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Chapter

Investigations of Different
Approaches for Controlling the
Speed of an Electric Motor with
Nonlinear Dynamics Powered by a
Li-ion battery - Case study

Roxana-Elena Tudoroiu, Mohammed Zaheeruddin,
Nicolae Tudoroiu, Sovin Mihai Radu and Hana Chammas

Abstract

This research investigated different nonlinear models, state estimation techniques and
control strategies applied to rechargeable Li-ion batteries and electric motors powered and
adapted to these batteries. The finality of these investigations was achieved by finding the
most suitable design approach for the real-time implementation of the most advanced
state estimators based on intelligent neural networks and neural control strategies. For
performance comparison purposes, was chosen as case study an accurate and robust EKF
state of charge (SOC) estimator built on a simple second-order RC equivalent circuit
model (2RC ECM) accurate enough to accomplish the main goal. An intelligent nonlinear
autoregressive with exogenous input (NARX) Shallow Neural Network (SSN) estimator
was developed to estimate the battery SOC, predict the terminal voltage, and map the
nonlinear open circuit voltage (OCV) battery characteristic curve as a function of SOC.
Focusing on nonlinear modeling and linearization techniques, such as partial state feed-
back linearization, for “proof concept” and simulations purposes in the case study, a third
order nonlinear model for a DC motor (DCM) drive was selected. It is a valuable research
support suitable to analyze the performance of state feedback linearization, system sin-
gularities, internal and zero dynamics, and solving reference tracking problems.

Keywords: Li-ion battery, SOC, Simscape generic model, PID control, state feedback
linearization, NARX shallow neural network, NARMA-L2 neuro controller

1. Introduction

Clean and efficient transportation across the planet is only possible if governments
and scientists focus on stimulating and sustaining the automotive industry of electric
vehicles (EVs) by developing and deploying the most advanced battery technologies.
Nowadays, Li-ion battery technologies have made significant progress and have
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undoubtedly proven to have a promising future and great potential for development.
These are recommended for their excellent features, such as lightweight, high-energy
density, low memory effect and relatively low self-discharge, outperforming almost
all other competing batteries of different chemistries on the market [1, 2]. Thanks to
several improvements in Li-ion battery technologies recently, they have become safer,
eliminating explosion hazards as much as possible and their chemistry is less toxic,
both to nature and to humans. Battery state of charge (SOC) is an essential internal
parameter that plays a vital role in utilizing battery energy efficiency, operating safely
under various realistic conditions and environments, and extending battery life [3, 4].
The SOC is a piece of valuable information on the remaining capacity available during
the operation of EV car. As the central internal state of the battery, the SOC is
continuously supervised by a battery management system (BMS), which is integrated
into the EV energy storage system (ESS) structure to power the traction powertrain
[1-6]. The SOC can be calculated directly by a simple open-loop integration operation,
known as the coulomb counting method or the ampere method since it accumulates
the charge transferred between the battery and the environment over time. However,
this measurement method is prone to the initial value of SOC and accuracy of the
current profile data set measurement. The ampere method accumulates significant
errors caused by the integration operation that accumulates errors over time [7]. The
battery SOC estimation is one of the main tasks of a BMS. An extensive critical review
of Lithium-ion battery SOC, and a smarter BMS description for EV applications are
made in [8]. Being interpreted as a remaining capacity of the battery, the SOC is also
an important support for energy management (EM) and control strategies. An inter-
esting comprehensive review on Energy Management Strategies (EMS) for EVs taking
into consideration the realistic conditions of Li-ion battery degradation based on aging
models is found in HAL Open Science that includes the most representatives research
papers from 2021 IEEE Access, with a new release version in 2023 [9]. The accuracy of
Li-ion battery SOC estimation has a significant impact on the efficient operation and
EMS of the battery. Many of studies are dedicated to advancing the BMS functions,
such as intelligent cell balancing and charging control strategies for lithium-ion bat-
tery packs [10], SOC and state of health (SOH) monitoring [11-13], and thermal
battery control temperature [14].

