Systems (GIS), aerial photographs, and satellite imagery (Galli et al. 2008; van Westen et al. 2008). 

However, constructing landslide inventories often requires the use of multi-temporal information, which 

can be challenging to obtain (van Westen et al. 2008). The mapping resolution depends on the available 

imagery, which can limit the identification of landslide boundaries, impact areas, debris flow sources, 

and runout areas (Ardizzone et al. 2002). This limitation restricts the understanding of landslide shapes, 

sizes, and frequency distribution (Malamud et al. 2004; Taylor et al. 2018). Mapping errors in the 

construction of landslide inventories introduce uncertainty in terms of landslide locations and 

boundaries, impacting the quality of the inventory map (Mead et al. 2021). These errors affect the 

agreement between simulated and observed landslides, thereby influencing the calculation of accuracy 

scores (Hagen-Zanker and Martens 2008). Consequently, tolerance levels should be considered within 

the mapped landslides  (Sterlacchini et al. 2011; Mead et al. 2021). 

Nonetheless, assessing the accuracy of the modelling structures using observed data is challenging. 

As was mentioned in section 2.3.1, the model complexity, the uncertainty introduced in the input 

parameters and the effects of data resolution might impact the internal process representation of the 

model (Fawcett et al. 1995). To address the impacts of uncertainty in model results, model verification 

should be approached through two strategic approaches. The first one corresponds to the model internal 

verification (equifinality) and the second one to the accuracy of the modelling structures. The 

approaches are described in the following sub-sections. 

2.3.2.1 Model internal verification 

Within the modelling workflow, this procedure is crucial for model verification, as it helps identify 

parameter sets that can represent observed hazards adequately while considering uncertainty and 

equifinality in the model outputs (Hofmann 2005; Beven 2019). This procedure involves the evaluation 

of the model's internal logic and calculations (Fawcett et al. 1995), to ensure that the model accurately 

represents hazard locations and magnitudes based on its internal structure. Verification in this process 

focuses on assessing whether the model outcomes, such as landslide areas or debris flow runout areas, 

exhibit the same characteristics as observed hazards, including area difference, distribution, and spatial 

location. To facilitate this procedure, the development of inventories for landslides, debris flows, and 

erosion rate records is important as they provide a reference point for comparing the model outputs (van 

Westen et al. 2008; Blahut et al. 2010; Guzzetti et al. 2012). Additionally, it is essential to define hazard 

metrics that quantify the magnitude of the modelled hazards, such as surface areas or volumes, for 

comparison with the magnitude distribution of observed hazards. Considering uncertainty and 
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equifinality in the model outputs, it is recommended to perform additional procedures for model 

verification, as it is considered good practice (Beven 2019; Herrera et al. 2022).  

Equifinality is directly linked to the parameterisation and verification processes in the modelling process 

(Oreskes et al. 1994). Figure 2.3 illustrates a spatial similarity approach used to address model 

equifinality during the verification process. Incorporating equifinality in physically-based distributed multi-

hazard models helps identify the parameter sets that produce an observed hazard by considering the 

uncertainty derived from measurement limitations (Beven and Freer 2001). The internal verification 

process involves comparing the simulated and observed hazards in terms of spatial distribution patterns, 

magnitudes, and sizes to assess equifinality (Malamud et al. 2004). Within the modelling workflow, 

equifinality is considered by incorporating a spatial similarity approach as an additional model verification 

procedure. This approach focuses on assessing the similarity between a hazard simulated using 

different parameter sets and an observed hazard (Figure 2.3). The spatial similarity approach selects 

criteria based on area differences and frequency area distributions to determine the parameter set that 

best approximates an observation. 

 

Figure 2.3 Spatial similarity approach for model verification. 

 

2.3.2.2 Model accuracy 

As mentioned in Section 2.3.2, the model accuracy was assessed by comparing the model outputs with 

observed data. Various techniques are available to evaluate this agreement, but the choice of technique 

depends on the modelling approach and its results (Beguería 2006; Frattini et al. 2010). For instance, 

in statistical susceptibility models for landslides or debris flows, verification involves comparing the 

prediction of terrain units (susceptibility zoning) with the distribution of past landslides or debris flows 

(landslide inventory) within each zoning unit (Guzzetti et al. 1999; Beguería et al. 2009). In physically-

based distributed multi-hazard models like OpenLISEM, verification is based on the spatial agreement 

between the simulated runout areas of landslides or debris flows and the observed inventory areas (van 

Westen et al. 2006; Corominas et al. 2014). In erosion modelling approaches, verification focuses on 

assessing the simulation of spatial patterns of erosion and deposition (Van Oost et al. 2005). While 



Chapter 2. Hillslope hydrological hazard interactions: in search of an integrated modelling approach 

48 
 

hydrographs and sediment graphs measured at the catchment outlet have traditionally been used to 

verify erosion models, it is important to spatially verify distributed models as well, not solely relying on 

catchment-outlet comparisons (Batista et al. 2019). While hydrographs and sediment graphs measured 

at the catchment outlet have traditionally been used to verify erosion models, it is important to spatially 

verify distributed models as well, not solely relying on catchment-outlet comparisons (Takken et al. 

1999). For physically-based distributed multi-hazard models, the most suitable observational data for 

verification purposes come from landslides and debris flow runout areas, requiring techniques to assess 

the spatial agreement between simulated and observed hazards, which will be discussed in the following 

sections. 

Spatial overlapping method 

This method, introduced by Hagen-Zanker and Martens (2008) and Brown et al. (2012) serves as a map 

comparison method for physically-based models. The same approach has been utilized by Carrara et 

al. (1991) and subsequently by Ardizzone et al. (2002); Galli et al. (2008); Santangelo et al. (2015), to 

evaluate the reliability of landslide inventory maps through a "map overlay" approach between different 

sources of inventory areas. The method aims to estimate the discrepancy or similarity between 

corresponding polygons in two maps (Santangelo et al. 2015). Over time, this approach has become 

suitable for verifying physically-based distributed models by assessing the spatial agreement between 

simulation results and observations (Hagen-Zanker and Martens 2008). The overlap agreement, such 

as between two debris runout polygons, within this method measures the uncertainty associated with 

landslide simulation results by calculating various accuracy metrics (Mead et al. 2021). The spatial 

agreement estimation involves calculating the intersection between the simulated and observed 

hazards, which can represent either landslides or debris flow runout polygons (Figure 2.4). In catchment 

scale models like the OpenLISEM hazard model, the intersection corresponds to the True Positive (TP) 

value, which is the intersection area between two polygons. The False Negative (FN) value is obtained 

by subtracting the intersected area (TP) from the observed polygon area, while the False Positive (FP) 

value is obtained by subtracting the TP area from the simulated polygon area. The True Negative (TN) 

values are calculated by subtracting the union of the simulated and observed polygons from the 

catchment area. It is important to consider additional criteria when using the catchment area, such as 

excluding flat areas from the TN value estimation. 
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Figure 2.4 Spatial overlapping method approach. 

Accuracy metrics  

The common approach to defining an accuracy metric involves testing the hypothesis that the model's 

prediction aligns with empirical observation (Oberkampf 2019). The consistency between the model 

results and observations is represented by a range of values that span from low to high, indicating the 

level of agreement between the model and experimental measurements (Landis and Koch 1977). 

Accuracy metrics are typically derived from a confusion matrix that quantifies the number of correctly 

and incorrectly simulated observations (Beguería 2006).  Accuracy metrics can be categorized into 

similarity and skill score coefficients (Liu et al. 2007). Similarity coefficients assess the resemblance 

between two sets and yield scores ranging from 0 to 1. A score close to 1 indicates a higher similarity 

between the two sets (Hagen-Zanker and Martens 2008). Among the available similarity coefficients 

(Table 2.4), Jaccard (1901), Sorensen-Dice (1948), Anderberg (1973), Ochiai (1957), and the Fowlkes-

Mallows index are commonly used for accuracy assessment. These coefficients, however, overlook the 

True Negative (TN) values when calculating accuracy scores (Briggs and Ruppert 2005).  

Neglecting TN values in the accuracy assessment of models like OpenLISEM hazard can lead to 

accuracy score values that do not adequately represent the scale-dependent distribution of predicted 

and observed fields (Brown et al. 2012). The accuracy score for similarity indices is determined by the 

ratio of TP values to the combined areas of simulated and observed hazards. However, similarity 

coefficients are most appropriate for evaluating models that do not follow a catchment-scale approach. 

For instance, in the case of debris-flow runout path models, similarity indices such as the Jaccard Index 

are commonly employed to evaluate the spatial agreement between debris flow deposition and runout 

areas (Mead et al. 2021). Skill score coefficients, on the other hand, incorporate TN values in the 

accuracy metrics, offering a better understanding of the scale-dependent factor in accuracy scores 

(Brown et al. 2012; Wheatcroft 2019). Various skill score coefficients are available (see Table 2.4), with 

one of the most commonly used being the Heidke skill score (Cohen's kappa) (Landis and Koch 1977). 

This coefficient provides insight into the scale dependency of distributed hazards within the catchment 
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by quantifying the degree of spatial agreement or consistency between simulated and observed 

hazards.  

Table 2.4 Similarity and skill scores coefficients classification. 

 

 

2.3.2.3 Criteria for parameter-set selection 

The strategies in the modelling workflow for parameter-set selection are based on the equifinality 

approach and model accuracy, as defined in sections 2.3.2.1 and 2.3.2.2. The equifinality approach 

guides the selection of parameter sets by considering the difference and distribution of hazard 

magnitudes between the modelled and observed data. Various techniques can be used to evaluate the 

area difference, such as comparing the total area of modelled hazards with observed hazard areas, and 

analysing the area distribution through methods like histograms (Xiaolong et al. 2017; Lombardo et al. 

2021). It is crucial to have access to observed hazards in order to perform this procedure effectively. 

Developing a hazard inventory that includes observed landslides and debris flow runout polygons is 

essential for determining the total area and distribution of individual hazards (Guzzetti et al. 2002; 

Malamud et al. 2004). In this approach, parameter-sets that yield model outputs with minimal area 

differences and area distributions that best match the observed hazards are typically preferred. In 

addition to the equifinality approach, the accuracy approach can be applied by employing spatial 

overlapping methods to calculate different accuracy metrics that assess the spatial agreement between 
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the modelled and observed hazards (van den Bout 2020). The selection of an appropriate accuracy 

metric is crucial as it provides a score to determine the model outputs with the best spatial agreement 

(Beguería 2006; Frattini et al. 2010). By combining internal verification techniques based on the 

equifinality approach and model verification using accuracy metrics, valuable information is obtained to 

establish criteria for selecting parameter-sets.. 

2.3.2.4 Sensitivity analysis (SA) 

Sensitivity Analysis (SA) assesses how the variability of model outputs relates to changes in input 

parameter values (Lilburne and Tarantola 2009; Pianosi et al. 2016). It quantifies the resulting 

uncertainty in model outputs caused by uncertainties in input parameters  (Crosetto et al. 2000; Douglas-

Smith et al. 2020). This analysis is a crucial step in the modelling workflow as it identifies sensitive 

parameters that significantly influence hazard representations within selected parameter values (Pianosi 

et al. 2016; Wagener and Pianosi 2019). Two commonly used techniques for sensitivity analysis are 

local and global sensitivity analysis (SA) (Song et al. 2015). Local sensitivity analysis examines the 

variability of model outputs when an input parameter varies around a specific value, while global 

sensitivity analysis considers variations across the entire range of input parameter variability (Pianosi et 

al. 2016). The choice of sensitivity analysis (SA) method depends on the analysis's purpose. In the 

context of the modelling workflow, the objective is to identify and select parameter values that effectively 

reproduce observed hazards. Thus, the aim of this study is to identify the most sensitive parameters 

that influence the spatial representations of rainfall-triggered landslides, debris flow, and hillslope 

erosion rates. This can be achieved by ranking the input parameters based on their contributions to 

model output variability, screening out parameters with negligible influence, or mapping the input 

parameter value space that yields extreme output results (Sarrazin et al. 2016; Noacco et al. 2019). 

Considering the mentioned methods, the chosen SA method for this study aims to identify the most 

sensitive parameters. Therefore, the SA method chosen for this is described as follows: 

Regional Sensitivity Analysis (RSA) 

Regional Sensitivity Analysis (RSA) (Spear and Hornberger 1980) aims to identify regions of input 

parameter values used for Factor Ranking or Mapping (Pianosi et al. 2016). This method, also known 

as Monte Carlo filtering, divides parameter sets into "behavioural" and "non-behavioural" groups based 

on a prescribed threshold value (Noacco et al. 2019). The choice of threshold value is crucial in RSA, 

as it separates the "behavioural" parameter set, which approximates or is consistent with observations, 

from the "non-behavioural" set with no approximation to the observed hazard (Pianosi et al. 2016). For 

physically-based distributed multi-hazard models such as the OpenLISEM hazard model, the threshold 

is associated with the magnitude of the hazard representation obtained from the model output, as the 

magnitude depends on variations within the parameter set values. Therefore, the threshold choice has 

to be related to an equifinality principle described in section 2.3.1 to select the hazard representation 

with more proximity to an observed hazard.  

The distinction between “behavioural” and “non-behavioural” parameter set is performed by the 

calculation of two Cumulative Distribution Functions (CDF) which describe the separation between the 
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two curves (Equation 2.1). The separation between the curves is computed using the Kolmogorov-

Smirnov (KS) statistic, which can be used to rank the (Bozzolan et al. 2020). The larger the distance 

between the CDFs curves, the more influential the factor. The sensitivity index is expressed as follows: 

𝑠௜ =  𝑚𝑎𝑥௫௜ห𝐹௜
஻(𝑥௜ − 𝐹௜

஻ത (𝑥௜)ห    
Equation 2.1 

 

Where 𝑠௜ correspond to the sensitivity index, 𝐹௜
஻(𝑥௜) correspond to the behavioural CDF, and 𝐹௜

஻ത(𝑥௜) 

correspond to the non-behavioural CDF. The sensitivity index (𝑠௜) varies from 0 to 1, a high value 

indicates that the variation of the input factors significantly influences the hazard spatial. 

2.3.3 Stage 3: Model application for climate and land use scenarios  

The identification of parameter-set values in Stage 1, section 2.3.1, and the selection of the best 

parameter-set value representing an observed hazard in Stage 2, section 2.3.2, allow the exploration 

of interactions between rainfall-triggered landslides, debris flows, and hillslope erosion hazards. This 

exploration is conducted under different climate and land use scenarios using the OpenLISEM hazard 

model selected in section 2.2.2. This represents the final stage of the modelling workflow, where various 

scenarios are examined using the chosen parameter-set. The sensitivity analysis of the selected 

parameter-set values helps identify the most sensitive parameters that have a significant influence on 

the magnitude of rainfall-triggered landslides, debris flows, and hillslope erosion hazards. These 

parameters include landslide area, debris flow runout area, and volumes of eroded and deposited 

sediment material (net erosion). By determining the most influential parameters based on soil types and 

land use categories, it becomes possible to assess their responses to different climate and land use 

scenarios. 

To evaluate these responses, sets of synthetic rainfall events with different intensities and durations are 

created, along with hypothetical land use scenarios reflecting the impacts of land use change such as 

urbanization, agriculture, and deforestation. The parameter value of the most influential parameter for 

land use categories is modified for the land use category intended to change (e.g., natural forest). 

Subsequently, a specified number of simulations is performed to assess the response of the selected 

parameter set to varying rainfall intensities, durations, and changes in land use values. Finally, the 

response of each scenario is evaluated by quantifying the magnitude of each hazard and comparing the 

rate of change between scenarios. This assessment determines whether the hazard magnitudes 

increase or decrease under different rainfall intensities and durations, and land use scenarios. It enables 

the identification of the specific conditions under which the interactions of rainfall-triggered landslides, 

debris flows, and hillslope erosion hazards intensify and have greater impacts. 
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2.4  Chapter summary 

Based on the challenges of dealing with uncertainty in multi-hazard modelling. A modelling workflow is 

proposed that addresses the key aspects according to the literature review discussed in section 2.3. 

The proposed modelling workflow includes three stages related to model parameterisation, model 

verification and model application. The three phases are proposed as follows: 

Modelling workflow stage 1: This stage presents the steps necessary to assess the design of 

parametric simulations with different parameter value ranges to identify the appropriate parameter set 

that reproduces the interactions between hillslope hydrology and hazards. This stage includes the 

necessary steps to assess the uncertainties introduced by the lack of information describing the physical 

characteristics of the catchment that provide the data required to set the model input parameters. This 

stage of the modelling workflow is fully developed and applied to the first case study catchment in 

Chapter 3. 

Stage 1: Model parameterisation   

1. Assemble 
available data for 

selected catchment 

 

 

 

Select a catchment, define an inventory with 
observed hazards, and identify their spatial 

distribution and magnitude. Estimate the 
intensity and duration of the rainfall event 
that triggered the observed hazards within 

the catchment. 

 

Identify model input parameters, gather data 
for parameter value estimation according to 

catchment physical characteristics, and 
define the spatial resolution and extent of 

the catchment scale.  

2. Define 
parameters value 

ranges 

Define input parameter value ranges 
through a scalar factor to identify minimum 

and maximum values for each input 
parameter. Define parameter value 

statistical distributions to identify possible 
values for each parameter. 

 

3. Define parametric 
simulation 

Design and run an ensemble of parametric 
simulations by setting different parameter-
set value combinations to explore the likely 

parameter value space for physical 
catchment characteristics. 

 

4. Verify hazard 
representation at 

the catchment level 

Assess the behavioural performance of 
parameter-set combinations in response to a 

rainfall event to assess their ability to 
replicate an observed hazard event within 
the catchment (total area of landslides and 

debris flows, and net erosion). 
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Modelling workflow stage 2: This stage presents the necessary steps to select parametric simulations 

with the parameter set that gives the best approximation to the observed hazards. A verification method 

is proposed using an equifinality approach that considers the uncertainties in the hazard 

representations. This approach is valid for both landslide and debris flow observations. A spatial 

similarity criterion is defined to select simulated hazards based on their similarity to the spatial attributes 

of the observed hazards. In addition, a spatial accuracy metric is selected using a spatial overlap method 

to assess model performance with respect to hazard locations. The application of these two approaches 

will allow the verification and selection of the parameter set with greater accuracy in reproducing an 

observation. In the final step, a sensitivity analysis is considered to identify the influential parameters 

and explore their impact on the hazard representations. In addition to this step, the most influential 

parameter values will be identified according to their spatial distribution in land use categories and soil 

types. 

Stage 2: Model verification and sensitivity analysis 

5.  Model 
verification (sub-
catchment and 

catchment scale) 

Define and apply a suitable spatial similarity 
assessment method for internal model verification 
(e.g., ‘total area difference’ and ‘area distribution’). 

Identify the parameter-sets and associated 
simulations with the highest similarity scores with 

respect to observed hazard. 

 

Define and apply a spatial accuracy metric to the 
simulations with parameter-sets with the highest 

similarity scores (e.g., Cohen’s kappa coefficient to 
measure the spatial agreement between simulated 

and observed hazard locations).  

6. Parameter-set 
selection 

Select the parameter-set and associated simulation 
that meet the criteria for spatial similarity and 

accuracy.  

7. Sensitivity 
analysis (SA) 

For the selected model parameter-set, undertake 
sensitivity analysis to identify influential parameters 

and the impact of uncertainty on hazard 
representations. 

 

8. Sensitivity to soil 
types and land use 

variations 

For the selected parameter-set, explore the 
influence of variations in the parameters 

characterising different soil types and land use 
categories in terms of their spatial distributions 

within the catchment. Look for soils and land use 
(and associated subdomain areas) in which the 
hazard magnitude is most responsive to these 

parameter variations. 
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Modelling workflow stage 3: This stage corresponds to the application of the model. Having verified 

the model outputs and selected the behavioural parameter set, the final step in the modelling workflow 

is to explore the catchment response to different land use and rainfall scenarios. Having confirmed the 

distribution of parameter set values for land use units and soil types for the selected catchment, it is now 

possible to explore land use change scenarios and their response to different rainfall events. 

Stage 3. Model application for climate and land use scenarios 
 

9. Explore climate 
and land use 

change scenarios 

This is the final stage, and it is now possible 
to define climate and land use change 
scenarios according to the confirmed 

parameter-set values for the catchment land 
use categories. 
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Chapter 3 Developing the workflow for parameter 

exploration and experimental design  
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3.1 Introduction 

This chapter develops and applies the first stage of the modelling workflow proposed in Chapter 2, 

section 2.3.1. The aim is to address issues in parameterisation, input parameter uncertainty and model 

equifinality for the application of the OpenLISEM hazard model selected in Chapter 2, section 2.2.2. The 

design of the first stage of the modelling workflow is developed following the key strategies proposed in 

Chapter 2, section 2.3.1 for data gathering to define the catchment physical characteristics, 

parameterisation strategy (experimental design) and parameter-set identification (equifinality). The 

application of the stage one of the modelling workflow will allow the addressing of the first research 

question of this thesis: 

RQ1: What are the physical characteristics of catchments that drive hillslope hydrological multi-

hazards and their interactions? 

Addressing this research question involved the selection of an appropriate physically-based distributed 

multi-hazard model (Obj. 1.1) (OpenLISEM hazard model) and the definition and application of a 

modelling workflow to address gaps in parameterisation and uncertainty in multi-hazard models in the 

context of data scarcity (Obj. 1.2). Therefore, the Soufriere catchment in Saint Lucia is one of the study 

sites selected for developing, evaluating, and applying the first stage of the modelling workflow to 

represent and identify the catchment physical characteristics that drive hillslope hydrological hazards 

registered as a consequence of Hurricane Tomas. On October 31, 2010, the island of Saint Lucia 

suffered the devastating effects of Hurricane Tomas (Figure 3.1). Observations of the damage sustained 

over the island indicated that the Soufriere catchment recorded the areas with the most significant 

impacts produced by rainfall-triggered landslides and debris flows, particularly in the communities of 

Fond St. Jacques, Ravine Claire, and Toraille (APSL 2010). The Soufriere catchment is characterised 

by a tropical climate classified as Aw according to the Köppen-Geiger climate classification (ECLAC 

2011). This type of climate is highly susceptible to hurricane seasons, producing heavy rainfall over 

short and long periods (Reed et al. 2022). However, the effects of climate change have increased the 

frequency and duration of hurricane rainfall intensity (He et al. 2016). According to rainfall-triggered 

landslides are the most common and dominant hazard in Saint Lucia. In the Soufriere catchment, the 

lithological structure set by colluvial, and alluvial tropical soils derived from volcanic rocks that go from 

completely decomposed rock (Grade V) to entirely residual soil (grade VI) (Shepheard et al. 2019), 

renders the Soufriere catchment into the highly susceptible landslide-prone catchment. However, the 

increase in extreme rainfall events due to hurricane intensification and land use change processes, such 

as the increase of farmlands and urban settlements on steep slopes, have increased landslide activity 

and the frequency of debris flows in the Soufriere catchment (Walters 2016). Moreover, there is evidence 

that agriculture, as an economic activity, has increased catchment sediment yield during the last few 

decades (Bégin et al. 2014). Therefore, the physical characteristics of the Soufriere catchment and the 

intensification of the extreme rainfall events and the accelerated land use change processes observed 

in the last decades make the Soufriere catchment in a highly susceptible multi-hazard forming 

environment. 
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Figure 3.1 Study site location: Soufriere catchment, Saint Lucia, Eastern Caribbean. 

3.2 Methodology 

The following workflow (Table 3.1) describes the methodological steps corresponding to the first stage 

of the modelling workflow to parameterise the OpenLISEM Hazard model or similar physically-based 

distributed multi-hazard models. The first stage of the modelling workflow will be applied through the 

development of an experimental design that addresses issues such as data gathering, parameter value 

estimation, parameterisation, and model equifinality for different catchment environments. 

Table 3.1 Modelling workflow stage 1: model parameterisation.  

Stage 1: Model parameterisation   

1. Assemble 
available data 
for selected 
catchment 

 

 

 

Select a catchment, define an inventory with 
observed hazards, and identify their spatial 

distribution and magnitude. Estimate the 
intensity and duration of the rainfall event 
that triggered the observed hazards within 

the catchment. 

 

Identify model input parameters, gather data 
for parameter value estimation according to 

catchment physical characteristics, and 
define the spatial resolution and extent of the 

catchment scale.  
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2. Define 
parameters 

value ranges 

Define input parameter value ranges through 
a scalar factor to identify minimum and 

maximum values for each input parameter. 
Define parameter value statistical 

distributions to identify possible values for 
each parameter. 

 

3. Define 
parametric 
simulation 

Design and run an ensemble of parametric 
simulations by setting different parameter-set 

value combinations to explore the likely 
parameter value space for physical 

catchment characteristics. 

 

4. Verify hazard 
representation 

at the 
catchment 

level 

Assess the behavioural performance of 
parameter-set combinations in response to a 

rainfall event to assess their ability to 
replicate an observed hazard event within 
the catchment (total area of landslides and 

debris flows, and net erosion). 

 

 

Based on the modelling workflow steps described in Table 3.1, the key methodological steps are 

described as follows: 

Step 1: Assemble available data for the selected catchment 

This step comprises the selection of catchments highly sensitive to the impacts of climate and land use 

change. The assembling of information available on a selected catchment is required to identify past-

triggered hillslope hydrological hazards and to define the physical characteristics of the selected 

catchment. Hazard identification is performed through elaboration of a hazard inventory that identifies 

rainfall-triggered landslides, debris flows, or hillslope erosion rates by characterising their spatial location 

and magnitudes. This step also involves the identification of the rainfall event that triggered the identified 

hazards by determining its intensity and duration. The defined hazard inventory and identified rainfall 

event are described in Section 3.2.1. The catchment's physical characteristics are defined by acquiring 

spatial data corresponding to the catchment land use, soil types, topography, and soil depths. These 

characteristics are the basis to define the model input parameter values. Hydrological and geotechnical 

parameter values are estimated according to catchment soil types and land use based on a literature 

review or other sources of information. The spatial distribution of the estimated values is defined 

according to catchment soil types and land use. The catchment hydrological and geotechnical parameter 

values spatial distribution is defined in Section 3.2.3. 

Step 2. Define input parameters value ranges 

Assess the distribution of the estimated input hydrological and geotechnical parameter values for soil 

types and land use using statistical methods such as histograms, boxplots, or probability distributions 

to identify the minimum and maximum value ranges for each input parameter. Explore the variability of 

the input parameter value ranges by defining scaling factors to decrease or increase the minimum and 
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maximum value ranges of each input parameter value. This allows an assessment of how the variability 

of the input parameter value ranges affects the model outputs in terms of the representation of rainfall-

triggered landslides, debris flows, and hillslope erosion hazards. This is an important procedure to 

evaluate the level of uncertainty introduced by input parameters in the model outputs that are expressed 

in hazards representations of different orders of magnitude. The input parameter value distribution 

method and the definition of scale factors for each input parameter are described in section 3.2.4. 

Step 3. Define parametric simulations 

Define parametric simulations by determining a total number of parameter-set combinations with 

different value ranges determined by the proposed scale factor to decrease or increase the minimum 

and maximum value ranges of each input parameter value. The aim is to create a number of parameter-

set combinations that might be behavioural or non-behavioural in representing the observed hazard in 

the hazard inventory for the selected catchment. The foregoing allows for identifying parameter-set 

values deemed suitable for representing the observed hazard according to representative hydrological 

and geotechnical values for the catchment soil types and land use. The procedure to define the 

elaboration of parametric simulations is described in Section 3.2.5. 

Step 4. Verify hazard representations 

Assess the hazard representation resulting from the total of parametric simulations by implementing 

hazard metrics that quantify the total magnitude of the simulated rainfall-triggered landslides, debris 

flows and hillslope erosion hazards within the catchment. The aim is to identify the parametric 

simulations that resulted in a behavioural or non-behavioural representation of the observed hazards in 

the inventory by comparing their total magnitudes with the total magnitude observed in the hazard 

inventory. The procedure to quantify the hazard representations and their magnitudes is described in 

Section 3.2.6.  

In the following subsections, is describe in detail the modelling workflow steps to implement the 

experimental design. 

3.2.1 Soufriere catchment: Rainfall event selection and hazard inventory 

As mentioned in Section 3.1, the Hurricane Tomas rainfall event was selected to assess the response 

of parametric simulations in reproducing the rainfall-triggered landslides and debris flows observed in 

the Soufriere catchment during the passage of the hurricane. Therefore, it is necessary to estimate the 

rainfall duration and intensity registered by Hurricane Tomas and their impacts on rainfall-triggered 

landslides, debris flows, and erosion. The procedures to estimate the hurricane rainfall event in terms 

of intensity and duration and the spatial distribution and magnitude of the observed hazards are 

described as follows: 
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Hurricane Tomas 2010 rainfall event 

The Hurricane Tomas rainfall event corresponded to a 27-hour rainfall duration with a total volume of 

662 mm (Figure 3.2). The ranges of rainfall intensity were estimated by creating a synthetic rainfall event 

from the total rainfall volume registered for the Soufriere catchment obtained from the Desraches station 

near the Soufriere catchment. The procedure for the synthetic rainfall estimation is performed in 

Appendix B.1 The rainfall intensity duration was discretized in time intervals of 10 min, giving a total of 

1620 min for a 27-hour rainfall duration (Figure 3.2). 

 

Figure 3.2 Hurricane Tomas rainfall event. 

Hazard inventory 

The spatial distribution of landslides and debris flows triggered by Hurricane Tomas within the Soufriere 

catchment was obtained from the landslide inventory of the British Geological Survey (2014). The 

landslide inventory was conducted by capturing polygons of the landslides and debris flows from a 

RapidEye image from 03/01/2011. The landslide inventory and the RapidEye image are available from 

the CHARIM GeoNode platform: http://charim-geonode.net/. However, it was observed that the 

attributes related to these polygons did not contain any information about the process type, such as 

landslides or debris flows. Moreover, a disagreement was identified between the spatial projections of 

the landslide inventory and RapidEye image. The spatial disagreement was overcome by rectifying the 

landslide inventory corresponding to the British Geological Survey (2014) with the available RapidEye 

image (Figure B.2). The rectification identified 69 landslides polygons with a total area of 23.58 (ha) and 

11 debris flow polygons with a total area of 6.02 (ha) (Figure 3.3) 
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Figure 3.3 Rectified landslide inventory. (a) spatial distribution of landslides areas (b) landslide size 

distribution. 

3.2.2 Definition of catchment physical characteristics for multi-hazard modelling 

The physical characteristics of the Soufriere catchment were defined according to the datasets available 

for the OpenLISEM hazard model at: https://sourceforge.net/projects/lisem/files/Example%20Datasets/. 

These open-source spatial datasets contain all the necessary information to define the physical 

characteristics of the Soufriere catchment and set up OpenLISEM hazard model input parameters 

related to land use, topography (DEM SRTM), soil type, and soil depth. The dataset is available at a 10 

× 10 metres spatial resolution and is spatially referenced in the projected UTM coordinates system 

WGS84 zone 20N. Based on these datasets, the OpenLISEM hazard model input parameters were 

defined and grouped into hydrological and geotechnical input parameters (Table 3.2). These are the 

most relevant input parameters in the OpenLISEM hazard model related to hydrology and slope stability 

(van den Bout et al. 2018). A characteristic of these input parameters is the variability of their initial 

values by different multiplication factors set in the OpenLISEM hazard model. Other input parameters 

exist related to catchment topography (e.g., slope gradient, LDD (local surface drainage direction), 

channels, catchment boundaries, and surface (roughness and Manning’s coefficient)). 

3.2.3 Setting OpenLISEM hazard model input parameters 

The values of the hydrological input parameters corresponded to the original initial values in the 

available datasets (Table 3.2). However, for the geotechnical input parameters, the value distribution 

for these input factors was uniform for the entire catchment, without considering their value variability 

according to the catchment soil types. Therefore, the spatial distribution of the soil cohesion and internal 

friction angle values was identified according to the geotechnical properties of the soil types in the 

Soufriere catchment (Appendix B.3 ). The geotechnical properties were assessed according to Regional 

Research Laboratory (RRL) (1966) and Shepheard et al. (2019) (Appendix B.3 ). Other input factors, 
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such as soil density and grain size, corresponded to the values established in the original datasets. The 

hydrological and geotechnical input parameter values are summarised as follows:  

Table 3.2 OpenLISEM hazard model hydrological and geotechnical input parameter values. 

