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Chapter

How Morphology of the Human 
Pluripotent Stem Cells Determines 
the Selection of the Best Clone
Vitaly Gursky, Olga Krasnova, Julia Sopova, 

Anastasia Kovaleva, Karina Kulakova, Olga Tikhonova  

and Irina Neganova

Abstract

The application of patient-specific human induced pluripotent stem cells  
(hiPSCs) has a great perspective for the development of personalized medicine. 
More than 10 hiPSCs clones can be obtained from one patient but not all of them 
are able to undergo directed differentiation with the same efficiency. Beside, some 
clones are even refractory to certain directions of differentiation. Therefore, the 
selection of the “best” or “true” hiPSC clone is very important, but this remains a 
challenge. Currently, this selection is based mostly on the clone’s morphological 
characteristics. Earlier, using methods of mathematical analysis and deep machine 
learning, we showed the fundamental possibility for selecting the best clone with 
about 89% accuracy based on only two to three morphological features. In this 
chapter, we will expand on how the morphological characteristics of various hiPSCs 
clones, the so-called “morphological portrait,” are reflected by their proteome. By 
reviewing previously published data and providing the new results, we will highlight 
which cytoskeletal proteins are responsible for the establishment of the “good” mor-
phological phenotype. Finally, we will suggest further directions in this research area.

Keywords: hiPSCs, hESCs, machine learning, best clone, morphological phenotype, 
proteome, cytoskeleton

1. Introduction

High-quality clones of human pluripotent cells (hPSCs) are of great importance 
for research in both basic and translational medicine due to their capacity to differen-
tiate to all cell types of the human body and unlimited self-renewal. Unfortunately, 
currently available reprogramming methods to generate human induced pluripotent 
stem cells (hiPSCs) are stochastic, and that causes the presence of a large percent-
age of partially reprogrammed cells and cells with a low level of pluripotency [1]. 
The purification of culture is an important requirement to obtain high-quality 
clones. Usually, this includes either gene expression profiling or evaluation of the 
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cellular morphology by visual inspection or image analysis. However, both of these 
approaches have limitations. Namely, gene expression profiling gives a direct readout 
of stemness and differentiation, but it is destructive to cells. At the same time, visual 
morphological analysis of cells or their images is a nondestructive method, but it is 
prone to errors and misinterpretation. This explains the urgent need for the develop-
ment of the noninvasive evaluation of the pluripotent cell cultures, that is. able to link 
cell morphology to the level of pluripotency. In the first part of the present chapter, 
we will discuss the morphological features of hPSCs and methods for their automated 
evaluation.

Currently, there are publications in the literature on the employment of live-cell 
imaging analysis along with deep machine learning for the development of automated 
software for the recognition of the best clones. Certainly, these scientific works, 
discussed in the first part of the chapter, represent only the first attempts of computer 
image analysis application for the selection of the best clones or identification of 
cells that have not undergone complete reprogramming. One question remains to be 
resolved in this method: to what extend can we make general conclusions based on the 
data from few studies, even with a large number of samples?

More than 500 distinct human embryonic stem cell lines (hESCs) have been 
generated to date, but only less than 100 lines are available now for general research 
as fully characterized lines (NIH stem cell registry, https://grants.nih.gov/stem_cells/
registry/current.htm). In addition, there are multiple patient-specific human induced 
pluripotent stem cells (hiPSCs) lines and the list of these lines continues to grow. By 
2020, about 131 studies were classified as clinical trials involving human pluripotent 
stem cells (hPSCs, comprising both hiPSCs and hESCs) [2]. The analysis published 
by Deinsberger and colleagues [2] revealed that the number of clinical trials involv-
ing hiPSCs was substantially higher than the one involving hESCs (74.8% vs. 25.2%). 
However, when counting only interventional studies, it appears that the majority 
(73.3%) was done with the use of hESCs. Application of patient-specific hiPSCs 
helps to overcome both ethical and immunological issues but hESCs are still widely 
used in the field of translational and regenerative medicine, disease modeling, and 
drug screening. Importantly, both hPSC types are very similar in their morphological 
characteristics not being molecular equivalents [3, 4].

Regardless of the common morphological features of hiPSCs and hESCs, it is well-
documented that major line-to-line morphological variability exists even in the same 
culture conditions and with the use of the same propagation technique [5]. This fact 
raises the question of whether there are common morphological features that distin-
guish a “good” hPSCs clone from a “bad” one. Finding the answer to this question is 
extremely important as the maintenance of hPSCs in culture is not only expensive 
but it is also very labor intensive. The development of an automated quality control 
protocol can improve the utility of the high-quality clinical-grade cells.

A noninvasive method of visual inspection of the morphological appearance 
remains the main criteria used to select the best hPSCs clone. However, until now, it 
was not clear which parameters of morphology are closely associated with the plu-
ripotent state.

Recently, we analyzed morphological parameters of several hPSCs lines of vari-
ous passages. We first extracted the parameters from phase-contrast images and 
constructed classification models of colonies by morphological phenotype [6], 
and then we used image analysis with convolutional neural networks (CNNs) [7]. 
Further to this, expression analysis of 11 pluripotency markers genes allowed us to 
identify phenotype-specific sets of genes that could be used for the selection of the 
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best clones, meaning the fundamental possibility of constructing a morphological 
“portrait” of a colony informative for its automatic identification. Additionally, we 
performed a proteomic analysis of several hPSCs samples from various lines used 
before for the computational analysis and showed that cells with different phenotypes 
from various lines cluster at the proteome level in accordance with their morphologi-
cal phenotype [7].

Multiple studies have provided datasets of comparative proteomes of various 
hPSC lines. Several studies used proteomic approaches to find proteins that regulate 
pluripotency [8–10] or to conduct a comparative proteomic analysis of supportive 
and unsupportive matrix substrates for hESCs maintenance [11]. In addition, several 
papers described quantitative proteomic analysis of hESCs differentiation [12, 13]. 
However, only in 2019, the first paper appeared on the analysis and comparison of 
the proteomic landscapes of 20 hiPSCs lines classified as stable and unstable based on 
colony morphology. This study has shown that different morphological “portraits” of 
colonies are associated with different proteomic profiles and different competencies 
for directed differentiation [14]. Furthermore, it has been shown that a direct rela-
tionship exists between pluripotent markers (DNMT3B, DPPA4, SALL4, CD9) and 
morphological “portraits” of various lineages [6, 14].