Nowadays, an impressive amount of work has been done in the research field to
investigate and study large-scale new developments and implementations of SOC
estimation algorithms to be applied to an extensive range of applications in the EV
automotive industry. The main flaw of coulomb counting method is that it is not
suitable in real time online SOC estimation. Also, it is noteworthy to know that the
battery model accuracy significantly impacts SOC estimation. The well-known equiv-
alent circuit model (ECM) is suitable for online estimation due to its simplicity and
mastering well the relationship between parameters [1], [3-6]. The traditional
methods include the most popular Kalman filter (KF) algorithms, among them linear
KF and linearized extended KF (EKF) [5, 6, 15, 16], and nonlinear unscented KF
(UKF) [7], ensemble KF (EnKF) [17], particles filter (PF) [18], which are commonly
used as a nonlinear filter estimation methods. Only the linear KF is an optimal state
estimator compared to the EKF, a suboptimal estimation algorithm. Still, it is an
appropriate state estimator for complex working conditions with severe current fluc-
tuations [7]. Compared to EKF, the UKF method uses an unscented transform to
obtain the statistics of the process noise covariance and reaches a fast convergence
speed and high estimation accuracy [7]. Also, its robustness is better when estimating
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the SOC of different chemistry batteries. To achieve higher accuracy of state estima-
tion, various intelligent algorithms based on Machine Learning (ML) and Deep
Learning (DL) Artificial Intelligence (AI) models are applied to the SOC estimation
and terminal voltage prediction, as those developed in [7, 12, 13, 17, 19-38] easily to be
adapted to all types of batteries and chemistries. The neural networks (NNs) learning
techniques have a wide range of applications and are suitable for all types of batteries
chemistry. Well, these learning techniques such as machine learning (ML) and deep
learning (DL) models require large amounts of accurate training data [27-30]. The
estimation accuracy and the convergence speed of the Li-ion battery SOC depend on
the chosen training method, architecture structures, number of hidden layers and
hidden neurons, learning rate, gradient value and on number of samples and epochs
[29, 30]. The flow of this research paper is organized into four sections, as follows. For
“proof concept” and simulation purposes, in Section 2 a generic Simulink Simscape
model, simple and accurate is adopted to power a particular small EV car. The model
parameters are extracted from a Simulink Simscape battery block set up for a preset
model of the Li-ion battery. Additionally, the battery Simscape model is used for
performance comparison with the adopted second-order ECM battery model (2RC
ECM) used as support in Section 3 to build an accurate and robust EKF SOC estimator.
In Section 3 is developed and implemented a NARX SNN intelligent SOC estimator.
Section 4 is chosen as a case study of a DCM Drive nonlinear model of the high
complexity of applying the state feedback linearization as a powerful tool for
nonlinear control systems in a closed loop. Also, the model singularities, internal

and zero dynamics stabilizability and reference tracking problems to solve

represent some issues /challenges that merit being studied. Additionally, the tradi-
tional PID control strategy is a valuable tool used in this last section for performance
comparison. At the end of Section 4, a learning NARMA-L?2 controller intelligent
strategy is applied to learn and linearize the DCM Drive nonlinear model. Therefore,
this research work opens other directions of research to explore the application of
clever neuro-control strategies on a large scale in future developments in the EV
automotive industry.

2. Li-ion battery: model selection, accuracy, robustness, SOC estimation
and terminal voltage prediction

In this research, we try to develop new approaches for identification, modeling,
state estimation, and linear and nonlinear speed control strategies for a typical choice
of DC or AC electric motor powered by a Li-ion battery and suitable for possible cars’
mid-size EVs applications. Nowadays, we have a great opportunity to take advantage
of the significant advances in modeling, identification and control systems inspired by
the latest achievements in artificial intelligence, statistics and machine learning, deep
learning, signal process analysis. Therefore, our research objectives are expanded with
new approaches.

2.1 Li-ion battery model selection

In the case study, for “proof-of-concept” and simulation reasons, our selection
strategy is to adopt a Li-ion battery model that meets the following requirements:
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simple, accurate, easy to implement and suitable for online real-time simulations for a
wide range of applications in the automotive industry of EVs.