Input factors Symbol/Unit  

Range values  

Soil layer 1 Soil layer 2 

min max min max 

Soil depth* (𝑚) 0.05 0.15 0.1 3.6 

Hydrological       

Saturated hydraulic conductivity* 𝑘௦(𝑚𝑚. 𝑠ିଵ) 2.7𝑥10ିସ 4.3𝑥10ିଶ 2.4𝑥10ିସ 2.01𝑥10ିଶ 

Suction at the wetting front 𝛹(𝑘𝑃𝑎) 40 50 40 50 

Saturated moisture content* 𝜃௦ (𝑐𝑚ଷ. 𝑐𝑚ିଷ) 0.2 0.64 0.17 0.55 

Initial moisture content  𝜃௜(𝑐𝑚ଷ. 𝑐𝑚ିଷ) 0.17 0.54 0.14 0.56 

Geotechnical   Range values  

Soil density 𝜌(𝑘𝑁. 𝑐𝑚ିଷ)  2100 

Soil cohesion* 𝑐′(𝑘𝑃𝑎) 8 – 80 

Internal friction angle* ∅′(°)  24 – 60  

Soil grain size*  (𝑚)  0 - 0.0000156  
*Initial parameter values subject to variation within the OpenLISEM model.  

The hydrological input parameter values were spatially distributed according to land use categories 

(Figure B.3a) and soil types in the Soufriere catchment (Figure B.3b). These input parameters 

correspond to the saturated hydraulic conductivity (𝑘௦) and the saturated moisture content (𝜃௦) (Figure 

3.4). This distribution was derived from the OpenLISEM hazard modelling approach for infiltration, which 

is based on the Green and Ampt (1911) method for two soil layers (van den Bout et al. 2018). The input 

parameter value distribution for land use categories was defined for soil layer 1, which corresponds to 

soil depth 1 (Figure B.4a), and the parameter value distribution for soil types was set for soil layer 2, 

which corresponds to soil depth 2 (Figure B.4b). Geotechnical parameters such as soil cohesion (𝑐ᇱ) 

and soil internal friction angle (∅ᇱ) (Figure 3.5), were spatially distributed according to the total soil depth 

(Table 3.2). This value distribution was derived from the slope stability modelling approach in the 

OpenLISEM hazard model based on the infinite slope method (van den Bout et al. 2018).  
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Figure 3.4 Spatial distribution of hydrological input parameter values. 

 

  

Figure 3.5 Spatial distribution of geotechnical input parameter values. 
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3.2.4 Define input parameter value ranges 

The definition of input parameter value ranges was performed by identifying the value distribution of the 

hydrological and geotechnical input parameters for the Soufriere catchment soil types and land use. The 

distribution of the input parameter values was estimated using histograms to assess the frequency and 

identify the minimum and maximum value ranges for saturated hydraulic conductivity (𝑘௦), saturated 

moisture content (𝜃௦), for land use and soil types and soil cohesion (𝑐ᇱ) and soil internal friction angle 

(∅ᇱ) for soil types (Figure 3.5). The identified distributions were used to explore the variability in the 

value distribution ranges of each parameter to assess their sensitivity in the spatial representation of 

rainfall-triggered landslides, debris flows, and hillslope erosion hazards. The preceding allows for 

identifying the regions of the value space that might introduce sources of uncertainty in the model 

outputs, which are expressed in hazard representations of different orders of magnitude. 

 

 

Figure 3.6 Hydrological and geotechnical input parameter value distributions. 

To explore the variability in the input parameter value ranges, a scale factor was established to 

decrease, maintain, and increase the minimum and maximum value ranges of each parameter. The 

scale factor was defined by setting different multiplication factors for each input parameter. The setting 

of the multiplication factors is based on the OpenLISEM hazard model structure, which allows the 

modification of their initial parameter values through multiplication factors (van den Bout et al. 2018). 

Each multiplication factor modifies the initial hydrological and geotechnical parameter values by 

changing their values for the soil types and land use in the Soufriere catchment. The foregoing allows 

the OpenLISEM hazard model setting of the catchment's physical characteristics to identify the most 

sensitive input parameters that influence the occurrence of hillslope hydrological hazards. The choice 

of multiplication factors for each input parameter is based on their influence on hillslope hydrology and 

stability and their maximum variability. A high multiplication factor can increase the initial value of the 
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parameter, leading to extreme variability in the model outputs. Therefore, the multiplication factors 

chosen for each input parameter maintained a degree of variability in their initial values that do not lead 

to extreme model outputs. The scale factors for each input parameter are described are follows: 

Saturated hydraulic conductivity (𝒌𝒔): The initial value distribution for land use and soil types was 

maintained by a multiplication factor of (x1.0), decreased by (x0.4), and increased by (x1.2) (Figure 3.6). 

The decrease in the initial values of (𝑘𝑠𝑎𝑡) recreates hillslopes that can result in reduced rainfall 

infiltration rates that can lead to increased hillslope runoff, more channel discharge and increased 

hillslope erosion and sedimentation in areas with poor soil structure or excessive soil compaction 

(Usowicz and Lipiec 2021). Instead, an increase in (𝑘𝑠𝑎𝑡) values implies hillslopes with higher infiltration 

rates, which can result in lower hillslope runoff generation and increased soil saturation (García-

Gutiérrez et al. 2018). When soil becomes saturated the slope stability is reduced, thus, the hillslope 

becomes more prone to landslides and debris flows (Muntohar and Liao 2010; Yang et al. 2019).  

Saturated moisture content (𝜽𝒔): The initial value distribution for land use and soil types was 

maintained by a multiplication factor of (x1.0), decreased by (x0.8) and increased by (x1.1) (Figure 3.6). 

The decrease in the initial values recreates hillslopes with less saturated moisture content, which implies 

positive pore-water pressures in hillslopes with unsaturated soils that increase soil shear strength and 

slope stability (Lee and Kim 2021). On the other hand, an increase in recreates saturated hillslopes that 

influence negative pore-water pressures that reduce soil shear strength and slope stability (Marhaento 

et al. 2017) 

Soil cohesion (𝒄ᇱ): The initial values were maintained by a multiplication factor of (x1.0), decreased by 

a multiplication factor of (x0.3) and (x0.5) and increased by (x1.2) (Figure 3.6). The decrease in the 

initial values recreates hillslopes with soils with less shear strength, influencing the reduction in slope 

stability, and an increase will recreate hillslopes with soils with higher shear strength and stability. 

Soil internal friction angle (∅ᇱ): The initial values were maintained by a multiplication factor of (x1.0), 

decreased by a multiplication factor of (x0.4) and (x0.6) and increased by (x1.2) (Figure 3.6). The 

decrease in the initial values recreates hillslopes with soils with less shear resistance to internal 

stresses, thus reducing slope stability. On the other hand, an increase in recreates hillslopes with soils 

with higher shear resistance, increasing slope stability (Zhang et al. 2020) 

According to Figure 3.7, outliers were identified in the in both saturated hydraulic conductivity values for 

land use and soil types, and saturated moisture content for soil types. The distribution of outliers is 

associated with the initial values assigned for soil types and land use in the available dataset for the 

OpenLISEM hazard model. These values are outside of the overall distribution of the parameter value 

ranges and that might come from measurement errors and value assignment for each soil type unit and 

land use category. 
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Figure 3.7 Hydrological and geotechnical input parameter value ranges. 

3.2.5 Designing parametric simulations  

The parametric simulations were designed according to the Global Sensitivity Analysis (GSA) method. 

In this method, uncertainties in the model outputs are influenced by simultaneously varying the values 

of the model input parameters (Pianosi et al. 2016; Douglas-Smith et al. 2020). Therefore, an ensemble 

of parametric simulations was designed by creating different parameter-set combinations with different 

value ranges. The parameter-set combination was performed according to parameter value ranges 

established by the scale factors defined in Section 3.2.4 for saturated hydraulic conductivity (𝑘௦), 

saturated moisture content (𝜃௦), for land use and soil types and soil cohesion (𝑐ᇱ) and soil internal friction 

angle (∅ᇱ) for soil types. The design of parametric simulations allows the identification of parameter-set 

values that might be behavioural or non-behavioural in reproducing rainfall-triggered landslides, debris 

flows, and hillslope erosion hazards observed in the Soufriere catchment during Hurricane Tomas. The 

combination of parameter sets yielded 144 parametric simulations for the OpenLISEM hazard model 

(Figure B.5). Different user-defined numerical settings were established for slope stability and flow 

dynamics modelling for the run of the total parametric simulations in the OpenLISEM hazard model 

(Table B.2). The numerical settings for slope stability are related to the Factor of Safety (FoS) thresholds 

for slope failure initiation and failure depths (m), and the flow dynamics settings are related to viscosity 

parameters, entrainment coefficients, and volumetric sediment concentrations for debris flow behaviour 

in terms of velocity (m/s) and depths (m), and total soil losses (ton). 

In the OpenLISEM hazard model, the running of parametric simulations depends on the spatial 

resolution of the input parameters and duration of the rainfall event. Therefore, according to the duration 

(1620 min) of the Hurricane Tomas rainfall event defined in Section 3.2.1 and the spatial resolution of 

the input parameters defined in Section 3.2.2 (10 × 10 m) for the Soufriere catchment. The simulations 
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of rainfall-triggered landslides, debris flows, and hillslope erosion hazards were computed in time steps 

of 10 seconds within the total simulation time. The timestep size should be identical to the data resolution 

to maintain numerical stability and to model the underlying hydrological and slope stability processes. 

3.2.6 Hazard representation 

The parametric simulations were verified by first identifying the simulations that resulted in the 

simultaneous simulation of rainfall-triggered landslides, debris flows, and hillslope erosion. Simulations 

with two or one simulated hazard were discarded from the verification process. The identified parametric 

simulations were classified into behavioural and non-behavioural, according to the magnitude estimated 

for each of the simulated hazards. Behavioural simulations were identified by screening the parametric 

simulations that resulted in the best spatial approximation according to the magnitude estimated for the 

observed rainfall-triggered landslides and debris flows in the hazard inventory in Section 3.2.1. 

Therefore, a set of hazard metrics is proposed to screen the parametric simulations whose parameter-

set provides the best proximity to the rainfall-triggered landslides and debris flows observed during 

Hurricane Tomas. These hazard metrics allow an initial assessment of the model’s ability to simulate 

hazard processes and a comparison with the observed hazard magnitude. This is the first step in model 

verification (internal verification steps using spatial similarity scores, for example, are detailed in Chapter 

4). 

The proposed hazard metrics were related to the cumulative magnitude of each hazard at the catchment 

scale in every parametric simulation. In the OpenLISEM hazard model, the magnitude of the simulated 

hazards corresponds to the cumulative magnitude simulated for every timestep during the total 

simulation time (van den Bout et al. 2018). For rainfall-triggered landslides, the total landslide surface 

area (𝐴௅) is proposed (Equation 3.1). This equation provides the sum of the landslide surface areas (ha) 

resulting from the simulation of failure depths (m) within the catchment. The landslide surface area was 

estimated by selecting pixels with failure depths of greater than 0 metres. For debris flows, the total 

debris flow runout area (𝐴஽) was proposed (Equation 3.2). This equation provides the sum of the 

simulated debris flow runout areas (ℎ𝑎) within the catchment. The runout area was estimated by 

selecting pixels in which the debris flow depth was equal to or greater than 0.5 meters. For hillslope 

erosion, total net erosion (𝑁𝑒𝑡ா) was proposed (Equation 3.3). This equation provides the net erosion 

rates (𝑡𝑜𝑛. 𝑚ିଶ). Net erosion was estimated by subtracting the total detached sediment (𝑡𝑜𝑛. 𝑚ିଶ) minus 

the total amount of deposited sediment (𝑡𝑜𝑛. 𝑚ିଶ) within the catchment. From this equation, a positive 

value indicates a predominance of erosion, and a negative value indicates a predominance of 

deposition. 

𝐴௅ =  
∑ ∗ 𝑁஺

ே
ூவଵ

100000
 Equation 3.1 

Where 𝑁 are the pixels with failure depths > 0  and  𝑁஺  is the pixel area (𝑚ଶ) 
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𝐴஽ =  
∑ ∗ 𝑁஺

ே
௜ஹ଴.ହ

100000
 Equation 3.2 

Where 𝑁 are the pixels re the pixels with flood height ≥ 0.5 𝑚  and  𝑁஺  is the pixel area (𝑚ଶ) 

 

𝑁𝑒𝑡ா =  𝐸் − 𝐷் Equation 3.3 

Where 𝐸் correspond to the total detached soil (𝑡𝑜𝑛) and 𝐷் correspond to the total deposited soil 

(𝑡𝑜𝑛).  

3.3 Results 

3.3.1 Responsiveness parametric simulations 

According to the total parametric simulations (144 simulations), only 54 resulted in the simultaneous 

simulation of rainfall-triggered landslides, debris flows, and hillslope erosion hazards. These simulations 

were concentrated from simulations 1 to 54 (Figure 3.8). On the other hand, 90 simulations resulted only 

in debris flow and hillslope erosion simulations, with no landslide simulations. These simulations were 

concentrated from simulations 55 to 144 (Figure 3.8). Therefore, these simulations were screened out 

from the process of identifying and selecting parametric simulations that obtained the closest 

representation to the observed hazards identified in the hazard inventory. The parametric simulations 

that resulted in the simultaneous simulation of these three hazards, that is, simulations 1–54, were 

classified as behavioural and non-behavioural according to the total magnitude result for each hazard 

within the Soufriere catchment. The total magnitude was estimated by assessing the total landslide 

surface area (𝐴௅), debris flow runout area (𝐴஽), and net erosion (𝑁𝑒𝑡ா) according to the hazard metrics 

proposed in Section 3.2.6.  

According to the magnitude results, non-behavioural simulations were identified according to the total 

landslide surface area (𝐴௅), this metric was chosen as allows the comparison with the total landslide 

surface area (𝐴ூே௏) observed in the hazard inventory. Therefore, parametric simulations with total 

landslide surface area (𝐴௅)  ≥ 1000 ℎ𝑎 and (𝐴௅)  ≥ 100 < 1000 ℎ𝑎 were identified as non-behavioural 

as their total magnitude do not approach the total landslide surface area (𝐴ூே௏) (23.6 ha) observed for 

Hurricane Tomas. From these results, 27 parametric simulations were identified as non-behavioural, 9 

with total landslide surface area (𝐴௅)  ≥ 1000 ℎ𝑎 and 18 with total surface areas (𝐴௅)  ≥ 100 < 1000 ℎ𝑎. 

From these simulations, it was possible to observe the impacts of the debris flow runout area (𝐴஽), and 

total net erosion (𝑁𝑒𝑡ா). For example, simulation 3 registered the highest landslide surface area (𝐴௅) 

with (1275.3 ha), for the same simulation the total debris flow runout area (𝐴஽) reached (1190.6 ha) and 

the net erosion (𝑁𝑒𝑡ா) the (-165605 𝑡𝑜𝑛. 𝑚ିଶ). From these results, the magnitude of rainfall-triggered 

landslides clearly impacted the magnitude of the simulated debris flow and, thus, the magnitude of 

hillslope erosion rates. This indicates that the landslide volume material and the debris flow runout 

deposition material increase the net erosion rates when these hazards occur simultaneously. 
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This trend was observed for all the identified non-behavioural simulations. For example, for simulations 

with total landslide surface areas (𝐴௅)  ≥ 100 𝑎𝑛𝑑 < 1000 ℎ𝑎, the lowest surface area was identified in 

simulation number 36, with a total area (𝐴௅) of 112.8 ha. Within this simulation, the debris flow runout 

area (𝐴஽) and net erosion (𝑁𝑒𝑡ா) were reduced to 36.8 ha and -6298.2 𝑡𝑜𝑛. 𝑚ିଶ respectively. The 

parameter-set value combination for the total identified non-behavioural simulations provided model 

outputs that were far from representing the rainfall-triggered landslides and debris flows registered for 

the hazard inventory. Therefore, the parameter value ranges determined for these sets of parameters 

introduced the biggest source of uncertainty in the model outputs expressed in unrealistic hazard 

magnitudes. 

From the total of parametric simulations, 27 simulations were identified as behavioural. This corresponds 

to simulations whose total landslide surface areas (𝐴௅) were between  > 1 𝑎𝑛𝑑 ≤ 100 ℎ𝑎, as their total 

magnitudes are close to the total landslide surface area (𝐴ூே௏) (23.6 ha) identified for Hurricane Tomas. 

From the total behavioural simulations, six simulations were screened out as their total surface areas 

were between 0 and 1 ha. Therefore, their magnitudes were too small for comparison and verification. 

The total landslide surface areas (𝐴௅) of the identified behavioural simulations were compared with the 

total areas (𝐴ூே௏) of rainfall-triggered landslides (23.6 ha) estimated for the hazard inventory to identify 

proximities between simulated and observed magnitudes. From this comparison, it was determined that 

the closest proximities resulted in six parametric simulations. These corresponded in order from less to 

the closest proximity to simulation numbers 29, 19, 35, 32, and 25 y 22 (Figure 3.8). For the rest of 

behavioural simulations, the resulting total landslide surface area (𝐴௅) was below the observed total 

landslide inventory surface area (𝐴ூே௏). For simulations 29, 19, 35, and 32 the total landslide surface 

areas (𝐴௅) were overpredicted in magnitude by almost 50 ha in relation to the 23.6 ha observed in the 

hazard inventory (𝐴ூே௏). However, only simulations 22 and 25 resulted in the closest proximity to the 

total landslide inventory surface area (𝐴ூே௏), registering 23.1 and 23.2 ha, respectively. 

In relation to the total debris flow runout area (𝐴஽), the identified behavioural simulations were also 

compared with the observed total runout area estimated from the hazard inventory (Figure 3.8). For 

simulations 29, 19, 35, and 32, the resulting total debris flow runout area (𝐴஽) was overpredicted by 

almost 20 ha compared to the 6.02 ha registered in the hazard inventory (𝐴ூே௏). However, only 

simulations 22 and 25 registered total debris flow runout area (𝐴஽) below to the estimated in the hazard 

inventory with 3.8 and 0.4 ha, respectively. From these simulations, simulation 22 registered the closest 

proximity to the debris flow runout area for the hazard inventory. According to total net erosion (𝑁𝑒𝑡ா) 

registered for the identified behavioural simulations, simulation numbers 29, 19, 35, 32 obtained total 

net erosion rates (𝑁𝑒𝑡ா) ≥  −792.1 (𝑡𝑜𝑛. 𝑚ିଶ) with simulation 29, 32 and 35 with the highest values. In 

relation to simulation 22 and 25, their result showed total net erosion (𝑁𝑒𝑡ா) of -240.4 and -197.7 

(𝑡𝑜𝑛. 𝑚ିଶ) respectively.  



Chapter 3. Developing the workflow for parameter exploration and experimental design 

71 
 

 

Figure 3.8 Overall responsiveness of the catchment to the simulated ‘Hurricane Tomas’ rainfall 

forcing for each of the 144 parameter dataset combinations. Hazard magnitudes are indicated in 

terms of (a) total landslide surface area, (b) total debris flow runout area, (c) total net erosion rates. 

3.3.2 Hazard representation  

Figure 3.9 illustrates the total landslide surface areas (𝐴௅) resulting from the total parametric simulations 

performed. The behavioural simulations identified in Section 3.4.1 are highlighted in greyscale to identify 

their parameter-set combinations and their resulting magnitudes. The most significant landslide surface 

areas (𝐴௅)  ≥ 100 and < 1200 ha were registered in simulations in which the saturated moisture content 

values were reduced by multiplication factors by (x0.8), maintained by (x1.0) and increased by (x1.1) 

and the saturated hydraulic conductivity values were reduced by (x0.4), maintained by (x1.0) and 

increased by (x1.2) (see Table B.3 and Table B.4 for values for land use categories and soil types). The 

magnitude of these areas also resulted from a reduction of the soil cohesion values by (x0.3) and a 

reduction of the soil internal friction angle values by (x0.4) and (x0.6), respectively (see Table B.5). 



Chapter 3. Developing the workflow for parameter exploration and experimental design 

72 
 

However, according to the estimation of the total landslide surface area (𝐴௅), these results do not look 

realistic as the landslide areas were overpredicted in size regarding to the total landslide surface area 

(𝐴ூே௏) (23.6 ha) identified for Hurricane Tomas. It was observed that total landslide surface areas (𝐴௅)  

> 10 and < 100 ha on simulations in which the saturated moisture content and the saturated hydraulic 

conductivity values were also reduced, maintained, and increased by the mentioned multiplication factor 

(see Figure 3.4). However, unlike the results above, these landslide surface areas were simulated with 

a reduction of the soil cohesion values by (x0.3) but maintaining the soil internal friction angle values by 

(x1.0) and increasing its values by (x1.2) (see Table B.5 and Figure 3.7). 

A significant reduction in the total landslide areas (𝐴௅) < 10 ha was observed in simulations that reduced 

the saturated moisture content values by (x0.8) (see Table B.3 and Table B.4). These landslide surface 

areas (𝐴௅) were also simulated with reduced, maintained, and increased saturated hydraulic 

conductivity values. These landslide areas were reduced in simulations in which the soil cohesion values 

were reduced, and the soil internal friction angle was increased by (x1.2) (see Table B.5). Finally, the 

landslide areas (𝐴௅) < 10 ha were also observed in simulations in which the saturated moisture content 

and saturated hydraulic conductivity reduced, maintained, and increased their initial values but in which 

the soil cohesion was reduced by (x0.5) and the soil internal friction angle was reduced by (x0.4) and 

(x0.6) (see Table B.5 and Figure 3.7).  No simulated landslides were obtained when the soil cohesion 

values were maintained by (x1.0) and increased by (x1.2) (see Table B.5 and Figure 3.7). 

Figure 3.10 shows the total debris flow runout areas (𝐴஽) estimated for the total behavioural simulations. 

It was identified that the more significant debris flow flooded areas(𝐴஽)  ≥ 100 and < 1200 ha were 

registered within the same simulations in which the landslide surface areas (𝐴௅) were overestimated. 

On the other hand, total debris flow runout areas (𝐴஽) > 20 and < 100 ha were identified in simulations 

in which the landslide surface area (𝐴௅) was > 10 and < 100 ha. For the case of simulations with no 

landslide simulation, the total debris flow runout areas (𝐴஽) were < 20 ha. According to this, the 

magnitude of the debris flows was influenced by the erosional material entrained by the flow. Under this 

condition, the extensive total debris flow runout areas (𝐴஽) between 15 and 16 ha were registered in 

simulations in which the saturated moisture content was increased by (x1.1) (see Table B.3 and Table 

B.4). In simulations in which the saturated moisture content maintained its values by (x1.0), the total 

debris flow runout areas (𝐴஽) was between 6 and 11 ha and in simulations in which the saturated 

moisture content values were decreased total debris flow runout areas (𝐴஽) was between 5 and 1 ha. 

These debris flow flooded areas (𝐴஽) were simulated with reduced, maintained, and increased saturated 

moisture content and saturated hydraulic conductivity values. 

Figure 3.11 illustrates the total net erosion (𝑁𝑒𝑡ா) for the total behavioural simulations. The most 

extensive rates were also registered in simulations with large total landslide surface areas (𝐴௅) total 

debris flow runout areas (𝐴஽). Within these simulations, the results indicate mostly high deposition rates 

> -17673.62 (𝑡𝑜𝑛. 𝑚ିଶ). It was observing a reduction in the net erosion rates with deposition values < -

14708.88 (𝑡𝑜𝑛. 𝑚ିଶ). These values were reduced in simulations in which the total landslide surface 

areas (𝐴௅) and total debris flow runout areas (𝐴஽) reduced their areas. In simulations in which no 

landslides were simulated, the net erosion rates were maintained steady, especially in simulations in 
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which the soil cohesion was maintained by (x1.0) and increased by (x1.2) in its values (see Table B.5 

and Figure 3.7), and the soil internal friction angle values were decreased, maintained, and increased. 

The higher deposition rates were registered in simulations in which saturated moisture content values 

were increased by (x1.1), and the lowest was registered in simulations that maintained the saturated 

moisture content by (x1.0) and decreased by (x0.8) (see Table B.3 and Table B.4) 

 

 

Figure 3.9 Hazard representation: (a) total landslide surface area. 

 

 

Figure 3.10 Hazard representation. (b) total debris flow runout area. 
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Figure 3.11 Hazard representation. (c) total net erosion. 

3.4  Discussion 

3.4.1 Responses of parametric simulations  

The quantification of the landslide surface area (𝐴௅), total debris flow runout area (𝐴஽) and the total net 

erosion rates (𝑁𝑒𝑡ா) through the established hazard metrics allowed to screen 54 behavioural with the 

three simultaneous hazards representation and 90 non-behavioural simulations with only debris flows 

and hillslope erosion with no landslide representation. Identifying these simulations is essential because 

it identifies the parameter-set that resulted in a close approximation to the hazards registered during 

Hurricane Tomas. The foregoing allowed the assessment of the impacts of uncertainty within the 

parameter-set for the total of parametric simulations, allowing to screen out the parameter-set that does 

not reproduce rainfall-triggered landslides, debris flows and hillslope erosion hazards. The designing of 

the total of parametric simulations following a Global Sensitivity Analysis (GSA) approach was essential 

to identify the parameter-set combinations with more proximity to the hazard in the inventory. For 

example, from the results, parametric simulations with total landslide surface area (𝐴௅)  ≥ 1000 ℎ𝑎 and 

(𝐴௅)  ≥ 100 < 1000 ℎ𝑎 were identified as non-behavioural as their total magnitude do not approach the 

total landslide surface area (𝐴ூே௏) (23.6 ha) estimated in the hazard inventory. Therefore, Global 

Sensitivity Analysis (GSA) provides a comprehensive view of the sensitivity and influence of changes in 

the input parameter values on the model outputs expressed in the magnitude resulting for each hazard  

(Almeida et al. 2017; Yildiz et al. 2023). According to  Lari et al. (2014) by quantifying these sensitivities 

in terms of hazard magnitudes, global sensitivity analysis can help researchers and practitioners better 

understand the uncertainties and variability in model  outputs. 

This is essential in multi-hazard modelling because uncertainty can affect the accuracy of hazard 

predictions, the understanding of hazard interrelationships, and the identification of potential 

vulnerabilities in the face of multiple hazards (Almeida et al. 2017; Tilloy et al. 2019; Visser-Quinn et al. 
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2019). The first stage of the modelling workflow adequately addressed and quantified these 

uncertainties to ensure that the selected multi-hazard model (The OpenLISEM hazard model) provided 

robust and reliable results in the representation and interaction of rainfall-triggered landslides, debris 

flows, and hillslope erosion hazards. Consequently, the comparison of the hazard magnitudes related 

to total landslide surface area (𝐴௅) and debris flow runout area (𝐴஽) with the total inventory area (𝐴ூே௏) 

estimated for the rainfall-triggered landslides and debris flow registered from Hurricane Tomas allowed 

the identification of behavioural simulations with closer proximity to the observed hazards. The 

identification of simulations 29, 19, 35, 32, and 25 y 22 as “behavioural”  as their results in terms of 

hazard magnitudes were within the equifinality criteria to identify behavioural simulations. 

The behavioural simulations with more proximity to the hazard inventory was detected in simulations 22 

and 25. For these simulations, the total landslide surface area (𝐴௅), corresponded to 23.08 ha and 23.02 

ha respectively, which is proximate to the 23.58 ha (𝐴ூே௏) estimated in the landslide areas registered in 

the hazard inventory. The same approximation was observed for the total debris flow runout area (𝐴஽), 

in which simulation 22 obtained the most proximate area to the 60.2 ha (𝐴ூே௏) estimated to the debris 

flow area in the hazard inventory with 3.77 ha, respectively. Regarding the total net erosion rates (𝑁𝑒𝑡ா), 

simulations 22 and 25 obtained -240.4 and -197.7 (𝑡𝑜𝑛. 𝑚ିଶ) respectively, which mainly correspond to 

deposition rates. However, no information was available in the hazard inventory. Studies such as Bégin 

et al. (2014), have identified that, as a consequence of Hurricane Tomas, the Soufriere catchment has 

increased sediment deposition rates by 35 %.  

According to Beven and Freer (2001) and Khatami et al. (2019) the incorporation of the equifinality 

principle implies the development of methods to identify the set of parameters that can reproduce or 

explain observed data, considering the uncertainty in input parameters . For example, this suggests that 

multi-hazard models such the OpenLISEM hazard model can be parameterized in a variety of ways 

while still yielding results that are equivalent in terms of predictions or probability measures (Refsgaard 

1997; van den Bout 2020). By considering equifinality, multi-hazard models can be parameterised in 

accordance with various procedures, enabling a more varied and thorough investigation of potential 

model representations (Fan et al. 2021). The development and application of the first stage of the 

modelling workflow contributed to exploring the parameter-set combinations that resulted in behavioural 

and non-behavioural representations of the hazards observed during Hurricane Tomas. According to 

Beven et al. (2018); Tilloy et al. (2019) and Gill et al. (2020), the development of strategies that handle 

the uncertainties that arise from the complexities in multi-hazard modelling related to the number of input 

parameters and data quality, multi-hazard models can better capture the inherent uncertainties and 

complexities of hazard interactions acknowledging that hazards do not operate in isolation and that their 

interactions can be complex and dynamic. By parameterizing multi-hazard models such as the 

OpenLISEM hazard model, researchers and policymakers can better quantify and analyse the combined 

effects from multiple hazards, which can help in making informed decisions for disaster risk reduction 

policies and land use planning to mitigate the impacts of these hazards for different climate and land 

use scenarios (van Vliet et al. 2016; Williams et al. 2020). 
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3.4.2 Parameters affecting hazard representations  

The setting of parametric simulations highlighted the effect of the data quality on the results of hazard 

representations. The variety of rainfall-triggered landslides, debris flows, and hillslope erosion 

magnitudes obtained within the first 54 simulations indicated the manifestation of the uncertainties in 

the input parameters values. According to Mergili et al. (2017) and Van den Bout et al. (2021), the spatial 

representation of landslides and debris flows is highly influenced by the uncertainty introduced by the 

spatial resolution and hydrological and geotechnical input parameter values. For the case of the 

Soufriere catchment, the spatial resolution of the hydrological and geotechnical input parameters (10 x 

10 metres) allowed a good response of the OpenLISEM hazard model to represent these hazards 

considering the catchment scale and the Hurricane Tomas rainfall duration (27-hours). On the other 

hand, setting scaling factors for each input parameter to vary their initial values to recreate the slope 

hydrological and geotechnical conditions of the Soufriere catchment allowed the identification of the 

input parameters value ranges that influenced the representation of the hazard registered during 

Hurricane Tomas. The mentioned above reduced the effects of uncertainty which according to Beven 

and Binley (1992) and Refsgaard (1997) is a characteristic within spatially distributed modelling due to 

their ability to vary the number of parameter values within the model domain. 

Hence, the setting of scaling factors within the first stage of the modelling workflow is essential to 

manage the maximum variation of input parameter value ranges. A method that establishes the limits 

of the input parameter value range variability helps to identify the variation space for each input 

parameter that influences the representation and magnitude of landslides, debris flows and hillslope 

erosion. Under this approach, it was  identified that the landslide surface areas > 1000 ha were 

influenced by the reduction of soil cohesion values by (x0.3) (see Table B.5), the reduction of soil internal 

friction angle by (x0.4) (see Table B.5), and the initial saturated moisture content values by (x1.0) and 

increased by (x1.1) (see Table B.3). On the other hand, it was observed that the landslide surface areas 

< 10 ha were influenced by the reduction of soil cohesion by (x0.3) and (x0.5) and the initial soil internal 

friction angle by (x1.0) and increased by (x1.1) (see Table B.5). No landslides were simulated with the 

reduction of soil cohesion by (x0.5) and with the initial soil internal friction angle by (x1.0) and increased 

by (x1.2) (see Table B.5). Nevertheless, the landslide area increased with increased saturated moisture 

content values by (x1.1), and it was reduced with reduced values by (x0.8) (see Table B.3). Concerning 

the saturated hydraulic conductivity values, the landslide magnitude showed the same pattern for 

reduced, initial, and increased values.  

The response of the OpenLISEM hazard model to the simulated landslides clearly influenced the debris 

flow magnitude and erosion rates. Studies such as von Ruette et al. (2016); Fan et al. (2017) and Van 

den Bout et al. (2018) have identify that landslides location and volumes influence debris flow runout 

distances increasing the hillslope entrainment (erosion) and deposition of material in runout pathways. 

For the case of the Soufriere catchment, it was identified the same pattern, especially in parametric 

simulations with the simultaneous representation of rainfall-triggered landslides, debris flows and 

hillslope erosion.  
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Identifying the input parameter value ranges resulting from the scaling factors helps us understand under 

which parameter value combination of the parameter set for every behavioural simulation will reproduce 

realistic or unrealistic results. This is an important step within the model parameterisation in which 

recognising the suitable parameter value combination that is in some sense optimal to represent rainfall-

triggered landslides, debris flows, and hillslope erosion could improve the representation of any of these 

hazards and provide a good fit with observations. This improves not only the individual representation 

of these hazards but also the assessment of their interactions (Gill and Malamud 2014; Van den Bout 

et al. 2018). Overall, these findings demonstrate that the response of the OpenLISEM hazard model in 

representing these hazards is not only influenced by the parameter-set established for every behavioural 

simulation but also by the quality and resolution of input parameters. 