In this chapter, we will review the current knowledge about how automated evalu-
ation of the morphological portrait is used to control the hPSC phenotype, and how it 
is connected to the proteomic analysis. Next, we will present our own proteomic data 
analysis of hPSCs in respect to their morphological phenotype. We will pay special 
attention to the cytoskeleton proteins, as some of them turned out to be the top can-
didates in determining the best cell and colony morphology. The future will tell us if 
the hiPSC technology will ultimately overcome the current challenges and will finally 
make its way into routine clinical application with the help of automated recognition 
of the best clone based on the morphological selection.

2.  Morphological features of human pluripotent stem cells and methods 
for their automated evaluation

Currently, work with hPSCs begins with the assessment of their morphology 
by an expert to determine if there are signs of spontaneous differentiation or other 
unwanted changes. Established standard criteria for morphological features of 
hPSCs during their expansion can be described as: (a) a high nucleus/cytoplasm 
ratio, (b) prominent nucleoli, (c) formation of compact and round colonies with flat 
and densely packed cells with scant cytoplasm. Additional important marker is the 
presence of a clear and smooth colony edge [6, 15, 16]. As hPSC colonies propagate in 
culture, cells might spontaneously deviate from pluripotency toward a differentiated 
state. In that case, cell morphology changes dramatically, and it is very noticeable; the 
cells in the colony start to distribute sparser, the distance between the cells expands 
and cells significantly increase in size, undergoing a characteristic shape change [6]. 
In addition, undifferentiated hPSCs have more relaxed chromatin than differentiated; 
during the differentiation process, nucleoli become unclear and invisible under phase 
contrast microscopy [16]. Notably, only a very skilled expert can notice this altera-
tion; therefore, evaluation of the cultures by the observation of the colonies mor-
phology by an expert obviously depends on the expert’s skills. Undoubtedly, the safe 
application of hPSCs in the clinic requires the creation of a cell evaluation method, 
which would be less dependent of the expert’s skills.
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In recent years, several image analysis approaches have been developed. Machine 
learning, which involves pattern recognition and computational learning, is one of 
the most widely used strategies. In addition to pattern recognition, some of machine-
learning algorithms classify cells into several quality classes, which are related to 
non-morphological image features, such as the distribution of luminance intensity. 
The fully automated system has been reported for morphology-based evaluation of 
iPSC cultures that consists of time-lapse microscopy and image analysis software 
[17, 18]. The system acquires low-light phase-contrast images of iPSC growth col-
lected during a period of several days, measures geometrical- and texture-based 
features of the colonies throughout time, and derives a set of six biologically relevant 
features to automatically rank the quality of the cell culture. This method has shown 
that hiPSCs that are classified visually could be adequately distinguished with local 
binary patterns and an intensity histogram [18]. The classifier presented in that work 
successfully identifies different cell stages for a wide range of scenes that can include 
different-sized colonies, varying amounts of dead cells and debris, and differentiated 
cells within colonies [18].

As mentioned before, in case of cell differentiation, nuclear structures reconfigure 
dynamically. The method published by Tokunaga and colleagues [19] for discrimina-
tion of the bona fide hiPSCs from non-reprogrammed ones, is based only on the fine 
differences of the nuclear morphology between cells. Namely, this work has demon-
strated that specific quantitative parameters contributing to morphological discrep-
ancies reside in the nuclear sub-domains. Analysis of nuclear morphologies revealed 
dynamic and characteristic signatures, including the linear form of the promyelocytic 
leukemia (PML)-defined structure in hiPSCs, which was reversed to a regular sphere 
upon differentiation. Thus, this data confirmed that hiPSCs have a markedly different 
overall nuclear architecture that may contribute to highly accurate discrimination 
based on the cell reprogramming status [19].

Similarly, the paper by Kato et al. [20] demonstrated a noninvasive image-based 
evaluation method for detecting partially differentiated colony morphology in 
heterogeneous colony populations via live image analysis. The authors analyzed 
eight major parameters comprising 27 sub-parameters selected as essential for 
further analysis of 303 hiPSC colonies. The data showed a relationship between 
image features and gene expression by analyzing the expression of hiPSC colonies 
classified by using spatial frequency. Next, colony morphology classification based 
on the statistical analysis of the live-cell images with unbiased morphological 
parameters was compared with classification based on global gene expression profiles 
of individual colonies. Classification utilizing statistical analysis produced similar 
results as compared to classification based on gene expression profiles. Thus, authors 
concluded that quantitative morphological evaluation method facilitates the nonin-
vasive analysis of hiPSC conditions and demonstrates its utility in recognition hPSCs 
heterogeneity.

The paper by Wakui and colleagues [17] aimed at establishing quality classifica-
tion of hiPSC images into three classes (poor, moderate, and good) by evaluating the 
biological features used in the visual inspection. Three features associated with bio-
logical structures such as the number of nucleoli, the crack area rate, and the differen-
tiating cellular nuclei area rate were chosen by the expert. Importantly, these features 
were effective for quality evaluation by the visual inspection. As mentioned before, 
the number of nucleoli is a feature indicating a non-differentiated state, and cells 
with many nucleoli are considered to be of good quality. In contrast, the crack area 
rate and the differentiating cellular nuclei area rate are indicators of deviation from 
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pluripotency. The method identifies three feature detectors and the cell quality classi-
fier, the inputs of which are the outputs of the detectors. Then, in the image analysis 
method, the feature detectors and the classifier are applied to each of the regions of 
interest (150 pixels, 50 μm) of a phase contrast image. For machine learning of the 
nucleolus detectors, the nucleoli dataset was used as training data. The crack detector 
and the differentiating cellular nuclei detector were tuned with the masked dataset. 
The cell quality classifier was developed with the labeled dataset. Nucleoli observed 
in undifferentiated cells are nearly oval-shaped, 3- to 6-μm in diameter, and appeared 
black under phase-contrast observation. For confirming the classification capability 
of these three features, the distributions of the features for each cell quality class of 
a respective cell line were investigated and the accuracy for cell quality classification 
that was equivalent to visual inspection with respect to the three hiPSC lines was 
confirmed [17].

