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Chapter

Anomaly Detection in Medical
Time Series with Generative
Adversarial Networks:
A Selective Review
Miloš Cekić

Abstract

Anomaly detection in medical data is often of critical importance, from diagnosing
and potentially localizing disease processes such as epilepsy to detecting and
preventing fatal events such as cardiac arrhythmias. Generative adversarial networks
(GANs) have since their inception shown promise in various applications and have
been shown to be effective in cybersecurity, data denoising, and data augmentation,
and have more recently found a potentially important place in the detection of anom-
alies in medical time series. This chapter provides a selective review of this novel use
of GANs, in the process highlighting the nature of anomalies in time series, special
challenges related to medical time series, and some general issues in approaching time
series anomaly detection with deep learning. We cover the most frequently applied
GAN models and briefly detail the current landscape of applying GANs to anomaly
detection in two commonly used medical time series, electrocardiography (ECG) and
electroencephalography (EEG).

Keywords: anomaly detection, medical time series, generative adversarial network
(GAN), electrocardiogram (ECG), electroencephalogram (EEG)

1. Introduction

The increasingly widespread deployment of advanced technology in modern
healthcare has led to exponential growth in the generation and collection of medical
time series data, which offer unprecedented opportunities for the detection and diag-
nosis of disease processes. Being able to use these “big” data to detect and localize
anomalies can lead to early and precise disease recognition, timely and proactive
intervention, development of personalized treatment plans, improved patient out-
comes, and better risk management while at the same time offering opportunities for
better understanding and classification of disease pathology [1–5].

The extraction of meaningful insights from medical time series data, however,
poses a number of significant challenges. For one, the data are highly complex and
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often multidimensional/multimodal and nonstationary. They also usually suffer from
noise, missing values, and artifacts as well as from the inherent variability of human
physiology and broad range of normality across individuals, which makes the identi-
fication of “abnormal” a nontrivial task [6]. Anomalies within the data can be highly
heterogeneous and can manifest as subtle deviations or sudden, drastic changes.
Additionally, specific disease data that could be used to train analytical models are at
best highly heterogeneous and more likely simply not available; even when data are
available, properly labeled data are generally lacking. Finally, at the present time,
there is no expert knowledge related to large medical datasets that can parallel classical
medical knowledge—it is sometimes not even clear what exactly to look for since
traditional medical semiology operates in a different conceptual space (defined signs/
symptoms vs. patterns in massive data) [1–3, 6].

Traditionally, statistical and rule-based methods have been employed for
anomaly detection in medical time series data [4, 7, 8]. These methods rely on
predefined thresholds, statistical models, or expert knowledge to identify deviations
from normal. These approaches, however, often struggle to capture complex and
nonlinear patterns that may be present in the data. This has recently led to a growing
interest in leveraging machine learning and deep learning techniques for anomaly
detection in medical imaging [1–3, 6, 7, 9–11]. A widely used type of model is the
generative adversarial network (GAN), which has demonstrated superiority in a vari-
ety of tasks in medical imaging due to its powerful ability to learn the distribution of
the training data and to generate novel but realistic samples that reflect the underlying
data characteristics [12–26]. A GAN trained on normal instances only, for example,
can capture the complex patterns and dependencies inherent in the data, enabling the
generation of synthetic samples that closely adhere to the learned distribution.
Anomalies, being significantly different from normal, can then be identified by
how far they deviate from their reconstruction [27–32]. The application of GANs in
anomaly detection for medical time series has demonstrated promising results, and
GAN-based approaches have been shown to be able to effectively capture temporal
dependencies, handle complex patterns, and adapt to individual patient variations.
Moreover, they can detect subtle anomalies that may go unnoticed by traditional
methods [29, 31, 32].

This chapter endeavors to provide a brief review of the current landscape of the
use of GANs in anomaly detection in medical time series data. We first present a brief
overview of properties of anomalies, time series data, and specific challenges related
to medical time series. We then discuss general ways of approaching time series with
deep learning methods before discussing GANs and GAN applications to anomaly
detection in general and to time series in particular. We then review the current state
of the use of GANs in medical imaging and anomaly detection in specific fields of
electrocardiography (ECG) and electroencephalography (EEG). Finally, we briefly
discuss some challenges and future directions.

2. Anomalies in time series: problem complexities and challenges

2.1 Properties of time series data

While time is a fundamental concept in nearly all data, time series explicitly
involve the temporal dimension. The following is a brief summary of the specific
properties of time series and how they affect anomaly detection.
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2.1.1 Temporality

A time series is an ordered sequence of data points indexed by time (usually but
not always across equal temporal intervals) [33–36]. We can define a time series as a
vector X such that: X ¼ x1, x2, … , xtf g, where xi represents the datum at time i∈T
and T ¼ 1, 2, … , tf g. The (necessary) assumption of continuity of the underlying
generative process implies that each point is in some way conditioned on previous
values (past states of the process), with this dependency captured as a joint distribu-

tion of a set of observations: p x1, x2, … , xtð Þ ¼ p x1ð Þ
Q

t

2
p xtð x1, x2, … , xt�1Þj . The influ-

ence of the past is generally assumed to decrease with time, though this may not
necessarily be the case [33].

2.1.2 Dimensionality

Time series data may be univariate or multivariate, with the dimension
representing the number of individual data attributes captured at each time point. The
above specification of a time series vector is univariate. Multivariate series can be
defined as a time-ordered set of multidimensional vectors Xt (rather than points),
with Xt ¼ x1t , x

2
t , … , xdt

� �

, where d is the number of dimensions; the multivariate time

series is then a rank d + 1 tensor Xj
i, where j∈D and D ¼ 1, 2, … , df g is the number of

dimensions and i∈T and T ¼ 1, 2, … , tf g denotes time [9, 33]. Alternatively, multi-
variate series can also be conceptualized as a collection of univariate time series. While
analysis of univariate time series needs to consider only the relationship between the
current state and previous states (temporal dependency), multivariate series entail
dependencies and correlations (semantics) across both previous states (temporal)
within a series and other dimensions (spatial) at any given time point, keeping in
mind that any given datum may also depend on a mixture within and across different
time series (spatiotemporal dependencies). These dependencies may be multiscale
(short-, medium-, or long-range) and in some cases nonstationary or dynamic, mean-
ing that the scale and structure of dependencies itself may vary in time [37–40].

2.1.3 Nonstationarity

A time series is assumed to be stationary if its statistical properties do not change
over time. Most real-world time series are not stationary, however, meaning the mean
and variance (and other moments of the distribution) vary. Common sources of
nonstationarity include trends (baseline drift that may be local or global and linear or
nonlinear), seasonal cycles (with a stable period), nonseasonal cycles (with a variable
period), pulses and steps (including concept drift and change points, instances where
the relationship between input and output changes), and random/irregular move-
ment. Because nonstationarity implies that the data distribution itself changes in some
way, an appropriate model will need to somehow capture the underlying generative
process rather than the statistics of the apparent data [33–36].

2.1.4 Noise

Real-world datasets typically contain a significant amount of noise or unwanted
signal, which represents the semantic boundary between normal data and true
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anomalies. The classical definition of an anomaly or outlier is “an observation which
deviates so much from other observations as to arouse suspicions that it was generated
by a different mechanism” [41]. In this context, it is helpful to differentiate between
outlier and anomaly: outlier refers to “unusual data objects that are statistically rare
but may or may not result from the same generative process as other data objects,”
while, in contrast, anomalies are defined as “data objects that have resulted from a
distinct generative process that may or may not appear in the data as outliers” [42].
This distinction is necessarily contextual and application-specific, although typically
anomalies will have a much higher outlier score than noise [43] since they are pre-
sumably generated by a different underlying process.