The experience gained so far in process identification, modeling, design, and
implementation confirms the existence of such a Li-ion battery model; depending on
the complexity of the proposed research objectives, this could be an ECM, i.e., an
electrical circuit consisting of a Thevenin-type voltage source OCV connected to the
internal resistance Rint of the battery in series with one, two or three RC polarization
cells. The number of RC cells substantially increases the accuracy of the model, which
undoubtedly fulfills the above-mentioned characteristics, thus becoming valuable
support for achieving research goals [3]. In our research, a second order ECM Li-ion
battery model (abbreviated 2RC ECM) with a nominal voltage of 3.7 V and a rated
capacity of 7.5 Ah was adopted, and the model was validated for different operating
conditions in [3]. The electrical circuit diagram is shown in Figure 1, where the first
polarization cell R1C1 captures the fast dynamics of the battery. In contrast, the
second R2C2 polarization cell captures the slow dynamics of the Li-Ion battery. From
the systemic perspective, it is a single-input, single-output (SISO) system with the
input u = i indicating the charge (i < 0) or discharge (i > 0) current, and y = Vbat
denoting the voltage at the output terminal of the battery. The voltages across the bias
cells, Vcl and Vc2, and the internal SOC state of the battery represent the internal
states of the system. In addition, the proposed Li-ion battery SOC estimator based on
the adopted model is expected to perform much better in terms of accuracy and
robustness of battery SOC estimates for different operating conditions [3, 5, 7].

The adopted Li-ion battery (LIB) ECM model plays an important role in our
research since it is valuable to support building a model-based EKF SOC and terminal
voltage estimator, whose accuracy and robustness depended on the accuracy and
robustness of the battery model. In addition, the ECM battery model is used for
training data set generation to develop a data-driven intelligent neural network learn-
ing technique for SOC estimation and terminal voltage prediction, as a viable alterna-
tive to the traditional EKF estimator. The new modeling and estimation approach has
proven its use for all battery types and different chemistries, outperforming tradi-
tional model-based state estimators. Their convergence does not depend on the com-
plexity of model nonlinearity, unmodelled parts or model uncertainties. Also,
intelligent learning techniques are much more suitable for real time online applica-
tions in the EVs industry. Model selection is also suggested due to its simplicity and
ability to accurately describe the static and dynamic behavior of Li-ion battery.

The new modeling approaches use a specialized Simulink Simscape battery block
to preset a specific Li-ion battery operating for different temperature ranges that

C1 Cc2
—d—

Rint
AN » .
wnA— L]
+ oCcVv > >
<_ Vet V2 -
V=EO Thevenin input volt
v v
evenin inplt vollage Battery Terminal Voltage
v 4
/%GREF1
Figure 1.
2RC ECM wiring diagram.
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significantly affect battery internal resistance R [ SOC, and RC components of the

bias cells. Therefore, depending on user settings, Simscape multi-object models, built
by a kind of specific object-oriented programming language, become valuable tools
for generating different measurement input-output data sets for physical systems or
subsystems. Then, these data sets are trained to develop and implement in MATLAB
Simulink intelligent neural networks (NNs) learning techniques or to extract the
model parameter values of a particular Li-ion battery, as well as to adjust and obtain
the optimal values of them. For interested readers, such a Simscape block is shown in
Figure 2.

Figure 3a and b show the discharge characteristics curves of rated current at 0.9,
5.4, 10.8, and 27 A versus battery capacity (Ah) as in Figure 3a, and time (h) in
Figure 3b. The parameter values of a generic preset Li-ion battery model are also
disclosed.

2.2 Li-ion 2RC ECM analytical model state space representation and continuous
time domain

The analytical model of the Li-Ion battery is described in the continuous time
domain by three first-order linear differential state equations and a highly nonlinear
static output-state-input equation:

dx —

- Q—”u(t) (1)
dx, -1 1 -1 1
PP R1C1x2 + C T, Xy + C, 1 1 1[5] (2)
dxs -1 1 -1 1
—_— = _— = — — > T — R C
PP G, x3 + G T X3 + C, 2 2 2[5] (3)
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Figure 2.
Simulink Simscape block configured for Li-ion battery and NEDC driving cycle current profile test.
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Figure 3.

Li-ion battery-rated current discharge characteristics and battery terminal voltage curves: (a) battery voltage-
rated capacity curve (V-Ah); (b) battery voltage-time curve (V-h).

Yy =h(x1) —x2 —x3 —R (4)
G

where,

1
h(x1) = OCV(x1) = ko — klx_ —kox1 + k3 In (x1) +kaln (1 —x1) (5)
1

is a nonlinear static function that represents the dependence of OCV on SOC, that
is, OCV(SOC), and SOC = x1, the first component of the state vector x, given by

X = |x H (6)

X3

Both, T and T, denote the time constant of the first and second polarization cells,
respectively. Also, the constants n, and Q,,,,, designate the coulombic efficiency (n)
for both, charging and discharging cycles, and the nominal capacity of the battery
(Q,om) respectively.