Interestingly, the paper by Nishimura and colleagues remains the only paper, 
which is based upon the morphology of a cellular organelle; it describes the use of the 
mitochondria distribution and state for distinguishing reprogrammed mouse PSCs 
[21]. The authors reported the development of an imaging system, termed phase dis-
tribution (PD) imaging system, which visualizes subcellular structures quantitatively 
in unstained and unlabeled cells. The PD image and its derived PD index reflected the 
mitochondrial content, enabling quantitative evaluation of the degrees of somatic cell 
reprogramming and mouse PSCs differentiation [21]. The dynamic changes in mito-
chondrial biogenesis and antioxidant enzymes are well-documented during the spon-
taneous differentiation of hESCs, as well as during the reprogramming process [22]. 
Unlike in PSCs, in the somatic cells mitochondria are numerous and large, reflecting 
their dependence on oxidative phosphorylation for efficient energy production. It is 
well-known that the reprogramming of the somatic cells into iPSCs is accompanied 
by a metabolic shift from oxidative phosphorylation to glycolysis, concomitant with 
changes in structure and function of mitochondria [23, 24]. Indeed, iPSCs that are 
reprogrammed to different degrees show an inverse relationship between their pluri-
potency and mitochondrial activity [25]. Thus, morphological changes of subcellular 
structures such as mitochondria may serve as an additional useful marker to evaluate 
the pluripotency of reprogrammed cells.

Our own data on morphological parameters from three lines (hESC line H9, 
hiPSC line AD3, and hiPSC line HPCASRi002-A) revealed that several morphological 
criteria can be used to distinguish between “good” and “bad” phenotypes (Figure 1A) 
[6], thus demonstrating that these are strong and reliable criteria for determining the 
phenotype of hPSCs. We tested seven morphological parameters in total as possible 
predictors in the neural network-based classification models of the colony phenotype. 
The models aimed to predict the probability of the colony phenotype (either ‘good’ or 
‘bad’) and were trained on the morphological parameter values of colonies or cells. A 
minimal model was selected for each data type that contained a minimal number of 
predictors and still provided the prediction accuracy close to that in the model with 
all predictors included. For the colony morphology data, we found a minimal model 
of four input parameters (Perimeter, Minor Axis, Shape Factor, and AIS) that showed 
74% accuracy on average, while only two parameters (Perimeter and Shape Factor) 
were enough to provide a 68% average accuracy in the minimal classification model 
for the cellular morphological data (Figure 1A).

As an alternative approach for the colony phenotype prediction, we applied con-
volutional neural networks (CNNs) directly to the phase-contrast images of colonies, 
omitting the intermediate step of extracting the morphological parameters from the 
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images (Figure 1B). CNNs extract the informative features, called “feature maps,” 
from the images and use these features to predict the phenotype at the output. We 
trained the CNN-based classification model on phase-contrast images of the H9 hESC 
line colonies and obtained an 89% accuracy in phenotype prediction [7].

The morphological “portrait” of the colony that can be associated with clonal-
ity is a complex trait, with no clear spatial scale that could unambiguously separate 
the natural morphological variability within the colony from signs of clonality loss. 
Trying to answer the practical question about the most informative spatial scale at 
which the colony phenotype could be recognized by the automated classifiers most 
effectively, we trained CNNs on multiple datasets containing images of various linear 
size. We found an optimal image size of ~144 μm providing the best classification 

Figure 1. 
Two approaches to colony phenotype prediction using automatic classification [6, 7]. A: Minimal classification 
models based on neural networks use four morphological parameters of colonies or two morphological parameters 
of cells as predictors. The corresponding parameters are shown in bold and connected with the classifier input 
with blue or red lines for the colonial or cellular data-based models, respectively. The output of the models is 
the probabilities that the colony will have a good or bad phenotype (P(good) or P(bad), respectively). B: CNN 
trained directly on colony images. The convolutional part of the CNN extracts the most representative feature 
maps from the images. These features are then passed to the input of a fully connected network trained to separate 
the phenotypes. CNNs trained on datasets with images of various linear size L show the prediction accuracy that 
has a maximum at the size L ~ 144 μm, which can be interpreted as the most informative spatial scale. AIS, area 
of intercellular space (for colonies only).
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Morphological data Phenotypes Classification data Performance Other details Source

Six morphological 

parameters extracted 

from the analysis of hiPSC 

colonies generated from 

human fibroblasts using two 

different reprogramming 

strategies

12 colony types based on 

morphological and gene 

expression patterns, 

across which non-

ESC-like colonies were 

contrasted against iPSC 

colonies

- Criteria to determine iPSC 

colonies were formulated 

in terms of specific values 

(mean ± s.d.) of morphological 

parameters and demand 

for cells to be positive for 

endogenous Sox2 and Cdx2

First evidence that the 

expression of either 

Oct3/4 or Nanog is not 

appropriate for the 

identification of iPSCs, 

but rather the expression 

of endogenous Sox2 and 

Cdx2 is a reliable marker 

of iPSCs

Wakao et al. 

[27]

Six geometric- and 

texture-based features of 

iPSC colonies extracted 

from time-lapse videos of 12 

clones from four iPSC lines

Good, fair, and poor Classification tree based on the 

probability distribution of six 

features per phenotype value

Accuracy = 0.80–0.89 The degree of cell 

compaction and the 

doubling time were 

shown to be the features 

with the highest 

predictive power

Maddah et 

al. [18]

Automatically extracted 

features from phase 

contrast images for iPSC 

lines (201B7 and 253G1), 

newly generated iPSC lines 

(1H–4H), non-iPSC lines 

(15B2 and 2B7), and somatic 

cells (human mammary 

epithelial cells, HMECs)

Properly and improperly 

reprogrammed cells 

(iPSCs vs. non-iPSCs)

Supervised machine learning 

algorithm wndchrm (weighted 

neighbor distances using 

a compound hierarchy of 

algorithms representing 

morphology)

Accuracy = 0.87–0.96 Specific morphology 

quantification suggested 

that signals contributing 

to morphological 

discrepancies reside in 

nuclear sub-domains

Tokunaga et 

al. [19]

128-dimensional vector of 

features extracted by the 

scaled invariant feature 

transformation (SIFT) 

applied to phase contrast 

images of hiPSCs.

Good, semigood, and 

bad

k-nearest neighbors, multiclass 

support vector machines, and 

other classification methods

Accuracy up to 0.62 k-nearest neighbors 

method showed the best 

performance

Joutsijoki et 

al. [28]
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Morphological data Phenotypes Classification data Performance Other details Source

120 colony morphology 

parameters (reduced to 

27 parameters) extracted 

from live-cell phase contrast 

images of aberrant 201B7-

1A subclone (with unusual 

undifferentiated ESC- like 

colony morphology), its 

healthy parent 201B7 line 

(with typical ESC-like 

colony morphology), 253G1 

cell line and its subclone 

253G1-B1

No phenotyping. 