2.2 Properties of anomalies

The detection of anomalies is a specific problem in pattern recognition that is
distinct from other analytical and learning tasks. Key complexities are discussed
below. These issues apply to any anomaly detection and not just time series, but with
time series and medical time series in particular additional specific challenges arise.

2.2.1 Unknown nature of anomalies

Anomalies are by definition unknown and may involve unknown abrupt behav-
iors, patterns, or distributions, which remain unknown until they occur. Even if a
particular type of anomaly is known and categorized (there are two distinct issues
here, since even if an anomaly type exists, it may not be immediately classifiable due
to the heterogeneity of its manifestations), recognizing it may still be difficult. With
machine learning, there is the added complexity that, even if various diseases are
categorized in terms of their specific symptoms, the disease process may not be clearly
defined within the particular modality performed for its detection [10, 11, 33, 37–39].

2.2.2 Anomaly class heterogeneity

Since anomalies are irregular and heterogeneous, one class of anomalies may have
very different abnormal characteristics when compared to another class of anomalies;
in other words, not only are anomaly classes themselves heterogeneous, the heteroge-
neity within anomaly classes or types is itself heterogeneous [11, 36, 39].

2.2.3 Dataset/class imbalance

Anomalies are typically rare events, occurring much less often than normal
instances, which account for the overwhelming majority of the data. It is therefore
extremely difficult and labor-intensive (if not impossible) to collect a sufficient
amount of labeled and/or clearly defined abnormal instances that could be used for
anomaly definition and model training. The result is severe class imbalance in any
potential training set [29, 32, 40].

2.2.4 Types of anomalies

Anomalies can generally be classified into three types, point anomalies,
contextual anomalies, and collective anomalies, which in time series correspond to
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abnormal time points, abnormal time intervals/subsequences, and abnormal
time series [10, 29, 33, 37, 39].

2.2.4.1 Point anomalies

A point anomaly is a single datum at which the value of the observed variable is
significantly different either from the entire time series (global) or from neighboring
points in a time series (local or contextual). Point anomalies may be univariate or
multivariate and usually entail extreme values. An example may include an abnormal
blood pressure reading, which would then need to be defined as noise or something
potentially indicating a deeper problem.

2.2.4.2 Time interval/subsequence anomalies

This type involves a subsequence of points that does not reflect the normal behav-
ior of the system and in which each individual observation may be within normal
range but the subsequence as a whole is anomalous. The subsequence may affect a
single (univariate) or multiple (multivariate) time-dependent variables. An example
would be an epileptic seizure on electroencephalogram (EEG), which may not be out
of normal range in any individual point, but in which the multivariate pattern across
multiple electrodes over a finite time period reflects the abnormality.

2.2.4.3 Collective or time series anomalies

This class includes cases where the entirety of a (or several) time series of a
multivariate dataset is anomalous with respect to the dataset as a whole. This type is
distinct from subsequence anomalies due to the length of the anomaly, which extends
to the same length as the sequence. The idea here is that what is represented is not a
temporary anomaly in the functioning of a part of a multidimensional system that
returns to normal at some point, but rather that there is a persistent underlying
abnormality in some portion of the system that can only be detected in the context of
the entire dataset. An example would be abnormal signal related to a voxel (volume
element) or group of voxels in a resting-state functional magnetic resonance imaging
(MRI) (rs-fMRI) study representing a brain region that might reflect an underlying
disease process such as an epileptogenic focus or tumor. The only way to detect this is
by looking at the relationship of the various time series to each other both within
individual patients and across individuals.

2.3 Challenges specific to medical time series

Anomaly detection in medical time series data comes with unique challenges,
stemming from the nature of the data, the inherent variability in human physiology,
and the requirement for the results to be interpretable by healthcare professionals.
The following are the major domain-specific challenges.

2.3.1 Noise and artifacts

Medical time series data can contain a significant amount of noise due to
sensor inaccuracies, patient movement, measurement errors, and physiological
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artifacts [1, 2]. For example, an ECG signal may contain noise from muscle contrac-
tions, or a glucose monitor may have inaccuracies due to calibration errors. These
artifacts can distort the underlying physiological signal and lead to false detections of
anomalies.

2.3.2 Missing and irregularly sampled data

Medical time series data often suffer from missing values and irregular sampling
intervals. For example, a patient might remove a wearable device for a period, leading
to missing data, or a sensor might malfunction. Irregularly sampled data can arise in
outpatient settings where measurements are taken at each visit, but the visits occur at
irregular intervals. These irregularities pose challenges for conventional time series
analysis methods, which typically assume regular sampling, and require specialized
techniques to handle missing values, synchronize timestamps, and ensure consistent
analysis across different time series [1, 2, 6].

2.3.3 Nonstationarity

Medical time series data often exhibit nonstationarity, meaning that their statisti-
cal properties change over time. This could be due to a patient’s changing health
status, the effect of medications or interventions, or changes in external conditions
such as time of day or physical activity. Traditional time series analysis techniques
often assume stationarity, so nonstationarity poses a significant challenge [35, 43].

2.3.4 High dimensionality

Medical time series data can involve a high number of variables or channels,
possibly with different types of data that are collected differently (e.g., blood pres-
sure, heart rate, electrocardiogram, oxygen (O2) saturation, and respiration may all be
monitored simultaneously in the intensive care unit (ICU)) or may consist of mas-
sively multidimensional imaging data (e.g., for the open source dataset in the Human
Connectome Project, each raw rs-fMRI time point contains 673,920 voxels or dimen-
sions, which over the span of an approximately 15 min scan generates 8 � 108 data
points per run per subject). This high dimensionality presents challenges in data
storage, computation, visualization, and analysis. It also increases the need for com-
plexity of anomaly detection algorithms, as they need to be able to handle and inter-
pret data across multiple dimensions [1, 4, 5, 38].

2.3.5 Intra- and interpatient variability

There is a high degree of variability in physiological parameters both within the
same individual over time (intrapatient variability) and between different individuals
(interpatient variability). This variability complicates the task of defining what con-
stitutes an “anomaly.” An anomalous value for one individual might be normal for
another, and a reading that is normal for a person at rest might be abnormal during
exercise. Anomaly detection methods need to account for these interpatient variabil-
ities and develop patient-specific or subgroup-specific models to accurately capture
normal and abnormal patterns [1].
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2.3.6 Lack of labeled data

Supervised learning methods, which can be very effective for anomaly detection,
require labeled data for training. Obtaining such labeled data in healthcare settings is
challenging, however, as it typically requires expert clinicians to manually review and
label the data, which is time-consuming and expensive [2]. This essentially forces
most anomaly detection (AD) models to be semi-supervised or unsupervised (see
below).

2.3.7 Privacy and security

Medical data are highly sensitive, and strong safeguards are required to protect
patient privacy. This can make it challenging to gather sufficient data for building
robust anomaly detection models, and it also requires careful consideration when
deploying these models to ensure that patient data are handled securely [1, 27, 28].

2.3.8 Interpretability and explainability

Healthcare professionals need to understand the detected anomalies and trust the
reasoning behind them to make informed decisions. Anomaly detection methods
should therefore provide interpretable results, visualizations, or explanations that can
lead to improved or optimized treatment decisions. Many advanced machine learning
models, however, and particularly deep learning models, often act as “black boxes,”
making their predictions difficult to interpret. This lack of interpretability can hinder
the adoption of these models in clinical practice [1, 28].