3.5  Conclusions 

The application of the first stage of the modelling workflow developed in this chapter addresses and 

answers the first research question of this thesis (RQ1: What are the physical characteristics of 

catchments that drive hillslope hydrological multi-hazards and their interactions?). The design of 

parametric simulations following a Global Sensitivity Analysis (GSA) approach allowed the exploration 

of parameter-set combinations that provided behavioural and non-behavioural representations of 

rainfall-triggered landslides and debris flows that occurred during Hurricane Tomas. A total of 54 

parametric simulations with simultaneous representations of rainfall-triggered landslides, debris flows, 

and hillslope erosion and another 90 with only debris flows and hillslope erosion representations with 

no landslide simulation were conducted. Simulations 19, 22, 25, 29, 32, and 35 were identified as 

behavioural simulations, which resulted in closer proximity to the magnitudes of the rainfall-triggered 

landslides and debris flows registered from Hurricane Tomas. 

The application of hazards metrics such as the total landslide surface area (𝐴௅), debris flow runout area 

(𝐴஽), and net erosion (𝑁𝑒𝑡ா) quantified the magnitude of each hazard for every parametric simulation. 

The foregoing contributed to screen out the parametric simulation with biggest uncertainties in their 

outputs, this is total landslide surface area (𝐴௅) was ≥ 1000 ℎ𝑎, total debris flow runout area (𝐴஽) ≥

9000 ℎ𝑎 and total net erosion (𝑁𝑒𝑡ா) ≥ −100000 𝑡𝑜𝑛. 𝑚ିଶ . The hazard metrics identified parametric 

simulations that reflected more uncertainty in their results, as their hazard magnitudes did not represent 

the magnitude of the rainfall-triggered landslides and debris flows registered in the hazard inventory. In 

addition, it contributed to identifying the behavioural simulations that resulted in the best approximation 

of the observed hazards in the inventory. The application of an equifinality approach to identify 

behavioural simulations allowed identify spatial patters related to area difference and surface area 

between the simulated and observed hazards.  

Behavioural simulations 22 and 25 were identified with the closest proximity to rainfall-triggered 

landslides and debris flows registered in Hurricane Tomas. Both simulations obtained a total landslide 

surface area (𝐴௅) of 23.08 ha and 23.02 ha (23.58 ha in the hazard inventory) and a total debris flow 

runout area (𝐴஽) of 3.8 and 0.4 ha (6.02 ha in the hazard inventory). Regarding the total net erosion 
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rates (𝑁𝑒𝑡ா), simulations 22 and 25 obtained -240.4 and -197.7 (𝑡𝑜𝑛. 𝑚ିଶ) respectively. Therefore, the 

initial and increased by (x1.2) parameter value range of saturated hydraulic conductivity values for land 

use and soil type, the reduced saturated moisture content values by (x0.8) for land use and soil types, 

the reduced soil cohesion values by (x0.3) for soil types, and the initial soil internal friction angle values 

represented the physical characteristics of Soufriere catchment that drove hillslope hydrological hazard 

interactions during Hurricane Tomas. 

After the results obtained from the application of the first stage of the modelling workflow for this chapter. 

The next stage is to verify and select the identified behavioural simulations with the best proximity to the 

hazard observed for Hurricane Tomas. This will be addressed in chapter IV where an internal verification 

and parameter-set selection based on spatial similarity scores and sensitivity analysis will carry out. The 

aim is to select the parameter-set that will be applied in the forward exploration of climate and land use 

change scenarios in the Soufriere catchment.  
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4.1 Introduction 

This chapter develops and applies the second and third stages of the modelling workflow proposed in 

Chapter 2, sections 2.3.2 and  2.3.3 respectively. The aim of the second stage of the modelling workflow 

is to verify the parametric simulations performed in Chapter 3 and select the parameter-set considered 

“behavioural” in representing the hazards triggered by Hurricane Tomas in the Soufriere catchment 

under an equifinality approach. According to the selected parameter-set, the most sensitive hydrological 

and geotechnical input parameters for soil type units and land use categories were assessed to identify 

the most influential input parameter value ranges in the representation of the modelled hazards for the 

Soufriere catchment. Then, the third stage of the modelling workflow is applied to explore climate and 

land use scenarios according to the identified sensitive input parameter values of the selected 

parameter-set in order to assess their response in hazard representation and magnitudes according to 

different rainfall events. Therefore, the application of the second and third stages of the modelling 

workflow will allow the addressing of the second research question of this thesis: 

RQ2 What is the influence of catchment parameter variations and uncertainties on multi-hazard 

assessments? 

The verification and selection of the behavioural simulations with the parameter-set that best represents 

the rainfall-triggered landslides and debris flow from the hazard inventory (3.2.1) is a crucial step in 

assessing the reliability and robustness of the input parameter values estimated from different data 

sources, especially when applying physically based multi-hazard models in data-limited locations. The 

preceding reduces the impacts of uncertainty in the model outputs normally expressed in hazard 

representations of different orders of magnitude, as identified in section 3.3.1, Chapter 3. Verifying the 

model outputs under an equifinality approach allows for the selection of parameter-set values with less 

uncertainty in the representation of hillslope hydrological hazards. This process enables the application 

of highly complex multi-hazard models such as the OpenLISEM hazard model, whose outputs can be 

used for various purposes such as risk assessment, development of disaster risk reduction policies, and 

assessment of climate and land use scenarios. According to van Vliet et al. (2016) and Williams et al. 

(2020),  policy recommendations derived from the outputs of highly complex models depend on how 

parameterisation and uncertainty are handled in their results because any output with high uncertainty 

can lead to biased policy recommendations. 

In the case of the Soufriere catchment, land use change (LUC) dynamics over the last few decades 

have intensified farming practices on steep slopes, leading to increased deforestation and 

transformation of the landscape into a predominantly agricultural-export region (Foley et al. 2005; 

Walters 2016). This has reduced the natural land cover of the catchment related to tropical forests and 

shrublands, which play a role in hillslope hydrology and stability that control processes such as 

infiltration, hillslope runoff, and slope stability (Wohl et al. 2012; Marhaento et al. 2018). Unplanned 

housing on steep hillsides in existing urban areas has further contributed to the reduction of hillslope 

vegetation and alterations in slope geomechanics and hydrology (Holcombe 2006; Anderson et al. 2011; 

Bozzolan et al. 2023). These changes in land use within the Soufriere catchment, coupled with projected 
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climate predictions indicating an increase in hurricane activity like Hurricane Tomas, are likely to result 

in an increase in the frequency and magnitude of rainfall-triggered landslides, debris flows, and hillslope 

erosion. It is important to assess these impacts under different climate and land use scenarios to provide 

necessary outputs for researchers, planners, and policymakers (Uusitalo et al. 2015; van Westen et al. 

2021). These outputs can be used to develop policy recommendations aimed at mitigating and reducing 

the impacts of these hazards based on projected climate and land use change trends. Such 

assessments are especially crucial for decision-making processes, as they aim to reduce the risk faced 

by communities that are already socioeconomically vulnerable to the impacts of climate change 

(Holcombe 2006; Anderson et al. 2007). 

4.2 Methodology 

The following (Table 4.1) describes the second and final stages of the modelling workflow. The second 

stage describes the methodological steps for model verification, parameter-set selection procedures, 

and subsequent sensitivity analysis (SA) of the hydrological and geotechnical input parameters of the 

behavioural simulations identified according to the experimental design described in Chapter 3. The final 

stage (stage 3) describes the methodological steps to explore climate and land use change scenarios 

according to the parameter-set selected in stage two. 

Table 4.1 Modelling workflow stages 2 and 3: model verification and sensitivity analysis (SA).  

Stage 2: Model verification and sensitivity analysis (SA) 

5.  Model verification 
(sub-catchment and 

catchment scale) 

Define and apply a suitable spatial similarity 
assessment method for internal model verification 
(e.g., ‘total area difference’ and ‘area distribution’). 

Identify the parameter-sets and associated 
simulations with the highest similarity scores with 

respect to observed hazard. 

 

Define and apply a spatial accuracy metric to the 
simulations with parameter-sets with the highest 

similarity scores (e.g., Cohen’s kappa coefficient to 
measure the spatial agreement between simulated 

and observed hazard locations).  

6. Parameter-set 
selection 

Select the parameter-set and associated simulation 
that meet the criteria for spatial similarity and 

accuracy.  

7. Sensitivity analysis 
(SA) 

For the selected model parameter-set, undertake 
sensitivity analysis to identify influential parameters 

and the impact of uncertainty on hazard 
representations. 

 

8. Sensitivity to soil 
types and land use 

variations 

For the selected parameter-set, explore the influence 
of variations in the parameters characterising different 

soil types and land use categories in terms of their 
spatial distributions within the catchment. Look for 

soils and land use (and associated subdomain areas) 
in which the hazard magnitude is most responsive to 

these parameter variations (identify the most sensitive 
land use categories for land use change scenarios). 
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Stage 3. Model application for climate and land use scenarios 

9. Explore climate and 
land use change 

scenarios 

This is the final stage, and it is now possible to 
define climate and land use change scenarios 

according to the confirmed parameter-set 
values for the catchment land use categories. 

 
The modelling workflow for stage two entails the following steps (the numbering follows on from stage 

one, steps 1-4, outlined in Table 3.1):  

Step 5. Model verification 

Model verification is performed on the top five ‘behavioural simulations’ previously identified in step 4 

(Chapter 3). These were the simulations that best replicated the total magnitude of the hazards at the 

catchment scale: the total landslide surface area (𝐴௅), total debris flow runout area (𝐴஽), and total net 

erosion (𝑁𝑒𝑡ா). In Step 5, the first level of model verification (assessing the performance within the 

catchment domain) is a spatial similarity assessment. This ranks the top five behavioural simulations 

that resulted in hazard representations according to the spatial similarity with the observed hazards. In 

this case, the verification is with respect to the post-Hurricane Tomas landslide and debris flow inventory 

polygons identified for the Soufriere catchment. The spatial similarity assessment method is described 

in section 4.2.1. The second level of verification is an accuracy assessment. This is the assessment of 

the spatial agreement between the landslide polygons estimated by the simulations with the landslide 

polygons observed in the hazard inventory. An accuracy metric is selected to calculate the accuracy 

score for the ranked simulations based on the spatial agreement between the simulated and observed 

landslides. The accuracy assessment is described in more detail in section 4.2.2. 

 

Step 6. Simulation parameter-set selection  

Define criteria to select one of the top five parametric simulations with the best proximity to the observed 

landslides in the hazards inventory. The criteria are based on the area difference between the simulated 

and observed landslides and the area distribution of the landslide sizes. The accuracy score based on 

the spatial agreement between the simulated and observed landslides was also considered as a 

criterion. It was defined the parametric simulation selection based on the mentioned criteria. The 

procedure to define the simulation selection criteria is described in section 4.2.3. 

Step 7. Sensitivity Analysis (SA) 

A Regional Sensitivity Analysis (RSA) technique was performed on the behavioural simulation selected 

according to the established criteria. The aim is to identify how the spatial representation of rainfall- 

triggered landslides, debris flows and hillslope erosion rates resulting from the selected behavioural 

simulation can be attributed to the scaling of the input parameter values established for the parametric 

simulations in Chapter 3, section 3.2.4. The goal is to identify which hydrological and geotechnical input 

parameters within the parameter-set of the selected behavioural simulation are the most sensitive in 
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representing these hazards. The method for performing Regional Sensitivity Analysis (RSA) is described 

in section 4.2.4. 

Step 8. Sensitivity to land use and soil type variations  

Sensitivity to land use and soil type parameter value variations was established in two stages. The first 

stage is parameter-set confirmation for the behavioural simulation, selected according to the criteria 

specified in section 4.2.3. The aim is to identify the hydrological and geotechnical parameter values from 

the parameter-set according to the land use categories and soil types that have influenced the spatial 

representation of rainfall-triggered landslides and their accuracy scores at the sub-catchment level. The 

second stage is the confirmation of the hydrological and geotechnical parameters by identifying their 

values according to the spatial distribution of the simulated rainfall-triggered landslides for each land 

use category and soil type in each sub-catchment. The method used to perform the parameter-set 

confirmation is described in section 4.2.5. 

Step 9. Explore land use and climate change scenarios 

This corresponds to the final stage of the modelling workflow. The aim is to verify that the confirmed 

parameter-set values for the catchment land use and soil types of the selected behavioural simulation 

will respond and provide different hazard patterns for different land use and rainfall scenarios. The 

procedure to perform the response to land use and rainfall change is described in section 4.2.6. 

4.2.1 Spatial similarity assessment  

Spatial similarity assessment methods assess the equifinality (similitude) of the resulting rainfall-

triggered landslides and debris flows resulting from the parametric simulations according to their 

"approximation" to the magnitude and size distribution of the observed landslides and debris flow in the 

hazard inventory. In Chapter 2, section 2.3.2, these methods are reviewed. In stage two of the modelling 

workflow, two spatial similarity approaches were selected: calculation of the total area difference (∆𝐴்) 

(Equation 4.1) and assessment of the area distribution. The area difference method was used to 

estimate the difference between the total hazard magnitude (e.g., total landslide surface area (𝐴௅)) and 

total magnitude (𝐴ூே௏) of rainfall-triggered landslides and debris flows estimated from the hazard 

inventory. The area difference method (∆𝐴௅) is performed to the total landslide surface area (𝐴௅) of the 

parametric simulations identified as “behavioural” in Chapter 3, section 3.3.1 since the landslides 

observed in the hazard inventory contain a greater number of observations than debris flows.  

Three classes of equifinality approaches were defined to rank the identified behavioural simulations 

according to their spatial similarity. The criteria to define these classes were based according to the total 

landslide surface area estimated in the hazard inventory. Therefore, a threshold of simulated total 

landslide surface area (𝐴௅)  ≤ 50 ℎ𝑎 will be considered acceptable in proximity to the (𝐴ூே௏) (23.6 ha) 

of the hazard inventory. This criterion considers the uncertainty in the model outputs as well as the 

spatial resolution chosen for the distribution of the input parameter values.  
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The first class included behavioural simulations with a total area difference ∆𝐴்  ≥ 50 ℎ𝑎; simulations 

with this level of difference in total landslide surface area (𝐴௅) were considered to have no approximation 

to the total landslide inventory area (𝐴ூே௏). The second class corresponded to the area difference ∆𝐴் ≥

−1 𝑎𝑛𝑑 ≤ 50 ℎ𝑎; this difference was considered proximate to the total landslide inventory area (𝐴ூே௏). 

The third class corresponded to an area difference ∆𝐴் ≤ −1 ℎ𝑎; simulations with this difference were 

considered to be underestimates of the total landslide inventory area (𝐴ூே௏). Parametric simulations 

with area differences ∆𝐴் ≥ −1 𝑎𝑛𝑑 ≤ 50 ℎ𝑎 were ranked from lowest to highest difference. The total 

area difference ∆𝐴௅ is described as follows:  

∆A் =  Aୗ୍୑ −  A୍୒୚ Equation 4.1 

Where ∆் is the total area difference, 𝐴ௌூெ is the total simulated landslide surface area (𝐴௅) ℎ𝑎 and 𝐴ூே௏ 

is the total landslide surface area (ℎ𝑎) estimated from the hazard inventory. The advantage of this 

method is that also can calculate the area difference ∆𝐴஽ for debris flow areas in case of using this 

hazard for verification purposes.  

The second spatial similarity assessment approach considered the statistical distributions of individual 

landslide sizes. This was achieved by comparing histograms of simulated versus observed landslide 

sizes. The aim is to identify simulations that resulted in an approximate estimation of landslide size 

distribution observed in the hazard inventory.  

4.2.2 Spatial accuracy assessment  

The spatial accuracy assessment was performed using the spatial overlapping method described in 

Chapter 2, section 2.3.2.2. The aim is to calculate the spatial agreement between the simulated and 

observed landslide polygons that were distributed within the catchment. Cohen's kappa coefficient (κ) 

(Equation 4.2) was selected as an accuracy metric to assess the degree of spatial agreement between 

simulated and observed landslide polygons. This coefficient corresponds to a skill score coefficient that 

measures the inter-rater reliability of categorical data (Landis & Koch, 1977). The Cohen's kappa 

coefficient (κ) scores can be interpreted as poor agreement with scores ≤ 0.2, fair agreement with scores 

between 0.21 to 0.4, moderate agreement with scores between 0.41 to 0.6, good agreement with scores 

between 0.61 to 0.8, and very good agreement with scores between 0.81 to 0.1. Cohen's kappa 

coefficient (κ) is described as follows:     

k =  
P଴ − Pୣ

1 − Pୣ
  

where P଴ =  
TP + TN

Catchment area
 and Pୣ =  

[(TP + TN)(TP + FP)(TN + FN)(TN + FP)

(Catchment area)ଶ
 

 

Equation 4.2 

Where 𝑃଴ is the proportion of observed agreements and 𝑃௘ is the proportion of expected agreements by 

random chance. The proportions of the observed and expected agreements were derived according to 

a confusion matrix (Appendix B.2). True Positive (TP), False Positive (FP), and False Negative (FN) 

values were derived according to the spatial overlapping method, and True Negative (TN) values were 
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established according to the tolerance level (Figure C.2). Agreement scores were assessed according 

to the strength of the agreement categories for Cohen's kappa coefficient (κ). 

The uncertainty introduced in the OpenLISEM hazard model input parameters affected the location and 

spatial distribution of the simulated rainfall-triggered landslides in the resulting behavioural parametric 

simulations. This produces a mismatch in the spatial overlap between the simulated and inventory 

landslide polygons, which affects the calculation of accuracy metrics. Therefore, a tolerance level was 

necessary to assess the spatial overlap between the simulated and observed landslide polygons. The 

tolerance level was defined according to two main criteria. The first corresponds to establishing a 

tolerance area around the landslide polygons from the hazard inventory, and the second involves 

excluding the flat areas within the catchment (where landslide source areas would not be expected). 

The tolerance area was defined as the buffer or influence area of the landslide polygons identified from 

the hazard inventory. The calculation of the tolerance area was performed using a fuzzy membership 

function that assesses the neighbouring cells with more membership to the landslide inventory polygon 

boundary through a distance decay function (Mead et al. 2021). (Figure C.2). Neighbouring cells > 0.6 

meters were selected from the landslide inventory polygon boundary as tolerance areas. Flat catchment 

areas were excluded if they were below hillslopes of 15 degrees. The areas that met this condition were 

set as the True Negative (TN) values (Figure C.4). 

4.2.3 Simulation parameter-set selection criteria 

Based on the spatial similarity scores (section 4.2.1) and accuracy assessment scores (section 4.2.2), 

the next step was to select the simulation that provided the most similar hazard prediction to those 

observed in the hazard inventory. In the Soufriere catchment, model verification and parameter-set 

selection were performed with respect to the landslide polygons available in the hazard inventory. Three 

selection criteria were used: 

 lowest total area difference ∆𝐴்  

 best area distribution fit between simulated and observed hazard  

 Cohen's kappa coefficient (κ) agreement scores  ≥ 0.21 (fair agreement)  

The parametric simulation that meets these three criteria will be selected as a behavioural simulation as 

its parameter-set provides the best spatial representation of the rainfall-triggered landslides observed in 

the Soufriere catchment during Hurricane Tomas, and the observed debris flows, and hillslope erosion 

rates are within reasonable representation bounds (as established in step 4). 

4.2.4 Sensitivity Analysis (SA) 

Regional Sensitivity Analysis (RSA) was performed for the selected behavioural simulation. The aim is 

to calculate sensitivity indices to determine the most sensitive hydrological and geotechnical input 

parameters from the selected behavioural simulation. The input parameters were divided into two 

categories: ‘Behavioural’ and ‘Non-behavioural.’ In RSA, ‘Behavioural’ (acceptable) and ‘non-
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behavioural’ (poor) parameters are derived from Cumulative Density Functions (CDFs) (Equation 4.3) 

according to a prescribed threshold (Sarrazin et al. 2016).  

The threshold was set according to the values of the total landslide surface area (𝐴௅), total debris flow 

runout area (𝐴஽), and total net erosion (𝑁𝑒𝑡ா) resulting from the selected behavioural simulation. From 

the CDFs, a sensitivity index was estimated by measuring the difference between the behavioural and 

non-behavioural CDFs curves. This difference is calculated by measuring the maximum vertical distance 

between the CDFs curves using the Kolmogorov-Smirnov (KS) statistic, which can be used to rank the 

input parameters (Bozzolan et al. 2020). The larger the distance between the CDFs curves, the more 

influential the factor. The sensitivity index is expressed as follows: 

𝑠௜ =  𝑚𝑎𝑥௫௜ห𝐹௜
஻(𝑥௜ − 𝐹௜

஻ത (𝑥௜)ห Equation 4.3 

Where 𝑠௜ is the sensitivity index, 𝐹௜
஻(𝑥௜) is the behavioural CDF, and 𝐹௜

஻ത (𝑥௜) is the non-behavioural CDF.  

The sensitivity index (𝑠௜) varies from 0 to 1; a high value indicates that the variation input parameters 

significantly influence the spatial representation of landslides, debris flows, and net erosion rates. The 

robustness of the sensitivity index was assessed using the bootstrap technique. The robustness analysis 

estimates whether the sensitivity indices are independent of the specific input-output sample (Pianosi 

and Wagener 2018). The bootstrapping randomly draws N samples from the available data to compute 

the K-S statistics for each input parameter. The bootstrap was performed using the Sensitivity Analysis 

For Everybody (SAFE) toolbox (Pianosi et al. 2015) in MATLAB with N = 100 and using a confidence 

interval of 95%, as established in the code. 

4.2.5 Sensitivity to land use and soil types variation 

The sensitivity to soil type units and land use category value variation was determined by assessing the 

spatial distribution of rainfall-triggered landslides resulting from the selected behavioural simulation for 

each soil type unit and land use category. The sensitivity to soil type units and land use category value 

variation was determined by assessing the spatial distribution of rainfall-triggered landslides resulting 

from the selected behavioural simulation for each soil type unit and land use category. Units and 

categories with a large number of landslide spatial distributions were established as soil type units and 

land use categories sensitive to the influence of rainfall-triggered landslides, debris flows, and hillslope 

erosion hazards. The values of the hydrological and geotechnical input parameters were identified for 

each sensitive unit and category, and the most influential soil type unit and land use categories were 

identified according to the RSA results. 

4.2.6 Explore land use and climate change scenarios  

The final step in the modelling workflow is to explore the catchment response to different climate and 

land use scenarios using the parameter-set of the selected behavioural simulation. Once the parameter-

set value distribution for soil type units and land use categories of the Soufriere catchment was 

determined, the response of the catchment to different rainfall events and land use scenarios was 
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assessed by elaborating a matrix that incorporated hypothetical land-use scenarios combined with 

rainfall events of different intensities and durations (Table C.2). Whitin the matrix, the response to land 

use change scenarios was assessed through the calculation of the percentage of change (Equation 4.4) 

which estimates the increase or decrease of the total landslide surface area (𝐴௅), total debris flow runout 

area (𝐴஽), and total net erosion (𝑁𝑒𝑡ா) for each scenario. 

∆% =
(𝑉ଵ − 𝑉ଶ)

|𝑉ଵ|
∗ 100 Equation 4.4 

Where ∆% is the percentage of change, 𝑉ଵ is the hazard magnitude under current land use and 𝑉ଶ is the 

hazard magnitude for each defined land use change scenario. The magnitude of each hazard was 

estimated according to the hazard metrics proposed in Chapter 3, section 3.2.6. 

According to the current land use of the Soufriere catchment, i.e., the land use layer used to distribute 

hydrological input parameters in the OpenLISEM hazard model, two land use change scenarios were 

proposed. The first corresponds to the change in the categories from natural tropical forest to mixed 

farming and forest. This scenario was proposed assuming that deforestation of natural tropical forests 

by the expansion of agriculture is susceptible to increase the frequency and magnitude of rainfall-

triggered landslides, debris flows, and hillslope erosion observed under current land use. This 

hypothesis is based on studies by Cox et al. (2006) and Walters (2016), which showed evidence that 

the decrease in natural forests to the detriment of agriculture has increased the hillslope erosion rates 

of the Soufriere catchment. The second scenario corresponded to a change in the units of mixed farming 

and forests to natural tropical forests. This scenario suggests that the forestation of degraded hillslopes 

by agriculture will reduce the frequency and magnitude of rainfall-triggered landslides, debris flows, and 

hillslope erosion (Persichillo et al. 2017) observed under the current land use of the Soufriere catchment. 

The change in land use units implies a change in the values of the hydrological input parameter values 

for the mentioned land use categories. For the proposed scenarios, it was only modified the most 

sensitive input parameter values identified for land use categories according to the Regional Sensitivity 

Analysis (RSA) performed to the selected parameter-set.  

The response of the proposed land use change scenarios to rainfall change was assessed according to 

the Hurricane Tomas rainfall event and rainfall events of derived from an intensity–duration–frequency 

relationship (IDFs) obtained from Klohn–Crippen (1995) (Figure C.5). The selected rainfall events 

correspond to a 24-hour rainfall with a total volume of 252 mm, a 10-hour rainfall with a total volume of 

200 mm and a 5-hour rainfall with a total volume of 160 mm. Synthetic rainfall events were performed 

to recreate the selected events (Figure C.5). Hence, eight scenarios were proposed to assess the 

response of land use change to the selected rainfall events (Table C.2).  
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4.3  Results 

4.3.1 Spatial similarity ranking  

Five parametric simulations resulted within the criteria of area difference ∆𝐴் determined as proximate 

to the total landslide inventory area (𝐴ூே௏) (Table 4.2).  

Table 4.2 Ranking of parametric simulations with hazard area difference scores in red font. 

Parametric 
simulations 

Catchment 
discharge 

(𝒎𝟑) 

Landslide 
surface 

area 
𝑨𝑺𝑰𝑴  (𝒉𝒂) 

Landslide 
inventory 

area 
𝑨𝑰𝑵𝑽  (𝒉𝒂) 

∆𝑨𝑻 
(ha) 

Debris 
flow 

runout 
area (𝒉𝒂) 

Debris flow 
inventory 
area (𝒉𝒂) 

∆𝑨𝑻 
(ha) 

Net erosion 
(𝒕𝒐𝒏. 𝒎ି𝟐) 

SIM22 76059.2 23.1 23.6 -0.5 3.8 6.02 2.3 -240.4 
SIM25 76059.2 23.2 23.6 -0.4 0.4 6.02 5.6 -197.7 
SIM32 2678279.4 65.2 23.6 41.6 22.3 6.02 16.3 -1306.2 
SIM35 2757857.9 66.6 23.6 43.0 24.2 6.02 17.2 -1193.9 
SIM19 1646415.9 69.3 23.6 45.7 9.4 6.02 3.4 -792.1 

 

The parametric simulations with the lowest area difference ∆𝐴் corresponded to simulations 22 and 25. 

These simulations obtained an area difference ∆𝐴் of -0.5 and -0.4 ha for total landslide surface areas 

and an area difference ∆𝐴் of -2.2 and -5.6 ha for total debris flow runout areas (Table 4.2). Negative 

values indicate that the total landslide surface areas and total debris flow runout areas were 

underpredicted and below the total area estimated for both hazards in the inventory. Similarly, both 

simulations obtained the same results for catchment discharge (Table 4.2). In relation to the total net 

erosion rates (𝑁𝑒𝑡ா), simulation 22 obtained -240.4 (𝑡𝑜𝑛. 𝑚ିଶ) which are mainly deposition values. 

Instead, simulation 25 obtained the lowest values of -197.7 (𝑡𝑜𝑛. 𝑚ିଶ) (Table 4.2). Regarding the rest 

of the ranked parametric simulations (Table 4.2), despite being within the criteria of area difference ∆𝐴் 

the area difference for landslide areas ∆𝐴௅ and debris flows ∆𝐴஽ was too broad to obtain a similarity with 

the landslides and debris flows registered within the hazard inventory.  

4.3.2 Area distribution comparison  

Figure 4.1 compares the area distribution between the simulated landslide sizes from simulations 22 

and 25 with the observed landslide sizes in the hazard inventory. The comparison indicates that the 

landslide sizes from simulation 22 obtained almost the same size distribution pattern as the landslides 

observed in the hazard inventory. Most simulated landslides were between 0 and 0.5 ha, between 0.5 

and 1 ha, and ≥ 1 and  ≤ 3.5 ha, which is the same as the landslide inventory area distribution. However, 

in simulation 22, an under-prediction was observed for sizes between 0 and 0.5 ha. Regarding 

simulation 25, the same size distribution pattern was observed – the only difference was an 

overprediction of the simulated landslides for sizes between 0 and 0.5 ha and between 0.5 and 1 ha. 

For areas ≥ 1 ha the simulated landslide sizes followed the same pattern as in simulation 22. 

These results indicate that simulations 22 and 25 obtained the most proximate area distribution with 

landslides triggered by Hurricane Tomas. However, despite obtaining the best fit between the area 

distributions, the spatial distribution of the landslides resulting from simulations 22 and 25 did not follow 
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the same spatial location as the landslides observed in the hazard inventory. Within the Soufriere 

catchment, simulated landslide locations were close to, but not overlapping with, the observed 

landslides; or in catchment areas where no landslides were observed during Hurricane Tomas. These 

differences might be due to uncertainties in the topography (DEM) or hydrological and geotechnical 

input parameter value spatial distribution for soil types unit and land use categories. 

 

 

Figure 4.1 Landslide spatial distribution and area comparison: (a) landslide spatial distribution for 

simulation 22, (b) area distribution for simulation 22, (c) landslide spatial distribution for simulation 

25, (d) area distribution for simulation 25. 

 

4.3.3 Accuracy assessment 

Table 4.3 illustrates the Cohen’s kappa coefficient (κ) scores for the ranked simulations. In section 4.3.2, 

it was shown that simulations 22 and 25 obtained the most proximate area distribution for the landslides 

observed in the hazard inventory. However, the spatial location of the landslides from these simulations 

did not follow the same pattern as the observed landslides resulted from Hurricane Tomas within the 
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catchment. In these simulations, the landslide locations were sometimes very close to the observed 

landslides, without overlapping. The introduction of tolerance levels to account for uncertainty in the 

landslide inventory mapping process (buffer zones around the observed landslides polygons) increased 

the overlap for these landslide locations and improved the accuracy scores for simulations in which 

modelled slope failures were close to an observed landslide. This is the case for simulation 22, which 

achieved a fair agreement score of 0.21 and simulation 25 achieved a poor agreement score of 0.16. 

For parametric simulations with broad area difference ∆𝐴௅  ≥ 41.6 ha. Accuracy scores with fair 

agreement between 0.21 and 0.23 were identified. These corresponded to simulations 32, 35 and 19. 

However, these accuracy scores do not specify whether the simulated landslides are similar to the 

landslides observed in the hazard inventory, such as those identified in simulations 22 and 25. For these 

simulations (Table 4.3), the accuracy scores were highly influenced by the uncertainties introduced in 

their parameter-sets, resulting in overestimation of the landslide sizes across the Soufriere catchment. 

The estimation of the total landslide surface area (𝐴௅) for these simulations (Table 4.3) indicates that 

the simulation of failure depths within the catchment was translated into large landslide surfaces that 

easily overlapped with the landslide polygons estimated from the hazard inventory. This influenced the 

spatial overlap between these polygons increasing the accuracy score for these simulations.  

Table 4.3 Accuracy score values. 