It is worth noting that, Egs. (5) and (6) represent a combination of three separate
models, namely Shepherd, Unnewehr and Nernst, reported in [3, 5] to predict termi-
nal voltage based on SOC measurements. The combined model performs better than
using either model separately. The constants ko, k1, k2, k3, k4 can be estimated using a
least square estimation (LSE) procedure provided in the MATLAB System Identifica-
tion Toolbox. To understand how LSE technique works, a simple offline (batch)
processing method that calculates all these unknown parameters is well described in
[3, 5]. For tuning these parameters and finding their optimal values, a Global Pattern
Search (GPS) genetic algorithm from MATLAB Optimization Toolbox is a valuable
tool to use [3].
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2.3 Analytical model of Li-ion 2RC ECM in state space and discrete time domain
representation

The Li-ion battery model described in the continuous-time state space representa-
tion can be discretized using a Taylor series expansion and then keeping only the first
linear term, obtained by using the following approximation

dx,-

pra (7)

where,

T is the sampling time, ¢, = k x T,k Z" denotes the time instance, and k is a
sample index

A matrix representation describes a compact Li-ion battery model of the following
form:

x(k+1) = Ax(k) + Bu(k),y(k) = Cx(k) + Du(k) + hi(x(k)) (8)
where
T, 7
1 0 0 1
TS Qnom
L % ,C=[-ky, —1 —1],D = 9)
1
0 0 1-— E T,
T, _=
L G,
and,
1
]’L1(.X'(k)) = ko —k1x——i—l€3h’l (.’X‘1) +kaln (1—.961) (10)
1

The MATLAB simulation results obtained by iteratively solving the discrete-time
Egs. (8)-(10) describing the dynamics of the battery model over a finite time horizon
defined by the number of samples are shown in Figure 4a—c. Figure 4a shows the
SOC evolution of the battery over a full one-hour discharge cycle for a discharge
current of 1C (7.5A), decreasing from 100% (fully charged battery) to 0% (fully
discharged battery). Figure 4b reveals one of the main characteristics of the proposed
Li-ion battery, which can be found in any catalog specifications of battery manufac-
turers. This well-known non-linear OCV-SOC curve differs from battery to battery.
The time evolution of the battery terminal voltage and its OCV are illustrated in
Figure 4c (Vbat) and 4d (OCV), respectively. The development of OCV and the
terminal voltage of the Li-lon battery is studied over the same full discharge cycle of
1h @7.5A (1C rate) discharge current.

3. SOC estimation and terminal voltage prediction of Li-ion battery

Section 1 details the vital role of the SOC battery in energy efficiency, safe opera-
tion and life extension. Also, information on the best-known state estimators and

7
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Figure 4.

MATLAB simulation results @ constant current = 7.5 A: (a) discharged battery SOC during one-hour discharge
cycle; (b) OCV characteristics of the Li-ion battery; (c) Li-ion battery terminal voltage during one-hour discharge
cycle; (d) OCV battery during a one-hour discharge cycle.

parameters reported in the literature is provided to interested readers and implemen-
ters. Among these estimators, the most popular is the Kalman filter estimator in
various versions, such as KF, EKF, UKF, and EnKF, as mentioned in the Introduction
section. This section briefly introduces the EKF state estimator, which is easily
adapted to estimate the SOC of the Li-ion battery proposed in the case study.

3.1 EKF state estimator design and MATLAB implementation

The Kalman Filter is reported in the literature field since 1960. It is “an optimal
recursive model-based data processing algorithm for linear filtering purposes” [3].

A new modified form of KF, abbreviated EKF, was adopted for nonlinear
process dynamics, a non-optimal filter estimator based on the linearization of
process dynamics. Only KF is the optimal filter that addresses Gaussian linear
processes whose measurement and process noises are zero-mean and uncorrelated
of covariance matrices, e.g., Q for process noise and R for measurement noise,
respectively. The state estimation of a process minimizes the minimum mean
squared error, abbreviated MMSE, between state estimate values and true state
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model values given the measured input data set and the observed output data
set [3, 5].