Colonies were clustered 

into five major clusters 

(‘morphological 

categories’) according 

to their morphological 

parameters

Unsupervised hierarchical 

clusterization of colony 

morphological parameters

- Cluster analysis results 

for colony morphologies 

were reproduced 

by individual gene 

expression profiles

Kato et al. 

[20]

3 colony features (number 

of nucleoli, the crack area 

rate, and the differentiating 

cellular nuclei area rate) 

extracted from phase 

contrast images of MRC5, 

Edom, and 201B7 hiPSC 

cell lines

Good, moderate, and 

poor

Supporting vector machine Accuracy = 0.86 Image analysis 

framework was created 

for automated extraction 

of the three features and 

classifier application to 

regions of interest for a 

phase contrast image

Wakui et al. 

[17]

Full data comprise 

low-magnification 

phase-contrast images and 

a fluorescence channel 

for alkaline phosphatase 

staining of mouse ESC 

colonies. The only 

morphological parameter 

used for phenotype 

classification is colony 

circularity.

Pluripotent colonies, 

mixed colonies, and 

differentiated cells

Pluri-IQ software, which can 

automatically quantify the 

percentage of pluripotent, mixed, 

or differentiated cells through 

culture images, with the following 

cascade modules: segmentation, 

machine learning (random 

forest classifier), validation, and 

automatic scoring

Accuracy > 0.90 Pluri-IQ uses as input 

large images and has 

advantages compared 

with other similar 

software

Perestrelo 

et al. [29]
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Morphological data Phenotypes Classification data Performance Other details Source

Authors derived a phase 

distribution (PD) index 

and a 3D extracted PD 

(ePD) image from an 

improved retardation 

modulated differential 

interference contrast 

(RM-DIC) imaging systems, 

applied to mouse iPSCs. 

Both the PD index and 

ePD image were designed 

to reflect subcellular 

structures, specifically the 

mitochondrial content.

Qualitative phenotypic 

states of different 

degrees of somatic cell 

reprogramming, ESC 

differentiation, and 

pluripotency

- Various quantitative measures 

for correspondence between 

the PD index or ePD image 

with various phenotypic values

The PD index and ePD 

image were shown 

to reflect different 

degrees of somatic cell 

reprogramming, ESC 

differentiation, and 

pluripotency

Nishimura 

et al. [21]

Automatic feature maps 

extraction as a part of 

classification model training 

for phase contrast images of 

diseased iPSCs expressing 

the Huntington’s disease 

phenotype

Four morphological 

classes: debris, dense, 

differentiated, and 

spread

CNN, with data augmentation 

by supplementing a minimal 

biological dataset via image 

generation using generative 

adversarial networks. Model 

based on Markov chain stochastic 

processes is used to account 

the influence of temporally 

constrained differentiation on 

classification model training.

Recall (true positive 

rate) = 0.88–0.94

Presented work highlights 

the importance of 

exploiting temporal 

relationships between 

image classes, which 

is an example of using 

‘domain knowledge’ in 

combination with deep 

learning

Witmer and 

Bhanu [30]

Seven morphological 

parameters of colonies and 

cells from phase-contrast 

images for H9 hESC line, 

AD3 hiPSC line, and 

HPCASRi002-A hiPSC line

Good and bad Neural networks Accuracy = 0.74 ± 0.06 for 

colonial parameters and 

0.68 ± 0.03 cellular parameters

Four parameters for 

colony morphology 

and two parameters for 

cellular morphology are 

enough

Krasnova et 

al. [6]
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Feature maps extracted 

from phase-contrast images 

of iPSC clones derived 

from peripheral blood 

mononuclear cells

Undifferentiation, 

cracked, built-up, 

differentiation

Feature maps extraction by 

VQ-VAE encoder (unsupervised 

learning) + support vector 

machine for phenotype 

classification based on extracted 

feature maps

Accuracy = 0.89 Support vector regression 

method was used to 

predict the expression 

of 218 genes based on 

feature maps extracted 

from images, with 

0.3 < R2 < 0.69

Wakui et al. 

[31]

Feature maps are 

automatically extracted 

from phase contrast images 

for H9 hESC line during 

model training

Good and bad CNN Accuracy = 0.89 Most informative spatial 

scale was determined

Mamaeva et 

al. [7]

Table 1. 
Selected results of phenotype classification based on morphological features of hPSCs colonies.
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performance (Figure 1B). This size is intermediate between typical colony and cell 
sizes, reflecting the fact that both cellular and colonial information should be taken 
into account.

We linked these results to the transcription studies by measuring the expression 
of 10 pluripotency markers (DNMTB3, SALL4, IGFR1, CD9, DPPA4, OCT4, REX1, 
NANOG, SOX2, and KLF4 genes) in colonies from the hESCs (H9) and hiPSC (AD3 
and HPCASRi002-A) lines with different phenotypes [6]. We found that the SALL4, 
DNMTB3, REX1, DPPA4, and SOX2 genes demonstrated differentiated expression in 
colonies of different phenotypes, thus confirming that the phenotypes did represent 
the pluripotency status of the colony.

Finally, the question can be asked, whether the cultivation conditions, namely 
various culture media and matrixes, affect the morphological parameters important for 
morphological phenotype recognition. By other worlds, is evaluation method based on 
the morphologies of various hPSC lines applicable under different culture conditions? 
The paper by Harkness and colleagues [26] addresses the effect of five different media, 
namely, mTESR1, Essential E8, StemPro (SP), mouse embryonic fibroblasts conditional 
media (CM) and StemMacs iPS-Brew XF (SM), on the morphological parameters of 
the three established hESCs lines (MEL1, WA09, ESI-hES3). These lines were routinely 
grown on Matrigel (Corning) in mTESR1 media before switching to a different media. 
As a result, the authors observed distinct and measurable differences in nuclear and 
cell morphology between different culture conditions. In CM and SP cultures, authors 
noticed a looser colony structure and a flatter appearance when compared to mTESR1, 
E8, or SM media. The morphological parameters such as nuclear area, cell area, cell 
roundness, and cell spread in all three lines demonstrated an overall decrease, while 
in the least defined media, CM, in all cell lines the cells became larger. Moreover, the 
nuclear/cytoplasmic ratio varied between the lines, suggesting that media composition 
can affect the cell’s parameters and may cause cytoskeletal remodeling. Furthermore, 
high content imaging demonstrated that hESCs grown in different media exhibit sig-
nificantly different cytoskeletal architecture while maintaining their pluripotent status, 
suggesting that cytoskeleton has become more stable in xeno-free media [26]. Thus, the 
detailed analysis provided in this research let to conclude that morphological alterations 
of cell phenotype can be associated with the changes of cell culture conditions. However, 
it can be assumed that when changing from culture medium to another, cells undergo a 
period of adaptation and, perhaps, after a certain number of passages, they will restore 
their previous morphological parameters. However, this needs further verification.