2.4 Summary

Anomaly detection in multidimensional time series data is a significant challenge
both from conceptual and technical points of view. Anomalies are by nature rare and
heterogeneous, and therefore not easily amenable to classification, which means that
they must generally be classified not as what they are but rather as what they are not.
This makes not just detection but even simply definition of anomalies challenging:
what is normal? How “different” must something be from some generalization (e.g.,
mean or average) of normal to constitute an anomaly? How do we define this differ-
ence? If the normal data change over time, how do we learn and describe this aspect of
normality? What is the normal evolution of the behavior of our system? For multi-
variate time series, the issues multiply due to dependencies in the data that may
extend over time and across multiple variables and may involve different spatiotem-
poral scales simultaneously. Determining normal behavior then is quite challenging,
and the detection of potentially multiscale spatiotemporal anomalies even more so. As
an extended example, consider rs-fMRI once again: say a brain region comprising a set
of voxels is abnormal and therefore generates an anomalous signal. Detecting this
anomaly requires that we are somehow able to learn all the multivariate dependencies
at multiple scales across multiple subjects (the normal population): spatially between
not just voxels but groups of voxels comprising brain regions, which may vary in size;
temporally in that the length of the anomalous series may vary from short unusual
behaviors to longer term abnormalities; and spatiotemporally in that different length
signals from regions of different sizes may affect other regions at different spatial
scales. Since anomalies are heterogeneous and we cannot know a priori exactly what
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we are looking for, detecting an “anomalous brain region” in the highly
multidimensional rs-fMRI signal requires significant model complexity and
computational power.

Finally, there are additional practical concerns: generalized unavailability of
labeled training data, unreliable or noisy data, heterogeneously organized or collected
data, data privacy (extremely important in medical datasets), interpretability,
throughput and automatization, and scalability from specific research purposes to
clinical applicability.

3. Anomaly detection in time series: concepts and models

3.1 Basic paradigms

Traditional anomaly detection methods in healthcare include statistical
approaches, rule-based methods, and machine learning techniques. Statistical
methods often rely on distribution-based models, such as Gaussian or Hidden Markov
Models, to capture the normal patterns and detect deviations from them. More
sophisticated classical models include autoregressive integrated moving average
(ARIMA) models, exponential smoothing state space model (ETS), and Seasonal-
Trend decomposition using LOESS (STL). These approaches are useful for detecting
point or global anomalies, but are not helpful in the detection of contextual or collec-
tive anomalies [42–45] and are not useful for multivariate or multidimensional data
[37–39]. Rule-based methods utilize expert-defined rules or thresholds to identify
anomalies based on predefined criteria. Machine learning models, especially
unsupervised machine learning algorithms, like clustering (K-means, density-based
spatial clustering of applications with noise (DBSCAN)) or K-nearest neighbors
(K-NN), are often used to detect outliers in time series data. Supervised
learning methods, like support vector machine (SVM) or Random Forests, can also be
used when labeled data are available. Deep learning methods, however, are best for
capturing complex nonlinear relationships and dependencies in time series data
[33, 35, 44–47]. Long Short-Term Memory (LSTM) networks and autoencoders
(AEs) have been common choices due to their ability to model temporal
dependencies, with GANs being utilized more recently for anomaly detection in time
series [29, 33, 39].

Generally speaking, machine (and deep) learning methods can be grossly catego-
rized along two axes: learning scheme vs. anomaly determination. Note that additional
axes are possible, e.g., univariate vs. multivariate, anomaly type (point, subsequence,
or time series); however, these will not be specifically considered here since most
medical time series are multivariate and most deep learning approaches attempt to
find anomalies in an anomaly-type agnostic manner [33].

3.1.1 Learning scheme

The three major learning schemes in machine learning are supervised,
unsupervised, and semi-supervised. Supervised models aim to learn a mapping from
data to their corresponding annotations and then use this mapping to perform classi-
fication on test data. Important examples of a supervised approach in the medical field
are applications to automated brain tumor and ischemic stroke recognition and seg-
mentation (using the extensively labeled Multimodal Brain Tumor Image

8

Anomaly Detection - Recent Advances, AI and ML Perspectives and Applications



Segmentation, BraTS [48], and Ischemic Stroke Lesion Segmentation, ISLES, datasets
[49]). Although these networks can successfully learn to recognize visual anomalies in
medical images [2, 4], they require accurate labels and annotations and can only learn
to recognize specific predefined abnormalities that are already present in the training
set. Given the difficulty and time-consuming nature of labeling data manually, this
approach is usually only appropriate for very specific use-cases.

Most approaches to anomaly detection time series therefore take the form of
unsupervised or semi-supervised learning [32, 38, 45]. In unsupervised anomaly
detection, the algorithms separate anomalies without prior knowledge or any explicit
distinction between normal and abnormal, whereas in semi-supervised approaches all
training data are assumed to be normal. Unsupervised methods are the most flexible
since they depend entirely on the internal features of the data; however, this type of
approach generates its own set of problems including potentially nonconvergent
training, unclear recognition of anomalies, and difficulty in interpretation. For most
medical data, including time series, a semi-supervised approach is generally consid-
ered to be most appropriate [6, 10, 11, 45–47], given the fact that the overwhelming
amount of data collected is normal and that the anomalies themselves are highly
heterogeneous.

3.1.2 Anomaly determination

Most anomaly detection involves an “anomaly score”—a number that is calculated
based on the analytical technique that can then be compared to what is expected from
a normal dataset. Once the data are learned (the model or distribution is assumed and
fitted), a measure of the difference of each particular datum (whatever form this
takes, point, subsequence, etc.) from the learned distribution must be determined,
and this is the anomaly score. The following approach is nearly universal in machine
(and by extension deep) learning for anomaly detection in time series: pick or create a
model/architecture that we think will appropriately model the dataset, train the model
on normal data in order to learn the data distribution (presumably with all dependen-
cies), and then test new data with reference to the learned distribution using an
anomaly score, which then determines if the datum in question was generated by the
same underlying process the model was trained on or something different [11, 29].

Three basic approaches to determining anomaly scores are used, regardless of the
time-modeling approach taken (see below): forecasting/prediction, reconstruction,
and distance/dissimilarity [45].

3.1.2.1 Prediction

Prediction or forecasting-based models learn to predict expected future values
based on the learned data, with anomalies determined based on the residual between
the predicted value and the observed quantity. Most forecasting models use a sliding
window to forecast one point at a time, although short sequences can also be gener-
ated. There is no robust forecasting-based model for rapidly and continuously chang-
ing time series, however, since such time series can only be predicted in the very short
term if at all, and forecasting models are known to demonstrate significantly increased
prediction errors as the number of time points increases [39]. This also makes them
generally unsuitable for subsequence anomalies. Even in the deep learning context,
forecasting-based models can only make short-term predictions with acceptable
accuracy.
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There is certainly a place for forecasting-based models in medical time series
analysis, however. For any real-time applications where early or real-time anomaly
detection is important, forecasting models are crucial. An example would be patients
on telemetry or in the ICU, where blood pressure, respiration, and ECG may, indi-
vidually or in combination, signal an impending collapse. This may also be the case in
predicting the onset of seizures with EEG or cardiac arrest with ECG, where any
advance notice of a critical event may significantly alter outcomes.