The EKF is a discrete-time recursive algorithm based on the LIB model whose
states need to be estimated. For simplicity, the steps of the general iterative KF
procedure when applied to linear systems are shown; it consists of the following two
update phases [3-6, 15, 16]:

1. Prediction (forecasting) phase (time update) steps

1.1 Predict the LIB state given in Eq. (8) one step ahead

QACkJrLk = ADACk’k + Bu (k) (11)
1.2 Predict one step ahead the error state covariance

Pri1p = AP AT +Q, (12)

2.Correction phase (measurement update)

2.1 Kalman gain computation
K1 = Pry1nCT (CPyy1aCT + Risr) (13)
2.2 Update the state estimate with a new available measurement
3ACk+1,k+1 = 9ACk+1,k + Kk+1 ()’k+1 - Cfck+1,k) (14)

2.3 Update error state covariance

Priipi1 = (I — Kpi1C)Pryr (15)

Summarizing, in the prediction/forecast phase are predicted the LIB states
Xp+1.and the covariance of the states Pkﬂ,k. The second is a correction phase that
occurs only if a new output measurementy, , (terminal voltage) is available, as it
must calculate the Kalman gain K}, ;and, based on it, are updated the estimated state
Xpk+1k+1and its estimated covariance pk+1,k+1 [3, 5, 15, 16].

For general recursive EKF procedure, the matrices A, B, CAD are obtained by

linearizing the following nonlinear functions around the last predicted estimate in
each iteration:

Kpr1 =f (Xp> Upe) + Wy, (16)
Ve = &(Xp> up) + Vg (17)

where

f>g are nonlinear time-varying functions, w;, and are both zero-mean and
uncorrelated Gaussian process and measurement noises, respectively, with the
statistics represented by the covariance matrices Q,AR;, given or calculated at itera-
tively at the time instance zero mean and uncorrelated, of covariance matrix The

9
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matrices represent the so-called Jacobian matrices required in the Egs. (11)-(15),

defined as
Ay = <(;i) K> Cp = (i> X (18)
X ox

This is just the unique difference between KF and EKF steps; the latter requires the
calculation of the Jacobian matrices Ay, AC, first and then the steps remain the same.
It is worth noting that the matrices A,AC}, are time-varying, compared to matrices
(A, C) which have constant elements.

For a rigorous SOC performance analysis of the EKF algorithm in terms of accu-
racy and robustness, some of the MATLAB simulation results for the adopted 2RC
ECM Li-Ion model, are shown below in Figures 5-7 some of the MATLAB
simulation results for the adopted 2RC ECM Li-Ion model. In Figure 5, the adopted Li-
Ion model is tested with a New European Driving Cycle (NEDC) input current profile
test, and the SOC of the battery is estimated following the steps of the EKF state
estimation algorithm. For more details on the EKF state estimator, the reader can refer
to [3-6, 29, 30]. Figure 5a shows the NEDC driving cycle current profile test, and
Figure 5b show the SOC values generated by the 2RC ECM model versus the SOC EKF
estimated values. Figure 5b reveals excellent SOC steady-state accuracy and robust-
ness to changes in SOC initial value from 80% (in the model) to 30% in the initial SOC
estimate value. Therefore, the EKF estimator performs very well with high SOC
accuracy and robustness.

Instead, in Figure 6a-d, the EKF SOC estimator starts from the same initial SOC
value that initializes the Li-Ion battery model; the MATLAB simulation results show
now the battery model SOC versus its predicted EKF value, such as in Figure 6a, the
model terminal voltage versus its predicted EKF value in Figure 6b, and, newly, both
SOC and terminal voltage error residuals in Figure 6c and d, which provide valuable
information on SOC accuracy and terminal voltage prediction. The lower values of
both residuals (close to zero) indicate an excellent performance of the EKF SOC
estimator and prove that the assumption regarding the accuracy of the proposed
Li-ion battery model is correct; thus there is an accuracy transfer from the model to
the EKF estimator.

100 NEDC Charging Current Profile 100 ECM SOC True value vs EKF estimate
I I I
80 === ECM battery SOC True Valu
&0 I EKF SOC estimate
80
401 I I l ] S
—_ »,
S oA 10 I = 60 i
B =
2 ° Y S
- 40 =
i 11 A AN R
40
60 20
-80
0
-100 o 500 1000 1500 2000 0 500 1000 1500 2000
Time (seconds) Time(seconds)
(a) (b)
Figure 5.

MATLAB simulation vesults: (a) NEDC driving cycle current profile test; (b) Li-ion battery SOC ECM model
versus EKF SOC estimator.
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MATLAB Simulation results: (a) Battery SOC ECM model vs. EKF SOC estimate (same initial conditions); (b)
ECM terminal voltage vs. EKF predicted terminal voltage; (c) Battery SOC residual; (d) Battery terminal voltage
residual.