Parametric 
simulations 

TP (True 
Positive) 

(ha) 

FN (False 
Negative) 

(ha) 

FP (False 
Positive) 

(ha) 

TN (True 
Negative) 

(ha) 

Landslide 
area 

𝑨𝑳  (𝒉𝒂) 

Area 
difference 

∆𝑨𝑻 

Kappa 
coefficient 

(k) 
SIM22 4.43 26.06 8.3 1343.16 23.1 -0.4 0.21 

SIM25 3.09 25.71 8.03 1345.12 23.2 -0.5 0.16 

SIM32 6.64 43.17 10.88 1321.26 65.2 41.6 0.21 

SIM35 6.21 41.87 9.73 1324.14 66.6 43.0 0.21 

SIM19 6.05 33.06 12.22 1330.62 69.3 45.7 0.23 

4.3.4 Behavioural simulation selection  

Regarding the criteria for parameter-set selection defined in section 4.2.3. Simulation 22 was identified 

as "behavioural" as it meets all the criteria for parameter-set selection. The selection was based on the 

total area difference criteria (∆𝐴்), even though simulation 22 obtained a similar area difference 

∆𝐴் (−0.5 ℎ𝑎)  with respect to simulation 25 ∆𝐴் (−0.4 ℎ𝑎). Simulation 22 obtained the lowest area 

difference ∆𝐴் (−2.2 ℎ𝑎) between the total debris flow runout areas (𝐴஽) and the total runout areas 

estimated from the hazard inventory. Moreover, the best fit was obtained with the landslide area sizes 

observed in the hazard inventory where most of the rainfall-triggered landslides sizes distributed across 

the Soufriere catchment were between 0 and 0.5 ha, between 0.5 and 1 ha, and ≥ 1 and  ≤ 3.5 ha, 

which is the same as the landslide inventory area distribution. Moreover, simulation 22 obtained the 

highest accuracy score according to Cohen’s kappa coefficient (κ) with a fair agreement score of 0.21 

in relation to simulation 25 which obtained a poor agreement score of 0.16. Therefore, parametric 

simulation 22 was selected as the behavioural simulation that achieved the best spatial representation 

of the landslides observed in the hazard inventory for the Soufriere catchment. 
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4.3.5 Sensitivity Analysis (SA) 

Figure 4.2 illustrates the sensitivity indices (S.I) for the hydrological input parameters for land use and 

soil types and the geotechnical parameters for soil types corresponding to the parameter-set of the 

behavioural simulation (simulation 22) selected in the previous section 4.3.4. From this parameter-set, 

it was identified that the most influential input parameters (highest sensitivity index) in the representation 

and magnitude of the total landslide surface area (𝐴௅), total debris flow runout area (𝐴஽), and total net 

erosion (𝑁𝑒𝑡ா) estimated in simulation 22 corresponded in order from highest to lowest sensitivity to 

saturated hydraulic conductivity (𝑘௦ଵ) for land use; saturated moisture content (𝜃௦ଶ) for soil types and 

soil internal friction angle (∅ᇱ) for soil types. The less influential input parameters (low sensitivity index) 

corresponded to saturated hydraulic conductivity (𝑘௦ଶ) for soil types; saturated moisture content (𝜃௦ଵ) 

for land use and soil cohesion (𝑐ᇱ) which varies according to soil types. High sensitivity values (S.I) 

identified for these parameters indicated that within the parameter-set of simulation 22, the initial values 

of saturated hydraulic conductivity (𝑘௦ଵ), had the highest importance in determining the magnitude 

related to landslide surface area (𝐴௅),  debris flow runout area (𝐴஽), and net erosion (𝑁𝑒𝑡ா) among all 

the input parameters. This implies that changes in saturated hydraulic conductivity (𝑘௦ଵ) values are likely 

to have a more significant impact on the magnitude of these hazards than changes in the other input 

parameters within the set. On the other hand, soil cohesion (𝑐ᇱ) values (with a score of 0.21) have the 

lowest influence among all the input parameters, indicating that it may have a weaker influence on the 

magnitude of the simulated rainfall-triggered landslides debris flows and net erosion rates within the 

Soufriere catchment. These parameters are essential for identifying the spatial distribution of sensitive 

values for land use categories and soil type units. In general, the sensitivity indices (S.I) estimated 

through the bootstrap method with 95% confidence indicated the robustness of the results. However, as 

shown in Figure 4.2, the confidence intervals of the sensitivity indices corresponding to the input 

parameters still overlap despite increasing the sample size to (N=100).  

 

Figure 4.2 Sensitivity indices (S.I) for key input parameters. The bars correspond to the sensitivity 

indices mean value estimated with bootstrapping while the vertical lines at the top bar represent the 

confidence interval for each parameter. 
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4.3.6 Parameter set confirmation: sensitivity to land use and soil type variations 

In section 4.3.5, the most and least sensitive hydrological and geotechnical input parameters for land 

use and soil types were identified for the selected behavioural simulation (simulation 22). Therefore, it 

is important to identify their value distributions according to the soil type units and land use categories 

of the Soufriere catchment area. Figure 4.3 shows the value distribution for the hydrological input 

parameters according to land use categories. The most sensitive land use categories were identified 

according to the spatial distribution of rainfall-triggered landslides resulting from simulation 22 (Figure 

4.4). From these results, it was identified that the spatial distribution of the simulated rainfall-triggered 

landslides was concentrated in land use categories corresponding to natural tropical forests, mixed 

farming and forest, and densely vegetated farming (Figure 4.4). However, concerning landslide sizes, 

the largest magnitudes were observed within the natural tropical forest category, and smaller 

magnitudes were observed in categories such as mixed farming and forest, intensive farming (25%), 

and densely vegetated farming (Figure 4.4). The differences in landslide magnitude are explained by 

the high sensitivity of saturated hydraulic conductivity (𝑘௦ଵ) values for land use according to the Regional 

Sensitivity Analysis (RSA) results in section 4.2.4. According to the spatial distribution of the 𝑘௦ଵ) values 

for each land use category (Figure 4.3), the highest value corresponds to natural tropical forest 

(4.397𝑥10ିଶ 𝑚𝑚. 𝑠ିଵ). This was related to the distribution of simulated rainfall-triggered landslides within 

this category, in which the largest landslide magnitudes were observed. Therefore, the saturated 

hydraulic conductivity (𝑘௦ଵ) value (Figure 4.3a) for natural tropical forest have significant impacts on the 

magnitude of rainfall triggered landslides, debris flows and hillslope erosion. In relation to the value 

distribution of saturated moisture content (𝜃௦ଵ) (Figure 4.3b), it was observed that the values were 

almost equally distributed within the land use units. However, from the Regional Sensitivity Analysis 

(RSA) results, this parameter was one of the least influential factors in hazard magnitudes within the 

parameter set. 

  

Figure 4.3 Parameter value distribution for land use. (a) Saturated hydraulic conductivity, (b) 

Saturated moisture content. The symbol ( ) indicates highly sensitive soil type units.  
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Figure 4.4 Land use for the Soufriere catchment. 

 

For the soil types, Figure 4.5c shows the value distribution of saturated hydraulic conductivity (𝑘௦ଶ), 

which indicates that the highest value corresponds to the unit of Calfourc Silty Loam and Panache Silty 

Clay Loam (Figure 4.6). For the rest of the soil units, the values were equally distributed, except for 

Casteau gravelly Bouldery, which had the lowest value. From the Regional Sensitivity Analysis (RSA) 

results, the value distribution of this parameter for soil types was less sensitive within the parameter-set 

of the simulation 22. Concerning the Saturated moisture content values (𝜃௦ଶ) (Figure 4.5d), the highest 

values corresponded to the Ivrogne Stony Clay and Rabot Clay. However, within these soil types, the 

distribution of the largest landslide magnitude was registered within the Ivrogne Stony Clay unit (Figure 

4.6). For the rest of the soil type units, the values were distributed equally, except for Casteau gravelly 

Bouldery, which had the lowest value. The Regional Sensitivity Analysis (RSA) results indicated that 

this parameter was one of the most sensitive to the influence of rainfall-triggered landslide magnitudes. 

This suggests that within the value space of this parameter, the value corresponding to Ivrogne Stony 

Clay was the most sensitive, according to the number of landslides distributed within this unit (Figure 

4.6). For the case of soil cohesion (𝑐ᇱ) and soil internal friction angle (∅ᇱ), the value distribution was 

equally distributed within the total soil type units. Nevertheless, according to the RSA results, the soil 

internal friction angle (∅ᇱ) was the most sensitive, whereas the soil cohesion was less sensitive to the 

magnitude of the simulated rainfall-triggered landslides. 

From the parameter value distribution for the land use categories and soil types units, and the 

identification of the most and less sensitive parameters for the parameter-set of simulation 22. It was 

observed that the parameter value combination of saturated hydraulic conductivity (𝑘௦ଵ) for the natural 

tropical forest, saturated moisture content (𝜃௦ଶ)  and internal friction angle (∅ᇱ) for Ivrogne Stony Clay 
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influenced the spatial distribution of rainfall-triggered landslides of a bigger magnitude and size. 

Therefore, the simulation of the spatial distribution of landslides is highly sensitive to (𝑘௦ଵ), (𝜃௦ଶ) and 

(∅ᇱ) ' values assigned to different soil types and land uses - especially combinations such as Ivrogne 

Stony Clay and Natural Forest in this case. 

 

  

  

Figure 4.5 Parameter values for soil types. (c) Saturated hydraulic conductivity, (d) Saturated 

moisture content, (e) Soil cohesion, (f) Soil internal friction angle. The symbol ( ) indicates highly 

sensitive soil type units.  
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Figure 4.6 Soil types for the Soufriere catchment. 

 

4.3.7 Responsiveness of the Soufriere catchment to land use and rainfall change 

Figure 4.7 illustrates the magnitudes and percentage of changes of the total landslide surface area (𝐴௅), 

total debris flow runout area (𝐴஽), and total net erosion (𝑁𝑒𝑡ா) for different land use and rainfall change 

scenarios modelled for the Soufriere catchment. Simulations relating to the current land use (i.e., the 

land use layer used to distribute hydrological input parameters in the OpenLISEM hazard model) are in 

the second row of Figure 4.7, and the rainfall magnitudes decrease from left to right. The hazard 

magnitudes relating to the Hurricane Tomas rainfall event and Simulation 22, as selected in step 6 of 

the modelling workflow, are in column 1, row 2.  

Concerning the catchment-wide hazard magnitudes estimated from simulation 22, it was observed 

under the current land use a decrease in the total landslide surface area (𝐴௅), total debris flow runout 

(𝐴஽), and total net erosion (𝑁𝑒𝑡ா) magnitudes for 24, 10 and 5-hour rainfall events (Figure 4.7). For 

example, for 24-hour rainfall, the simulated total landslide surface area was decreased by -60.6%, the 

total debris flow runout area by -30.5% and the total net erosion rates by -29.6% in relation to the 

simulated hazards magnitudes of Hurricane Tomas rainfall event. Despite the reduction in the spatial 

magnitude of the hazards, the spatial location followed the same spatial distributions simulated for the 

Hurricane Tomas event. The same pattern was also observed for rainfall events of 10 and 5 hours. For 

the 10-hour rainfall, the hazard magnitude with respect to the 24-hour rainfall decreased by -42.8% for 

landslide surface areas, -12.8% for debris flow runout areas, and -25.7% for total net erosion rates. On 

the other hand, the landslide magnitude for the 5-hour rainfall event increased by +18.3% with respect 

to the 10-hour rainfall event. However, the debris flow magnitude decreased by -25%, and the net 



Chapter 4. Developing the workflow for model verification and investigation of catchment response to climate and 
land use change 

96 
 

erosion rates decreased by -11.1%. The previous results indicate that under current land use, the 

distribution of landslides follows the same distribution pattern as the simulated Hurricane Tomas. The 

only difference was that the landslide size and magnitude depended on the intensity and duration of the 

rainfall event, such as in the case of the 5-hour rainfall event. 

The second set of scenarios to be explored were cases in which land use was changed. First, natural 

tropical forests were changed to mixed farming and forests. This change was performed by changing 

the saturated hydraulic conductivity (𝑘௦ଵ) values of natural tropical forest by the values of mixed farming 

and forests. The responsiveness of the Soufriere catchment to rainfall events such as Hurricane Tomas 

and 24-, 10-, and 5-hour rainfall indicated a change in the spatial distribution of rainfall-triggered 

landslides and an increase in total landslide surface area (𝐴௅), total debris flow runout (𝐴஽), and total 

net erosion (𝑁𝑒𝑡ா) magnitudes for more extreme rainfall events (higher intensities and durations). For 

example, when this land use change was imposed and the same Hurricane Tomas rainfall event was 

applied as before, the simulated total landslide surface area (𝐴௅) increased by +256.7%, total debris 

flows runout area (𝐴஽) by +1457%, and total net erosion (𝑁𝑒𝑡ா) by +371% when compared with the 

current land use (Figure 4.7 – red arrows). This means that debris flows have a significantly greater 

increase in magnitude than landslides, and erosion also has a greater magnitude increase than 

landslides. 

Similarly, for the 24-hour rainfall event, the total landslide surface area (𝐴௅),  increased by +19.7%, the 

total debris flow runout area (𝐴஽) by +9.9%, and the total net erosion (𝑁𝑒𝑡ா)  by +9.3% when compared 

with the current land use. A similar increase was observed when comparing the imposed land use 

change with the current land use for the 10-hour rainfall event. Here, the landslide magnitude increased 

by +6.1%, the debris flow by +6.2%, and the net erosion rate by +7.7%. Again, for the case of a 5-hour 

rainfall, there is also a simulated increase in the hazard magnitude with +1.7% for landslides, +16.6% 

for debris flows, and +10.1% for net erosion rates. The most dramatic increase in the simulated hazard 

magnitudes under land use change occurred with the most extreme rainfall event (Hurricane Tomas), 

whereas the lower magnitude 5-hour rainfall event saw only modest increases in hazard magnitudes of 

approximately 6.1% to 7.7%. For Hurricane Tomas and the 24-hour rainfall event, the hazard that was 

simulated to have the greatest increase in magnitude compared with those simulated under current land 

use was landslides. For the 10-hour and 5-hour events, erosion had the greatest increase in magnitude. 

Under this land-use scenario, the spatial distribution of landslides followed the same location pattern as 

that simulated for current land use. In this scenario, the magnitude of each landslide or debris flow 

increased considerably compared with those simulated under current land use. This is in line with the 

hypothesis set for this land use scenario that the loss of natural forest areas and their replacement with 

farmland increases the magnitude and frequency of rainfall-triggered landslides, debris flows, and 

hillslope erosion hazards.  

The bottom row of Figure 4.7 indicates a scenario in which mixed farming and forests are changed to 

natural tropical forests. This change was performed by changing the saturated hydraulic conductivity 

(𝑘௦ଵ) values of mixed farming and forests by the values of natural tropical forests. The resulting response 

to rainfall events, such as Hurricane Tomas, showed a decrease in the total landslide surface area (𝐴௅), 
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total debris flow runout area (𝐴஽), and total net erosion (𝑁𝑒𝑡ா) magnitudes (Figure 4.7). For example, 

in response to Hurricane Tomas, the total landslide surface area (𝐴௅) decreased by -16%, and the total 

debris flow runout area (𝐴஽) had a medium increase of +13.1% which is marginal with respect to the 

debris flow magnitude identified within the current land use (shown in Figure 4.4), and the total net 

erosion (𝑁𝑒𝑡ா) decreased by -4%. On the other hand, in response to a 24-hour rainfall event, the 

landslide magnitude decreased by -2.2%, debris flow by -5.3% and net erosion rates by -4.2% compared 

with current land use. The catchment responsiveness to 10 and 5-hour rainfall events also showed a 

decrease in hazard magnitude (Figure 4.7). In response to the 10-hour rainfall event, the landslide 

magnitude decreased by -44.8%, the debris flow by -25%, and the net erosion rate decreased by -2.7%. 

Finally, for the 5-hour rainfall event, the landslide magnitude decreased by -15.5%, and the debris flows, 

and net erosion rates increased by -8.3% and -2.8%, respectively. As observed for current land use and 

the change from natural tropical forest to mixed farming and forest, the hazards followed the same 

location, and their magnitude was reduced according to the intensity and duration of the rainfall event. 

The responsiveness in hazard magnitude for this land use scenario reduced the magnitude of landslides, 

debris flows, and net erosion rates, indicating that the conservation of natural land cover can be an 

effective multi-hazard reduction measure for hillslopes that are highly susceptible to these types of 

hydrological hazards interactions. 

 

Figure 4.7 Multi-hazard response of the Soufriere catchment to land use and rainfall change. 
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4.4 Discussion  

4.4.1 Behavioural simulation selection 

In the stage two of the modelling workflow, the incorporation of the equifinality criteria through the 

application of the area difference (∆𝐴்) and the spatial similarity method helped to identify the 

parametric simulations with more proximity to the landslide registered during Hurricane Tomas. 

Incorporating these criteria is essential to identify the uncertainties propagated in the model results 

According to Khatami et al. (2019), the application of the methodologies to assess the model equifinality 

is based on the realism of the represented hazards according to the response of the model structures 

to parameter sets. Therefore, there is a problem with decidability in determining which parametric 

simulations are more feasible to represent observations (Lane et al. 2021). In the spatial similarity 

method applied in this chapter, the decidability based on the attributes of area difference and area 

distribution determined the credibility of the landslide representations for the Soufriere catchment. For 

example, for parametric simulations with area difference ∆𝐴௅  ≥ 41.6 ha, it was identified that the 

simulated landslide sizes were overpredicted concerning the observed landslides. These results helped 

to identify the parametric simulations with high uncertainties in hazard representations that do not 

provide realistic results due to (e.g., extreme soil cohesion values, internal friction angle or saturated 

moisture content). However, for parametric simulations with area difference ∆𝐴௅  ≤ −0.4 ha, it was 

identified that simulated landslides resulted with more similarity to the observed landslides. The area 

distribution helped to confirm this similitude by identifying the fit of the landslide sizes in which most of 

them were between 0 and 0.5 ha, between 0.5 and 1 ha and ≥ 1 ha, the same as the landslide inventory 

area distribution. The setting of scaling factors within stage one of the modelling workflow for each input 

parameter contributed to controlling the maximum and minimum variations for each input parameter 

value and, therefore, and control the uncertainty in the hazard representation. This is an important 

consideration when parameter value ranges are explored, as the modification of initial values affects the 

model outputs, leading to increased uncertainty in the predictions or simulations. 

Regarding the accuracy assessment, Cohen's kappa coefficient (κ) indicated accuracy scores with a fair 

agreement between 0.21 and 0.23 for the five ranked parametric simulations. Similar score were 

identified by Van den Bout et al. (2018) who applied the kappa coefficient to assess the overlap between 

simulated and observed landslides for the Messina catchment in Italy, obtaining kappa scores of 0.22. 

However, it was identified that some of these accuracy scores were biased by the uncertainties reflected 

in the hazard representations. This is the case of parametric simulations with area difference ∆𝐴௅  ≥

41.6 ha. For example, for these simulations, the application of the spatial overlapping method to estimate 

the accuracy scores overlapped overpredicted landslide polygons with observed landslide polygons 

increasing the values of TP (True Positive) values impacting the accuracy scores. Therefore, high 

accuracy score values for these simulations do not necessarily reflect their similarity with the observed 

hazards. For the case of parametric simulations with area difference ∆𝐴௅  ≤ −0.4 ha, the accuracy 

scores were initially low due to low overlap between the simulated and observed landslide polygons. It 

was identified that this low overlap came from the uncertainties reflected in these simulations that 



Chapter 4. Developing the workflow for model verification and investigation of catchment response to climate and 
land use change 

99 
 

impacted the landslide spatial distribution and their sizes. It was observed landslide locations very 

proximate to the observed landslides but with no possibility of overlapping. The application of the 

tolerance level increased the overlapping of these landslide locations improving the accuracy scores.  

The results of the accuracy assessment have indicated how necessarily the incorporation of the 

equifinality principle is in the model verification process. According to Herrera et al. (2022), considering 

model equifinality is a crucial stage for model verification because it considers the effects of uncertainty 

in the model results improving the model calibration and accuracy. The application of the stage two of 

the modelling workflow for model verification applied in this chapter recognizes this principle by 

incorporating the spatial similarity method and the criteria to select the parametric simulation with the 

best similarity with an observed hazard. According to this modelling workflow, it is possible to answer 

the first question set in section 4.1 by selecting simulation 22 as the behavioural simulation that meets 

all the requirements in representing the observed landslides during Hurricane Tomas.  

4.4.2 Sensitivity Analysis (SA) and parameter set confirmation 

Performing the Regional Sensitivity Analysis (RSA) to selected behavioural simulation allowed the 

identification of the most influential input parameters that impact the spatial representation of rainfall-

triggered landslides, debris flows and hillslope erosion within the Soufriere catchment. Identifying these 

input parameters is essential to determine the most sensitive values distributed for land use categories 

and soil types that might affect the spatial representation of these hazards within the catchment. For 

example, identifying saturated hydraulic conductivity (𝑘௦ଵ) values for land use, saturated moisture 

content (𝜃௦ଶ) and internal friction angle (∅′)  for soil types as the most influential input parameters might 

explain the effects on the spatial representation of landslides within the catchment. Studies such as 

Bozzolan et al. (2020), identified the most influential parameters that affect slope stability in urbanise 

and non-urbanise slopes using +CHASM model in Saint Lucia, identifying that effective cohesion, soil 

thickness (layer1), slope angle and rainfall intensity are the main parameters affecting landslides. Other 

studies, such  Bravo-Zapata et al. (2022), have performed Regional Sensitivity Analysis (RSA) to identify 

the sensitivity of parameters on the occurrence of shallow landslides using the TRIGRS 2.0 model and 

to assess the set of parameters that influence the geometry and location of landslides, identifying that 

angle of friction, soil cohesion are the most influential parameters. 

According to Francos et al. (2003) and Pianosi et al. (2016), the implementation of sensitivity analysis 

procedures enhances the calibration and accuracy of the model predictions by "screening" the regions 

of the parameter range that provide the highest uncertainty. In the case of the Soufriere catchment, 

those regions were reflected in the spatial distribution of the hydrological and geotechnical input 

parameters values for the catchment land units and soil types. The assessment of the spatial distribution 

of the simulated landslides within the soil types and land use units helped to identify the distribution of 

these values confirming that the categories of natural tropical forest and mixed farming and forest were 

the most sensitive categories for land use and Ivrogne Stony Clay for soil types. Therefore, the spatial 

distribution of hydrological and geotechnical parameter values within these sensitive land use categories 

and soil type units influenced location and landslide sizes within the catchment. 
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According to van Vliet et al. (2016), the identification of the most sensitive units for land use and soil 

types implies a “good practice” for physics-based models that assess land use change dynamics. For 

example, for multi-hazard modelling, the no recognition of the most sensitive parameters for different 

land use categories might constrain the modelling of events or scenarios in which rainfall-triggered 

landslides, debris flows, and hillslope erosion hazards occur. Not considering the most influential 

parameters implies that assessing hydrological multi-hazard interactions will not generate accurate 

results. The parameter-set confirmation within the stage two of the modelling workflow for model 

verification identifies how the most sensitive parameter-set values from the selected behavioural 

simulation are distributed according to the land use units and soil types of the Soufriere catchment. This 

is an important step in parameterising complex models such as the OpenLISEM hazard model in which 

the representation of landslides, debris flows, and hillslope erosion depends on the response of the 

parameter-set values. 

4.4.3 Responsiveness of the catchment to land use and rainfall change scenarios  

Having verified and selected a suitable input parameter set, the final step in the workflow was to assess 

the potential impact of different land use and rainfall scenarios on the multi-hazard profile of the 

catchment. For the two modelled land use change scenarios and four rainfall scenarios the overall 

predicted response of the catchment was in line with the conceptual understanding of hydrological multi-

hazards outlined in chapters 1 and 2. For example, for the deforestation scenario the magnitude of all 

three hazards increased; whereas, when farmed land was returned to natural forest, the hazard 

magnitudes generally decreased. Similarly, for all three land use scenarios a decrease in rainfall 

magnitude led to a decrease in the simulated hazard magnitude. The modelling workflow thus enabled 

trust to be built regarding the parameter-set selection and model capability to simulate hazard 

interactions and magnitudes. Details of the catchment response for these scenarios, and implications 

for our understanding and management of these multi-hazard interactions, are discussed in the following 

paragraphs. 

The response of the current land use for the 24, 10 and 5-hour rainfall events indicated a decrease of 

the hazard magnitudes in relation to the magnitudes observed for Hurricane Tomas rainfall event. The 

application of the percentage of change showed that landslides magnitudes decreased according to the 

duration of the rainfall events. However, it was observed a medium increase of +18% for landslide 

magnitudes respect to the 10 to 5-hour rainfall. The increase in the rate of change is explained by the 

rainfall intensity estimated for the 5-hour rainfall event that was higher concerning to the 10-hour event.  

Regarding the spatial distribution of the simulated landslides, these followed the same spatial pattern in 

terms of location and size concerning the simulated landslides for Hurricane Tomas. The same decrease 

pattern was observed in the magnitude of debris flows. For example, the percentage of change of the 

debris flow magnitude observed for Hurricane Tomas decreased by -30.5% with respect to the 24-hour 

rainfall. The same tendency in reducing magnitude was observed for the 20 and 5-hour rainfall events. 

Most notably net erosion rates also reported a decrease in their magnitudes. However, it was observed 

that for Hurricane Tomas rainfall event the net erosion rates were mostly dominated by deposition and 
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for the case of the 24, 10 and 5-hour rainfall events, erosion was the most dominant process. From 

these results, it was identified the Soufriere catchment hazard is composed of the predominance of 

these hazards. 

Assuming the scenario in which the natural tropical forest is changed by mixed farming and forest the 

magnitude of landslides, debris flows, and net erosion rates showed a significant increase with respect 

to the Hurricane Tomas rainfall and to the 24, 10 and 5-hour rainfall events. The assessment of this 

scenario confirmed the assumption that changing native forests to detriment of farming areas increases 

the magnitude of these hazards. For example, assessing the hurricane Tomas rainfall event under this 

scenario it was identified a significant increase of +256.7% in landslides, +1457.8% in debris flow and 

+378.2% in net erosion rate magnitudes. These results support the evidence demonstrated for Saint 

Lucia in which the intensification of land use processes such as farming and urban settlements have 

increased the landslide activity and the frequency of debris flows and intensified the catchment sediment 

yield due to agriculture  (Bégin et al. 2014; Walters 2016) 

The scenario of changing mixed farming and forest to tropical natural forest showed a decrease in the 

hazard magnitudes. The hazard representations under this scenario confirmed the assumption 

presented in this chapter that the increase in the natural forest on degraded hillslopes by agriculture 

reduces the magnitude of landslides, debris flows, and erosion rates observed under the current land 

use of the Soufriere catchment. These results, therefore, confirm the necessity to assess these hazards 

under different land use and rainfall change scenarios to formulate mitigation plans to the impacts of 

these hazard under the current changes in climate.  

4.5  Conclusions 

In this chapter, the application of the stages 2 and 3 of the modelling workflows described in sections 

4.2, addressed answer research question 2 of this thesis (RQ2: what is the influence of catchment 

parameter variations and uncertainties on multi-hazard assessments?). the application of the second 

stage of the modelling workflow allowed to select the behavioural simulations identified in Chapter 3 

with the best parameter-set that provided the best approximation to the hazard observed for Hurricane 

Tomas. The setting of a spatial similarity method identified spatial approximation of the simulated and 

observed landslides by considering the area difference and the size distribution. The criterion 

established to rank the behavioural simulations with an area difference ∆𝐴௅ ≥ −1 𝑎𝑛𝑑 ≤ 50 ℎ𝑎 identified 

simulation 22 with the lowest area difference ∆𝐴௅ with -0.5 ha. The identified simulation indicated an 

underprediction of the total landslide areas, especially between 0 and 0.5 ha and 0.5 and 1 ha. However, 

total simulated landslide areas were between 0 and 3.5 ha the same area range as the observed 

landslides.  

The spatial similarity method indicated the effect of spatial resolution and uncertainty on the simulated 

landslides. A high accuracy score does not imply a good model response in representing the observed 

landslides. Behavioural simulations with an overprediction of landslide sizes obtained kappa coefficient 

scores with fair agreement values, whereas simulations with an underprediction of landslide sizes but 
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with a similar size distribution with the inventory obtained slight agreement scores. The introduction of 

a tolerance area to the landslide inventory polygons improved the spatial overlapping between simulated 

landslides located a few meters from an observed landslide. The tolerance area improved the kappa 

coefficient of simulation 22 with a fair agreement score of 0.21. Simulation 22 achieve the criteria 

established to select the behavioural simulation with the parameter set with more proximity to the 

observed landslides.  

The Regional Sensitivity Analysis (RSA) results indicated that no robust conclusion can be made in 

identifying the most influential parameters as the confidence intervals of the sensitivity indices of the 

input parameters of behavioural simulation 22 overlap. The sensitivity indices suggested that the totality 

of parameters has some degree of influence in representing rainfall-triggered landslides, debris flows 

and hillslope erosion hazards. The most influential parameters by the order are saturated hydraulic 

conductivity (𝑘௦ଵ) for land use, internal friction angle (∅ᇱ), saturated moisture content (𝜃௦ଶ)  and 

saturated hydraulic conductivity (𝑘௦ଶ) for soil types. The non-influential corresponded to saturated 

moisture content (𝜃௦ଵ) for land use and soil cohesion (𝑐ᇱ) for soil types.  

The parameter-set confirmation according to the land use categories and soil types units of the Soufriere 

catchment improved the parameterisation of the OpenLISEM hazard model by identifying the 

hydrological and geotechnical parameter values from simulation 22. The confirmation of parameter-set 

values for each land use categories and soil types units identified the most suitable parameters for each 

unit to represent hillslope hydrological hazards. Nevertheless, the spatial representation of these 

hazards is subject to the combination of parameter values for every raster grid cell that can provide 

different patterns of location and magnitude for each hazard.  

The establishment of land-use and rainfall change scenarios allowed the identification of different hazard 

patterns according to the confirmed parameter values for land-use and soil-type units. In scenarios 

where the natural tropical forests were changed to mixed farming and forest, the response to Hurricane 

Tomas rainfall event indicated an increase in the magnitude of landslides, debris flows, and net erosion 

rates compared to the hazard magnitude estimated in simulation 22. In scenarios where the mixed 

farming and forest were changed to natural tropical forests, the response to Hurricane Tomas rainfall 

event indicated higher hazard magnitudes. For scenarios with 24, 10 and 5-hours rainfall the response 

to the changes of natural tropical forests to mixed farming and forest indicated a decrease in landslides, 

debris flow and erosion magnitudes. For scenarios in which the mixed farming and forest were changed 

to natural tropical forests the response to 24, 10 and 5-hour rainfall indicated the same patterns as the 

previous scenarios but showed that the magnitude of landslides, debris flows, and net erosion rates 

were higher within natural tropical units. It was identified that the spatial distribution of the simulated 

hazards followed the same location pattern for the total of scenario
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5.1 Introduction  

The development and application of stage one of the modelling workflow in Chapter 3 identified 

behavioural simulations with a parameter-set more suitable for representing rainfall-triggered landslides, 

debris flows, and hillslope erosion that occurred during Hurricane Tomas. In addition, it helped to identify 

the physical characteristics of the Soufriere catchment that drove the triggering and interaction of these 

hazards. On the other hand, the development and application of the second and third stages of the 

modelling workflow in Chapter 4 helped to select the parameter-set using an equifinality approach and 

identify the most sensitive input parameters that influenced the representation of these hazards for the 

subsequent assessment of climate and land use scenarios in the Soufriere catchment.  

In the case of the Maipo sub-catchment (Figure 5.1), the impacts of the El Niño–Southern Oscillation 

(ENSO) have affected the variability of climatic events in Andean catchments in Central Chile (Garreaud 

et al. 2017; Vergara et al. 2020). These variabilities of events have been expressed in extended drought 

periods that have increased wildfires, reducing the natural land cover over hillslopes (Garreaud et al. 

2017; Soto et al. 2017) In addition, irregular rainfall events of intense and short duration have been 

recorded that have increased the number of rainfall-triggered landslides and debris flows in different 

catchments with diverse socioeconomic impacts on the population (Sepúlveda and Petley 2015; 

Vergara et al. 2020). The latest events recorded on February 25, 2017, influenced by an exceptional 

rainfall event in the Maipo sub-catchment in the metropolitan region of Santiago, caused multiple 

landslides and debris flow under the same rainfall event, causing two fatalities and infrastructure 

damage, especially to houses and roads (Marín et al. 2017). In central Chile, Andean catchments are 

located in a Mediterranean semi-arid environment, where rainfall occurs seasonally from a short period 

to hours (Moreiras and Sepúlveda 2022). Most registered extreme rainfall events are related to El Niño 

events, which have had a substantial impact on the occurrence of landslides and debris flows 

(Sepúlveda et al. 2006). In semi-arid catchments, hillslope-hydrological hazards are related to runoff 

triggered by extreme rainfall events that influence the occurrence of rainfall-triggered shallow landslides, 

debris flows, and hillslope erosion by torrential flows, making Andean catchments a multi-hazard-prone 

environment (Moreiras et al. 2021). The geological setting of these environments is composed of 

hillslopes of volcanic soils characterised by materials of various sizes, represented by sediments ranging 

in size from blocks to gravels, sands, silts, and clays (García et al. 2018). The type of sediment material 

within semi-arid catchments highly influences debris flow magnitude, sediment transport, and deposition 

(Mergili et al. 2012; Vergara et al. 2022).  

On the other hand, hillslope deforestation due to the direct impacts of climate change expressed in 

extensive drought periods have increased the occurrence of wildfires in the area, reducing the slope 

vegetation such as scrubs and natural forests (Demaria et al. 2013; Moreiras et al. 2021). Moreover, the 

growing pressure of urbanisation of rural areas and intensive agricultural systems have also modified 

the natural land cover to the detriment of urban expansion, lodging, and industrial agriculture such as 

vineyards (Schulz et al. 2010; Benavidez-Silva et al. 2021). These impacts have increased the impact 
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on hillslope erosion rates and the magnitude of the observed shallow landslides and debris flows 

(Garreaud et al. 2017; Moreiras et al. 2021; Vergara et al. 2022). 