3.1.2.2 Reconstruction

Reconstruction-based models are not subject to the constraints of prediction
models. With this type of model, normal behavior is modeled by encoding subse-
quences of normal training data (usually input as a sliding window that provides the
temporal context for each datum) into a lower-dimensional latent space. In a semi-
supervised context where the model is trained on only normal data, the model should
be incapable of generating an anomalous output sequence. Anomalies are therefore
detected by reconstructing a subsequence/sliding window from the test data and
comparing it to the actual values, which generates a “reconstruction” error. Anomalies
are generally flagged when the reconstruction probability falls below a specified
threshold.

Most deep learning methods including generative models such as autoencoders
(AEs), variational autoencoders (VAEs), generative adversarial networks (GANs),
and transformers use reconstruction error as the anomaly score [29, 33]. Although
these models are different in their architectures, training, and objective functions,
most approaches using one of these models calculate anomaly scores as reconstruction
errors. Note that in multivariable time series with multiscale spatiotemporal depen-
dencies deciding what exactly constitutes “similarity” may be difficult. Fortunately,
analytically defining similarity is usually not necessary and the anomaly score is often
related to the loss function of the model. While reconstruction-based AD methods are
fairly intuitive and quite widely used, they can be plagued with difficulties such as
computational cost for data reconstruction, mode collapse, nonconvergence, and
instability [33, 50].

3.1.2.3 Distance/dissimilarity

Distance-based models are based on a similarity metric that flags anomalies if their
distance from normal is past a certain threshold. Clustering is an unsupervised
machine learning model that is effective for grouping data and detecting anomalies; it
involves mapping the time series data into a multidimensional space where the data
are grouped near centroids based on feature similarity. Anomalies are then detected if
they are far from existing clusters or have low probability of belonging to a cluster.
Examples of clustering methods include K-means algorithm, one-class support vector
machine (OCSVM), and Gaussian mixture model (GMM) [33]. More sophisticated
machine learning methods such as Dynamic Time Warping provide a more complex
comparison of temporal sequences (or subsequences, usually determined with a slid-
ing window of fixed length) by allowing nonlinear alignment between sequences that
are locally out of phase [11, 45]. Clustering methods are currently the benchmarks for
anomaly detection in time series [39] and some recent studies demonstrate that many
advanced algorithms do not deliver improved performance on basic univariate time
series in comparison to more traditional methods and may in fact result in inferior
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performance [47]. The performance of clustering methods is generally degraded on
complex high-dimensional datasets [33, 43], however. In such cases, methods to
reduce data dimensionality such as expert opinion or various feature selection and
extraction techniques such as deep autoencoders, principal component analysis (PCA)
[51], and multidimensional scaling (MDS) [52, 53] can be used, in effect utilizing a
hybrid approach using deep learning for dimensionality reduction and clustering
methods for anomaly detection.

3.2 Capturing temporal context

The history of a sequence contains significant information regarding its potential
future behavior and most deep learning approaches in some way depend on modeling
the temporal dimension in order to explicitly capture the past during reconstruction
or prediction.

3.2.1 Input

Input shape is essential to capturing temporal context and can take the form of
individual (multidimensional) points or windows, which consist of a subsequence
that contains some portion of the historical information. The width of the window
is usually predetermined and can be based on the known or estimated/expected
characteristics of the dataset and the presumed underlying process. Windows can
be advanced by some number of data points (window step) and used in order
(sliding windows) or they can be shuffled and entered out of order depending on
the application and dataset. To specifically address the challenge of comparing
subsequences rather than points, many models use representations of
subsequences instead of the raw data. A sliding window decomposition/extraction
is usually performed in the preprocessing stage after other operations such as
missing value imputation, changing the sampling rate, or data normalization, have
been completed [38, 39].

3.2.2 Temporal modeling

Several approaches to modeling temporal context and dependencies are commonly
used in deep learning models. These essentially provide ways of organizing “mem-
ory,” which amounts to in some way utilizing appropriately weighted previously
encountered data in order to generate current or future output. These approaches may
constitute the model architecture itself or they may be utilized at the midlevel of
network dynamics and can be combined with various more basic activation functions
as well as higher-level deep learning architectures.

3.2.2.1 Recurrent neural networks

Recurrent neural networks (RNNs) are a class of neural networks specifically
designed for modeling sequential data and are well suited for capturing temporal and
long-term dependencies. Unlike traditional feedforward neural networks, RNNs have
a recurrent connection that allows information to be looped back and processed at
each time step. This enables RNNs to retain memory of previous time steps that they
can use to inform predictions at subsequent time steps. The hidden state of the RNN
serves as an internal representation that evolves over time, capturing the context and
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history of the time series [52, 53]. A major shortcoming of RNNs is their instability due
to the vanishing or exploding gradient problem, where the learning gradient becomes
extreme as the network becomes deeper [54]. The earliest and most widely used RNN
modification designed to address this problem is the long short-term memory (LSTM)
unit [55], which avoids the problem by controlling retained information through a
memory cell and input, output, and forget gates. If the LSTM unit detects an impor-
tant feature from an earlier input sequence, it can carry this information over an
extended distance, sometimes up to thousands of steps [39, 55]. A simpler and more
computationally efficient but similarly effective modification is the gated recurrent
unit (GRU) [56], which modulates the flow of information inside the unit but without
a separate memory cell [52, 53]. Both LSTM and GRU cells are able to learn long-term
dependencies by determining the number of weighted previous states to keep or
forget at each time step. Both types of cells have been used with success in time series
anomaly detection [39].

3.2.2.2 Convolutional neural networks

Convolutional neural networks (CNNs) have traditionally been used for image
analysis but can be adapted to time series data and in some applications demonstrate
better performance than RNNs [57–59], which still remain the most commonly used
approach to temporal modeling. CNNs treat time series data as a one-dimensional
(1D) array rather than a sequence and employ convolutional operations to capture
local patterns and dependencies within the data. By applying one-dimensional convo-
lutions, CNNs can learn hierarchical representation of time series and automatically
extract relevant features at different timescales. Pooling layers can be added to
downsample the output and reduce dimensionality. The learned features can then be
fed into fully connected layers for classification or regression tasks [29, 33]. Anomaly
detection can be performed by training the model on a normal dataset and then
computing prediction or reconstruction error during inference. CNNs can be used for
multidimensional time series as well as for real-time detection of anomalies; however,
the extensive computational demands of CNNs make them less efficient for real-time
monitoring. A specific approach for time series, the temporal convolutional network
(TCN) [60], uses one-way convolutions in order to maintain temporally ordered/
causal relations in the data. The TCN can generate sequences of any length and
employs dilated convolutions, where the receptive field of the convolutional filters
expands exponentially, which allow the model to capture long-range dependencies in
time series.

Convolutional neural networks and RNNs can be combined in the same network
architecture in order to capture spatial and temporal dependencies distinctly but
simultaneously. In such models, CNNs are usually used to capture local patterns and
features, with the output then fed into a RNN (either LSTM or GRU) that then
processes the features extracted from the CNN in a sequential manner. The RNN
performs the task of modeling the temporal context and relationships between the
features extracted by the CNN [34, 61].