Thereby, to create a reliable system for recognizing the best clones, further studies 
of different hPSC lines during their cultivation on various matrixes and media are 
required. The creation of a single database that combines data on morphological 
parameters from numerous lines will improve the methods of automatic clone’s 
recognition for their reliable application in clinic.

In Table 1, we summarized some findings about phenotype classification based on 
morphological features of hPSCs colonies.

3.  Morphological phenotypes of the hPSCs reflected in different 
proteomic landscapes

Proteomics analysis provides an excellent tool for large-scale quantification and 
benchmarking of cells and an opportunity to understand deeper the rules that govern 
hPSCs morphology. Compared to other ~omics, such as transcriptomics and genomics 
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approaches, proteomics analysis measures the translated proteins. Most of the previ-
ous studies have used proteomics approaches to identify proteins important for stem 
cell pluripotency maintenance and for lineage differentiation [8–10, 13]. Some studies 
have explored the membrane proteins [32] or the hESCs phosphoproteome [8, 9] in 
comparison to hiPSCs proteome and phosphoproteome [33]. In addition, molecular 
differences of the proteome level between hiPSCs of different somatic origin were 
described [10]. A comparative proteomic analysis has been published comparing sup-
portive and unsupportive extracellular matrix substrates used for hESCs maintenance 
[11]. All these studies revealed a huge number of proteins known to be important for 
hPSCs maintenance, namely, cell cycle and DNA damage repair proteins, proteins 
involved in integrin binding, intracellular vesicle trafficking proteins, RNA binding, 
adaptor proteins and histones, proteins of exosomes biogenesis and tumorigenesis, 
zinc finger proteins, mitochondrial proteins, and many others.

The goal of our study was to analyze the hPSCs proteome in accordance with the 
selected morphological phenotypes [6, 7]. Thus, we compared a proteomic “portrait” 
of the “true” or the best hPSC colonies versus the “bad” ones.

In the hESCs (H9) samples, we have identified in total 1791 proteins in a good 
agreement with the Van Hoof and colleagues [9] who have identified 1775 proteins 
from undifferentiated hES cell line HES-2. Our data demonstrated a clear separation 
of the samples in accordance with their morphological phenotypes [7], in agree-
ment with the previously published data of Bjørlykke and colleagues [14], thus 
emphasizing that good and bad morphological populations are molecularly distinct. 
Comparative proteome analysis of the hESC (H9) colonies with the good morphologi-
cal portrait compared to colonies with poor morphology and signs of spontaneous 
differentiation showed that 63 proteins are downregulated and 25 proteins are 
upregulated (Figure 2) [7].

In the context of the identified proteins that determine the morphology of hPSCs, 
we were especially interested in cytoskeletal proteins since they form the structural 
network of the cell. In addition, the migration and spread of motile cells, such as 
hPSCs, over the surface of the substrate accompanied by the reorganization of their 
actin network. Among 25 upregulated proteins, four belong to cytoskeletal proteins 
(MYH7, RDX, CNN3, and AIF1L). The other one is the tight junction protein 1, or ZO1 
(TJP1), one of the functions of which is to organize the components of tight inter-
mediate junctions and bind them to the cortical actin cytoskeleton. In our analysis, 
MYH7 appears on the top position among the upregulated proteins (Figure 2). The 
MYH7 gene, known as myosin beta heavy chain (MHC-β), is classified as a type I fiber. 
Myosins are a large family of proteins that share the common features of ATP hydroly-
sis, actin binding, and potential for kinetic energy transduction. They composed of a 
pair of myosin heavy chains (MYH) and two pairs of nonidentical light chains. At least 
10 different MYH isoforms have been described in mammalian cells, and the role for 
the identified in hESCs MYHs, such as MYH16, MYH15, MYH10, MYH9, and MYH7, is 
aviating to be discovered. This protein is a critical component of the sarcomere’s struc-
ture and interacts with other key cytoskeletal proteins such as actin, troponin, and 
myosin-binding protein C (MYBPC3). Its role was shown in directed differentiation 
of hiPSCs into cardiomyocytes [34] but has not been studied in hPSCs. The dynamics 
of actin-myosin contraction are directly regulated by the amount of alpha-actinin-3 
(ACTN3), which forms cross-links, and the absence of ACTN3 disrupts the symmetry 
of the actin network in cells. Human ESCs exhibit basal-apical polarity, junctional 
complexes, integrin-dependent matrix adhesion, and E-cadherin-dependent adhesion, 
all of which are characteristics of the epiblast epithelium of a mammalian embryo. 
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When hPSCs are subject to enzymatic digestion during propagation of the colonies, 
epithelial structures are destroyed, which leads to programmed cell death; here, actin-
myosin contraction is a critical effector of the cell death response to enzymatic disso-
ciation [35]. With this regard, inhibition of the myosin heavy chain ATPase, inhibition 
of the myosin heavy chain, and inhibition of the myosin light chain (MLC) have been 
shown to increase the survival and cloning efficiency of individual hPSCs [36]. ROCK 
inhibition decreases phosphorylation of MLC, suggesting that inhibition of actin-
myosin contraction is also the mechanism through which ROCK inhibitors increase 
cloning efficiency of hESCs [37]. In addition, ROCK1/ROCK2 silencing demonstrated 
that ROCKs regulate MYH function through MLC phosphorylation in hESCs, which, 
in turn, leads to membrane blebbing and cell death [36]. Lastly, MYH9 and MYH10 

Figure 2. 
Z-score-ranked distribution plot for the proteins of the hESC (H9) colonies with the “good” morphological 
portrait compared to colonies with “bad” morphology. Cytoskeletal proteins are marked blue, and proteins 
identified via comparison of the “good” morphological hESC H9 samples versus two hiPSC lines with the same 
characteristics are marked red.
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are the most highly expressed MYHs with the conserved sites in hESCs. Treatment of 
hESCs with MYH9/MYH10 siRNAs demonstrated severe phenotypic changes after 
96 hours of transfection but increased cell attachment, survival, and cloning efficiency 
[36]. On the other side, as mentioned above, MYH7 is regarded as a mesenchymal and 
specifically myocardial marker gene [38]. Our data is also in a good agreement with 
the earlier work, which demonstrated that a high level of MYH7 protein was detected 
in hESCs but not in hiPSCs, while MYH9 was identified in both cell types [12]. 
Obviously, the role of MYH7 needs to be elucidated further. We were able to detect a 
very thin network of MYH7 colocalized with F-actin fibers but observed its destruc-
tion in hESCs (H9) clones with bad morphology (Figure 3); supporting the data from 