In order to investigate the potential impacts of rainfall variability and the effects of land use change in 

the Maipo sub-catchment in the influence of rainfall-triggered landslides, debris flows and hillslope 

erosion hazard in a Mediterranean catchment, this chapter applies the complete extension of the 

modelling workflow developed and applied in Chapter 3 and Chapter 4 respectively. Therefore, this 

chapter addresses the third research question of this thesis: 

RQ3 How do hillslope hydrological multi-hazards and their interactions respond to changes in 

land use and rainfall characteristics? 

 

 

Figure 5.1 The second study site location: Maipo sub-catchment, central Chile. 
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5.2  Applying the modelling workflow  

Following the steps of the first stage of the modelling workflow developed and applied in Chapter 3 and 

the second and third stages developed and applied in Chapter 4, the modelling workflow is now applied 

to their full extent, including stages one, two, and three for the Maipo sub-catchment. The steps are 

described as follows: 

Step 1. Assemble available data for selected catchment: Identify past-triggered hazard events for 

hazard inventory elaboration. In the case of the Maipo sub-catchment, the debris flows registered for 

the rainfall event on the 25th of February 2017 were identified by creating a hazard inventory that 

identified the spatial location and magnitude of the registered debris flows. The February 25 rainfall 

event was obtained from Marín et al. (2017), where the total rainfall volume and duration were identified. 

The physical characteristics of the Maipo-sub-catchment were defined by acquiring spatial data related 

to land use, topography (DEM), soil depths, and soil types based on different open-source databases. 

For the OpenLISEM hazard model, the hydrological and geotechnical input parameter values for soil 

type units and land use categories were estimated according to a literature review of soil type 

characteristics in the Maipo sub-catchment. The procedure to assemble available data is described in 

section  5.3.1. 

Step 2. Define input parameters value ranges: The input parameter value ranges for the hydrological 

and input parameter values established for the Maipo sub-catchment were defined according to the 

scale factors for each input parameter determined for the OpenLISEM hazard model in the second stage 

of the modelling workflow in Chapter 3, section 3.2.3. The definition of parameter value ranges will be 

used to define the parameter-set combinations values for parametric simulations. These are described 

in section 5.3.3. 

Step 3. Define parametric simulations: To perform the parametric simulations for the Maipo sub-

catchment the procedure elaborated in step 3 of the stage 1 of the modelling workflow was followed. 

This involved generating an ensemble of 144 different parameter-set combinations – the ‘parametric 

simulations’ – to explore the parameter space represented by the likely parameter value ranges. The 

aim is to identify the behavioural simulations capable of reproducing the debris flows registered for the 

February 25 rainfall event. The procedure to set the parametric simulations is described in section 5.3.3. 

Step 4. Verify hazard representations at the catchment scale: The hazard spatial representation 

resulting from the parametric simulations was verified using the hazard metrics proposed in step 4 of 

stage 1 of the modelling workflow applied in Chapter 3. The aim is to verify the hazard representations 

resulting from the parametric simulations to assess the behavioural performance in terms of the ability 

of the parameter set to replicate debris flows observed in the hazard inventory elaborated from the 

observed debris flows from the 25 February rainfall event. The procedure to quantify the hazard 

representations and their magnitude is described in section 5.3.3. 
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Step 5. Model verification: For the Maipo sub-catchment, it was applied the spatial similarity method 

developed for stage 2 of the modelling workflow applied in Chapter 4. The aim is to rank the top five 

parametric simulations that resulted in debris flow representations with the best spatial similarity with 

the observed debris flows from the 25 February rainfall event. The procedure for defining the spatial 

similarity method is described in section 5.3.4. The assessment of the spatial agreement was performed 

by overlapping the simulated and observed debris flow areas. The Jaccard Index was selected as an 

accuracy metric to calculate the accuracy score for the ranked parametric simulations, based on the 

spatial agreement between the simulated and observed landslides. The accuracy assessment is 

described in more detail in section 5.3.4. 

Step 6. Parameter-set selection: The criteria defined to select the one of top five parametric 

simulations with the best proximity to the observed debris flows was based on the area difference 

between the simulated and observed debris flows and the area distribution of the debris flow sizes. The 

accuracy score based on the spatial agreement between the simulated and observed landslides was 

also considered as a criterion. It was defined the parametric simulation selection based on the 

mentioned criteria. The procedure to define the simulation selection criteria is described in section 5.3.4. 

Step 7. Sensitivity Analysis (SA): A Regional Sensitivity Analysis (RSA) technique was performed on 

the behavioural simulation selected according to the criteria established. The aim is to identify how the 

spatial representation of rainfall-triggered landslides, debris flows and hillslope erosion resulting from 

the behavioural simulation can be attributed to the scaling of the input parameter values established for 

the parametric simulations. The goal is to identify which input parameters among hydrological and 

geotechnical are the most sensitive in representing these hazards. The method to perform the Regional 

Sensitivity Analysis (RSA) is described in section 5.3.5. 

Step 8. Sensitivity to land use and soil type variations: It was performed the same procedure 

established for step 8 of the modelling workflow applied in Chapter 4. It was identified the hydrological 

and geotechnical parameter values from the selected parameter-set according to the land use 

categories and soil types units that have influenced the spatial representation of debris flows in the 

Maipo sub-catchment. The identification of the hydrological and geotechnical parameter values was 

confirmed according to the spatial distribution of the simulated debris flows for each land use category 

and soil type. The method to perform the parameter set confirmation is described in section 5.3.5. 

 

Step 9. Explore climate and land use change scenarios: Within this step, it was introduced an 

additional assessment for the selected parameter set. A re-run of the behavioural simulation selected 

according to the criteria established in section 5.3.4 was performed with a series of map reports to 

assess the behaviour of landslide surface areas, debris flow runout areas and total net erosion rates 

during the rainfall duration. The aim is to identify at which moment of the rainfall event the influence of 

an individual hazard increases the magnitude of another hazard. The procedure to perform the response 

to land use and rainfall change is described in section 5.3.6. 

The responsiveness to land-use and rainfall change was assessed following a land-use change matrix 

set in section 4.2.5, Chapter 4 that incorporates the response of the land-use units to different rainfall 
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patterns. The aim is to verify that the confirmed parameter set values will respond and give different 

hazard patterns for different land use and rainfall scenarios for the Maipo sub-catchment. The procedure 

to perform the response to land use and rainfall change is described in section 5.3.6. 

5.3 Multi-hazard assessment of Maipo sub-catchment case study 

5.3.1 Step 1: assembling data for the Maipo sub-catchment 

The February 2017 rainfall event was estimated by creating a synthetic rainfall event from the total 

rainfall volume registered on the day of the event. The total rainfall volume was obtained from the rain 

gauge station (Reservoir El Yeso) of the DGA (2017) (General Directorate of Waters). The total rainfall 

volume corresponded to 20.5 mm of rainfall for an 8-hour duration registered on February 25, 2017. The 

rainfall event reached a maximum rainfall intensity peak of 5.7 mm/h at the 6-hours from the beginning 

of rainfall. Once the maximum peak was identified for the Maipo sub-catchment, the rainfall intensities 

were discretized according to the total rainfall duration (Figure 5.2) The rainfall intensity duration was 

discretized in time intervals of 10 minutes, giving a total of 480 minutes for an 8-hour rainfall duration. 

 

 Figure 5.2 25 February 2017 rainfall event. 

The records of the triggered landslides and debris flows in the Maipo sub-catchment for the 

February 25, 2017, rainfall event was only available for debris flows. Most of the debris flows that 

occurred on the day of the event were registered in several ravines within the Maipo sub-catchments. 

Debris flows impacted the lower parts of the ravines, forming alluvial fans with unconsolidated deposits 

that reached the Maipo River. The debris flow runout areas were recorded by SERNAGEOMIN (2017) 

which registered six debris flow events within the Maipo sub-catchment. The location of the registered 

debris flows was only available as a distribution of points performed using a GPS device (Figure 5.3). 

Therefore, it was necessary to digitize the debris flow initiation and runout areas. The debris flow 

polygons were delimited from the available Google Earth images on July 17, 2017 (Figure 5.3). The 
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advantage of the available images is that they still show the debris flow paths and runout areas of events 

that occurred on February 25, 2017. 

 

Figure 5.3 Hazard inventory. (a) Debris flow inventory (b) debris flow runout area distribution. 

The Maipo sub-catchment physical characteristics used to set the OpenLISEM hazard model input 

parameters were defined according to the information that had been compiled on soil type, soil depth, 

topography, and land use identified for the study site according to available opensource datasets. The 

physical characteristics of the Maipo sub-catchment were defined at a spatial resolution of 20 × 20 

metres. The selected spatial resolution is suitable for the scale of the Maipo sub-catchment, 

corresponding to 1:80.000 and an extension of 7753.04 ha. Data resolution below 20 metres will require 

longer simulation times and a large computer storage capacity for the total model outputs. One of the 

limitations identified for the Maipo sub-catchment is the lack of available data to estimate the 

hydrological and geotechnical input parameter values of the OpenLISEM hazard model. These 

parameters were estimated according to the sub-catchment soil types. However, no spatial data were 

available to characterise the sub-catchment soil types. Therefore, the sub-catchment soil types were 

characterised and estimated according to an updated geological map developed by CIGIDEN (2022) 

(Figure D.1a). From the geological map, the soil types were identified according to each geological unit 

based on a literature review from Alvarez (2006); Gonzalez (2010) and Luzio (2010) allowing identifying 

and classifying of the soil types according to the main geological units of the Maipo sub-catchment. The 

characterisation of the identified soil types was performed by identifying their textural classification 

according to Luzio (2010) and Casanova et al. (2013) where main textural classes were determined for 

each identified soil type.  

Information regarding to the sub-catchment soil depth was obtained from the SoilGrids global soil map 

(https://www.isric.org/explore/soilgrids), which recently released most detailed global soil dataset, of 

resolution 250 metres (Batjes et al. 2020). For the Maipo sub-catchment, SoilGrids data were obtained 

for two soil layers. The first (soil depth 1) corresponds to the depth of the first 200 cm, and the second 
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(soil depth 2) corresponds to the total depth of the bedrock. Because of the chosen data resolution for 

the Maipo sub-catchment, the soil depth layers were resampled to a 20 × 20 metres resolution using 

bilinear interpolation with the Resample tool in ArcMap 10.6. Physical characteristics related to 

topography such as slope gradient and local drainage direction network (LDD) were defined from a 

corrected Digital Elevation Model (DEM) ALOS-PALSAR of 12.5 metres for the Santiago Metropolitan 

region obtained from IDE Chile (2021). The DEM was also resampled to 20 × 20 metres using bilinear 

interpolation with the Resample tool in ArcMap 10.6. Information about sub-catchment land use was 

obtained from CONAF (2013) (Figure D.3). The OpenLISEM hazard model input parameters were 

defined using the full PCRaster script available from van den Bout et al. (2018) to elaborate and process 

the base maps required for the model. 

5.3.2 Step 2: defining model input parameter ranges 

The definition of the OpenLISEM hazard model hydrological and geotechnical input parameter values 

for soil type units and land use categories for the Maipo sub-catchment (Table 5.1) were estimated on 

the basis of Luzio (2010); Casanova et al. (2013) and Sepúlveda et al. (2016) in which parameter values 

subject to variation within the OpenLISEM hazard model such as saturated hydraulic conductivity (𝑘௦), 

saturated moisture content (𝜃௦), soil cohesion (𝑐ᇱ), and soil internal friction angle (∅ᇱ) were estimated 

according to the textural characteristics of the identified soil types of the Maipo sub-catchment. Table 

5.1 summarises the Maipo sub-catchment hydrological and geotechnical input parameter values. 

 

Table 5.1 OpenLISEM hazard model hydrological and geotechnical input parameter values. 

Input factors Source Symbol/Unit 

Parameter value ranges 

Soil layer 1 Soil layer 2 

min max min max 

Soil depth SoilGrids (2021) (𝑚) 0.08 0.21 0.31 5.91 

Hydrological       

Saturated hydraulic 
conductivity* Casanova et al. 

(2009) 
𝑘௦(𝑚𝑚. 𝑠ିଵ) 1.61𝑥10ିଷ 2.92𝑥10ିଷ 2.1𝑥10ିଷ 4.2𝑥10ିଷ 

Matric suction 𝛹(𝑘𝑃𝑎) 65 75 65 75 

Saturated moisture content* Casanova et al. 
(2013) 

𝜃௦ (𝑐𝑚ଷ. 𝑐𝑚ିଷ) 0.01 0.42 0.27 0.44 

Initial moisture content 𝜃௜(𝑐𝑚ଷ. 𝑐𝑚ିଷ) 0.25 0.5 0.41 0.47 

Geotechnical   Parameter value ranges 

Soil density Luzio (2010) 𝜌(𝑘𝑁. 𝑐𝑚ିଷ) 1400 - 1900 

Soil cohesion* (Sepúlveda et 
al. 2016) 

𝑐′(𝑘𝑃𝑎) 8 – 12.1 

Internal friction angle* ∅′(°) 24 – 45 

Soil grain size Luzio (2010) (𝑚) 2x10ି଺ - 4.2x10ିସ 
*Initial parameter values subject to variation within the OpenLISEM model.  
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Figure 5.4 and Figure 5.5 illustrates the spatial distribution of the hydrological and geotechnical 

parameter values for land use categories and soil type units for the Maipo sub-catchment. The spatial 

distribution of hydrological input parameters values was performed according to the same criteria 

stablished for the Soufriere catchment in Chapter 3, section 3.2.2 in which spatial distribution of 

hydrological input parameter values was performed according to the infiltration modelling method in the 

OpenLISEM hazard model based on the Green and Ampt (1911) method for two soil layers. Figure 5.4 

illustrates the spatial distribution of saturated hydraulic conductivity (𝑘௦), and saturated moisture content 

(𝜃௦),  for the land use categories and soil types of the Maipo sub catchment. The value distribution for 

land use categories was established for soil layer 1, which corresponds to soil depth 1 (Figure D.2a) 

and the value distribution for soil types is set for soil layer 2, which corresponds to soil depth 2 (Figure 

D.2b). Figure 5.5 shows the value distribution for geotechnical input parameter values. These input 

parameters values were spatially distributed according to the catchment soil types (Figure D.1b) for the 

whole soil depth layer from topsoil to bedrock. These input parameters correspond to soil cohesion (𝑐ᇱ), 

and soil internal friction angle (∅ᇱ). The highest cohesion values were distributed within soils forming 

fluvial terraces and in residual and colluvial soils. The lowest cohesion values were within volcanic soils. 

In relation to the soil internal friction angle values, the lowest values were distributed within soil forming 

fluvial terraces and in residual and colluvial soils; and the highest friction angles were found within 

volcanic soils. 

  

  

Figure 5.4 Spatial distribution of hydrological input parameter values for the Maipo sub-catchment. 
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Figure 5.5 Spatial distribution of geotechnical input parameter values for the Maipo sub-catchment. 

 

After identifying the spatial distribution of the hydrological and geotechnical input parameter values for 

the land use categories and soil types of the Maipo sub-catchment. It was identified the value 

distributions for hydrological and geotechnical input factors were defined in order to explore the regions 

of the value space that might introduce sources of uncertainty derived from the value estimations from 

the literature review. Figure 5.6 shows the value distribution identified for the hydrological and 

geotechnical input parameter values. 

The definition of the distribution of the hydrological and geotechnical input parameter values allows the 

setting of value ranges to explore their variation in order to identify which value range introduces 

uncertainty in the spatial representation of rainfall-triggered landslides, debris flows and hillslope erosion 

hazards (Figure 5.6). To explore the input parameter value regions, the set of scaling factors determined 

in Chapter 3, section 3.2.4 was applied for each input parameter. The initial saturated hydraulic 

conductivity values were increased by (x1.2) and decreased by (x0.4) for land use (Figure 5.7a) and for 

soil types (Figure 5.7b). For the case of saturated moisture content, the initial values were increased by 

a multiplication factor of (x1.1) and decreased by (x0.8) for value distribution for land use (Figure 5.7c) 

and for soil types (Figure 5.7d). The initial values for soil cohesion (Figure 5.7e) were increased by (x1.2) 

and decreased by (x0.5) and (x0.3). Finally, the initial values for soil internal friction angle (Figure 5.7f) 

were increased by (x1.2) and decreased by (x0.6) and (x0.4). The setting of the multiplication factors to 

define parameter range values allows the exploring of the input factors value spaces to perform different 

parameter value combinations to find optimal parameter-set values to represent hillslope hydrological 

hazards for the Maipo sub-catchment.  
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Figure 5.6 Hydrological and geotechnical input parameter value distributions. 

 

 

Figure 5.7 Hydrological and geotechnical input parameter value ranges. 
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5.3.3 Steps 3 & 4: Running parametric simulations and verifying catchment-scale hazard 

representation  

The design of parametric simulation was performed according to the procedure stablished in section 

3.2.5, Chapter 3. The parametric simulations were defined according to the combination of the 

hydrological and geotechnical input parameter value ranges established by the scale factors defined 

determined in section 5.3.2 for saturated hydraulic conductivity (𝑘௦), saturated moisture content (𝜃௦), 

for land use and soil types and soil cohesion (𝑐ᇱ) and soil internal friction angle (∅ᇱ) for soil types. The 

total ensemble of parameter set combinations gave 144 parametric simulations for running in the 

OpenLISEM hazard model. For the Maipo sub-catchment, the simulation time for the parametric 

simulations depended on the forcing rainfall defined in Figure 5.2 and the resolution of the input 

parameters. The duration of the rainfall event on February 25, 2017, was 480 min, and the spatial 

resolution of the input parameters for the Soufriere catchment corresponded to 20 × 20 metres. The 

model outputs were computed with time steps of 20 seconds for the simulation time. The numerical 

settings for the slope stability and flow dynamics modelling for the parametric simulations were based 

on the values indicated in the OpenLISEM hazard model manual. Each simulation required 

approximately 4 h on a quad-core (i7) Windows PC with an i7 processor. 

The parametric simulations were verified according to the hazard metrics defined in section 3.2.6, 

Chapter 3. The aim is to screen out the non-behavioural simulations that resulted in unrealistic hazard 

representations. For the Maipo sub-catchment, a non-behavioural simulation was defined as the hazard 

representation that does not follow the spatial attributes of the observed hazards in the hazard inventory 

elaborated in section 5.3.1. 

5.3.4 Steps 5 & 6: Sub-catchment scale verification of parameter-sets and simulations  

For the Maipo sub-catchment, the modelling workflow steps for model verification were adapted 

according to the observations available for the catchment. In section 5.3.1, it was described the 

availability of debris flows observations for the 25 February rainfall event. Therefore, the spatial similarity 

method was adapted to assess the area difference between the total debris flow runout area (𝐴஽) 

resulting from the parametric simulations and the debris flow area estimated from the hazard inventory. 

The spatial similarity method is described as follows: 

Spatial similarity  

The spatial similarity for the Maipo sub-catchment was addressed by computing the area difference ∆𝐴஽ 

(Equation 5.1) between the total debris flow runout areas (𝐴஽) resulting from parametric simulations and 

the total debris flow areas identified from the hazard inventory. The aim is to rank parametric simulations 

with the best spatial similarity to the observed debris flows. For the Maipo sub-catchment, three criteria 

were established to identify the parametric simulation with the best spatial similarity. The first 

corresponds to an area difference of ∆𝐴்  ≥ 50 ℎ𝑎. This difference was considered with no 

approximation of the total debris flow inventory area. The second corresponds to an area difference 

∆𝐴் ≥ −1 𝑎𝑛𝑑 ≤ 50 ℎ𝑎. This difference was considered to be proximate to the total debris inventory 
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area, and the third corresponded to an area difference ∆𝐴் < −1 ℎ𝑎. This difference was not considered 

when approximating the total debris flow inventory area. The area difference ∆𝐴஽ is expressed as 

follows: 

𝐴் =  𝐴ௌூெ −  𝐴ூே௏  Equation 5.1 

Where ∆஽ corresponds to the area difference, 𝐴ௌூெ is the total simulated debris flow area (ℎ𝑎), and 𝐴ூே௏ 

is the total debris flow inventory area (ℎ𝑎). Behavioural simulations with area differences  ∆𝐴஽ ≥

−1 𝑎𝑛𝑑 ≤ 50 ℎ𝑎 were ranked from the lowest to the highest difference. From the ranked behavioural 

simulations, the area distribution was compared to assess the similarity between the simulated debris 

flow runout areas (𝐴஽) and observed debris flow areas from the inventory. 

Accuracy assessment  

The accuracy assessment was performed by estimating the Jaccard Index (Equation 5.2). The accuracy 

metric was estimated according to the spatial overlapping method described in Chapter 2, section 

2.3.2.2. The Jaccard Index correspond to a similarity coefficient that determines the similarity between 

two sets with a score ranging from 0 to 1. A score close to 1 indicates a higher similarity between the 

two sets (Hagen-Zanker and Martens 2008). This metric is commonly used to assess the spatial 

agreement between debris flow deposition and runout areas (Mead et al. 2021). The Jaccard Index is 

described as follows:  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 Equation 5.2 

Where TP correspond to the True Positive values that represent the overlap between the simulated and 

observed debris flow areas. FN correspond to the False Negative values that represent the debris flow 

inventory areas minus the TP values and the FP corresponds to the False Positive values that represent 

the simulated debris flow areas minus the TP values. A tolerance area of 0.5 meters was apply to the 

debris flow inventory polygons to reduce the mismatch between the spatial overlap of simulated debris 

flows and debris flow inventory polygons.  

Simulation selection criteria  

The simulation selection criteria were determined according to the spatial similarity and the accuracy 

assessment results. From these results, two criteria were determined to select the parametric simulation 

with the parameter set that provided the best similitude between the simulated debris flow areas and 

debris flow inventory areas. The first criteria correspond to behavioural simulations with area difference 

∆𝐴஽ ≥ −1 𝑎𝑛𝑑 ≤ 50 ℎ𝑎. The second criteria correspond to the area distribution fit between the 

simulated debris flow runout areas and the observed debris flow areas. The parametric simulation that 

meets these requirements will be selected as the behavioural simulation whose parameter-set provides 

the best representation of the debris flows observed for the 25 February 2017 rainfall event in the Maipo 

sub-catchment.  
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5.3.5 Steps 7 & 8: Sensitivity Analysis (SA) and sensitivity to land use and soil type variations 

The sensitivity analysis (SA) was performed according to the method described in section 4.2.4, Chapter 

4. Regional Sensitivity Analysis (RSA) was applied to assess the sensitivity of the parameter-set 

corresponding to the selected behavioural simulation. Parameter set confirmation was performed on the 

selected behavioural simulation according to the criteria established in section 5.3.4. The goal is to 

identify the hydrological and geotechnical factor values in accordance with the land use categories and 

soil types that influenced the occurrence of landslides, debris flows and net erosion rates according to 

the rainfall event. This was performed by identifying the total debris flow runout areas (𝐴஽) for every 

land use category and soil type unit. Categories and units with a high number of debris flow runout areas 

(𝐴஽) were established as sensitive land use categories and soil types units in the influence debris flows. 

From the identification of the sensitive units, the hydrological and geotechnical parameter values were 

identified for each land use category and soil type unit from the parameter-set corresponding to the 

selected behavioural simulation. 

5.3.6 Step 9: Explore land use and climate change scenarios 

Hazard magnitude evolution 

The magnitude of hazard evolution was assessed through a map series report established according to 

the total time step corresponding to the simulation, which is a function of the total duration of the rainfall 

event. The duration of the February 25 rainfall event corresponds to 8 h, which is equivalent to 480 min. 

The determination of the time step for the simulation is a function of the resolution of the input data, 

which has a size of 20 × 20 metres. Therefore, the number of time steps corresponds to 1440, resulting 

from the total rainfall duration in seconds divided by the data resolution. The map series report was 

established for every 60-time steps, giving a total number of map series for the simulation of 24 maps. 

The hazard representations for every map series were estimated according to the hazard metrics 

established in section 3.2.6, Chapter 3.  

Response to land use and climate change scenarios 

The responsiveness to land use and rainfall change was assessed using the same matrix proposed for 

the Soufriere catchment in section 4.2.6, Chapter 4, which incorporates the responses of the land use 

categories and different rainfall patterns (Table D.3). The land use change matrix was adapted to the 

land use and rainfall corresponding to the Maipo sub-catchment. Within the land use change matrix, the 

categories corresponding to the native forest were changed to scrub forest. The preceding was 

proposed assuming the scenario in which the loss of native forest due to hillslope deforestation due to 

the growing pressure of urbanisation and the loss of natural land cover by increasing wildfires during 

the summer period increases the magnitude of landslides, debris flows, and hillslope erosion (Garreaud 

et al. 2017; Moreiras et al. 2021). On the other hand, the categories of the scrub forest were changed 

to a native forest, assuming a scenario in which the increase of native forest on hillslopes with less land 

cover increases the slope stability and reduces the impacts and magnitude of landslides, debris flows, 

and hillslope erosion (Sidle and Ochiai 2006). A change in land use categories implies a change in the 
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values of the hydrological parameters corresponding to these categories. The hydrological parameter 

values corresponded to the confirmed parameter-set values identified according to each land use unit 

and soil type. 

The responsiveness of the catchment to the proposed land use change was assessed with respect to 

the February 25, 2017, rainfall event and rainfall events of 10-year return period intensity–duration–

frequency curves (IDFs) obtained from the technical report of UNESCO (2013) (Pizarro et al. 2007) for 

the metropolitan region of Santiago. The selected rainfall events correspond to a 12-hour rainfall with a 

total volume of 34.2 mm, a 6-hour rainfall with a total volume of 16.2 mm and a 4-hour rainfall with a 

total volume of 12.8 mm (Appendix D.2 ). Therefore, eight scenarios were proposed to assess the 

response of land use change to the selected rainfall events within the Maipo sub-catchment. The 

responses to different hazard patterns were assessed according to the hazard metrics established in 

section 3.2.6, Chapter 3. The rate of change between the hazard representations resulting from the 

selected behavioural simulation in section 5.4.1 was compared with respect to the hazard 

representations resulting from the eight proposed scenarios to assess the rate of change in the 

magnitude of each hazard. 

5.4  Results  

5.4.1 Behavioural simulation selection  

The response of the Maipo sub-catchment to 144 parametric simulations resulted in 40 behavioural 

simulations with representations of total landslide surface area (𝐴௅), total debris flow runout area (𝐴஽), 

and total net erosion (𝑁𝑒𝑡ா). These hazard representations were registered from simulations 1 to 36 

and 38, 39, 42, and 45. From simulations 46–144, no landslide representation was observed. The 

behaviour simulation was selected from simulations that resulted in a landslide, debris flow and net 

erosion rate representation. According to the spatial similarity method, five simulations were within the 

area difference ∆𝐴஽ ≥ −1 𝑎𝑛𝑑 ≤ 50 ℎ𝑎 (Table 5.1). The lowest area difference between the total debris 

flow runout area and debris flow inventory area was observed in simulations 30 and 4. However, despite 

having the lowest area difference 𝐴஽, the area distribution of the debris flow flooded areas did not follow 

the same distribution pattern as the debris flow inventory. The most approximate distribution pattern 

was observed in simulations 27, 25, and 21 (Figure D.6). According to the area difference 𝐴஽, these 

simulations obtained differences ≥ 30 𝑎𝑛𝑑 ≤ 44.5 ha. In these simulations, an overprediction of debris 

flow runout areas was observed between 0 and 3 ha and between 3 and 6 ha. This overprediction was 

observed within the same area distribution in the debris flow inventory areas, indicating that the 

simulated debris flow from those simulations was similar to the observed debris flows.  

Regarding the accuracy metrics, the Jaccard Index showed the highest values for simulations 27 and 

21 (Table 5.2). In this case, simulation 27 achieved an accuracy score of 0.33 and simulation 21 

achieved a score of 0.32. These values indicate an improvement in the accuracy scores after application 

of the tolerance area for debris flow inventory polygons. The accuracy score was highly influenced by 

the difference in resolution of the image in which the inventory polygons were identified, and the 
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resolution of the debris flow simulated areas. This affected the overlapping between the simulated and 

observed areas. This affects the overlap between the simulated and observed areas. Regarding the 

area difference (𝐴஽), the area distribution between the simulated and observed debris flow runout areas 

and the accuracy metric score. Behavioural simulation 27 (Table 5.2) was selected as the simulation 

with the parameter set that provided the best similarity between the simulated and observed debris 

flows. From the selected simulation, it was identified a total simulated debris flow runout area (𝐴஽) of 

59.7 ha, a total landslide area (𝐴஽) of 58 ha and net erosion rate (𝑁𝑒𝑡ா) of –2452.9 (𝑡𝑜𝑛. 𝑚ିଶ) which 

mostly corresponds to deposition rates.  

Table 5.2 Behavioural simulations ranking and accuracy scores. 

Simulations 

Simulated Observed Verification 
Landslide 

surface  
area 

𝑨𝑳(𝒉𝒂) 

Net erosion 
𝑵𝒆𝒕𝑬(𝒕𝒐𝒏. 𝒎ି𝟐) 

Debris flow 
runout area 

𝑨𝑫(𝒉𝒂) 

Total area 
(𝒉𝒂) 

∆𝑨𝑻 
Jaccard 

Index 

SIM30 2.8 -3230.7 52.8 51.3 1.6 0.22 
SIM27 57.2 -2451.9 59.6 51.3 8.4 0.33 
SIM4 153.4 -2180.4 67.2 51.3 16.0 0.06 

SIM25 60.2 -3487.7 61.7 51.3 10.4 0.28 
SIM21 60.4 -4991.2 73.8 51.3 22.5 0.32 

 

5.4.2 Sensitivity Analysis (SA) 

A Regional Sensitivity Analysis (RSA) was performed to identify the most influential input parameters 

for land use categories and soil types in the Maipo sub-catchment for the selected behavioural 

simulation. According to the maximum distance (K-S statistics) derived from the cumulative distribution 

function curves (CDFs), the sensitivity indices were computed for the total number of parameters. Figure 

5.8 illustrates the sensitivity indices estimated using the bootstrap method with 95% confidence. The 

results indicated that the most influential parameters were saturated moisture content (𝜃௦ଶ) for soil types, 

saturated hydraulic conductivity (𝑘௦ଵ) for land use, and soil internal friction angle (∅ᇱ) and soil cohesion 

(𝑐ᇱ) for soil types. These results indicate that these parameters are the most influential within the 

parameter-set of behavioural simulation 27, showing that they significantly influenced the magnitude of 

the total landslide surface area (𝐴௅), total debris flow runout area (𝐴஽), and total net erosion (𝑁𝑒𝑡ா). 

The less influential parameters corresponded to the saturated moisture content (𝜃௦ଵ) for land use and 

the saturated hydraulic conductivity (𝑘௦ଶ) for soil types.  
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Figure 5.8 Sensitivity indices (S.I) for each input parameter. The bars correspond to the 

sensitivity indices mean value estimated with bootstrapping while the vertical lines at the top bar 

represent the confidence intervals for each input. 

 

5.4.3 Hazard magnitudes evolution 

Figure 5.9 illustrates the evolution of the total landslide surface area (𝐴௅), total debris flow runout area 

(𝐴஽), and total net erosion (𝑁𝑒𝑡ா) magnitudes according to the duration of the February 25 rainfall event. 

The most significant landslide magnitudes (𝐴௅) were registered within the first two hours of rainfall in 

which a total landslide area (𝐴௅) of 36.16 ha was identified (Figure 5.9b). Similarly, the total debris flow 

runout area (𝐴஽) also reached a considerable magnitude within the first two hours of rainfall, registering 

a total cumulative area of 58.04 ha (Figure 5.9b). However, it was observed that from the total cumulative 

area, the biggest magnitudes were registered within the period in which the landslides occurred, 

identifying a total area of 46.6 ha for the same period. The observed results indicated that the magnitude 

of the landslide influenced the debris flow magnitude. This influence was given by the hillslope runoff 

generated that reached the 1.9 (𝑚ଷ. 𝑠ିଵ) accumulated during the first two hours of rainfall (Figure 5.9a). 

However, the hillslope runoff generated during this period did not reach its peak discharge after four 

hours of rainfall. The influence of entrainment rates increased the sediment material within the flow, 

according to the landslide volume material generated within the first two hours. The foregoing was 

observed in the accumulated deposition rates that reached the 4183.3 (𝑡𝑜𝑛. 𝑚ିଶ) of deposited material 

and the accumulated erosion rates that registered 2582.2 (𝑡𝑜𝑛. 𝑚ିଶ) of eroded material between the 

two and three hours after the landslides and debris flow occurred (Figure 5.9c).  

The total net erosion (𝑁𝑒𝑡ா) obtained from the erosion and deposition rates for the period between the 

two and three hours of rainfall resulted in -1601.1 (𝑡𝑜𝑛. 𝑚ିଶ) of accumulated deposited sediment, 

indicating the predominance of deposition during that period (Figure 5.9c). From the net erosion results, 

it was observed that the predominance of deposition was due to the debris flow magnitude registered 

for three hours. This indicates that after the landslide occurred, the magnitude of the debris flow was 

still influenced by the landslide material volume. This influence was given by the flow generated between 

the two and three hours of rainfall that increased to the 4.7 (𝑚ଷ. 𝑠ିଵ). In the case of the Maipo sub-
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catchment, it was observed that hillslope runoff determined the interaction mechanism between 

landslides and debris flows and their impacts on net erosion rates. It was identified that after four hours 

of rainfall, when no landslides were simulated, debris flow and net erosion magnitude were reduced. 