3.2.2.3 Attention

The attention mechanism, initially popularized in the context of natural language
processing [62], has been extended to handle general time series data and provides a
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recent alternative to both RNN and CNN models. In the context of time series analy-
sis, the attention mechanism allows the model to focus on specific temporal segments
or patterns within the input sequence that are most relevant for making predictions.
Using attention, the model can dynamically weigh the contribution of each time step
based on its relevance, rather than relying solely on a fixed window or fixed-size
context. Attention mechanisms typically involve a scoring mechanism that calculates
the relevance or attention weight for each time step, followed by a weighted combi-
nation of the time step representations to produce a context vector that is then used
for making predictions or further processing. Attention mechanisms in time series
analysis have shown effectiveness in tasks such as sequence classification, forecasting,
and anomaly detection, as they enable models to selectively attend to relevant
temporal information while disregarding irrelevant or noisy segments of the time
series [63–65].

3.2.2.4 Graph neural networks

Graph neural networks (GNNs) for time series data combine the power of graph
structures with the ability to model temporal dependencies. GNNs enable the repre-
sentation and analysis of time series data as graphs, where each data point is a node
and the temporal relationships between them are represented as edges [66]. By incor-
porating recurrent or convolutional mechanisms, GNNs can capture the dynamics and
patterns of time series data within the graph framework. These models leverage
information from neighboring nodes and the temporal context to make predictions or
perform tasks such as forecasting, classification, or anomaly detection. GNNs for time
series offer a flexible and effective approach for handling complex temporal depen-
dencies while leveraging the benefits of graph representations, enabling improved
understanding and analysis of time-varying data [66]. GNN ideas have been
implemented in graph convolutional networks [67] and graph attention networks [68]
and are a promising future direction.

3.3 Summary

Deep learning models can automatically learn representations from raw time
series data and capture both local and global dependencies, making them well
suited for anomaly detection tasks. One of the key advantages of using deep
learning for anomaly detection in time series is the ability to handle high-
dimensional and complex data. Deep learning models such as RNNs, CNNs, and
their variants, have been successfully applied to capture temporal dependencies,
spatial patterns, and multiscale features in time series data and can effectively
extract meaningful representations from the input data and detect anomalies based
on deviations from learned normal patterns. These medium-scale models can be
combined and integrated into larger scale unsupervised architectures such as
autoencoders and GANs, which have been widely employed to learn compact
representations of normal patterns in data. By reconstructing the input data
or generating synthetic data samples, these models can detect anomalies by
measuring the reconstruction error or the divergence between the real and
generated data. More recent ways of capturing the temporal context include
attention and GNNs, and these have shown promise in anomaly detection in time
series.
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4. Generative adversarial models for anomaly detection

4.1 Motivation for the use of GANs in medical data

The key motivation for utilizing GANs for anomaly detection in medical time series
is that they almost directly address many of the challenges specific to medical time
series discussed above [1, 14, 16–21]. Since GANs can learn to recreate normal data
patterns and detect anomalies as deviations from these patterns, they are optimized to
operate in an unsupervised setting; they can easily be combined with a temporal model
(e.g., RNN or Attention) to model complex temporal and multivariate dependencies
due to their ability to capture intricate data structures and patterns, nonlinearities, and
high-dimensional relationships and they can do so in high-dimensional datasets
involving multiple variables recorded over time; they can generate synthetic realistic
data that can supplement original medical datasets, which often suffer from lack of
volume and diversity, thus aiding in the training of more robust and generalizable
models; and they have shown impressive generalization capabilities, allowing them to
learn representations that generalize well to unseen data, which are particularly valu-
able in anomaly detection in medical time series, where the ability to accurately detect
anomalies in previously unseen or rare cases is crucial.

4.2 GAN overview

Generative adversarial networks are a class of deep learning models introduced
by Goodfellow et al. in 2014 [69] designed to generate synthetic data that resemble
the training dataset by learning and reproducing the distribution inherent in the data.
A GAN consists of two parts, a generator (G) and a discriminator (D), which are
usually implemented as neural networks. Both networks play a two-player
minimax game, in which G tries to generate data that D cannot distinguish from the
real training data, while D tries to correctly classify data as real (from the training
data) or fake (from G).

The generator’s role is to produce synthetic data samples, such as images, texts, or
audio, which mimic the distribution of the training data. The generator is a mapping
function that projects random noise or an input vector sampled from a prior distribu-
tion (which may be uniform or Gaussian) to the data space. The network gradually
learns to transform the noise into output that is generated from the dataset distribu-
tion and is ideally indistinguishable from the training data. The discriminator, on the
other hand, acts as a binary classifier. It is trained to distinguish between real data
samples from the training set and synthetic samples generated by the generator. The
discriminator takes both real and generated samples as inputs and outputs a probabil-
ity score indicating the likelihood that the input is real. The objective of the discrim-
inator is to learn to accurately classify the data samples.

The generator and the discriminator are trained simultaneously. Initially, the gen-
erator produces poor quality outputs and the discriminator can easily tell the differ-
ence between real and fake. As training progresses, the generator becomes better at
generating fake outputs that appear real, and the discriminator becomes better at
distinguishing between the real and the fake. The training continues until a point at
which the discriminator can no longer distinguish fake data from real data (Nash
equilibrium). The optimization process uses backpropagation and an optimization
algorithm (like stochastic gradient descent) to adjust the parameters of G and D. The
loss function used for the training is typically binary cross-entropy.
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In the context of anomaly detection, after the GAN is trained, new data instances
can be fed to the trained generator, which then attempts to reconstruct or regenerate
these instances. The regenerated samples are then compared to the original data. If the
difference between the original and the regenerated sample surpasses a defined
threshold, the data instance is flagged as an anomaly. The underlying assumption is
that the GAN will be less successful in accurately reproducing instances that are
significantly different from the distribution it was trained on, i.e., anomalous
instances. This procedure allows for effective anomaly detection in an unsupervised
setting [27, 29–33].

The objective function summarizing this process is:

MinGMaxDf D,Gð Þ ¼ x�pdata xð Þ log D xð Þð Þ½ � þ z�pz zð Þ log 1�D G zð Þð Þð Þ½ � (1)

Where x and z are the expectation values over real and random data
samples, respectively, D(x) is the probability estimate of the discriminator D if x is
real, G(z) is the output of the generator G for a given vector z as input, and D(G(z))
is the probability estimate of the discriminator D that the fake generated sample G(z)
is real.

Generative adversarial networks have achieved remarkable success in various
domains, including image synthesis, video generation, text generation, and more
and have been applied to additional tasks such as image-to-image translation, style
transfer, super-resolution, and data augmentation. The model structure described
above is considered to be “vanilla” GAN. Since it is the most basic, the GANmodel has
been modified and extended to address specific challenges. For example, Wasserstein
GAN [70] was developed to address unstable optimization and mode collapse; it
shares the same minmax training procedure with the original GAN model but
adjusts the loss function to minimize the Wasserstein distance between the real
and fake data distributions. Conditional GAN (C-GAN) [71] adds conditioning
information to both the generator and discriminator, which allows the model to
generate data based on the chosen set of conditional parameters. Deep
Convolutional GAN (DC-GAN) [72] uses convolutional layers in both generator and
discriminator in order to generate more realistic images. Self-attention GAN
(SA-GAN) [73] adds the self-attention mechanism to the convolutional GAN in order
to model long-range, multilevel dependencies across image regions in order to avoid
using only spatially local properties for generating high-resolution images. In Bidirec-
tional GAN (Bi-GAN) [74], an encoder is added to the generator and discriminator in
order to map the data into a latent space, enabling learning of a bidirectional mapping
between the data space and the latent space. Finally, Cycle-consistent GAN
(CycleGAN) involves training two GANs simultaneously using cycle consistency loss
in order to encourage learned mappings in both directions and optimize image-to-
image translation [75].