Figure 3. 
Colocalization of the MYH7 with F-actin in the organized cytoskeleton network in colonies with “good” phenotype 
and complete loss of such structural organization and colocalization in “bad” hESCs. Thin white arrows are 
pointing on the colocalization of F-actin and MYH7. Immunofluorescence was performed using anti-MYH7 
antibodies (Santa Cruz Biotechnology, sc-53,089), secondary anti-mouse IgG tagged with Alexa Fluor 488 
(Abcam, ab150113), and Rhodamine-Phalloidin (Invitrogen, R415). Scale bar 50 μm.
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proteome study, we did not detect MYH7 staining in hiPSCs. The emergence of MYH7 
as a top candidate to support the best hESCs morphology might reflect the complexity 
of the hESCs proteome.

Radixin (RDX) was ranked fourth in our list (Figure 2). Radixin is a cytoskeletal 
protein that may play an important role in binding actin to the plasma membrane. 
Its exact role for hPSCs has not been explored. However, cellular functions, such as 
migration and adhesion, require a highly dynamic cytoskeleton behavior. Linker 
proteins of the ERM family (ezrin/radixin/moesin) can interact with both F-actin and 
several transmembrane proteins, providing a connection between extracellular cues 
and the cytoskeleton. The involvement of ERM proteins in a variety of cell functions 
in the embryonic and early postnatal brain, including axonal outgrowth, morpho-
logical rearrangement, cell migration, and signaling, have been described [39]. It is 
important to note that radixin has been shown to concentrate in the cleavage furrow 
of dividing cells and may have a role in proliferation [40, 41], the high speed of which 
is important for pluripotency maintenance [42].

Lastly, throughout the top represented cytoskeletal proteins in hESCs with a good 
morphological phenotype, we want to discuss CNN3, Calponin 3 (Figure 2). Calponin 
is an actin filament-associated regulatory protein expressed in smooth muscle and 
multiple types of non-muscle cells. It is capable of binding to actin, calmodulin, and 
tropomyosin. Three homologous genes, CNN1, CNN2, and CNN3, encoding calponin 
isoforms 1, 2, and 3, respectively, are present in vertebrates. All three Calponin iso-
forms are actin-binding proteins with functions in inhibiting actin-activated myosin 
ATPase and stabilizing the actin cytoskeleton, while each isoform executes different 
physiological roles based on their cell type-specific expressions. Calponin 1 (CNN1) 
is specifically expressed in smooth muscle cells and plays a role in smooth muscle 
contractility. Calponin 2 (CNN2) is expressed in both smooth muscle and non-muscle 
cells and regulates multiple actin cytoskeleton-based functions. Calponin 3 (CNN3) 
participates in actin cytoskeleton-based activities in embryonic development and 
myogenesis. Experiments with cytotrophoblasts from human placenta demonstrated 
that CNN3 gene knockdown promoted actin cytoskeletal rearrangement, suggesting 
CNN3 to be a negative regulator of trophoblast fusion [43]. With the course of tro-
phoblastic cell differentiation, CNN3 undergoes downregulation. In the trophoblastic 
cells, membrane flexibility is necessary for membrane fusion [43]. However, whether 
CNN3 expression affects the flexibility of the hPSCs plasma membrane is not known, 
but it may be suggested that regulation of actin cytoskeletal rearrangement by CNN3 is 
required for hPSCs. Recently, Calponin 3 was studied in the U2OS osteosarcoma cells, 
where RNAi knockdown studies revealed that CNN3 is a dynamic component of stress 
fibers and is required for controlling proper contractility of the stress fiber network 
[44]. Importantly, the role for CNN3 was also shown for the maintenance of the lens 
epithelial phenotype where downregulation of CNN3 expression induced changes 
in cell shape, reorganization of actin cytoskeleton, and formation of focal adhesions 
resulting in activation of mechanosensitive transcription factor Yap in association with 
decreased E-cadherin and β-catenin expression [45]. Whether or not the high level 
of CNN3 in hESCs is associated with the focal adhesion and E-cadherin maintenance 
remains to be elucidated. Our immunofluorescence study supported obtained pro-
teomic data and revealed a colocalization of the CNN3 with F-actin in the organized 
cytoskeleton network in colonies with good morphological appearance and complete 
loss of such structural organization and colocalization in “bad” hPSCs (Figure 4).

Among the top downregulated cytoskeletal proteins in hESCs with good morphol-
ogy appeared DYNLL1 (Dynein light chain 1) and PLEC (PLECTIN) (Figure 2). 
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Cytoplasmic DYNEIN1 acts as an engine for intracellular retrograde mobility of vesicles 
and organelles along microtubules. Plectin maintains tissue integrity and associate with 
intermediate filaments (IF). It acts as a cytoskeletal cross-linking agent and signaling 
scaffold, influencing both the mechanical and dynamic properties of the cytoskeleton. 
As a member of the cytolinker protein family, plectin has a multidomain structure that 
is responsible for its ability to bind to many cytoskeletal proteins. It binds not only to all 
types of IFs, actin filaments, and microtubules but also to transmembrane receptors, 
nuclear envelope components, and several kinases with known roles in cell migration, 
proliferation, and energy metabolism. The exact role of plectin in cytoskeletal dynam-
ics is not studied for hPSCs, but in view of its downregulation for a good morphological 
phenotype, it can be assumed that lower level of protein expression may play a role in 
the cytoskeletal plasticity of these cells.