 

 Figure 5.9 Hazard magnitude evolution. (a) Rainfall duration and discharge, (b) landslide and 

debris flow magnitude evolution, (c) net erosion rates. 

 

 

 



Chapter 5. Assessing hillslope hydrological hazards and interactions under changing climate and land use in 
Maipo, Chile 

121 
 

5.4.4 Sensitivity to land use and soil type variation 

Figure 5.10 shows the distribution of hydrological and geotechnical parameters values for the sensitive 

land use units and soil types that influenced debris flow within the Maipo sub-catchment. The parameter 

value distribution for saturated hydraulic conductivity (𝑘௦ଵ) for land units (Figure 5.10a) indicated that 

the highest values were distributed in grasslands, scrub forests, and native forests. The lowest values 

were found in bare soil, mixed farming, and urban settlements. However, according to the Regional 

Sensitivity Analysis (RSA) results, this parameter was one of the less influential factors in the occurrence 

of debris flows. Figure 5.10b shows the parameter distribution corresponding to the saturated moisture 

content (𝜃௦ଵ) for land use. From the RSA results, this parameter is one of the most sensitive to the 

occurrence of debris flows. The highest values for this parameter were equally distributed among units 

such as native forests, scrub forests, grasslands, and bare soils (Figure 5.11a). The lowest values were 

observed in mixed farming and urban settlements. The largest total debris flow runout areas were 

registered in the scrub forest category, indicating that the value for this unit highly influenced the 

magnitude of debris flows. 

Regarding the value distribution for saturated hydraulic conductivity (𝑘௦ଶ) for soil types (Figure 5.10), 

the highest values were observed in residual and colluvial soils, and volcanic soils (Figure 5.11b). In 

contrast, the lowest values were observed in soils from the fluvial terraces According to the RSA results, 

this parameter exhibited the highest sensitivity. For this parameter, the highest total debris flow runout 

areas were observed within the unit of volcanic soils, indicating that the value distribution for this unit 

impacted debris flow occurrence. The value distribution for saturated moisture content (𝜃௦ଶ) for soil types 

(Figure 5.10d) indicated the highest values in units, such as volcanic soil and soils from fluvial terraces. 

The lowest values were observed in residual and colluvial soils (Figure 5.11b). The RSA results 

indicated that this parameter was less sensitive to the influence of debris flows and saturated hydraulic 

conductivity on land use.  

In relation to the parameter value distribution for soil cohesion (𝑐ᇱ) for soil types (Figure 5.10e), the 

highest values were equally distributed in the soil types of residuals, colluvial soils, and soils from fluvial 

terraces. The lowest values were observed in the volcanic soils. In the case of soil internal friction values 

(∅ᇱ) (Figure 5.10f), the highest values were distributed in volcanic soils and the lowest in residual and 

colluvial soils and soils from fluvial terraces. According to the RSA results, these two parameters were 

the most sensitive to the occurrence of debris flows, especially in volcanic soils where the highest debris 

flow flooded areas were registered. It was observed that for the parameter set of simulation 27, the 

parameter value combination of saturated moisture content (𝜃௦ଵ) for land use, saturated hydraulic 

conductivity (𝑘௦ଶ) for soil types, soil cohesion (𝑐ᇱ) and soil internal friction values (∅ᇱ) influence the 

occurrence and distribution of debris flow within the Maipo-sub catchment. Therefore, the value 

distribution for these units is considered to be highly sensitive to the spatial representation of debris 

flows. 
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Figure 5.10 Parameter values for soil types. (a) Saturated hydraulic conductivity (land use), (b) 

Saturated moisture content (land use), (c) Saturated hydraulic conductivity (soil types), (d) 

Saturated moisture content (soil types), (e) Soil cohesion (soil types), (f) Soil internal friction angle 

(soil types). 
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Figure 5.11 (a) Land use and (b) soil types of the Maipo sub-catchment. 
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5.4.5 Responsiveness of the Maipo sub-catchment to land use and rainfall change 

Figure 5.12 illustrates the percentage of change in total landslide surface area (𝐴௅), total debris flow 

runout area (𝐴஽), and total net erosion (𝑁𝑒𝑡ா) magnitudes according to the responsiveness to land use 

and rainfall change scenarios. The hazard magnitudes estimated from the selected behavioural 

simulation in section 5.4.1. Under the current land use for the Maipo sub-catchment, there was an 

increase in the landslide, debris flow, and net erosion rate magnitudes for a 12-hour rainfall event and 

a decrease for 6- and 4-hour rainfall events (Figure 5.12). For the February 25, 2017, rainfall event (8-

hour rainfall), an increase of +5.2% in landslides, a +16.7% in debris flows, and a +5.9% increase in net 

erosion rates for a rainfall of 12-hour (Figure 5.12). On the other hand, for a 6-hour rainfall event, it was 

identified a decrease of -23.6% in landslides, -30.1% in debris flows, and -47.7% in net erosion rates 

(Figure 5.12). Similarly, the same decreasing pattern was observed for a 4-hour rainfall event, in which 

the landslides decreased by -12.4%, the debris flow by -16.8%, and the net erosion rates decreased by 

-23.7% (Figure 5.12). It was identified that the spatial distribution of landslide and debris flows observed 

for the 12, 6, and 4-hour rainfall events under the current land use followed the same spatial location 

regarding the observed hazards during the 25 February 2017 rainfall event. 

Land use scenarios in which the scrub forest was changed to a native forest. Responsiveness to the 

February 25 rainfall event (8-hour rainfall) and to 12, 6 and 4-hour rainfall events indicated a decrease 

in the hazard magnitude with respect to the current land use. For example, in the case of the February 

25 rainfall event, the landslide magnitude decreased by -1.8%, the debris flow by -1.3 and the net erosion 

rates by -4.8% (Figure 5.12). Similarly, for the 12-hour rainfall event, it was observed a decrease of -

6.3% in landslides, -11.8% in debris flows, and -1.1% in net erosion rates (Figure 5.12). The same 

decrease was observed for the 6 and 4-hour rainfall events. For the first one, there was a decrease of -

9.2% in landslides, -32.2% in debris flows and -26.7% in net erosion rates (Figure 5.12). For the second 

scenario, a decrease of -9% in landslides, -14.2% in debris flows, and -6.7% in net erosion rates was 

observed (Figure 5.12). Under this land use scenario, the spatial location of landslides and debris flows 

followed the same location pattern observed according to the simulated hazards for the current land 

use. The response of this land use scenario to the February 25 rainfall event (8-hour rainfall) and the 

12-, 6-, and 4-hour rainfall events indicated a decrease in landslides, debris flows, and net erosion rate 

magnitudes for the set rainfall events. In this scenario, the hazard magnitude decreases with respect to 

current land use, validating the hypothesis that an increase in native forest over scrub forest decreases 

the magnitude and frequency of rainfall-triggered landslides, debris flows, and hillslope erosion hazards. 

For the scenario in which the native forest was changed to scrub forest. The response to the February 

25, 2017, rainfall event indicated an increase of +3.6% in landslide magnitude, +4.8% in debris flows, 

and +2.3% in net erosion rates concerning the simulated hazard under the current land use (Figure 

5.12). For the 12-hour rainfall event, the landslide magnitude increased by +2.9%, the debris flows by 

+4.4%, and the net erosion rates increased by +3.9% (Figure 5.12). However, for the 6- and 4-hour 

rainfall events, an increase in the hazard magnitude was also observed for this land use scenario. For 

the case of h 6-hour rainfall event, the landslide magnitude increased by +7.4%, the debris flow was 

+5.5%, and the net erosion rate was +0.59% (Figure 5.12). Concerning the 4-hour rainfall event, it was 
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observed an increase of +10% in the landslide magnitude, +4.6% in debris flows, and +11.3% in net 

erosion rates (Figure 5.12). 

For this land use scenario, the spatial location of landslides and debris flows followed the same location 

pattern observed for the current land use and for the scrub forest compared to the native forest scenario. 

The only difference was that the hazard magnitude increased for landslides, debris flows, and net 

erosion rates. On the other hand, as was observed for the previous land use scenarios, the response to 

the February 25 rainfall event (8-hour rainfall) and the 12-, 6-, and 4-hour rainfall events indicated a 

decrease in landslides, debris flows, and net erosion rate magnitudes for each rainfall event Figure 

5.12). According to the hazard magnitude observed for this scenario, it was validated the hypothesis 

that the decrease in native forest due to hillslope urbanisation and wildfires increased the magnitude 

and frequency of rainfall-triggered landslides, debris flows, and hillslope erosion hazards in areas in 

which scrub forest is more predominant. 

 

Figure 5.12 Multi-hazard response of the Maipo sub-catchment to land use and rainfall change. 
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5.5 Discussion  

5.5.1 Applicability of the modelling workflow for the Maipo sub-catchment 

The response of the Maipo sub-catchment to the parametric simulations identified 40 behavioural 

simulations with representations of rainfall-triggered landslides, debris flows and hillslope erosion rates. 

The application of the spatial similarity method identified behavioural simulations 21 and 27 as the most 

proximate to the debris flows observed for the 25 February 2017 rainfall event. The identification of 

these simulations reflected the usability of the full extent of the modelling workflow applied for the Maipo 

sub-catchment. For example, when applying the first stage for experimental design. The run of 

parametric simulations identified the regions of the input parameter ranges that introduced the largest 

sources of uncertainty in the representation of the three hazards. This was reflected in the hazard 

magnitude that was expressed in in total landslide surface area (𝐴௅), total debris flow runout area (𝐴஽), 

and total net erosion (𝑁𝑒𝑡ா). The first stage of the modelling workflow demonstrated managing these 

uncertainties for the Maipo sub-catchment, especially by considering the limitation related to the lack of 

information and data available. Several methods have been proposed to explore parameters-sets in 

catchments with limited data information, studies such as Merz et al. (2020); Lane et al. (2021) and  

Herrera et al. (2022) have highlighted the necessity to develop methodologies to identify the necessary 

parameters to discretize the catchment domain. This an important stage for complex models, such as 

the OpenLISEM hazard model that requires a large number of input parameters to model hillslope 

hydrological hazard interactions.  

When comparing to the stage one of modelling workflow applied in Chapter 3, the magnitude of the 

simulated hazards for the Maipo sub-catchment followed the same magnitude pattern observed for the 

Soufriere catchment. This magnitude pattern was expressed in the hazard magnitude estimated 

according to the hazard metrics proposed to verify the parametric simulations. For both cases, it was 

observed that the major uncertainties were registered in parametric simulations that reduced soil 

cohesion by (x0.3) (see Table D.2), reduce soil internal friction angle by (x0.4)  (see Table D.2) and 

increase saturated moisture content by (x1.1) (see Table D.1). According to Khatami et al. (2019), the 

uncertainty in input parameters are addressed by searching multiple acceptable parameter range 

values. The application of multiplication factors to explore parameter ranges for hydrological and 

geotechnical input factors estimated for different catchment environments shows the effectiveness of 

the modelling workflow to identify the sensitive regions of the estimated input parameters.  

The stage two of modelling workflow for model verification also demonstrated its effectiveness. The 

application of the spatial similarity method according to the debris flow inventory indicated that is 

possible to define spatial attributes for debris flows to assess the similarity between the simulated and 

observed hazards. Moreover, the application of the Jaccard index and the definition of tolerance areas 

also showed the efficiency of the proposed spatial overlapping method to estimate the model accuracy. 

According to these methods, it was possible to select behavioural simulation 27 as the most proximate 

to the observed debris flows.  
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5.5.2 Representation of hillslope hydrological multi-hazard interactions 

For the case of the 25 February 2017 rainfall event, the interaction between rainfall-triggered landslides, 

debris flows hillslope erosion in the Maipo sub-catchment was influenced by the hillslope runoff and 

flash floods generated during the first 2 hours of the rainfall event. According to Figure 5.9a, the 

magnitude evolution of the simulated hazards depended on the rainfall intensity and the hillslope runoff 

at the moment these hazards occur. For example, within the first two hours of rainfall, the hillslope runoff 

generated reached 1.9 (𝑚ଷ. 𝑠ିଵ) and the rainfall intensity was less than 0.5 (𝑚𝑚. ℎିଵ). These results 

indicated that for Mediterranean catchments such as the Maipo sub-catchment. Short and less intense 

rainfall can generate the necessary hillslope runoff and flash floods to influence the interactions of 

rainfall-triggered landslides, debris flows and hillslope erosion. Recent studies for the central Andes, 

such as Carretier et al. (2018) and Lobo and Bonilla (2019) have evidenced that short rainfall periods in 

semi-arid catchments increase the sediment yield. This increase has been evidenced during the last 10 

years, especially during El Niño events periods (Garreaud et al. 2017). However, this increase in 

sediment yields does not account for the influence of sediment material from landslides and debris flows 

(Moreiras et al. 2021). For example, for the Maipo sub-catchment, is possible to confirm that shallow 

landslides are the primary hazard that influences the magnitude of debris flows and hillslope erosion 

rates. 

Figure 5.9c, shows how the magnitude of hillslope erosion rates decreased after the period in which 

landslides occurred, indicating the influence of landslides on debris flow magnitude increases the net 

erosion rates, especially in the deposition. According to Pudasaini and Fischer (2020), these influences 

are governed by entrainment rates, which are determined by the amount of hillslope runoff generated 

during the rainfall event. According to Michaelides and Martin (2012), rainfall in Mediterranean 

environments is characterised by short, spatially variable, high-intensity storm events that generate 

surface infiltration - excess runoff from sparsely vegetated slopes. The combination of short duration, 

high intensity storms and sparse vegetation increases the susceptibility to generate hillslope runoff and 

flash floods (Yeh and Tsai 2018). During these intense storm events, excess runoff accumulates rapidly, 

leading to increased water flow and erosion potential. Debris-covered slopes, especially after landslides, 

exacerbate this effect as landslides can mobilize loose material and contribute to debris flow, sediment 

transport, and hillslope erosion (Moreiras et al. 2021). To understand these interactions, it is necessary 

to identify the catchment physical characteristics that influence them. The modelling workflow for model 

verification identified the sensitive input parameters influencing these relationships. According to the 

Regional Sensitivity Analysis (RSA) performed, saturated moisture content (𝜃௦ଶ) for soil types and 

saturated hydraulic conductivity (𝑘௦ଵ) for land use were the most sensitive input parameters. The spatial 

distribution of these sensitive input parameters values was observed for soil types such as volcanic soils 

and native and scrub forests for land use. The parameter-set confirmation corroborated the sensitivity 

of these units in which most of the simulated landslides and debris flow were spatially distributed.  
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5.5.3 Responsiveness to land use and rainfall change scenarios 

The change of native forest to scrub forest was identified as the main scenario that influenced the 

increase in the magnitudes of the three hazards. These model findings are in accord with observations 

presented by Vergara et al. (2020) and Moreiras et al. (2021), which identified how the changes in land 

use, precisely due to deforestation by wildfires, logging and the growing pressure of human activities, 

have increased the magnitude of debris flows in the central Andes. For the case of the Maipo sub-

catchment, assessing this scenario is in line with the tendency observed for the Andean catchments of 

the Metropolitan area of Santiago de Chile. According to Henríquez-Dole et al. (2018), the projections 

in land use to 2050 for the Maipo sub-catchment indicate an increase in farmland areas. As was 

observed for the Soufriere catchment, the scenario where the natural tropical forest was changed to 

mixed farming and forest stated an increase in the magnitude of the landslides, debris flows and net 

erosion rates with Hurricane Tomas rainfall and the 24, 10 and 5-hour rainfall events. The same 

tendency might be observed for the Maipo sub-catchment. However, the differences in climate, 

geological and land use settings might influence the increase of these hazards differently.  

First, the potential impact of land use on hillslope hydrological hazard interactions depends on the land 

use dynamics of each catchment. In the case of the Soufriere catchment, these dynamics are driven by 

human and economic activities (Walters 2016). In the Maipo sub-catchment, on the other hand, land 

use dynamics have been influenced by both the effects of climate change in recent years and 

anthropogenic factors (Garreaud et al. 2017; Moreiras et al. 2021). For example, in terms of land uses 

to which native forest has been converted by anthropogenic actions, official figures show that between 

1995 and 2016, most of it was replaced by grassland and scrubland (47%) or forest plantations (40%), 

followed by conversion to agricultural land (6%), with the remainder converted to agriculture (6%) 

(Miranda et al. 2017). In addition, the combined effects of drought and wildfire in the region have led to 

long-term changes in the physical characteristics of the catchment and in hydrological and stability 

processes (Martínez-Retureta et al. 2020). These effects may be reflected in reductions in vegetation 

cover and impacts on soil moisture and infiltration capacity (Balocchi et al. 2023). The above is 

consistent with the land use scenarios simulated for the Maipo sub-catchment, where the change from 

native forest to shrubland shows an increase in the magnitude of hillslope hydrological hazards, leading 

to significant and interrelated impacts on landslides, debris flows and hillslope erosion. Therefore, the 

identification of the most sensitive hydrological and geotechnical parameters for land use and soil types 

for the Maipo sub-catchment was essential to assess these effects.  

The assessment of the land use and rainfall change scenarios also indicated the reduction of the hazard 

magnitudes when the scrub forest is changed to native forests. The response of the land use scenarios 

to the 25 February 2017 rainfall event (8 hours) and the events of 12, 6 and 4 hours indicated that the 

simulated hazard followed the same spatial distribution for each rainfall event. The only difference is in 

the change of magnitude for each hazard. The same spatial pattern was observed for the Soufriere 

catchment, in which the hazard magnitudes for the proposed scenarios followed the same location, but 

the hazard magnitude changed according to the rainfall events. These results indicate that the 
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application of the full extent of the modelling workflow for the Maipo sub-catchment is effective to assess 

the potential effects of land use and rainfall change on hillslope hydrological hazards interactions. 

5.6  Conclusions 

In this chapter, the application of the complete modelling workflow for the Maipo sub-catchment, 

addressed answer research question 3 of this thesis (RQ3: How do hillslope hydrological multi-hazards 

and their interactions respond to changes in land use and rainfall characteristics?). This chapter shows 

how the full extent of the modelling workflow developed in this thesis can be applied in two catchments 

with different climatic and environmental settings. For the case of the Maipo sub-catchment, the 

application of the modelling workflow has demonstrated that is possible to assess hillslope hydrological 

hazard interactions and their response to different land use and rainfall change scenarios in a catchment 

with limited data and information. The application of the stage one of the modelling workflow for model 

parameterisation allowed the setting of parametric simulations to identify the behavioural simulations 

whose parameter-set provided the best representation of the debris flows observed for the 25 February 

2017 rainfall event.  

The hazard magnitude evolution identified that landslides are the primary hazard that influences the 

magnitude of debris flows and their impacts on hillslope erosion rates. For the case of the 25 February 

2017 rainfall event, it was observed that during the first 2 hours of rainfall most of the hazards interact 

influencing in their magnitudes. The hazard interactions depend on the rainfall intensity, hillslope runoff 

and flash flood generated at the moment these hazards occur. The generation of these conditions within 

the catchment determine the feedback mechanisms that make these hazard produce cascading, 

concurrent, and compounding interactions. 

The selection of the behavioural simulation 27 allowed the identification of the sensitive land use 

categories and soil types units that influenced the occurrence of rainfall-triggered landslides, debris flows 

and hillslope erosion hazards. The incorporation of sensitivity analysis in the modelling workflow for 

model verification was an essential step to identify the most influential input parameter values for land 

use categories and soil type units. The parameter-set confirmation identified land use categories such 

as native forest, and scrub forest and volcanic soils for soil types as the most sensitive. The land use 

change scenario in which the native forest was changed to scrub forest indicated an increase in the 

hazard magnitude. These results support the assumption that the decrease in native forest as 

consequence extensive drought periods, wildfires and anthropogenic activities impacts the magnitude 

of hillslope hydrological hazards in a context of land use and climate change.  
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6.1  Research summary  

The effects of land use and climate change are increasing the frequency and impacts of hillslope 

hydrological hazards in mountainous regions highly susceptible to these hazards. Physics-based multi-

hazard models, representing rainfall-triggered landslides, debris flows, and hillslope erosion hazards at 

catchment scales, are necessary for assessing the interactions and impacts of these hazards for 

different land use and climate change scenarios and to support sustainable and resilient planning 

policies to reduce the impacts of these hazards and mitigate the effects. However, modelling 

methodologies must address challenges of parameterisation, equifinality and uncertainties associated 

with such complex spatially distributed models. This thesis has contributed by introducing a systematic 

modelling workflow that addresses the parameterisation and uncertainties in complex multi-hazard 

models – improving the modelling of these hazards for catchments with data scarcity. The OpenLISEM 

hazard model has been applied using this new workflow to investigate impacts of land use and climate 

change in two catchments prone to hillslope hydrological multi-hazards.  

6.1.1 A modelling workflow to assess hillslope hydrological hazard interactions for land use and 

rainfall change 

This thesis introduces a new modelling workflow to enable physics-based distributed modelling of multi-

hazards in data-limited regions. The workflow draws on current best practice for environmental 

modelling and the application of conventional single-hazard models. It addresses the challenges of 

parameterisation, equifinality and uncertainty associated with complex physics-based distributed 

models and compounded by data limitations in many disaster-prone regions. Two case study 

catchments with contrasting climatic, environmental, and multi-hazard characteristics were selected for 

workflow testing and application. Both were representative of disaster-prone socio-economically 

vulnerable regions where data and resources for hazard assessment and risk management are limited. 

The modelling workflow starts by identifying statistical distributions of parameter values, this is an 

important step because allows the exploring of the quality of the input data by identifying the parameter 

ranges that might introduce uncertainty.  

The sampling of parameter range values to perform parametric simulations in the stage one of the 

modelling workflow allows the exploring of the uncertainties by verifying at the catchment scale the 

behavioural simulations that resulted in the spatial representation of rainfall-triggered landslides, debris 

flows, and the hillslope erosion hazards observed for Hurricane Tomas. The application of the hazard 

metrics to estimate the total landslide surface area (𝐴௅), total debris flow runout area (𝐴஽) and the total 

net erosion (𝑁𝑒𝑡ா) demonstrated to be an effective procedure to identify the behavioural simulations 

that resulted in extreme hazard representations. Landslide surface areas over ≥ 100 ℎ𝑎 were observed 

in parametric simulations were the parameter range values for geotechnical input factors such as soil 

cohesion were reduced by (x0.3) (see vale ranges in Table B.5) and soil internal friction angle were 

reduced by (x0.4) (see value ranges in Table B.5). For the case of the Maipo sub-catchment, the 

application of the first stage of the modelling workflow demonstrates its effectiveness if identifying the 
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parametric simulations with more proximity to the debris flows observed for the 24 February 2017 rainfall 

event allowing the identification of the parameters that most influenced the hazard representation. The 

elaboration of the first stage of the modelling workflow applied in Chapter 3, was effective for two 

catchments, both representative of disaster-prone socio-economically vulnerable regions where data 

and resources for hazard assessment and risk management are limited. 

The new modelling workflow continues with the stage 2 for model verification and parameter-set 

selection to identify the behavioural simulations not only give a representative magnitude of the hazards 

at the catchment scale, but are verified in terms of their spatial scale, locations, and distributions within 

the catchment. This is an important step because it is considered the parameter set that can be used to 

assess future land use and climate change scenarios. The modelling workflow for model verification 

identified the effectiveness of the verification procedure allowing identifying, for example, the sensitive 

land use and soil type units that influenced the occurrence of rainfall-triggered landslides debris flows 

and hillslope erosion hazards. Identifying these units was important to address research question 2 

(RQ2), especially because set the basis to simulate land use and climate change scenarios. 

Having applied the new modelling workflow, this thesis quantifies how rainfall-triggered landslide, debris 

flow and hillslope erosion hazard magnitudes and interactions can change under potential land use and 

rainfall scenarios in the two case study catchments. These catchments exhibit contrasting climatic and 

environmental characteristics and hazard profiles. The application of the stage three of the modelling 

workflow was important to address research question 3 (RQ3) in Chapter 4 and Chapter 5. Applying the 

modelling workflow in the Soufriere catchment and the Maipo sub-catchment showed its effectiveness 

by allowing the assessment of the Hurricane Tomas rainfall event and the 25 February 2017 event in 

these two catchments allowing the possibility to explore the effects of those rainfall events and their 

potential effects on different land use and rainfall scenarios. 

6.1.2 Identification parameter variations and uncertainties in multi-hazard assessment 

The application of the area difference method to assess the similarity in landslide and debris flow runout 

areas and sizes distribution in the stage three of the modelling workflow for model verification is an 

important step to identify the approximations between simulated and an observed hazard. This is an 

important procedure for multi-hazard modelling. Identifying the behavioural simulations that best 

reproduce an observation is essential to identifying the parameter-sets that influences the spatial 

representation of rainfall-triggered landslides, debris flows and hillslope erosion hazards for catchments 

with different environmental and climatic settings. The application of the equifinality approach to identify 

the simulation more proximate to the landslides registered for Hurricane Tomas and the debris flow 

registered for February 25, 2017, rainfall event allowed the understanding of the effects of uncertainty 

in the model results. This is essential for model verification in which not consideration of the effect of 

uncertainty in model results could result in unrealistic hazard representations that are not proximate to 

an observed hazard. This could constrain the parameter-set selection in order to identify the best 

representative parameters that influence hillslope hydrological hazard interaction for soil types and land 

use for specific catchments. Addressing the model verification considering uncertainty provides insight 
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into how, for example, landslides are distributed across the catchment. This allows the identification of 

the spatial distribution of the parameter values for soil types and land use that influence the magnitude 

and location of these hazards. This was important to address research question 1 (RQ1) in Chapter 1. 

The parameter-set confirmation for soil types and land use is essential to understanding how the values 

of hydrological and geotechnical parameters are distributed within the catchment. Identifying 

behavioural parameter-sets for land use and soil types for both study sites allowed the analysis to assess 

multi-hazards interactions for land use and climate change scenarios. This suggest that the applicability 

of the stage two of the modelling workflow is effective in determining the parameters-set values for 

different soil types and land use for catchment located in data scarce environments. 

6.1.3 Single hazard vs multi-hazard for the Soufriere catchment and Maipo sub-catchment  

The selection of the parameter-set for the Soufriere catchment and Maipo sub-catchment in stage two 

of the modelling workflow applied in Chapter 4 and Chapter 5 contributed to identifying the physical 

characteristics of both catchments that drove the representation and interaction of hillslope hydrological 

hazards according to the rainfall event selected for each study site. These catchments exhibit two 

different climatic and environmental settings that render different multi-hazard forming environments 

where rainfall-triggered landslides and debris flows are the most dominant hazards. Figure 6.1 illustrates 

the hazard representation for the modelled rainfall-triggered landslides, debris flows, and hillslope 

erosion obtained from the selected parameter-set for the Soufriere catchment. Alternatively, Figure 6.2 

illustrates the same modelled hazards for the Maipo sub-catchment. From these results, it was possible 

to represent the landslides and debris flow registered during Hurricane Tomas and the debris flows 

registered for February 25, 2017, considering the uncertainties introduced in the representation of these 

hazards. Commonly, these hazards are assessed using a single-hazard approach limiting the 

quantifying of the interaction of one hazard on another, especially in terms of the effects on hazard 

magnitude. The advantage of assessing both events using a multi-hazard approach is the quantification 

of the magnitude resulting from the cascading, concurrent and compounding interactions between these 

three hazards. The application of the OpenLISEM hazard model achieved this purpose for both study 

sites by representing individual hazards as well as their interconnectedness in terms of magnitude. This 

was demonstrated according to the hazard metrics estimated for each hazard: for example, in the case 

of the Soufriere catchment, the total debris flow runout area (𝐴஽) and the total net erosion (𝑁𝑒𝑡ா) 

dramatically increased in parametric simulations where the total landslide surface area (𝐴௅) was areas 

≥ 100 ℎ𝑎. The same tendency was observed in the Maipo sub-catchment, for example, for total landslide 

surface area (𝐴௅) areas ≥ 100 ℎ𝑎, the total debris flow runout areas (𝐴஽) exceeded the 100 ha and the 

total net erosion (𝑁𝑒𝑡ா) exceeded the -1000 (𝑡𝑜𝑛. 𝑚ିଶ). These results demonstrated that the occurrence 

of rainfall-triggered landslides was the primary hazard influencing cascading interactions that impacted 

the magnitude of debris flows and hillslope erosion rates in zones of the catchment where these 

interactions were produced in both study sites.  

Figure 6.1a and Figure 6.2b shows the cascading interactions zones identified for both study sites as 

represented by landslide surface areas, debris flow runout areas, and erosion and deposition areas 
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resulting from the behavioural simulations selected for each catchment. For both catchments, hillslope 

runoff was the main hydrological process influencing the cascading interaction of landslides with debris 

flow and hillslope erosion. According to the identified cascading interaction zones, the accumulated 

hillslope runoff was between 10 to 79 m3 for the Soufriere catchment and 79 to 264 m3 for the Maipo 

sub-catchment. This suggests that the magnitude of the generated hillslope runoff is an important factor 

in determining the cascading interactions given by the entrainment rates of landslide volume material 

and eroded bed material. Hillslope runoff magnitude influences the flow properties (rheology and 

viscosity) that make shallow landsides transition into debris flows, thus impacting debris flow depth and 

velocity. The resulting magnitude of the debris flow significantly impact the rates of erosion and 

deposition within the catchment, especially in ravines and outlets. As identified in Figure 6.1and Figure 

6.2a, the rates of hillslope erosion in the interaction zones are higher in comparison to those areas of 

the catchment in which hillslope erosion is only affected by hillslope runoff. Therefore, the advantage of 

the OpenLISEM hazard model is the spatial representation of hydrological processes, such as 

infiltration, hillslope runoff, and flash floods. This makes it possible to identify within the interaction zone 

which are the dominant processes that make these hazards interact.  

The assessment of these hazards using a multi-hazard approach instead of a single-hazard approach 

in the Soufriere catchment and Maipo sub-catchment showed the advantage of representing the impacts 

of hazard interactions on the individual magnitude of each hazard. By mapping all the hillslope 

hydrological hazards simulated by the OpenLISEM hazard model it is possible to identify locations in 

which these hazards are predicted to interact. Figure 6.1 and Figure 6.2a illustrates the spatial 

distribution of the simulated landslides, debris flows and hillslope erosion for both study sites resulting 

from the selected parameter-set indicating that within these catchments, these hazards can occur 

independently, but their interaction will be determined by the hydrological and stability processes and 

spatial proximity of one hazard to another that can produce cascading, concurrent or compounding 

interactions. The application of the OpenLISEM hazard model at both study sites has effectively proven 

the representation of these hazards individually but considering the impacts of these interactions in their 

resulting magnitudes. This is an important aspect of assessing multi-hazard interactions for different 

climatic and environmental settings, as the identification and mapping of different interconnected 

hazards improves preparedness for the potential impacts of these hazards. These results suggests that 

the individual assessment of these hazards using single hazard models could potentially underestimate 

the impact of interacting hazards, constraining the estimation of the risk for regions highly exposed to 

multiple hazards, as the type of interactions amplifies the overall hazard in comparison to independent 

hazards. For example, single debris flow runout models directly include landslide failure volumes to 

assess their influence in debris flow magnitude and erosion. However, this is constrained by uncertainty 

in estimating landslide volumes using different statistical methods and landslide inventories. In addition, 

physically-based erosion models do not incorporate the effects of landslides and debris flow in the 

estimation of erosion and deposition rates. In addition, landslide hazard model is limited to single slopes 

limiting their application to catchment scales.  
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The results obtained for both study sites demonstrate the applicability of stage two of the modelling 

workflow. The selection of behavioural simulations to account for potential issues of equifinality and 

uncertainty contributed to selecting the parametric simulation with less uncertainty in the results for the 

Soufriere catchment and Maipo sub-catchment. Most of these results are difficult to achieve in some of 

the current multi-hazard models due to model complexities (e.g., number of input parameters for 

hydrological and stability processes representations and data quality) and the lack of guidelines to 

manage these model complexities and uncertainties. 