4.3 GANs for anomaly detection

Generative adversarial networks have proven to be effective as an unsupervised
anomaly detection technique and have overcome significant challenges that are com-
mon to medical datasets such as a lack of adequately labeled datasets, dearth of
anomalous data, and unbalanced datasets [28–31]. The following is a brief summary of
the major models, which constitute the core models that have been adapted and
modified for different applications.
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4.3.1 AnoGAN

The AnoGAN model [76] was one of the earliest uses of GANs for anomaly
detection. It uses a deep convolutional GAN (DC-GAN) architecture (see above)
trained on normal data. Once the model is trained, anomaly scoring for a new instance
is performed by calculating the anomaly score as a discrepancy between the instance
and its reconstructed version obtained from the latent (random) space of the GAN. To
reconstruct an instance, AnoGAN employs an optimization process that finds the
closest point to it in the latent space by minimizing the difference between the
reconstructed output and the original input using gradient descent and updating the
latent code iteratively until convergence. The anomaly score is then calculated based
on the difference between the original instance and the reconstructed output. A
problem with this approach is that the GAN only implicitly models the data distribu-
tion and the optimization procedure for recovering the latent representation of a given
sample is computationally costly and not practical for large datasets [29, 31]. The same
authors followed up [77] with a modified model based on Wasserstein GAN, fast
unsupervised anomaly detection with generative adversarial networks (f-AnoGAN),
which substantially sped up the process of mapping to the latent space by moving
from an iterative gradient descent approach to a learned mapping, which made the
model more suitable for real-time anomaly detection.

4.3.2 Efficient GAN (E-GAN)

Efficient GAN [78] is based on AnoGAN, but it uses the bidirectional GAN (Bi-
GAN) rather than a DC-GAN and incorporates an encoder into the architecture in
order to alleviate the computational complexity associated with inference. Here, the
discriminator separates two joint distributions: the given sample and the
corresponding latent space (the output of the encoder) versus the original latent space
and its generated synthetic sample (the output of the generator). The encoder acts as a
regularization mechanism, helping to mitigate mode collapse and stabilizing the
training process as well as resulting in significantly improved efficiency in detecting
anomalies.

4.3.3 GANomaly

GANomaly [79] represents an addition of an autoencoder to AnoGAN in order to
learn both the image and latent representations jointly. Here, the generator is
constructed of an encoder and decoder, with an additional encoder that takes the
output from the generated sample space and maps it back to a latent space. The
discriminator as usual compares the generated samples to the original data. The total
training loss then consists of the reconstructed loss in the latent space, the
reconstructed loss in the sample space, and the adversarial loss in the sample space.
The anomaly score is based on the encoder loss [31]. An important aspect of this
model is that the space used for comparison is from the original sample space rather
than depending on random sampling from a latent space as in other GAN-based
models. This results in a model with high detection accuracy that has been adapted
extensively to specific applications. Skip-GANomaly, for example, adds skip connec-
tions between the encoder and generator, leading to improved reconstruction accu-
racy and thus more accurate anomaly detection [29].
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4.4 GANs for anomaly detection in time series

Generative adversarial networks offer a powerful framework for modeling and
generating complex data distributions, making them well suited for capturing the
intricate patterns and dynamics present in time series data. Several types of GAN
architectures have been adapted for anomaly detection in time series. The following is
a selected review of several important models.

4.4.1 TAnoGAN

Time Series Anomaly Detection with Generative Adversarial Networks
(TAnoGAN) [80] is the simplest GAN-based model adapted specifically for time
series. It is similar to the AnoGAN model, except that rather than using deep CNNs,
both the generator and the discriminator are composed of LSTM layers in order to
model temporality. A sliding window inputs real subsequences and the generator
outputs simulated sequences of the same length, which are then compared by the
discriminator using pointwise distance. A shortcoming of this model is that it is
incapable of dealing with multivariate time series.

4.4.2 MAD-GAN

Multivariate Anomaly Detection GAN (MAD-GAN) [81] was designed specifically
to address anomaly detection in multivariate time series. MAD-GAN also consists of
LSTM layers in the generator and discriminator, and its training is similar to that of
TAnoGAN. The model generates a residual loss based on the idea that the generator
implicitly models the data distribution by learning to map it back into its latent space.
During inference, this residual loss is combined with the standard discrimination loss
to determine whether the sample is abnormal or not.

4.4.3 TadGAN

Time series anomaly detection using generative adversarial network (TadGAN)
[82] also uses the LSTM structure in its generator and discriminator, but introduces an
encoder in order to generate the latent space from which the generator produces
synthetic data samples (rather than from a random latent space as usual). There are
two discriminators, one for the samples and one for the latent space. The model uses
Wasserstein distance for the discriminator loss and cycle consistency loss for the
reconstruction error, which are computed through a combination of pointwise differ-
ence, area difference, and dynamic time warping. Anomalies are detected through a
combination of reconstruction and discriminator errors.

4.4.4 Beat-GAN

Beat-GAN [59] was specifically developed for ECG anomaly detection. It utilizes
an encoder-decoder architecture as the generator, and both the encoder and decoder
are CNNs rather than LSTMs. They deal with temporality by utilizing a one-
dimensional filter sliding along the temporal dimension. An interesting contribution
that this model uses in order to deal with the inherent nonstationarity of their data
(heart rate variability) is a modified form of time warping, where data are imputed
during decelerations and removed during accelerations in order to generate a steady
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“beat.” The model functions essentially like an autoencoder, but uses the discrimina-
tor for regularization to improve stability. During inference, anomalies are detected
by a combination of pairwise reconstruction error and discriminator error.

5. GANs in medicine

5.1 GANs in medical imaging

Due to their capacity to generate realistic images, it is not surprising that the
most common use of GANs in medical imaging has been primarily in data synthesis
[83–85]. While some of these uses do not directly involve anomaly detection, given
that they are in some way involved in detecting and diagnosing specific disease or
behavioral states, they are at least obliquely related [21, 28]. The following are some of
the most common current applications.

5.1.1 Data augmentation

As previously discussed, scarcity of labeled data represents one of the main limita-
tions to the application of deep learning in medicine [86, 87]. Medical datasets are
often imbalanced and lack diversity, which can lead to biased or poor-performing
models. GANs have been shown to be able to generate synthetic medical data, helping
to augment existing datasets, rectify imbalance, increase diversity, and improve the
performance of machine learning models. A key advantage of being able to generate
synthetic data with the same statistical characteristics as the original data but without
personal health information is the ability to widely share and analyze data without the
risk of violating patient privacy, which is often a barrier to producing large public
datasets.

From an anomaly detection perspective, data synthesis can be used to turn an
unsupervised or semi-supervised anomaly problem into a supervised binary (or
multiclass) classification problem: GANs are used to generate synthetic data that
statistically resemble anomalies, which can then be used for balanced classification
training in a supervised manner. This is, in fact, the most common current application
of GANs in anomaly detection [21, 29, 30] and has been applied to images [83, 84] as
well as time series such as ECG [88] and EEG [89]. While this approach to anomaly
recognition is more straightforward than classical anomaly detection, it assumes that
the known anomalous data cover the entire distribution of possible anomalies, which
may not be the case and could result in excellent classification of known anomalies but
possible misclassification of unknown ones [39, 85].