Figure 4. 
Colocalization of the CNN3 with F-actin in the organized cytoskeleton network in colonies with “good” phenotype 
and complete loss of such structural organization and colocalization in “bad” hPSCs. Thin white arrows 
are pointing on colocalization of F-actin and CNN3; thick white arrows show the absence of colocalization. 
Immunofluorescence was performed using anti-CNN3 rabbit antibodies (ATLAS, HPA051237), secondary 
anti-rabbit IgG tagged with Alexa Fluor 488 (Abcam, ab150077), and Rhodamine-Phalloidin (Invitrogen, R415). 
Scale bar 50 μm.
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In Figure 5A, we demonstrate biological processes that we have identified to be 
related to the upregulated proteins in hESCs H9 line with good morphology. As can 
be seen, among the most important of them are cellular component biogenesis and 
assembly, organelle organization, epithelium development, cytoskeleton organiza-
tion with DNA packaging, and chromatin organization. It is important to highlight 
that among the most important processes are up-regulation of actin filament-based 
processes and actin cytoskeleton organization. Among biological processes associated 
with downregulated proteins (Figure 5B), we identified cellular metabolic processes, 
nitrogen compound metabolic processes, cellular localization, protein transport, DNA 
metabolic processes, and many others related to control of the cellular metabolism. 
Also, cellular component analysis (Figure 5C) revealed cytoplasm, actin cytoskeleton, 

Figure 5. 
Biological functions, cellular functions, and molecular processes associated with the up- and downregulated 
proteins in hESCs H9 cell line. Red bars (A, C, and E) refer to upregulated proteins; blue bars (B, D, and F) refer 
to downregulated proteins.
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and adherence junction among most upregulated processes, while cellular processes 
related to cell, membrane-bounded organelle, vesicle, mitochondrion, mitochondrial, 
and organelle envelope appeared to be downregulated (Figure 5D). Importantly, 
molecular functions associated with “good” morphology include cytoskeletal protein 
binding, cell adhesion molecular binding, cadherin binding, actin binding together 
with chromatin and histone binding (Figure 5E), while among downregulated cellular 
functions appeared ribonucleotide, purine nucleotide binding, ATP binding, and GTP 
binding (Figure 5E).

Figure 6. 
Z-score-ranked distribution plot for the proteins of the hiPSC (AD3) colonies with the “good” morphological 
portrait compared to colonies with “bad” morphology. The EZRIN protein is marked blue, and proteins 
identified via comparison of the “good” morphological hESC H9 samples versus two hiPSC lines with the same 
characteristics are marked red.
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In addition to hESC line H9, we analyzed by the same proteomic approach two 
hiPSC lines of different origins, namely obtained from the neonatal fibroblasts line 
AD3 and a patient-specific hiPSCs line HPCASRi002-A (CaSR) [6, 7]. Morphological 
evaluation of the “good” and “bad” hiPSC clones, as well as comparisons of their pro-
teomic landscapes was performed as for hESC and H9 samples [6, 7]. Interestingly, in 
the same analysis of proteins associated with cytoskeletal function among experimen-
tal groups of the hiPSCs lines, EZR (EZRIN) turned out to be the top-upregulated 
protein (Figure 6). Ezrin, also known as cytovillin or villin-2, is a cytoplasmic periph-
eral membrane protein and functions as a substrate for tyrosine kinase in microvilli. 
Its significance for hPSCs morphology has not been studied. Earlier, in support of our 
data, EZRIN was demonstrated as one of the most prominent cytoskeletal proteins 
by proteomic profiling of hESCs at the first 48 hours of the early differentiation stage 
[12], suggesting that it may be expressed differently in clones with “good” and “bad” 

Figure 7. 
Association of the EZRIN cytoskeletal network with F-actin in hESC and hiPSC clones with “good” morphological 
phenotype and complete distraction of this network in “bad” clones. Thin white arrows are pointing on 
colocalization of F-actin and EZRIN; thick white arrows show the absence of colocalization. Immunofluorescence 
was performed using anti-EZRIN antibody 3C12 (Invitrogen, 35–7300, secondary), secondary anti-mouse IgG 
tagged with Alexa Fluor 488 (Abcam, ab150113), and Rhodamine-Phalloidin (Invitrogen, R415). Scale bar 50 μm.



Advances in Pluripotent Stem Cells

20

phenotype. In support of our proteome data, by employing specific anti-EZRIN 
antibody, we were able to detect the association of the EZRIN with F-actin in clones 
with good morphological phenotype and complete absence of such association and 
very weak pattern of staining in “bad” clones (Figure 7).

Interestingly, a very close in concept earlier work of Bjørlykke and colleagues [14] 
performed on 20 hiPSC lines different on their morphological appearance did not 
recognize the same cytoskeleton proteins among abundant upregulated or down-
regulated proteins. However, KERATIN 19 (KRT19), a member of the keratin family 
of the intermediate filament proteins responsible for the structural integrity of the 
epithelial cells was identified among upregulated ones as well as ADD2, a member of 
the cytoskeleton-associated proteins (ADDUCINS) that promotes the assembly of the 
spectrin–actin network [14]. Among abundant downregulated proteins PALLADIN 
(PALLD) and FIBRONECTIN1 (FN1) along with the MRC2, extracellular matrix 
remodeling protein, appeared as significantly downregulated [14]. Fibronectins bind 
cell surfaces and various compounds as collagen, fibrin, and actin. These proteins 
involved in cell adhesion and maintenance of the cell shape. Palladin as a cytoskeleton 
protein involved in the organization of the actin network, motility, and adhesion. 
Importantly, both named proteins have a role in cell morphology. Keeping in mind the 
importance of the colony-defined edge as meaningful morphological characteristic of 
a good hPSCs phenotype, one can recognize an importance of MRC2 for the establish-
ment of the hPSCs phenotype as MRC2 is a member of the mannose receptor family 
proteins and plays a role in the extracellular matrix remodeling.

Importantly, it appears that only five proteins (SFXN1, LAMC1, RAP2B, NUP98, 
and EEF2) were identified via comparison of the “good” morphological hESC H9 
samples versus two hiPSC lines with the same characteristics (Figure 8). Wherein, 
H9 samples contained 83 unique proteins and hiPSCs–116, but none of the identified 
proteins is a cytoskeletal protein.

Eukaryotic translation elongation factor 2 (EEF2), the GTP-binding transla-
tion elongation factor family member and an essential factor for protein synthesis 
appeared upregulated in hiPSCs while was downregulated in hESCs samples with 
good morphology (Figures 2 and 6). EEF2 is known as a positive regulator of 
apoptosis [46]. In a highly proliferative cells, EEF2 maintains genomic integrity by 
arresting the cell cycle at G2/M phase in response to ionizing radiation to prevent 

Figure 8. 
Comparison of the “good” morphological hESC H9 samples versus two hiPSC lines with the same characteristics 
revealed five common proteins.
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mitotic catastrophe [46]. The rapid proliferation of hPSCs is due to their unique cell 
cycle regulation. The interplay between cyclins, cyclin-dependent kinase (CDK), 
and cyclin-dependent kinase inhibitors is important for tight regulation of cell cycle 
progression in these cells [47]. Moreover, the cell cycle regulation is not only tightly 
related with pluripotency but also the cell cycle regulators have important functions 
in DNA damage response (DDR) [42]. Since maintaining genomic stability in hPSCs 
plays a pivotal role in their self-renewal and stemness, the role of EEF2 should 
be assessed in the nearest future as in terms of therapeutic application, genomic 
stability is the key to reducing the risks of cancer development due to abnormal cell 
replication.