The integration of these processes is essential for identifying the interrelationships that influence the 

interactions of hillslope hydrological hazards. However, more process integration in multi-hazard models 

requires more parameters for hazard representations. This is an important consideration when applying 

multi-hazard models in contrasting climatic and lithological catchments, where the difference in available 

data introduces sources of uncertainty in the setting of model input parameter values. Therefore, the 

application of multi-hazard models for two different study sites must be conducted by following 

guidelines that manage parameterisation (stage one), verification, and uncertainty (stage two). In this 

thesis, the following guidelines were important to address research question 2 (RQ2) by selecting the 

behavioural simulations whose parameter set properly represents the observed hazards for the selected 

rainfall events for both study sites considering the impacts of uncertainty in the input parameters. The 

foregoing is crucial to simulate multi-hazard interactions, especially to understand the real impact of the 

influence of one hazard on another and recognize the non-independence between these hazards. In 

summary, the assessment of multi-hazard interactions must be conducted following what is called “good 

practices.” This manages the complexity of multi-hazard models through parameterisation procedures 

and reduces uncertainties in the model outputs. This is an ethical procedure, as most of the model 

output is used by researchers and decision makers to implement policies and measures to reduce and 

manage the potential impacts of these hazards as a consequence of climate and land use change.  
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Figure 6.1 Hillslope hydrological hazard simulated as a multi-hazard event for the Soufriere 

catchment (Hurricane Tomas): (a) All hazards with location of cascading interactions indicated, 

(b) Landslides, (c)  Debris flows, (d) Hillslope erosion hazards abstracted from the multi-hazard 

modelling result to indicate their extent more clearly. 
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Figure 6.2 Hillslope hydrological hazard representations for the Maipo sub-catchment (25 

February 2017 rainfall event): (a) cascading interactions, (b) Landslides, (c) Debris flows, (d) 

Hillslope erosion. 
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6.1.4 An end-to-end methodology to explore climate and land use scenarios for different 

catchment environments 

The application of the full extent of the modelling workflow for the Soufriere catchment and the Maipo 

sub-catchment in Chapter 4 and Chapter 5 demonstrated its applicability to assess climate and land use 

scenarios in both study sites. Specifically, the application of stages one and two were important steps 

for the identification and selection of parameter sets, as well as the assessment of the most sensitive 

input parameters through the application of Regional Sensitivity Analysis (RSA) to the selected 

parameter sets. The incorporation of Sensitivity Analysis (SA) in stage two of the modelling workflow 

allowed the identification of the land use and soil type input parameters that had most influenced on the 

occurrence of the observed hazards for both catchments. This is an essential stage when it comes to 

exploring climate and land use scenarios. Identifying influential land use categories and soil type units 

indicates, for example, the sensitivity of a catchment's physical characteristics to hillslope deforestation, 

agriculture, or urbanization. These anthropogenic processes have significant impacts on hillslope 

hydrological and geotechnical properties such as saturation hydraulic conductivity, slope gradient, and 

soil moisture. The assessment of the most influential input parameters for the selected parameter-sets 

allowed the identification of the saturated hydraulic conductivity (𝑘௦ଵ) for land use as the most influential 

parameter for the Soufriere catchment and the saturated moisture content (𝜃௦ଶ) for soil types in the 

Maipo sub-catchment. This means that the spatial variation in these values has a significant impact on 

model outputs. However, for spatially distributed models, such as the OpenLISEM hazard model, it is 

necessary to identify how these influential values vary spatially. The identification of the spatial 

distribution of the simulated hazards (landslide surface areas and debris flow runout areas) for each 

land use category and soil type unit helped to identify the influential values for each category and unit. 

This was an important step in setting land use scenarios to identify the values for the most sensitive 

land use categories. 

The OpenLISEM hazard model allowed for the assessment of the impact of land use change on multi-

hazard occurrence. The setting of hydrological and geotechnical input parameter values for land use 

categories and soil type units is of great advantage to exploring how the spatial distribution of the most 

influential values impacts the hillslope hydrological hazard interactions. In the case of the Soufriere 

catchment, the exploring of land use scenarios was set by changing the saturated hydraulic conductivity 

(𝑘௦ଵ) value of the natural tropical forests by the value of the mixed farming and forests. This allowed the 

exploration of the hypothesis that the expansion of farmlands to the detriment of natural tropical forests 

increases the magnitude of hillslope hydrological according to the 27-h, 24-h, 10-h, and 5-h rainfall 

events selected for the catchment. The assessment of these hazards is a significant step forward in 

providing insights into how they might respond to future land use and rainfall scenarios. For example, it 

was identified that the decrease of natural tropical forests to the detriment of farmlands areas increases 

the magnitude of these hazards up to +256.7% for landslides surface area (𝐴௅), +1457.8% for debris 

flows runout areas (𝐴஽), and +371% for net erosion rates (𝑁𝑒𝑡ா), to rainfall events such as Hurricane 

Tomas. Moreover, the increase in natural tropical forests has significantly decreased the magnitude of 

these hazards. For example, for the same Hurricane Tomas rainfall event the magnitude of landslide 
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surface areas (𝐴௅) decreased to -16%, the debris flow runout area (𝐴஽) to +13.1% and the total net 

erosion rates (𝑁𝑒𝑡ா) to -4%. For the Maipo sub-catchment, the exploration of the hypothesis that the 

increase of scrub forest to the detriment of natural forest increases the magnitude of hillslope 

hydrological hazards according to the 12-h, 8-h, 6-h, and 4-h rainfall events showed that for the 8-h 

rainfall event of February 25, 2017, the landslide surface area (𝐴௅), increased up to +3.6%, debris flow 

runout areas  (𝐴஽) up to +4.8%, and total net erosion rates (𝑁𝑒𝑡ா) up to +2.3%. Alternatively, the increase 

of natural forest decreased the magnitude of the landslides surface area (𝐴௅) to -1.8%, debris flows 

runout areas (𝐴஽) to +1.3% and total net erosion rates (𝑁𝑒𝑡ா) to -4.8%. The application of the full extent 

of the modelling workflow was essential to address research question 3 (RQ3) of this thesis by exploring 

how hydrological hazard interaction respond to changes in climate and land use in both study sites. The 

foregoing demonstrates the applicability of the modelling workflow in catchments with different 

lithological and climatic settings as well as with different land use dynamics. 

6.2 Overall thesis conclusions 

This thesis provides a modelling workflow that addresses the parameterisation of complex multi-hazard 

models, such as the OpenLISEM hazard model, the management of uncertainty in input data and model 

outputs given by data-scarce contexts, model verification, the sensitivity of input parameters in hazard 

representations, and model application to explore climate and land use change scenarios for different 

catchment environments. It develops the necessary steps for each stage of the modelling workflow to 

assess the quality of the input data and identify suitable parameter-sets that best represent hillslope 

hydrological hazard interactions according to land use categories and soil type units of each catchment 

environment and the uncertainties associated with them. Most importantly, it demonstrated its 

applicability to different climatic and environmental catchment settings, allowing the identification of 

impacts associated with these hazards, such as the quantification of rainfall-triggered landslides, debris 

flows, and hillslope erosion hazard magnitudes. The application of the full extent of the modelling 

workflow allows the assessment of hillslope hydrological hazard interactions for different land use and 

climate change scenarios. This allows the assessment of the potential effects of rainfall and land use 

change on hillslope hydrological hazards according to land use and climatic settings for different 

catchments. This information is useful for decision-makers because it provides necessary guidelines to 

mitigate and reduce the impacts of these hazards on vulnerable populations and infrastructure exposed 

to the impacts of rainfall-triggered landslides, debris flows, and hillslope erosion hazards. 

6.2.1 Direction for future works  

The modelling workflow proposed in this thesis contributes to improving the confidence of multi-hazard 

modelling for data-scarce catchments located in different climatic and environmental settings. There is 

now an opportunity to apply the modelling workflow developed in this thesis to improve multi-hazard 

modelling considering the uncertainties that arise in the modelling process, especially to assess multi-

hazard interactions for different climate and land use change scenarios. The following section provides 

an outlook on the contribution of the modelling workflow in the good practice to conduct multi-hazard 
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assessments, especially to assess the potential impacts of climate and land use change on the 

occurrence and magnitude of these hazards. 

6.2.2 A modelling workflow methodology to improve confidence in multi-hazard modelling 

The approach to address the modelling workflow described in Chapter 2 contributes not only to address 

the uncertainties that arise in multi-hazard modelling but also to the user to perform an end-to-end 

methodology for an "ex-ante" assessment to apply physically-based distributed multi-hazard models 

that require a large number of input parameters to represent complex climatic-environmental systems. 

In particular, for the assessment of multi-hazard interactions, the application of multi-hazard models 

depends on the quality of their input parameters (van den Bout 2020; Williams et al. 2020). However, 

uncertainty is inherent in the input parameters because of the complexities in estimating them (e.g., data 

and information available for topography, hydrology, and geotechnical characteristics for different 

regions). Therefore, hazard representations and policy recommendations to mitigate them are 

constrained by the uncertainty introduced in their representation (Uusitalo et al. 2015; Fan et al. 2021). 

Moreover, assessing their impacts on different land use and rainfall change scenarios critically depends 

on the quality of these outputs. Hence, methodologies that guide these uncertainties are required (Merz 

et al. 2020). 

According to Almeida et al. (2017) and Beven et al. (2018), addressing uncertainties for hazard 

modelling constitute a “good practice” to conduct natural hazard assessments that might have significant 

influence on decisions. In the case of multi-hazard modelling, the incorporation of methodologies that 

address uncertainties improves the understanding of these hazards, for example, the interaction of 

rainfall-triggered landslides, debris flows and hillslope erosion hazards and their potential impacts on 

the population and infrastructure. Notably, for multi-hazard assessment, understanding the relationships 

between catchment physical and climatic factors that influence the interactions of hillslope hydrological 

hazards is the starting point for identifying how different catchment environments can respond to the 

impacts of climate and land use change. This is a crucial stage in modelling multi-hazard interactions, 

especially for users who seek different purposes in assessing these hazards. For example, for engineers 

and hydrologists, stage one of the modelling workflow can identify catchment hydrological and 

geotechnical properties by exploring input parameter range values (e.g., saturated hydraulic 

conductivity, saturated moisture content, soil cohesion, and soil internal friction angle) for different soil 

types for the assessment of catchment stability conditions or hydrological behaviour for different rainfall 

events. This is a contribution, especially to the characterisation of the soil hydrological and geotechnical 

properties in catchments, where limited access to information to identify these physical factors prevents 

the application of physically-based distributed models be avoided due to the uncertainties introduced by 

the absence of information (McMillan et al. 2018; Bicocchi et al. 2019). The first stage of the modelling 

workflow allows exploration of the hydrological and geotechnical input parameter value ranges that 

might introduce sources of uncertainty on the hazard that is intended to model. Furthermore, screens 

the value distribution to set the parameterisation of the catchment hydrological and geotechnical values 

for different land use categories and soil type units. 
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Following the second stage of the modelling workflow for model verification and sensitivity analysis 

determines the necessary steps to select the behavioural simulation with the best approximation to an 

observed hazard. The spatial similarity using an equifinality approach contributes to the user in 

establishing the criteria to define the best spatial patterns with more proximity to an observation. In the 

case of rainfall-triggered landslides and debris flows, when comparing the area difference between the 

simulated and observed hazards, it is possible to assess the effects of uncertainty by comparing the 

hazard magnitudes (sizes) and spatial distributions. These spatial patterns provide the user with an 

understanding of how the uncertainties in the input parameters are propagated in the model outputs 

(Ardizzone et al. 2002; Mead et al. 2021). The integration of the spatial overlapping method to assess 

model accuracy considers these uncertainties. For example, the overlap between the simulated and 

observed landslides allows us to identify how the quality of the input data approximates the observation. 

Sensitivity analysis contributes to determining the most sensitive input parameters that influence the 

spatial representation of hillslope hydrological hazards. Identifying these input parameters is an 

essential step for model parameterisation, particularly for identifying land use categories and soil type 

properties that are more sensitive within the catchment in representing these hazards. This is an 

important stage for users seeking to explore the impact of climate and land use change on the 

occurrence of hillslope hydrological hazards from the perspective of understanding the interrelationships 

between catchment physical properties and climatic factors that influence the occurrence of hazard 

interactions, or decision and policy making regarding disaster risk reduction management (DRR) and 

land use planning.  

6.2.3 Improving the understanding of multi-hazards and their interactions: Future outlook 

In practice, applying climate and land use scenarios provides insights into how catchments with different 

climatic and environmental settings will respond to the effects of land use dynamics and rainfall extremes 

(Wang et al. 2008; van Vliet et al. 2016). The assessment of these hazard scenarios allows for identifying 

the sensitivity of different catchment environments to the potential impacts of climate and land use 

change. This is useful information, as land use dynamics, such as agriculture, urbanization, and 

deforestation, significantly impact the hydrological and geotechnical processes on hillslopes (Sidle et al. 

1985; Sidle and Ochiai 2006). In addition, changes in rainfall intensity and duration are significantly 

impacting the magnitude and frequency of these hazards in different regions of the world, especially in 

countries highly exposed to the impacts of climate change (Gariano and Guzzetti 2016; Alvioli et al. 

2018). The application of the full extent of the modelling workflow contributes to providing the 

assessment of hillslope hydrological hazards for these scenarios. The quantification of the magnitude 

of rainfall-triggered landslides, debris flows, and hillslope erosion rates through the application of the 

hazard metrics allow an understanding of the catchment response to the impacts of land use and rainfall 

change. Moreover, contributes to determining which land use dynamics and rainfall duration might have 

the greatest impact on the catchment on hillslope hydrological hazard magnitudes. For example, 

determine if the changes in land use due to anthropogenic processes (e.g., intensive agriculture, urban 

expansion) or by the direct effects of climate change such as reduction of land cover by long drought 

periods or wildfire impacts the magnitude of hillslope hydrological hazards (Johnston et al. 2021). The 
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modelling workflow for land use and rainfall change identifies these dynamics by also considering the 

effects of rainfall. This useful information provides more effective disaster risk reduction policies and 

adaptation strategies for the effects of land use climate change (Cremen et al. 2022).  

Although the modelling workflow developed and applied in this thesis demonstrated its applicability to 

managing parameterisation and uncertainties of multi-hazard models to explore climate and land use 

scenarios in data-scarce regions. There are some limitations that need to be considered when applying 

the full extent of the modelling workflow. These are related to the complexity to obtain and gather data 

for different catchment environments, especially when the model is applied over large catchments. For 

example, characterising soil types and identifying their spatial distribution over a catchment requires 

high-quality databases for geology, geomorphology, and topography as well as the availability of GIS 

software (van Westen et al. 2008). Moreover, estimating the hydrological and geotechnical properties 

of each soil type is a time-consuming process that requires an extensive literature review (Iwashita et 

al. 2012; Bicocchi et al. 2019). On the other hand, using high-resolution data over large catchments is 

expensive to obtain and increases the simulation time for models such as the OpenLISEM hazard model 

(van den Bout 2020). This makes the application of stage one of the modelling workflow to explore 

parametric simulations to be more extensive regarding data gathering and assembly and simulation 

times depending on data resolution and the rainfall duration. Therefore, the implementation of more 

highly efficient computational systems can improve the simulation times to run parametric simulations. 

However, this is still a disadvantage for countries that do not count on the necessary resources to 

implement highly efficient systems to simulate the impacts of hillslope hydrological hazards for different 

land use scenarios (van Westen et al. 2021). 

Another limitation is the development of open databases to estimate hydrological and geotechnical input 

parameters, particularly for data-scarce regions. Several contributions have been made to developing 

databases for physically based modelling. The work of Iwashita et al. (2012); Fan et al. (2016); Tofani 

et al. (2017) and Bicocchi et al. (2019) have contributed in characterising the geotechnical and 

hydrological properties for different soil types improving the estimation of parameters for physically-

based models. However, it is still challenging to define the catchment's physical characteristics, 

especially over large catchments. This becomes more challenging when estimating spatially distributed 

values, for example, for saturated hydraulic conductivity, soil cohesion, or soil internal friction angle, for 

which their value estimation relies on laboratory testing (Koo et al. 2020). Therefore, one of the key 

areas for improvement in multi-hazard modelling is the development of open databases with spatial 

information related to catchment physical characteristics, containing, for example, probability density 

functions (PDFs) related to parameters such as soil cohesion for different soil types. This can be used 

to estimate parameter values for different catchments in which the soil types are similar in terms of these 

characteristics. On the other hand, despite the growing availability of global datasets related to soil 

moisture, soil depth, Digital Elevation Models (DEMs), and land use/cover (LUC). There is still a need 

to pre-process these data containing different spatial resolutions to be adapted to the scale and 

resolution required for the selected catchment (Burton et al. 1998; van den Bout 2020). This also 
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introduces sources of uncertainty that affect the model’s outputs. Therefore, guidelines are also required 

for spatial data processing for multi-hazard modelling.  

In addition, the improvement of hazard inventory datasets is also required. The lack of record of the 

frequency of rainfall-triggered landslides, debris flows, and the amount rates of erosion and deposition 

is also a limitation to applying multi-hazard models in different regions as limits the verification of the 

model results (Blahut et al. 2010; Guzzetti et al. 2012).  For example, in data-scarce regions, accessing 

high-resolution images such as RapidEye or LiDAR sensors is too expensive to identify the spatial 

distribution of landslides and debris flows at the moment when these hazards occurs, limiting their 

estimation using open-source coarse-resolution data (van Westen et al. 2008; Pellicani et al. 2013). 

Another improvement required is the availability of updated land use accounting for the latest changes 

in urbanization, agriculture and deforestation driven by anthropogenic processes or climate change. 

This is essential to explore land use scenarios according to the latest tendencies in land use dynamics 

for different catchments (van Westen et al. 2021). Moreover, the availability of high-resolution rainfall 

records is essential to explore the impacts of climate change on different regions (van den Bout 2020). 

For example, for the Maipo sub-catchment, the availability of the CAMELS-CL platform (Alvarez-

Garreton et al. 2018), has contributed to providing rainfall records from 30 years allowing to identify the 

amounts of rainfall that triggered multiple hazards in the past. 

According to the aforementioned requirements, improving multi-hazard modelling is a challenging task. 

However, the modelling workflow proposed in this thesis contributes to setting the basis for improving 

multi-hazard modelling by using complex models in data-scarce regions, managing uncertainty to 

provide a more comprehensive understanding of the physical and climatic relationships that influence 

multi-hazard interactions for different catchment environments. The workflow also generates reliable 

outputs to develop early warning systems and provide information to different stakeholders, such as 

governments, planners, and engineers, who can make decisions to support strategies and policies to 

reduce the impacts of these hazards, especially in regions highly exposed to the impacts of land use 

and climate change.  
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6.3  Concluding remarks 

The modelling workflow developed and applied in this thesis is relevant for improving multi-hazard 

modelling for catchments with different data scarcity levels. The full extent of the proposed modelling 

workflow addresses the gaps in the parameterisation of multi-hazard models, the management of 

uncertainties due to model complexities, and data quality due to the lack of information to represent all 

catchment physical variables required to model multi-hazard interactions. In practice, this modelling 

workflow sets guidelines to perform better practices in multi-hazard modelling. The assessment of the 

impacts of rainfall-triggered landslides, debris flows, and hillslope erosion hazards depends on 

addressing the uncertainty introduced in physically based multi-hazard models. This not only improves 

their modelling for different catchment settings but also sets the basis to address the gap related to the 

data quality and lack of information to generate the necessary inputs to model multi-hazard interactions. 

This is an improvement not only to properly model landslides, debris flows, and hillslope erosion hazards 

but also to improve the forecasting of these hazards for different land use and climate change scenarios, 

allowing the assessment of the impacts of these hazards on the population and infrastructure. The 

foregoing is relevant for supporting disaster risk reduction policies and improve the risk assessment and 

reduce the impact of these hazards accounting for their interactions.
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Appendix A - Supporting information for Chapter 2 

A.1  The OpenLISEM modelling approach 

Slope stability and slope failure  

The method for estimating slope stability is based on the infinite-slope approach. This method calculates 

both the local downslope and local resisting forces. The OpenLISEM hazard model assumes that the 

slope consists of two layers, a bedrock material with high cohesion that is considered as a boundary 

condition for calculations and a top layer of loose material (Van den Bout et al. 2021) (Figure A.1). On 

slopes, the soil above the potential shear plane is subject to a demanding force 𝐹ௗ, which includes the 

downslope component of the own weight of the soil (𝑊) and any additional loads acting on it (Figure 

A.1). Movement is resisted by a reaction force of the mobilised shear strength 𝜎′௡. The mobilised 

shearing resistance is finite and can be considered as the force capacity 𝐹௖ of the soil to resist failure. 

Failure occurs as soon as the demand 𝐹ௗ exceeds the capacity 𝐹௖. Within this approach, the slope 

stability can be expressed as the ratio between the capacity 𝐹௖ and the demand 𝐹ௗ. This ratio is known 

as the factor of safety, FoS (Equation A.1).  

 

𝐹𝑜𝑆 =  
𝐹𝑐

𝐹𝑑
 

 

Equation A.1 

 

Figure A.1: Diagram of forces for infinite slope approach    

Soil initial moisture content plays an essential role in hillslope hydrology as it regulates the partitioning 

of rainfall into infiltration and surface runoff in unsaturated soil, affecting slope stability (Sheikh et al. 

2010). In the OpenLISEM hazard model, instead of considering the moisture content distribution within 

the soil pores, it is assumed that moisture is distributed at the bottom of the soil layer (Van den Bout et 

al. 2018). This water distribution is named “pseudo-groundwater,” which starts rising when the wetting 

front reaches the pseudo-groundwater level and stops when the soil pores are filled with water. When 

the pseudo-groundwater level start increasing the moisture varies linearly according to the equation 

proposed by (Van Beek, 2002).  

𝑍௪ =  
𝜃௜ − 𝜃௥

𝜃௦ − 𝜃௥
∗ 𝑍 Equation A.2 
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Where 𝜃௜  (𝑐𝑚ଷ. 𝑐𝑚ିଷ) is the initial moisture content, 𝜃௥ (𝑐𝑚ଷ. 𝑐𝑚ିଷ) the residual soil moisture, 

𝜃௦ (𝑐𝑚ଷ. 𝑐𝑚ିଷ) the porosity, and Z the soil depth (m). The mechanism in which the wetting front reaches 

the pseudo-groundwater level is given by the Green and Ampt (1911) infiltration model in Equation A.3. 

𝑧ᇱ =  −𝑘௦ ∗ ൬𝜓 ∗
𝜃௦ − 𝜃௜

𝐹
+ 1൰ Equation A.3 

Where 𝑧ᇱ is wetting front depth (𝑚𝑚), −𝑘௦ is the saturated hydraulic conductivity (𝑚𝑚. ℎିଵ), 𝜓 is the 

matric suction at the wetting front, 𝜃௦ is the soil porosity (𝑐𝑚ଷ. 𝑐𝑚ିଷ), 𝜃௜ is the initial moisture content 

(𝑐𝑚ଷ. 𝑐𝑚ିଷ) and 𝐹 is the cumulative infiltrated water (𝑚).  The increase of the soil weight (force demand 

𝐹𝑑) is given by the shear stress 𝜏 = 𝑊 𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽, where 𝑊 is the sum of all weights acting on the slope. 

𝑊 is given by Equation A.4. 

𝑊 = [(𝑍 −  𝑍௪) ∗ 𝛾 + 𝑍௪ ∗ 𝛾௦௔௧] Equation A.4 

However, the landslide triggering mechanism is the wetting front infiltration 𝑧ᇱ, then the wetting front 

depth is added to the sum of all weights, so 𝑊 is now given by Equation A.5. 

𝑊 = [(𝑍 − 𝑧௪ − 𝑧ᇱ) ∗ 𝛾 + 𝑧ᇱ ∗ 𝛾௦௔௧ + 𝑧௪ ∗ 𝛾௦௔௧] 
Equation A.5 

In this context, the force demand 𝐹𝑑 is now given by Equation A.6. 

𝜏 = [(𝑍 − 𝑧௪ − 𝑧ᇱ) ∗ 𝛾 + 𝑧ᇱ ∗ 𝛾௦௔௧ + 𝑧௪ ∗ 𝛾௦௔௧]𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽 
Equation A.6 

The force capacity 𝐹𝑐 can be described by the Mohr-Coulomb failure criterion: 𝜏௙ = 𝑐′ +  𝜎ᇱ𝑡𝑎𝑛∅. If the 

weight of the soil (𝑊) , is the only load acting at the potential shear plane, the total normal stress 𝜎 is 

given by: 𝜎 = 𝑊 ∗ 𝑐𝑜𝑠ଶ𝛽. When part of the load is influenced by the water present in the soil pores, the 

frictional components of the shear resistance depend on the effective normal stress, 𝜎ᇱ =  𝜎 −  𝜇, which 

is the total normal stress reduced with the pore pressure. Under the assumption that the groundwater 

levels are unconfined, the effective stress is affected by the buoyancy of the particles below the 

groundwater level, so the pore water pressure is expressed by the relation: 𝑢 =  𝑧௪ ∗ 𝛾′.  

According to the above mentioned, the total normal stresses are given by: 𝜎ᇱ = [(𝑍 −  𝑧௪  − 𝑧′) ∗ 𝛾 +

𝑧ᇱ ∗ 𝛾௦௔௧ +  𝑧௪ ∗ 𝛾ᇱ]𝑐𝑜𝑠ଶ𝛽, where Z is the soil depth (m), 𝑧௪ (m) represents the groundwater height above 

the shear surface, z’ is the wetting front depth (m), 𝛾 is the unit weight of soil (𝑘𝑁. 𝑚ିଷ), 𝛾௦௔௧ is the 

saturated unit weight (𝑘𝑁. 𝑚ିଷ), and 𝛾′ is the buoyant unit weight (𝑘𝑁. 𝑚ିଷ). Once all weights on the 

slope are known, the relationship between the 𝐹𝑑 and 𝐹𝑐 is now given by the Factor of Safety, FoS, in 

Equation A.7. 

𝐹𝑜𝑆 =  
𝐹𝑐

𝐹𝑑
=  

𝑐ᇱ + [(𝑍 −  𝑧௪  − 𝑧′) ∗ 𝛾 + 𝑧ᇱ ∗ 𝛾௦௔௧ +  𝑧௪ ∗ 𝛾ᇱ]𝑐𝑜𝑠ଶ𝛽𝑡𝑎𝑛∅ᇱ

[(𝑍 − 𝑧௪ − 𝑧ᇱ) ∗ 𝛾 + 𝑧ᇱ ∗ 𝛾௦௔௧ + 𝑧௪ ∗ 𝛾௦௔௧]𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽
 

Equation A.7 

 

Once the slope stability is estimated the slope failure is calculated according to the  iterative slope failure 

method (Van den Bout et al. 2018). This method was developed to calculate the progressive slope 
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failure within a raster element determined to be unstable (Van den Bout et al. 2021). The raster element 

corresponds to the FoS derived from Equation A.7 estimated over a Digital Elevation Model (DEM). The 

iterative method assumes that slope stability could be achieved by decreasing the elevations of the DEM 

(removing failure depths) of the pixels estimated as unstable (FoS ≤ 1). From this assumption, all 

unstable pixels with FoS ≤ 1 will be removed by establishing an angle of the elevation differences 

between the stable and unstable raster cells. This angle is based on the height difference of the elevation 

model (DEM), which is given by Equation A.8. 

𝛽 =  𝑎𝑡𝑎𝑛 ቆ
𝑚𝑎𝑥(ℎ௫ିଵ − ℎ௫,   ℎ௫ − ℎ௫ାଵ)

𝑑𝑥
ቇ Equation A.8 

 

Where ℎ௫ is the elevation of the unstable cell (m), ℎ௫ିଵ is the elevation of the previous cell (m), ℎ௫ାଵ is 

the elevation of the next cell (m), and 𝑑𝑥 is the cell size (m). From this assumption, all unstable pixels 

with FoS ≤ 1 will be removed by using Equation A.9 until find the depth of the remaining soil required 

for stability.  

𝐹𝑜𝑆 =  
𝐹௖

𝐹ௗ

=  
𝑐ᇱ + [(𝑍 − 𝑧௪ − 𝑧ᇱ) ∗ 𝛾 + (𝑧ᇱ ∗ 𝛾௦௔௧) + (𝑧௪ ∗ 𝛾ᇱ)] cos ൬atan ൬

ℎ − ℎ଴

𝑑𝑥
൰൰

ଶ

tan ∅′

[(𝑍 − 𝑧௪ − 𝑧ᇱ) ∗ 𝛾 + (𝑧ᇱ ∗ 𝛾௦௔௧) + (𝑧௪ ∗  𝛾௦௔௧)] sin ൬atan ൬
ℎ − ℎ଴

𝑑𝑥
൰൰ cos ൬atan ൬

ℎ − ℎ଴

𝑑𝑥
൰൰

 

 

Equation A.9 

 

Debris flow modelling 

In the OpenLISEM hazard model, the debris flow modelling approach consists of a set of two-phase 

equations derived from Pudasaini (2012), including mass, momentum and energy conservation. These 

equations are highly flexible in simulating the interaction of water and solids. The fluid phase (𝑆௫,௙) 

(Equation A.13) and (𝑆௬,௙) (Equation A.14) consists of a fluid volume fraction 𝛼௙ (𝑚ଷ) derived from the 

Saint-Venant equations for shallow water that include gravitational forces, pressure, Newtonian viscous 

effects, friction caused by the solid phase and drag forces. This equation includes the fluid density 

൫𝜌௙൯ (𝑘𝑔. 𝑚ିଷ), the fluid velocity (𝑢௙) (𝑚. 𝑠ିଵ), the fluid pressure at the basal surface (𝑃௕) (𝑘𝑔. 𝑚ିଵ. 𝑠ିଶ) 

with 𝑏 the basal surface (m), the density ration between fluid and solid phase (𝛾)(−), and the vertical 

shearing of the fluid velocity (𝑋)(𝑚. 𝑠ିଵ) and drag coefficient 𝐶஽ீ (-). Within the OpenLISEM hazard 

model the frictional force for fluid phase was replaced with the Darcy-Weisbach equation for water flow 

friction (Van den Bout et al. 2018). Moreover, additional forces defined by Pudasaini (2012) are included 

within the momentum equations, these are the 𝑁ோ which is the Reynolds number (-) and 𝑁ோಲ
 that 

corresponds to quasi-Reynolds number (-) these are used to scale turbulent and viscus forces. These 

are defined as follows: 

𝑁ோ =
ඥ𝑔𝐿𝐻𝜌௙

𝛼௙𝜂
 

Equation A.10 

𝑁ோಲ
=

ඥ𝑔𝐿𝐻𝜌௙

𝐴𝜂
 Equation A.11 
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Where L is the length scale of the flow (m), H is the height of the flow (m), A is the mobility of the interface 

(-) and 𝜂 the viscosity (𝑘𝑔. 𝑠ିଵ𝑚ିଵ) based on the empirical relation defined by O’Brien et al. (1993). The 

viscosity is described as follow: 

𝜂 =  𝛼𝑒ఉఈೞ Equation A.12 

Where 𝛼 is the first viscosity parameter (-) and (𝛽) the second viscosity parameter (-). 

The solid phase (𝑆௫,௦) (Equation A.15) and (𝑆௬,௦) (Equation A.16) consists of a solid volume fraction 

𝛼௦ (𝑚ଷ), derived from the volume of soil resulting from the slope failure and entrained by the surface 

flow (Liu et al. 2020). However, the volume of sediment concentrated within the flow as a result of the 

sediment load by bed erosion is also included within the solid volume fraction (Pudasaini and Fischer 

2020). Within the solid phase, are included gravitational forces, pressure and buoyancy, Mohr-Coulomb 

plasticity criteria that is based on the reaction of the surface to the weight of the flow material (Van Den 

Bout et al. 2021), and drag forces. These equations also include the solid density (𝜌௦) (𝑘𝑔. 𝑚ିଷ), the 

fluid velocity (𝑢௦) (𝑚. 𝑠ିଵ), the pressure at the basal surface (𝑃௕) (𝑘𝑔. 𝑚ିଵ. 𝑠ିଶ) with 𝑏 the basal surface 

(m), the density ration between fluid and solid phase (𝛾)(−), and the vertical shearing of the fluid velocity 

(𝑋)(𝑚. 𝑠ିଵ) and drag coefficient 𝐶஽ீ (-). 