5.1.2 Image-to-image translation

A powerful application specific to GANs is their ability for image-to-image trans-
lation such as converting MRI images to computed tomography (CT) images or vice
versa, enhancing the quality of medical images, or generating angiography images
from MRI images. There are multiple potential benefits to this, including decreased
need for multimodal studies, reduced acquisition time and radiation exposure, and
increased availability of appropriate imaging in cases where there is limited access to
multimodal imaging, e.g., in a clinical scenario where a certain imaging modality
(such as MRI) might be optimal for diagnosis or treatment planning but only another
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modality (such as CT) is available to the patient. The predominant type of GAN used
for this application is CycleGAN [21, 90–93].

5.1.3 Super-resolution/denoising

Generative adversarial networks can also be used to increase the resolution of
medical images, known as super-resolution, and to reduce noise and artifacts. Since
the quality of medical images is often degraded by various factors such as hardware
limitation or patient movement, this can be extremely helpful for discernment of fine
details that can be critical for correct diagnosis. Super-resolution and noise reduction
are types of image-to-image translation that involve converting low-resolution images
into high-resolution images by imputing data. This is especially interesting in cases
where the imaging modality is intrinsically low-resolution, such as positron emission
tomography (PET) [94–99].

5.1.4 Image segmentation

Image segmentation is important for measuring and visualizing anatomical struc-
tures, delineating pathological regions, and for surgical planning and image-guided
interventions. The process of applying GANs to image segmentation is slightly differ-
ent than that of applying vanilla GAN: the generator now aims to create an image
where each pixel corresponds to a particular class label and the discriminator attempts
to differentiate between the ground-truth segmentation (real) and the generator’s
segmentation (synthetic). This is again a type of image-to-image translation for which
GANs have been used successfully [100–102].

5.1.5 Disease progression modeling

Disease progression modeling involves predicting how a disease will develop in a
patient over time, which can allow for early intervention, optimized treatment plans,
and better patient outcomes. In the context of disease progression modeling, the
generator could be conditioned on a particular disease stage or on past medical history
in order to generate synthetic data predicting what could potentially happen at the
next disease stage or time point. Different models or approaches might be used to
handle different kinds of data (continuous, discrete, etc.) and different diseases.
GANs have been successfully applied to tumor growth [103] and Alzheimer’s disease
prediction [104].

5.1.6 Brain decoding

Brain decoding involves using machine learning algorithms to map patterns of
brain activity (measured via EEG or fMRI) to mental states or processes. For example,
using visual image reconstruction decoding researchers have been able to reproduce
images a person is viewing directly from brain activity [105–107]. This process is often
referred to as “mind reading” or “brain-to-image reconstruction”. The most direct
clinical applicability of this technique at this time is in brain-computer interfaces,
which would potentially allow disabled and paralyzed individuals to communicate and
control external devices more easily. The technique also offers the potential for sig-
nificant advancements in the understanding of the biology of consciousness and
mind-body medicine.
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5.2 GANs in medical time series: ECG

5.2.1 ECG overview

Electrocardiography (ECG or EKG) is a diagnostic tool that records the electrical
activity of the heart over a period of time through electrodes placed on the skin,
typically in a standard 12-lead setup for a clinical ECG. The ECG waveform represents
the electrical depolarization and repolarization of the cardiac muscle during each
heartbeat and can provide a large amount of valuable information such as the heart
rate, rhythm, and the size and position of the chambers. It can also show evidence of
damage to the cardiac muscle (ischemia or infarction), effects of drugs or devices
(such as a pacemaker), and other types of heart disease or conditions (e.g., pericardi-
tis, electrolyte imbalances). A significant advantage of ECG is that it is noninvasive,
inexpensive, and relatively quick to perform. However, it requires expert interpreta-
tion, and while it is highly valuable, it may not provide a definitive diagnosis on its
own and may need to be combined with other studies [108, 109].

5.2.2 GANs in ECG anomaly detection

As discussed above, Beat-GAN was specifically designed to detect anomalies in
ECG. It outperformed other anomaly detection methods (including OCSVM) and
achieved high accuracy and fast inference. It was also to some extent interpretable
since it was able to pinpoint anomalies in sample space. The model has also been
applied successfully to time series in other domains [59]. Shin et al. [110] deployed the
AnoGAN architecture, but modified it with extensive data preprocessing as well as
dimensionality reduction with t-distributed stochastic neighbor embedding (t-SNE),
which they utilized to generate an experimentally determined objective decision
boundary that could effectively differentiate between normal signal and arrhythmia
based on anomaly score.

Li et al. [111] proposed Single-Lead convolutional generative adversarial network
(SLC-GAN) for automated myocardial infarction (MI) in single-lead ECG. The model
involves a GAN with multiple convolutional layers (DC-GAN) in the generator and
discriminator with an added CNN classifier for MI detection. The GAN portion learns
to generate synthetic ECG data, which are then used to augment the volume of the
training data for the classifier. The model achieved excellent classification accuracy
and provides a good example of using synthetic data in order to change the problem
parameters from unsupervised to supervised and improve performance. Xia et al.
[112] extended this idea by applying a transformer model in the generator with a CNN
discriminator. This model was then used to generate synthetic data, which were used
to augment training of a classifier that combined a CNN-based feature extraction
block followed by a bidirectional LSTM (Bi-LSTM) architecture. The overall model
achieved superior performance and demonstrated improved classification than
models that did not use added synthetic data. A similar conclusion was reached by
Rath et al. [113], who tested several machine and deep learning methods and found
that the best performance on ECG classification was achieved by a GAN-LSTM
ensemble model.

Qin et al. [114] proposed ECG-ADGAN, a semi-supervised model that incorporates
a Bi-LSTM network in addition to multiple 1D convolutional layers into the GAN
generator in order to preserve temporal patterns of the ECG signal. Training takes
place in two stages, with stage I following normal GAN training to Nash equilibrium
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between the generator and discriminator and stage II freezing the generator and
training the discriminator/classifier separately specifically for anomaly detection. The
authors also utilized mini-batch training during stage I to improve convergence. The
model demonstrated superior detection of unknown anomalies when compared to
supervised learning methods.

Wang and colleagues [115] further extended this approach beyond binary classifi-
cation (normal vs. abnormal) by incorporating GAN into a two-level hierarchical
framework in order to not only detect but also classify different types of arrhythmias.
The first level consists of a memory-augmented deep autoencoder with GAN
(MadeGAN) designed to perform anomaly detection; the second level consists of a
multibranching deep CNN architecture utilizing transfer learning to allow classifica-
tion of different types of heart disease given the fundamental imbalance in the train-
ing dataset. This framework was able to effectively capture disease-altered features of
ECG signals and accurately predict and classify heart disease with better performance
compared to existing methods.

5.3 GANs in medical time series: EEG

5.3.1 EEG overview

An electroencephalogram (EEG) is a neuroimaging technique used to record the
electrical activity of the brain. It is carried out using multiple electrodes placed on the
scalp according to a standardized placement system, usually the 10–20 system. These
electrodes measure voltage fluctuations resulting from ionic current flows within
neural populations in the brain. The resulting traces, EEG waves, represent the sum-
mation of postsynaptic potentials (PSPs) from a large number of neurons, specifically
from cortical pyramidal neurons, detected as fluctuations in voltage over time [116].