Similarly, the MATLAB simulation results depicted in Figure 7a—e by
changing the driving style, switching from a European NEDC cycle drive current
profile test to an American Federative Transport Procedure FTP-75, shown in
Figure 7a, and the response of the EV car is reflected in the high accuracy of the
battery SOC shown in Figure 7b, an excellent prediction of the terminal voltage, as in
Figure 7c. Again, the driving style is changed by moving from the American FTP-

75 cycle drive current profile test to the latest European World Harmonized Light
Transport Procedure (WLTP) with a more aggressive behavior, very close to the
operating conditions of an environment realistic, shown in Figure 7d, and the
impact reflected in Figure 7e by high SOC accuracy and excellent terminal voltage
prediction is revealed in Figure 7e.

Summarizing this subsection, the EKF SOC estimator performs excellently in
high SOC accuracy and terminal voltage prediction and with excellent robustness
revealed by the MATLAB simulation results depicted in Figures 5-7. All these
results are obtained for different operating conditions, mainly some changes in the
initial battery SOC values and driving style by switching three driving cycles cur-
rent profile tests, NEDC, FTP-75, and WLTP. In any of these scenarios the EKF
SOC estimator performs excellently, with no significant impact from one driving
scenario to another.

11



Electric Vehicles — Design, Modelling and Simulation

ECM SOC True value vs EKF estimate

T FTP-75 Charging Current Profile 100 f : :
80 b1 = === ECM battery SOC True Valu
EKF SOC estimate
- S
-y
- \
< —_ .
:E’ 20 1 I é 60 hd =%
£ 0
3 0 o
2 40
7]
B | [ 1
0
40
i 20
-80
100 9
. p— e e 2w 500 1000 1500 2000
Time (seconds) Time(seconds)
[a:’ WLTP Charging Current Profile
e ECM Li-lon Battery Voltage 200 rging Cu !
- [ [ |
===== ECM Battery voltage 150 1 M [ M
41 EKF Battery voltage estimate
% g 100 2 ' I a | |
> 4.05 =
© 2 50 H
=]
g - g
s e 0
> S
g 3.95 L g -50
©
m
3.8 -100 '
3.85 -150
0 500 1000 1500 2000 0 500 1000 1500 2000 2500 3000 3500
Time(seconds) Time (seconds)
(c) (d)
o ECM SOC True value \III EKF Tlﬂmlhl ; s ECM Li-lon Battery tag
‘—-—-ECM battery SOC True Value
- ‘ ENF S0 ool 1 | | B
I 4.3 Y B B
80
70 \ 4.2
~ 60
8 @ 4.1
o 50 8
Q e
(2] 40 g 4
30 @, | |
20
as
10 —— == ECM Battery voltage
0 a7 EKF Battery voltage estimate
0 500 1000 1500 2000 2500 3000 3500 "o 500 1000 1500 2000 2500 3000 3500
Time(seconds) Time(seconds)
(e) (f)
Figure 7.

MATLAB simulation results — Robustness of EKF estimator to change the driving style and initial SOC value from
80 to 30%. (a) FTP-75 driving cycle current profile test; (b) ECM SOC vs. ECM EKF SOC estimate for FTP-75;
(¢) ECM terminal voltage vs. ECM EKF prediction terminal voltage; (d) WLTP driving cycle current profile test;
(e) ECM SOC vs. ECM EKF SOC estimate for WLTP; (f) ECM terminal voltage vs. ECM EKF prediction

terminal voltage.

3.2 Li-ion battery neural network learning techniques for nonlinear OCV
characteristic estimation, SOC and terminal voltage estimation