 

𝑆௫,௙ = 𝛼௙ ቄ𝑔 ቀ
డ௕

డ௫
ቁ − 𝜀[

ଵ

௛

డ

డ௫
ቀ

௛మ

ଶ
𝑃௕೑

ቁ +  𝑃௕೑

డ௕

డ௫
−

ଵ

ఈ೑ேೃ
൬2

డమ௨೑

డ௫మ +
డమ௩೑

డ௬డ௫
+

డమ௨೑

డ௬మ −
௑௨೑

ఌమ௛మ൰ +

ଵ

ఈ೑ேೃ
൭2

డ

డ௫
൬

డఈೞ

డ௫
൫𝑢௙ − 𝑢௦൯൰ +  

డ

డ௬
 ቆ

డఈೞ

డ௫
൫𝑣௙ − 𝑣௦൯ +

డఈೞ

డ௬
൫𝑢௙ − 𝑢௦൯ቇ൱ −

కఈೞ൫௩೑ି௩ೞ൯

ఌమఈ೑ேೃಲ௛మ]} −

ଵ

ఊ
𝐶஽ீ(𝑢௙ − 𝑢௦)|𝑢௙ ሬሬሬሬሬ⃗ − 𝑢௦ሬሬሬሬ⃗ |௝ି௜     

 

Equation A.13 

𝑆௬,௙ = 𝛼௙ ቄ𝑔 ቀ
డ௕

డ௬
ቁ − 𝜀[

ଵ

௛

డ

డ௬
ቀ

௛మ

ଶ
𝑃௕೑

ቁ +  𝑃௕೑

డ௕

డ௬
−

ଵ

ఈ೑ேೃ
൬2

డమ௨೑

డ௬మ +
డమ௩೑

డ௬డ௫
+

డమ௨೑

డ௬మ −
௑௨೑

ఌమ௛మ൰ +

ଵ

ఈ೑ேೃ
൭2

డ

డ௫
൬

డఈೞ

డ௫
൫𝑢௙ − 𝑢௦൯൰ +  

డ

డ௬
 ቆ

డఈೞ

డ௫
൫𝑣௙ − 𝑣௦൯ +

డఈೞ

డ௬
൫𝑢௙ − 𝑢௦൯ቇ൱ −

కఈೞ൫௩೑ି௩ೞ൯

ఌమఈ೑ேೃಲ௛మ]} −

ଵ

ఊ
𝐶஽ீ(𝑢௙ − 𝑢௦)|𝑢௙ ሬሬሬሬሬ⃗ − 𝑢௦ሬሬሬሬ⃗ |௝ି௜     

Equation A.14 

𝑆௫,௦ = 𝛼௦ ൬𝑔 ൬
𝜕𝑏

𝜕𝑥
൰ −

𝑢௦

|𝑢௦ሬሬሬሬ⃗ |
tan൫𝜕𝑃௕ೞ

൯ − 𝜀𝛼௦𝛾𝑃௕೑
൬

𝜕ℎ

𝜕𝑥
+

𝜕𝑏

𝜕𝑥
൰ + 𝐶஽ீ(𝑢௙ −  𝑢௦)ห𝑢௙ሬሬሬሬ⃗ − 𝑢௦ሬሬሬሬ⃗ ห

௝ିଵ
 ൰ Equation A.15 

𝑆௬,௦ = 𝛼௦ ൬𝑔 ൬
𝜕𝑏

𝜕𝑦
൰ −

𝑢௦

|𝑢௦ሬሬሬሬ⃗ |
tan൫𝜕𝑃௕ೞ

൯ − 𝜀𝛼௦𝛾𝑃௕೑
൬

𝜕ℎ

𝜕𝑦
+

𝜕𝑏

𝜕𝑦
൰ + 𝐶஽ீ(𝑢௙ −  𝑢௦)ห𝑢௙ሬሬሬሬ⃗ − 𝑢௦ሬሬሬሬ⃗ ห

௝ିଵ
 ൰ Equation A.16 
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Hillslope erosion modelling  

In the OpenLISEM hazard model the erosion modelling is given under two approaches. The first one is 

according to sediment load in overland flow and channel flow using the transport capacity given by 

(Govers et al. 1990). The 𝑇௖ is the maximum amount of sediment that the flow can transport (𝑘𝑔. 𝑚ିଷ). 

From the transport capacity (𝑇௖) equation (Equation A.17), the sediment load in overland flow and 

channel flow will determine the detachment and deposition of the soil. 

𝑇௖ =  𝜌௦𝑐(𝜔 − 𝜔௖௥)ௗ 
Equation A.17 

Where 𝜌௦ is the density of the sediment material (𝑘𝑔. 𝑚ିଷ), 𝜔 is the stream power (𝑚. 𝑠ିଵ) and 𝜔௖௥ the 

critical stream power (𝑚. 𝑠ିଵ), c and d are given by Equation A.18. 

𝑐 =  
(𝐷ହ଴ + 5)ି଴.଺

0.32
    ,   𝑑 =  

(𝐷ହ଴ + 5)଴.ଶହ

300
 Equation A.18 

With 𝐷ହ଴ the median grain diameter (m). 

The sediment is loaded into the flow according to a set of sediment load equations for bed and 

suspended sediment load for overland and channel flow from Van Rijn (1984a) and Van Rijn (1984b). 

The user chooses the most suitable equation for sediment load. It was used Van Rijn (1984a and 1984b) 

bed and suspended load full equations. Once the sediment is loaded into the flow, the sediment 

concentration will determine the flow transport capacity (𝑇௖), in which for sediment concentrations 𝐶௩ 

less than 𝑇௖  (𝑘𝑔. 𝑚ିଷ), flow detachment will take place (erosion), and for sediment concentrations, 𝐶௩ 

larger than 𝑇௖  (𝑘𝑔. 𝑚ିଷ) deposition will take place.  The sediment is transported and modelled in a 2-D 

kinematic wave and in a saint-venant equation for surface flow that was rewritten to 2-dimensions in 

Equation A.19 

𝑑𝑠

𝑑𝑡
+

𝑑(𝑄௫𝐶)

𝑑𝑥
+

𝑑(𝑄௬𝐶)

𝑑𝑦
= 𝑑𝑒𝑝 − 𝑑𝑒𝑡 

Equation A.19 

 

Where 𝑆 is the sediment load (𝑘𝑔), 𝐶 is the sediment concentration (𝑘𝑔. 𝑚ିଷ), 𝑄 is the discharge 

(𝑚ଷ. 𝑠ିଵ), 𝑑𝑒𝑝 is the deposition (𝑘𝑔. 𝑠ିଵ) and 𝑑𝑒𝑡 is the detachment (𝑘𝑔. 𝑠ିଵ). The erosion within the 

OpenLISEM hazard model is given by the total amount of detached soil (𝑘𝑔. 𝑚ିଶ) and the total amount 

of deposited soil (𝑘𝑔. 𝑚ିଶ). These are the result of the transport capacity equation (𝑇௖). According to 

these results, the net erosion is computed by the total soil loss (𝑘𝑔. 𝑚ିଶ), which is the total amount of 

detached soil minus the total amount of deposited soil. A positive result indicates erosion; this is more 

sediment that is leaving the surface than is deposited. A negative value indicates deposition, which is a 

more significant fraction of sediment that is deposited than is leaving the surface. 

The second approach corresponds to the changes in the basal topography due to erosion and deposition 

(𝜕𝑏/𝜕𝑡) based on the entrainment rates. These changes are included within the source terms of the 

fluid and solid phases of the two-phase debris flow equations. It was use the entrainment rate derived 

from Pudasaini and Fischer (2020), which is based on two competitive forces. The first corresponds to 
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the force exerted by the moving mixture on the erodible bed along the flow direction  (𝜏௦௜
௠),  and the 

second corresponds to the resistance of the hillslope bed on the moving material opposite to the flow 

(−𝜏௦
௕). The interface between these two opposite forces results in net shear stresses between the 

moving material and erodible basal layer resulting in a solid erosion rate (𝐸௦) (Equation A.20). The shear 

stress between the flow and the bed frictional resistance opposite to the flow direction is described by 

the Chezy-type friction coefficient 𝐶, resulting in a fluid erosion rate (𝐸௙) (Equation A.21) The sum of the 

solid (𝐸௦) and fluid (𝐸௙) erosion rates correspond to the entrainment rate (Equation A.22). 

𝐸ௌ + 𝐸௙ Equation A.20 

𝐸௦ =
ඥ(1 − 𝛾௠)𝜌௦

௠𝜇௦
௠𝛼௦

௠ − (1 − 𝑦௕)𝜌௦
௕𝜇௦

௕𝛽௦
௕

ට𝑣(𝜌௦
௠𝜆௦௟

௠𝛼௦
௠ −  𝜌௦

௕𝜆௦௟
௕ 𝛼௦

௕)

 ඥ𝑔𝑐𝑜𝑠Ϛℎ Equation A.21 

𝐸௦ =
[𝐶௙

௠𝜌௙
௠(𝜆௙௟

௠)ଶ𝛼௙
௠ − 𝐶௙

௕𝜌௙
௕(𝜆௙

௕)ଶ𝛼௙
௕] 

𝐻(𝐶௙
௠𝜌௙

௠𝜆௙௟
௠𝛼௙

௠ −  𝐶௙
௕𝜆௙

௕𝛼௙
௕)

 Equation A.22 
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Appendix B - Supporting information for Chapter 3 

B.1  Hurricane Tomas rainfall event intensity-duration estimation 

The rainfall intensity-duration for the Hurricane Tomas rainfall event was estimated using a synthetic 

rainfall design from the total hurricane rainfall volume. The Hurricane Tomas rainfall event had 

approximately 27 hours in the Soufriere catchment. The total rainfall volume registered corresponded 

to 668 mm according to the station of Desraches located near the Soufriere catchment (ECLAC, 2011). 

From the total identified rainfall volume, the synthetic rainfall design was performed according to the 

maximum intensity peak registered during the Hurricane. The maximum peak was obtained from a 

cumulative rainfall curve corresponding to the station Anse-La Raye located north of the Soufriere 

catchment, which contains the cumulative percentage of the Hurricane rainfall for 27 hours (Figure B.1). 

The accumulated rainfall curve was identified from the volume of 668 mm for the rainfall duration for the 

Soufriere catchment. 

The cumulative rainfall curve resulting from the Soufriere catchment was almost identical to the 

estimated for the Anse-La Raye station (Figure B.1). According to APSL Inc. (2011), the maximum 

intensity peak for Hurricane Tomas corresponded to 13% of the total rainfall. According to this, from the 

cumulative rainfall curve estimated for the Soufriere catchment, it was possible to identify that the 

maximum intensity peak corresponded to 86 (𝑚𝑚. ℎିଵ). From the identified maximum intensity peak, 

the synthetic rainfall was designed to determine the rainfall intensity for the Hurricane Tomas rainfall 

duration. 

 

Figure B.1. Hurricane Tomas rainfall cumulative curves. 

The designed rainfall intensity duration for the Hurricane Tomas rainfall event was discretized in time 

intervals of 10 minutes. The latter was performed because within the OpenLISEM model. The simulation 

time is the function of the rainfall duration in minutes. For this case, the total 27 hours duration of the 

Hurricane Tomas rainfall event was converted into 1620 minutes for the OpenLISEM hazard model. 
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B.2  Landslide inventory rectification 

The rectification of the landslide inventory from the British Geological Survey (2014) was performed by 

selecting spectral signature values from the RapidEye image corresponding to bare soil (Figure B.2a). 

According to Schmaltz et al. (2017), landslide activity can disturb vegetation cover, exposing soil at the 

surface. From the RapidEye image, spectral values ≥ 130 for no vegetated areas were selected to 

identify the areas with bare soil within the Soufriere catchment (Figure B.2b). However, the pixel 

selection included urban areas, exposed rocks and bare soil resulting from farming. In order to select 

the bare soil spectral values corresponding to the landslides and debris flows that occurred during 

Hurricane Tomas, the landslide inventory obtained from the British Geological Survey (2014) was used 

to identify the bare soil spectral values corresponding to the landslide inventory areas. Once the spectral 

values were identified, these were exported as a vector file to reshape the landslide and debris flow 

polygons contour according to the polygons estimated by the British Geological Survey (2014) (Figure 

B.2c). The result is a rectification of the contour corresponding to the polygons of landslides and debris 

flows. The update maintained the exact location and spatial distribution of the identified polygons from 

the British Geological Survey (2014) but gave the attributes of the recognised processes and reshaped 

the polygon contour to the RapidEye image pixel resolution (Figure B.2d). 

 

 

Figure B.2: Landslide inventory rectification process.  
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B.3  Setting the OpenLISEM hazard model input parameters  

Figure B.3 illustrates the spatial distribution of land use categories and soil types for the Soufriere 

catchment. The land use and soil types dataset are available in the CHARIM GeoNode platform: 

http://charim-geonode.net/. 

 

 

Figure B.3: (a) land use categories, (b) soil types units. 

Figure B.4 shows the spatial distribution of soil depths for the Soufriere catchment. Figure B.4a shows 

soil depth 1 and Figure B.4b shows soil depth 2. These two layer are used as inputs for the OpenLISEM 

hazard model infiltration method based on the Green and Ampt (1911).  These datasets are available 

at: https://sourceforge.net/projects/lisem/files/Example%20Datasets/. 
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Figure B.4: (a) soil depth for soil layer 1, (b) soil depth for soil layer 2. 

The parameter value for soil cohesion and soil internal friction angle was estimated from a geotechnical 

classification performed on the main soil groups within the Soufriere catchment. The soil groups were 

obtained from a classification performed on the soil types according to the Regional Research 

Laboratory (RRL) (1966), which identifies and describes the main soil types for Saint Lucia Island. Each 

soil type was classified within the main soil groups corresponding to the Soufriere catchment describing 

their composition and characteristics. According to the soil group classification, it was possible to 

establish a geotechnical classification for each soil group (Table B.1). The geotechnical classification 

was performed from the classified soil groups based on formation and weathering made by Shepheard 
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et al. (2019). From this classification, it was possible to group the Soufriere catchment soil groups into 

A (Tropical residual soils), B (Agglomerate soils), and U (Unclassified) (Table B.1). For each 

geotechnical classification, the parameter values for soil cohesion and soil internal friction angle were 

estimated from probability functions PDFs obtained from an unpublished report that describes the 

geotechnical parameters for these geotechnical classifications (St. Lucia parameters PRISM) (Table 

B.1). The most frequent value determined the estimation of soil cohesion and internal friction angle 

values. 

Table B.1. Soil geotechnical parameters. 

Soil classification Soil groups 
Geotechnical 
classification 

PDF c' (kPa) PDF Φ' (°) 
c' 

(kPa) 
Φ' (°) 

Calfourc Silty Loam 

Latosols 

A 
(Tropical 

residual soils) 
LN(2.3, 0.5) LN(3.2, 0.2) 8 24 

Panache Silty Clay 
Loam 

Rabot Clay 

Warwick Clay 

Haut Clay Loam 

Hardy Clay 
Smectoid Clay 

soils 

Ivrogne Stony Clay Colluvial soils 

Urban area 

Unclassified Sulfur springs 

Steep slopes 

Falaise Stony Loam Lithosols 

B 
(Agglomerate 

soils) 
WBL(24.9, 1.5) N(22. 9, 8.7) 5 25 

Casteau Gravelly 
Bouldery Silt Loam 

Colluvial soils 

Zenon Gravelly 
Bouldery Loamy 

Sand Alluvial soils 

Jalousie Clay 

Bare rock Unclassified 
U 

(Unclassified) 
(-) (-) 80 60 

LN= Lognormal distribution; WBL= Weibull distribution; N= Normal distribution.  

 

B.4  Parametric simulations 

The user-defined parameters to set the behavioural simulations are based on the values indicated in 

the OpenLISEM manual (Table B.2). The setting of these parameters is described as follow: 

Slope stability: These numerical settings correspond to the maximum factor of safety Fi, which is the 

cut-off value for the slope failure initiation and the resulting factor of safety Fr, which is the cut-off value 

to calculate how much failure depths should be removed from the unstable pixels. The Fr value 

influences the landslide simulation influencing the landslide size and depth. 
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Flow dynamics: These numerical settings correspond to viscosity parameters, these are based on the 

empirical relationship by O’Brien et al. (1993), the solid-fluid drag coefficient, the drag force power law 

based on the relation provided by Pudasaini (2012) a value of 1 indicates a drag force equation for flows 

with high solid concentrations. The entrainment coefficient indicates the rate at which the loose sediment 

material and landslide failure volumes are incorporated into the flow. The entrainment rate will increase 

the sediment mixture within the flow according to the flow depth and velocity allowing the transition 

between landslides and debris flows and influencing erosion-deposition rates. The volumetric sediment 

fraction indicates the minimal volume of sediment displayed as debris flow. 

Table B.2. Slope stability and flow dynamics numerical settings. 

Slope stability Flow dynamics  

𝑭𝒊  𝑭𝒓  
Viscosity  Solid-

fluid drag 
Drag force 
power law  

Entrainment 
coefficient  

Volumetric 
sediment fraction   𝜶 𝜷 

1.0 1.1 1 20 50 1 0.5 0.45 
 

The following figure (Figure B.5) describe the total number of behavioural simulations derived from the 

Global Sensitivity Analysis (GSA) All-[factors]-At-a-Time (ATT) method. The number of behavioural 

simulations were set according to the parameter combination from the decreased, initial, and increased 

parameter values subject to variation within the OpenLISEM hazard model. 

 

 

Figure B.5. Total of parametric simulations for the OpenLISEM model. 

The following tables show the initial and the scaled input parameter values for hydrological and 

geotechnical values for land use categories and soil type units for the Soufriere catchment.  
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Table B.3. Hydrological input parameter for land use categories. 

  
Saturated hydraulic conductivity 

(𝒌𝒔) (𝒎𝒎. 𝒔ି𝟏) 
Saturated moisture content 

(𝜽𝒔) (𝒄𝒎𝟑. 𝒄𝒎ି𝟑) 
Scale factors Scale factors  

Land use categories (x0.4) 
Initial 
value 

(x1.2) (x0.8) 
Initial 
value 

(x1.1) 

Natural tropical forest 0.01759 0.04397 0.05277 0.50 0.63 0.69 
Scrub forest 0.00748 0.01869 0.02243 0.42 0.53 0.58 
Grassland 0.00611 0.01528 0.01833 0.49 0.61 0.67 

Mixed farming and forest 0.00310 0.00775 0.00930 0.42 0.53 0.58 

Intensive farming 25% 

0.00100 0.00250 0.00300 0.44 0.55 0.61 
0.00011 0.00028 0.00033 0.24 0.30 0.33 
0.00533 0.01333 0.01600 0.40 0.50 0.55 
0.00244 0.00611 0.00733 0.32 0.40 0.44 

Densely vegetated farming 
0.00100 0.00250 0.00300 0.40 0.50 0.55 
0.00011 0.00028 0.00033 0.24 0.30 0.33 
0.00167 0.00417 0.00500 0.16 0.20 0.22 

Rural settlement 
0.00100 0.00250 0.00300 0.24 0.30 0.33 
0.00011 0.00028 0.00033 0.40 0.50 0.55 
0.00244 0.00611 0.00733 0.44 0.55 0.61 

Urban Settlement  
0.00100 0.00250 0.00300 0.16 0.20 0.22 
0.00011 0.00028 0.00033 0.24 0.30 0.33 
0.00167 0.00417 0.00500 0.44 0.55 0.61 

Rock and exposed soil 
0.00100 0.00250 0.00300 0.24 0.30 0.33 
0.00011 0.00028 0.00033 0.40 0.50 0.55 

0.00244 0.00611 0.00733 0.44 0.55 0.61 

 

Table B.4. Hydrological input parameter for soil type units.  

  
Saturated hydraulic conductivity 

(𝒌𝒔) (𝒎𝒎. 𝒔ି𝟏) 
Saturated moisture content 

(𝜽𝒔) (𝒄𝒎𝟑. 𝒄𝒎ି𝟑) 
Scale factors Scale factors  

Soil type units  (x0.4) 
Initial 
value 

(x1.2) (x0.8) 
Initial 
value 

(x1.1) 

Bare rock 0.00010 0.00024 0.00029 0.21 0.26 0.29 

Calfourc Silty Loam 
0.00480 0.01200 0.01440 0.34 0.43 0.47 
0.00469 0.01172 0.01407 0.34 0.42 0.46 
0.00150 0.00375 0.00450 0.40 0.50 0.55 

Casteau Gravelly Boulder 0.00011 0.00027 0.00032 0.22 0.28 0.31 

Excessively Steep Slopes 0.00010 0.00024 0.00029 0.21 0.26 0.29 

Hardy Clay 0.00096 0.00240 0.00288 0.42 0.52 0.57 

Haut Clay Loam 0.00157 0.00392 0.00470 0.38 0.48 0.53 

Ivrogne Stony Clay 

0.00096 0.00239 0.00287 0.42 0.52 0.57 
0.00100 0.00250 0.00300 0.44 0.55 0.61 
0.00098 0.00245 0.00294 0.42 0.53 0.58 
0.00090 0.00225 0.00270 0.39 0.49 0.54 

Jalousie Clay 0.00088 0.00220 0.00264 0.38 0.48 0.53 

Panache Silty Clay Loam 0.00234 0.00586 0.00703 
0.35 0.44 0.48 

0.38 0.48 0.53 

Rabot Clay 

0.00088 0.00220 0.00264 0.42 0.52 0.57 
0.00096 0.00240 0.00288 0.38 0.48 0.53 
0.00090 0.00225 0.00270 0.44 0.55 0.61 
0.00100 0.00250 0.00300 0.39 0.49 0.54 

Sulfur Springs 0.00214 0.00536 0.00643 0.35 0.44 0.48 
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Urban Area 0.00147 0.00367 0.00440 0.14 0.17 0.19 

Warwick Clay 
0.00088 0.00219 0.00263 0.38 0.48 0.53 
0.00090 0.00225 0.00270 0.39 0.49 0.54 

Zenon Gravelly Bouldery 0.00010 0.00025 0.00030 0.22 0.27 0.30 

Falaise Stony Loam 0.00806 0.02014 0.02417 0.35 0.44 0.48 

 

Table B.5. Geotechnical input parameters for soil type units. 

  
Soil cohesion (𝒄ᇱ) (𝒌𝑷𝒂) Internal friction angle (∅ᇱ) (°) 

Scale factors Scale factors  

Soil type units  (x0.3) (x0.5) 
Initial 
value 

(x1.2) (x0.4) (x0.6) 
Initial 
value 

(x1.2) 

 Calfourc Silty Loam 

2 4 8 10 10 14 24 29 

Panache Silty Clay Loam 
Rabot Clay 

Warwick Clay 
Haut Clay Loam 

Hardy Clay 
Ivrogne Stony Clay 

Urban area 
Sulfur springs 
Steep slopes 

Falaise Stony Loam 

2 3 5 6 10 15 25 30 

Casteau Gravelly Bouldery 
Silt Loam 

Zenon Gravelly Bouldery 
Loamy Sand 

Jalousie Clay 
Bare rock 24 40 80 96 24 36 60 72 
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Appendix C - Supporting information for Chapter 4 

C.1  Spatial similarity assessment  

Figure C.1 illustrates the spatial similarity results performed to the total of parametric simulations. Red 

squares indicate the landslide magnitude (𝐴௅) and green squares indicates the area difference (∆𝐴௅).  

Table C.1 illustrates the spatial similarity ranking performed to select the behavioural simulation with the 

best presentation of rainfall-triggered landslides, debris flows and hillslope erosion hazards.  

 

Figure C.1 Spatial similarity assessment parametric simulations. 

 

Table C.1. Spatial similarity ranking. 

Parametric 
simulations 

Catchment 
discharge 

(𝒎𝟑) 

Landslide 
surface area 

𝑨𝑺𝑰𝑴  (𝒉𝒂) 

Landslide 
inventory area 

𝑨𝑰𝑵𝑽  (𝒉𝒂) 
∆𝑨𝑳 

Debris flow 
runout area 

(𝒉𝒂) 

Debris flow 
inventory 
area (𝒉𝒂) 

∆𝑨𝑫 
Net 

erosion 
(𝒕𝒐𝒏. 𝒎ି𝟐) 

SIM22 76059.2 23.08 23.58 -0.5 3.77 6.02 -2.3 -240.35 

SIM25 76059.2 23.22 23.58 -0.4 0.42 6.02 -5.6 -197.71 

SIM32 2678279.4 65.17 23.58 41.6 22.32 6.02 16.3 -1306.16 

SIM35 2757857.9 66.59 23.58 43.0 24.19 6.02 17.2 -1193.95 

SIM19 1646415.9 69.30 23.58 45.7 9.37 6.02 3.4 -792.06 

SIM29 2950861.5 73.98 23.58 50.4 21.9 6.02 15.9 -1600.43 
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C.2  Accuracy assessment  

Tolerance area 

The Fuzzy membership function (Figure C.2) applies a linear transformation between a minimum and 

maximum threshold specified by the user. The values below the minimum threshold will be assigned as 

0 with no membership and values above the maximum threshold will be assigned as 1 with membership 

(Mead et al. 2021) 

 

Figure C.2 Fuzzy membership function. 

The fuzzy membership function was calculated according to two steps. The first step corresponded to 

the estimation of the Euclidean distance from the location of the landslide inventory polygons. The 

Euclidean distance was performed in ArcMap 10.6. where the maximum distance from the boundary of 

the landslide inventory polygons was obtained (Figure C.3a). After estimating the Euclidean distance, 

the Fuzzy membership was applied to the maximum distances where a raster with values from a scale 

from 0 to 1 was obtained (Figure C.3b). The Fuzzy membership function was applied in ArcMap 10.6. 

The values closer to 1 indicate a string membership. To select the values with strong membership a 

threshold of 0.6 meters was applied to selecting the tolerance area for the landslide inventory polygons. 

 

Figure C.3: (a) Euclidean distance for the landslide inventory polygons, (b) fuzzy membership 

distance. 
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After determining the tolerance area, the identification of the flat areas within the catchment was 

performed. The flat areas were estimated by selecting the slopes ≥ 15° within the catchment (Figure 

C.4). The aim is to remove from the catchment area the zones with no influence on landslide occurrence 

which can influence the estimation of the True Negative values (TN) and may impact the accuracy 

metrics estimation.  

 

Figure C.4. Tolerance area and catchment flat areas identification. 

 

C.3  Response to land use and rainfall change scenarios  

Table C.2 illustrates the land use change matrix elaborated to estimate the magnitude of landslides, 

debris flows and net erosion rates for the proposed land use and rainfall scenarios.  

Table C.2. Template land use change matrix to explore the rate of change of hazard magnitudes for 

land use change scenarios. 

Land use  

Hurricane 
Tomas  

Rainfall change [1:20] 

27-hour = 662 
mm 

24-hour = 252 
mm 

10-hour = 200 
mm 

5-hour = 160 
mm 

 
Hazard 

response 
(ha) 

Baseline 1 Baseline 2 Baseline 3 Baseline 4 

Current Land use  

Landslides      

Debris flows     

Net erosion     

Unit Change 
Hazard 

response 
(ha) 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Landslides     
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Natural 
tropical 
forest  

Mixed 
farming and 

forest  

Debris flows     

Net erosion      

Unit Change 
Hazard 

response 
(ha) 

Scenario 5 Scenario 6 Scenario 7 Scenario 8 

Mixed 
farming and 

forest  

Natural 
tropical 
forest  

Landslides      

Debris flows      

Net erosion      

 

Figure C.5 shows the 24, 10 and 5-hour rainfall selected to assess hillslope hydrological hazard 

interactions according to the land use scenarios proposed. This rainfall was obtained from an intensity–

duration–frequency relationship (IDFs) obtained from Klohn–Crippen (1995). Synthetic rainfall events 

were performed to recreate the selected events. 

 

  

 

 

Figure C.5. 20-year return period synthetic rainfall intensity-duration: (a) 24-hour rainfall event, (b) 

10-hour rainfall event and (c) 5-hoyr rainfall event. 
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Appendix D - Supporting information for Chapter 5 

D.1  Setting the OpenLISEM hazard model input parameters 

Figure D.1a shows the spatial distribution of the geological units obtained from CIGIDEN (2021) for the 

Maipo sub-catchment. Figure D.1b illustrates the soil types classified according to the geological units 

and identified according to literature review from Thiele and (González-Díez et al. 2013; González et al. 

2020). 

 

 

Figure D.1: (a) geological units, (b) soil types. 
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Figure D.2 illustrates the soil depth distribution for the Maipo sub-catchment. These datasets were 

obtained from https://www.isric.org/explore/soilgrids. Due to the chosen data resolution for the Maipo 

sub-catchment, the soil depth layers were also resampled to 20x20 metres resolution using bilinear 

interpolation with the Resample tool in ArcMap 10.6. 

 

 

Figure D.2 Soil depth spatial distribution for the Maipo sub-catchment: (a) soil depth 1, (b) soil 

depth 2.  
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Figure D.3 illustrates the land use units for the Maipo sub-catchment obtained from CONAF (2013). The 

information is available at: https://www.ide.cl/index.php/flora-y-fauna/item/1513-catastros-de-uso-de-

suelo-y-vegetacion 

 

Figure D.3. Land use for the Maipo sub-catchment. 

Table D.1 shows the hydrological input parameter values estimated for Maipo sub-catchment land use 

categories and soil type units. 

Table D.1. Hydrological input parameter for land use categories and soil type units.  

  
Saturated hydraulic conductivity 

(𝒌𝒔) (𝒎𝒎. 𝒔ି𝟏)  
Saturated moisture content 

(𝜽𝒔) (𝒄𝒎𝟑. 𝒄𝒎ି𝟑) 
 Scale factors   Scale factors  

Land use categories (x0.4) Initial value (x1.2) (x0.8) 
Initial 
value  

(x1.1) 

Native forest 0.00100 0.00251 0.00301 0.328 0.41 0.451 

Scrub forest 0.00117 0.00292 0.00350 0.32 0.4 0.44 

Grasslands 0.00064 0.00161 0.00193 0.336 0.42 0.462 

Bare soil 0.00090 0.00225 0.00270 0.312 0.39 0.429 
Mixed farming/Urban 

settlements 
0.00092 0.00229 0.00275 0.24 0.3 0.33 

Glaciers and perpetual 
snows  

0 0 0 0.08 0.1 0.11 

Soil types (x0.4) (x1.0) (x1.2) (x0.8) (x1.0) (x1.1) 

Volcanic residual 
soils/Volcanic soils 

0.00136 0.00341 0.00409 0.32 0.4 0.44 

Soils from fluvial 
terraces  

0.00166 0.00416 0.00499 0.216 0.27 0.297 

Soils from colluvial 
deposits  

0.00080 0.00201 0.00241 0.336 0.42 0.462 

Table D.2 shows the geotechnical input parameter values estimated for Maipo sub-catchment soil type 

units. 
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Table D.2. Geotechnical input parameters for soil type units.  

  
Soil types 

Soil cohesion (𝒄ᇱ) (𝒌𝑷𝒂) Internal friction angle (∅ᇱ) (°) 

Scale factors Scale factors  

(x0.3) (x0.5) 
Initial 
value 

(x1.2) (x0.4) (x0.6) 
Initial 
value 

(x1.2) 

Volcanic residual 
soils/Volcanic soils 

2.4 4 8 9.6 18 27 45 54 

Soils from fluvial terraces  3.63 6.05 12.1 14.52 9.6 14.4 24 28.8 
Soils from colluvial 

deposits  
3.63 6.05 12.1 14.52 9.6 14.4 24 28.8 

 

D.2  Response to land use and rainfall change scenarios  

Table D.3 illustrates the land use change matrix elaborated to estimate the magnitude of rainfall-

triggered landslides, debris flows and net erosion rates for the proposed land use and rainfall scenarios 

for the Maipo sub-catchment.  

Table D.3. Template land use change matrix to explore the rate of change of hazard magnitudes for 

land use change scenarios. 

Land use  

Hurricane 
Tomas  

Rainfall change [1:20] 

12-hour = 34.2 
mm 

8-hour = 20.5 
mm 

6-hour = 16.2 
mm 

4-hour = 12.8 
mm 

 
Hazard 

response 
(ha) 

Baseline 1 Baseline 2 Baseline 3 Baseline 4 

Current Land use  

Landslides      

Debris flows     

Net erosion     

Unit Change 
Hazard 

response 
(ha) 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Scrub forest   
Native 
forest   

Landslides     

Debris flows     

Net erosion      

Unit Change 
Hazard 

response 
(ha) 

Scenario 5 Scenario 6 Scenario 7 Scenario 8 

Native forest   Scrub forest   

Landslides      

Debris flows      

Net erosion      

 

Figure D.4 shows the 12, 6 and 4-hour rainfall selected to assess hillslope hydrological hazard 

interactions according to the land use scenarios proposed for the Maipo sub-catchment. These 

corresponds to a 10-year return period intensity–duration–frequency curves (IDFs) obtained from the 

technical report of UNESCO (2013) for the Metropolitan region of Santiago. The selected rainfall events 

correspond to a 12-hour rainfall with a total volume of 34.2 mm, a 6-hour rainfall with a total volume of 

16.2 mm and a 4-hour rainfall with a total volume of 12.8 mm.  
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Figure D.4. 10-year return period synthetic rainfall intensity-duration: (a) 12-hour rainfall event, (b) 

6-hour rainfall event and (c) 4-hour rainfall event. 
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D.3  Parametric simulations 

Figure D.5 illustrates the total landslide surface area (𝐴௅) resulted from 144 parametric simulations 

applied for the Maipo sub-catchment. Figure D.6 illustrates the total debris flow runout area (𝐴஽)  and  

Figure D.7 illustrates the total net erosion (𝑁𝑒𝑡ா). Form these simulations, it was selected the 

behavioural simulation with the best representation of debris flows observed for the 25 February rainfall 

event.  

 

 

Figure D.5. Hazard representation: (a) total landslide surface area. 

 

 

Figure D.6. Hazard representation: (b) total debris flow runout area. 
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Figure D.7. Hazard representations: (c) total net erosion. 
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