EEG waves are characterized by their frequency (measured in Hertz), amplitude
(measured in microvolts), and waveform morphology. They are typically categorized
into bandwidths: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz),
and gamma (30–100 Hz), each of which may correspond to different states of brain
activity or consciousness. For instance, alpha waves are typically associated with
relaxed, closed-eye states, while beta waves are associated with active thinking,
attentional focus, or rapid eye movement (REM) sleep [116].

EEG can be used for the detection and study of various neurological and psychiat-
ric conditions such as epilepsy, sleep disorders, encephalopathies, and even cognitive
processes. The main advantage of EEG in cognitive imaging is its high temporal
resolution, which allows for the study of fast-dynamic processes within the brain. Its
spatial resolution is limited, however, and it is less effective for capturing activity
occurring deep within the brain. Anomaly detection in EEG traces involves all the
challenges discussed above: multidimensional time series with complex dependencies,
highly complex and nonstationary normal behavior, and rarity and extreme heteroge-
neity of disease patterns, from normal brain aging to active seizures.

5.3.2 GANs in EEG epilepsy detection

Epilepsy is a chronic neurological disorder marked by recurrent seizures, which are
symptoms of abnormal excessive or synchronous neuronal activity in the brain. Sei-
zures can vary greatly in their presentation, from minor sensory disturbances or
momentary lapses in consciousness (“absence seizures”) to full-body convulsions
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(“grand mal seizure”). EEG is crucial in diagnosing and localizing the disorder, as well
as in detecting seizures when they occur. Seizures are characterized by a variety of
EEG patterns and frequencies such as spike-and-wave discharges (70 ms waveforms
often followed by a slow wave, with specificity based on the frequency band), sharp
waves (typically seen in focal seizures), polyspikes (typically seen in generalized
seizures), focal slowing (which helps with localization and can be seen before, during,
or after focal seizures), or generalized paroxysmal fast activity (rapid continuous
spiking typically seen in severe diseases such as Lennox-Gastaut syndrome). Seizure
detection and monitoring has an important role in diagnosis, improving quality of life,
and general understanding of the disease. For example, alerting a patient about an
impending seizure might allow them to take appropriate safety precautions or break-
through medications for seizure control [117–121]. In this context, automatic seizure
detection or prediction essentially consists of a binary classification task between the
ictal (seizure) or pre-ictal and nonictal (nonseizure) EEG patterns.

A number of machine and deep learning approaches have been applied to epileptic
seizure detection and prediction, but these predominantly apply feature extraction
such as wavelets or independent component analysis (ICA) followed by a classifier
such as random forest or support vector machine (SVM) [122]. One of the only
models to directly apply a semi-supervised GAN model to seizure detection was
introduced by You et al. [119], who modified the AnoGAN model (DC-GAN archi-
tecture) for seizure detection in a behind-the-ear EEG two-channel signal. The EEG
signal channels were filtered and transformed into spectrogram images, which were
combined to form a virtual channel image that was fed to the network for training.
The GAN was trained on normal data and anomalies were detected using a combina-
tion of residual and discriminative loss. The authors noted that the addition of a Gram
matrix of the feature maps from each convolutional layer was shown to improve
performance. The model demonstrated a 96.3% sensitivity for automated seizure
detection.

Zhu and Shoaran [123] utilized an unsupervised adversarial model to map power
spectrum features from intracranial EEG recordings into a subject-invariant feature
space via domain transfer learning. The model consisted of an encoder and decoder
functioning as a generator for both the source (labeled data) and target (unlabeled or
new data) domains, with a discriminator designed to try to differentiate between the
domains. A discriminative model was then trained on the resultant subject-invariant
features to generate predictions about the target patients. The model demonstrated
improved performance compared to the more conventional subject-specific approach,
allowing for better generalization.

In contrast, Truong et al. [124] used a GAN to extract features from the EEG data
that could then undergo binary classification. The generator was trained to synthesize
realistic short-time Fourier transform images from a noise vector that were then
passed through the discriminator. After training, the discriminator was able to collect
and flatten features that could be used with any generic classifier, in this case two fully
connected layers. The model again consisted of a modified DC-GAN architecture that
was trained in an unsupervised manner where information regarding seizure onset
was disregarded.

While there are very few applications of GANs directly to seizure detection, most
applications use GANs in order to produce balanced training datasets with generated
synthetic data, again effectively changing the problem from an unsupervised to a
supervised one. One of the first applications of GANs to EEG data generation was
proposed by Pascual et al. [125] who used their conditional GAN model to generate
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synthetic ictal signals conditioned on interictal data from individual patients. The
model consisted of a convolutional autoencoder as the generator, in this case translat-
ing the latent code into an ictal sample rather than restoring the original sample. The
discriminator had the same architecture as the encoder of the generator and was
trained to distinguish between real and fake ictal signals. The inclusion of synthetic
samples resulted in improved classification performance compared to training on only
real samples. The additional benefit of the synthetic procedure, as the authors point
out, was deidentification of the original data and significant improvement in data
privacy. Multiple additional groups have applied similar data augmentation
approaches with various modifications, including different feature extraction
methods, different generator and discriminator architectures, different loss functions,
utilization of LSTM/GRU cells or attention instead of CNNs, and the application of
different classifiers [126–143].

6. Conclusion: challenges and future directions

Although GANs have shown significant promise in anomaly detection in medical
time series, serious challenges remain, such as (notorious) training instability, lack of
clear evaluation metrics for generated data, limited interpretability, inability to
explicitly model causal relationships, question of preservation of temporal dynamics,
privacy concerns, and ethical considerations in the use of generated data. For exam-
ple, evaluating the performance of GAN-based anomaly detection in time series is
nontrivial since traditional evaluation metrics such as precision, recall, or F1-score or
even more advanced techniques such as maximum mean discrepancy or Fréchet
inception distance [144, 145] may be unable to fully capture the highly complex
characteristics of the data. Additional issues such as fairness in AI models also need to
be considered to ensure that algorithmic decisions do not discriminate against certain
demographic groups.

Future research efforts should focus on refining training techniques, incorporating
domain knowledge, and developing hybrid approaches to enhance the performance
and applicability of GANs in anomaly detection in time series data. Since GANs were
originally designed to generate realistic images, their use is still predominantly
focused on the generation of synthetic data. This is, of course, extremely useful as it
can help resolve issues of unbalanced datasets and lack of anomalous and labeled data
and transform unsupervised or semi-supervised approaches to anomaly detection into
more manageable supervised problems. Direct anomaly detection with GANs is
becoming more common, however, as different research groups realize that applying
generative deep learning to data directly is feasible and provides significant advan-
tages (and since generation of synthetic data inherently biases the network away from
correct classification or detection of unknown or unusual anomalies). While GANs
have been applied successfully, at least initially, in anomaly detection in time series
such as ECG and EEG, there are many other areas where they could be extremely
useful, such as rs-fMRI, ICU physiological data, or even monitoring of medical records
for the possibility of subtle signs of chronic disease. In these areas, the application
would leverage the model’s ability to learn the underlying distribution, and modifica-
tions such as adding or embedding different modules (such as autoencoders) into the
adversarial structure and/or including recurrence, attention, or graph structures could
serve to better model the long-range spatiotemporal dynamics and dependencies in
the data. Additional potential areas of future research include building patient-specific
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models, improving generality through transfer learning, and real-time applications in
the monitoring of healthcare data. Finally, there is a need for more research on the
practical deployment of GANs in clinical settings, which involves not only technical
considerations but also evaluation in terms of clinical outcomes, cost-effectiveness,
user experience, and ethical, legal, and societal implications.
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