Laminin subunit gamma 1 (LAMC1) belongs to Laminins, a family of extracellular 
matrix glycoproteins, which are the major non-collagenous constituent of basement 
membranes. Basement membranes are thin sheets of specialized extracellular matrix 
(ECM), underlying all epithelia and some other cell types. Laminins are important 
regulators of cellular functions such as cell adhesion, differentiation, migration, 
signaling, and metastasis. Human PSCs not only have characteristics typical for 
epithelial cells [48, 49] but they also rely upon ECM proteins for the support of their 
niche [50]. Human ESCs produce Laminin α1, α5, β1, and γ1 chains and deposit them 
as Laminin-511 into hESC-produced ECM. Importantly, Laminin-511 supports hESCs 
growth in defined medium equally well as Matrigel [50]. Indeed, LAMC1, as well as 
LAMB1, have been detected in the hESCs by proteomic analysis [11]. However, in 
our analysis, LAMC1 appears among downregulated proteins in hiPSCs with good 
phenotype in contrast to hESCs (Figures 2 and 6) regardless that all cell lines were 
grown on the same basement membrane matrix-Matrigel (Corning) with mTESR1 
media [6]. As much as hiPSCs are not identical to hESCs, the identified differences 
may indicate the need for further research in the direction of the hPSCs niche sup-
porting factors for better support of their in vitro maintenance.

SFXN1, RAP2B, and NUP98 are expressed in both hESCs and hiPSCs with “good” 
morphological phenotypes (Figures 2 and 6).

Sideroflexin 1(SFXN1) is an integral component of the mitochondrial inner 
membrane, and it is important for D-serine and L-serine transmembrane transporter 
activity.

Ras-related protein Rap-2b (RAP2B) is a member of the Ras family of small GTP-
binding proteins, and it is involved in innate immune response and ERK signaling, 
both of which are important players during the reprogramming process. Also, RAP2B 
may play a role in cytoskeletal rearrangements and may regulate cell spreading through 
activation of the effector Traf2- and Nck-interacting kinase (TNIK) [51]. Moreover, 
RAP2B is expressed at high level in various human tumors, where its involvement in 
cellular spreading and migration was demonstrated more recently [52].

Nuclear pore complex protein Nup98 (NUP98) plays a role in the nuclear pore 
complex (NPC) assembly and/or maintenance. Nuclear pore complex (NPC) pro-
teins are well-known for their critical roles in regulating nucleocytoplasmic traffic 
of macromolecules across the nuclear envelope. Several findings suggest that some 
nucleoporins, including Nup98, have additional functions in developmental gene 
regulation. Nup98 exhibits transcription-dependent mobility at the NPC but can 
also bind chromatin away from the nuclear envelope, and it is frequently involved in 
chromosomal translocations [53]. Importantly, acting as transcription factor, Nup98, 
could interact directly with histone-modifying enzymes CBP/p300 and histone 
deacetylases (HDACs), the role of which for hPSCs is well established. However, while 
the role of Nup98 as a multifunctional protein in macromolecular export has been 
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studied extensively [53], its precise role in hPSCs has not been elucidated and awaits 
further discovery.

Thus, we can conclude that despite the significant differences in the protein content 
for the two studied pools (hESCs vs. hiPSCs), when comparing cells of different types 
within the same experimental group of “good” morphological phenotype, only five differ-
entially expressed proteins were found out of 1933 reliably identified proteins. This may 
indicate the similarity of the mechanisms that regulate the “good” morphology of hPSCs.

4. Conclusions and future perspectives

The development of reliable methods for estimating the quality of the hPSCs 
cultures is an urgent requirement for their reliable use in the clinic. Currently, much 
attention is paid to the creation of the automatic methods for selecting the best clones 
based on their images, as noninvasive methods for their evaluation. The first section of 
our chapter is devoted to these methods with a particular emphasis of our approaches 
[6, 7] based on the analysis of the morphology of colonies and cells. However, the 
search for the new approaches to analyze morphological parameters should not stop 
and the question of the regulation of the cell morphology deserves a separate chapter.

Our proteomic data for the first time demonstrated cytoskeletal proteins as top 
effectors of the “good” morphological hPSCs phenotype. As discussed above, most of 
these cytoskeletal proteins have not been studied in detail in hPSCs. The molecular 
differences on the proteome level between hiPSCs and hESCs lines, as reported in 
multiple publications, may be related to many factors such as time in culture, meth-
ods of cells propagation, general culture conditions, as well as different somatic origin 
of hiPSCs, the level of pluripotency, and many others [10, 54, 55]. Regardless of the 
used approaches and cell lines, all proteomics results revealed a large proportion 
of cytoskeletal proteins, thus highlighting cytoskeletal remodeling as a prominent 
characteristic for hPSCs phenotype [8–10, 12, 13]. That is not surprising, as the actin 
cytoskeleton network, consisting of actin filaments and crosslinking and motor 
proteins, regulates the shape of the most cells.

Understanding the mechanisms responsible for the dynamic changes of the colony 
morphology from the “good” to the “bad” is an important prerequisite for the safe 
clinical application of these cells, not only because the differentiation potential of 
hPSCs is deeply associated with the colony morphology but also because the morpho-
logical changes occur quicker and well before significant changes in the pluripotency 
markers expression profiles can be detected [47, 56]. Human PSC colonies demon-
strate fast changes of morphological parameters during the exponential growth, and 
essential differences in their structure associated with the colony area, mean nuclei 
area, and mean distance between nearest neighbors were shown to be good indicators 
to detect possible changes of the pluripotency status [57]. So far, we are only making 
the first steps toward the complete understanding of this process.

Based on our data, we propose to expand the panel of hPSCs markers used to iden-
tify the “best” morphology phenotype to include the cytoskeletal proteins, namely 
MYH7, RDX, and CNN3 for evaluation of the best hESCs and EZRIN for evaluation of 
hiPSCs. Obviously, the quest for the reliable markers for the identification of the best 
morphology has to continue.

Eventually, the development of more complex automated approaches for compara-
tive analysis of cells will provide the best quality control of clones, which will thus 
ensure their continued safe application in regenerative medicine.
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