This subsection explores a new approach to designing and implementing data-
driven intelligent learning structures using neural networks (NNs). The intention is to
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use these smart structures for possible applications as state estimators. All these
investigations aim to find a viable alternative to traditional model-based state
estimators, such as the EKF used in the case study. This is why it is necessary to
evaluate the capability and accuracy of their performance in a state estimation to
see if they are suitable for mapping the non-linear characteristic OCV = £(SOC)
characteristic of the battery and for estimating the battery SOC and terminal
voltage. Therefore, three intelligent structures of nonlinear autoregressive neural net-
works with external input (NARX) are investigated. They are easily accessible from
MATLAB Simulink Deep Learning Toolbox. Since they are data-driven structures,
performance accuracy does not depend on battery model accuracy, modeling uncer-
tainties, and the unmodeled part. In addition, they are suitable for real-time online
applications and can be easily updated for all types of batteries and chemistries. NARX
is a learning regression shallow neural network (SNN) estimator that consists of a
single hidden layer with a certain number of hidden neurons, having a significant
impact on the performance of neural structure. The input-output measurement data
set is collected under the signals from the battery sensors using appropriate instru-
ments provided by a specialized data acquisition (DAQ) system. Then the data set is
processed for denoising, outliers removal, and data sharpness that significantly affect
the performance accuracy. Essentially, these intelligent regressive neural network
structures solve nonlinear time series problems using dynamic neural networks,
including feedback networks [27-30]. They can be applied in open-loop, closed-loop,
and open/closed-loop multistep prediction [27, 28]. Dynamic feedback networks can
switch from open-loop to closed-loop to make multistep predictions, i.e. continue to
predict when external feedback is missing using internal feedback [27, 30].

The design and implementation in MATLAB Simulink follow the steps inspired by
[27-30] and are summarized in this subsection as follows:

1.Load the input (Predictors)-output (Target) data in the format required by
the algorithm (e.g., sequences of cells, row or column vectors, matrices,
tables, etc.)

2.Partition the data into training data XTrain and TTrain (in the case study the
format is a sequence of cells), and data for prediction XPredict

3.Create a NARX network. Define the input delays, feedback delays, and size of
the hidden layers, using the MATLAB

net = narxnet (1:5,1:5,65)

i.e., 0.5 samples delay for input and output, and 65 hidden neurons.

Prepare the time series data using a MATLAB-specific function ‘preparets’
and the MATLAB code line (the interpretation of the arguments Xs, Xi, Ai is
given in step 6):

[Xs, Xi, Ai, Ts| = preparets (net, XTrain, {}, TTrain)

4.Train the NARX network, using the MATLAB-specific functions ‘net’ and
‘train’, writing the following code line (in open-loop)

13
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net = train (net, Xs, T, Xi, Ai)

5.Display the trained network diagram, using the MATLAB code line

view (net)

6.Calculate the network output Y, final input states Xf and final layer states Af of
the open-loop network from the network input Xs, initial input states Xi, and
initial layer states Ai.

[Y, Xf, Af] = net (Xs, Xi, Ai)

7.Calculate the network performance using the specific MATLAB function
‘perform’ and the MATLAB code line:

perf = perform (net, Ts, Y)

8.Setup the closed-loop form of the NN architecture using the following MATLAB
code line

[netc, Xic, Aic|] = closeloop (net, Xf, Af)
Remark 1. The final input states Xf and layer states Af of the open-loop network

net become the initial information states Xic and layer states Aic of the closed-loop
network netc.

9.Display the closed-loop network diagram, using following MATLAB
code line

[netc, Xic, Aic| = closeloop (net, Xf, Af)

10.Run the prediction for Ts-time steps ahead desired in closed-loop mode, using
MATLAB code line

Yc = netc (XPredict, Xic, Aic)

Ycmatrix = cell2mat (Yc)

11.Plot Yc to visualize the simulation results

Following these steps, the MATLAB simulation results are presented below,
followed by a performance analysis for all three NARX Shallow NN learning estimators.

3.2.1 The innovative NARX shallow neural network learning SOC estimator

The input-output data set is given by following sequence of cells, converted from a
row vector format to a sequence of cells using the MATLAB line of code:
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X = num?2cell (u), u is the battery input sequence of current profile as Predictor.
T = num2cell (y), y is the battery terminal voltage output sequence as target.
XP = num?2cell ([(u*]), u* is the Predicted input sequence proposed for test.

The MATLAB simulation results are depicted in Figure 8a—-d with following inter-
pretations:

a. Training phase progress;

b. NARX NN structure;

c. Battery SOC estimate versus the SOC ECM 2RC model (Target);
d. The best performance validation reached at epoch 242;

Performance analysis: The NN structure consists of a hidden layer with 60 hidden
neurons and a ‘sigmoid’ activation function, an input layer with two input sequences,
an output layer with one output sequence, and a linear ‘pureline’ activation function.
The best validation performance is obtained at epoch 242. The learning rate is
Ir = 0.01, and a mean square error (MSE) accuracy performance of
2.79 x 10 Misrevealed in the Figure 8a,c and d.

In conclusion, with an MSE accuracy performance of 2.79 x 10~ the NARX SOC
estimator undoubtedly outperforms the EKF SOC estimator.

3.2.2 The innovative NARX shallow neural network learning OCV = f(SOC) estimation

X = num?2cell (SOC), u is the input battery SOC as Predictor
T = num2cell (OCV), OCV is the battery OCV as Target
XP = num?2cell ([(SOC*]), SOC* is the SOC Predicted input sequence for test

purpose

The MATLAB simulation results are shown in Figure 9a—c, with the following
interpretation for each subfigure

a. Li-Ion battery OCV estimate versus the OCV ECM 2RC model;
b. The best validation performance reached at epoch 45;

c. Training phase progress;

Performance analysis: The structure of the NN is identical to the first NN NARX.
The best validation performance is achieved much faster than the first NARX estima-
tor, i.e., at epoch 45. The learning rate is Ir = 0.01, and a better mean square error
(MSE) accuracy performance than the first NARX SOC estimator of 1.14 x 10~
revealed in the Figure 9a—c.

In conclusion, with an MSE accuracy performance of 1.14 x 1072, the NARX OCV
estimator also outperforms the EKF OCV estimator.
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ECM 2RC OCV model; (b) best validation performance achieved in epoch 45; (c) training phase progress.

3.2.3 NN NARX Li-ion battery terminal voltage predictor

The input-output data set is given by following sequence of cells, converted from a
row vector format to a sequence of cells using the MATLAB line of code:
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X = num?2cell ([SOC; u]), u denotes the input current profile and SOC the input
battery (Predictors)

T = num?2cell (y), y signifies the output terminal voltage (Target)

XP = num?2cell ([SOC*; u]), is the Predicted input sequence proposed for the test

The MATLAB simulation results are revealed in Figure 10a-d, each capture of the
figure with following interpretations:

a. Li-Ion battery terminal voltage predicted versus ECM 2RC terminal voltage
model;
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Figure 10.
NN NARX terminal voltage predictor: (a) Li-ion battery terminal voltage predicted versus ECM 2RC terminal voltage
model; (b) training phase progress; (d) histogram ervor; (c) best validation performance achieved after 19 epochs.
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b. Training phase progress;
c. The best validation performance reached at 19 epochs;

d. Histogram error;

Performance analysis: The NN structure consists of one hidden layer with 60 hidden
neurons and a ‘sigmoid’ activation function, an input layer with two input sequences, an
output layer with one output sequence, and a ‘pureline’ linear activation function. The
best validation performance is achieved at epoch 19. The learning rate is Ir = 0.01, and a
mean square error (MSE) accuracy performance of 1.03 x 4 shown in Figure 8a—c.

In conclusion, for an MSE accuracy performance of 1.03 x 10~*, it can say that the
NARX SOC estimator outperforms the EKF SOC estimator.

Summarizing all the investigations made in subsection 3.2, the valuable information
provided by MATLAB simulation results depicted in Figures 8-10 demonstrate that all
three NN NARX estimators perform better than the traditional model-based EKF, and
are indeed a viable alternative to conventional estimators using an EKF algorithm.

4. Electrical drives: nonlinear DC model with singularities, feedback
linearization and closed-loop speed control strategies

Electric propulsion is a central system integrated into the architectural structure of
an EV. It consists of three main subsystems: an AC or DC electric motor, power
converters, and electronic controllers. A Li-ion battery powers the electric motor,
like the one proposed in the case study. It converts the electric energy received from
the battery into mechanical energy to propel the vehicle or to generate electricity
during regenerative braking periods for recharging the same battery [33].

The power converter is controlled by an electronic controller to supply a
regulated voltage and current to the electric motor. The main task of the controller is to
generate a suitable control law (PID, fuzzy, neuro, sliding mode, state feedback linear-
ization, etc.) such that the electric motor can produce the appropriate torque and speed
converted by sensors (transducers) into electric signals through an interface circuitry
[33]. These signals are then conditioned to the appropriate level and fed to be processed
by a processor. For a good insight into the electric propulsion system the reader can find
details in [33]. Choosing an electric drive system for a particular EV depends on the
driver’s expectations, the vehicle’s constraints, and the power source. About driver’s
expectations (driving style) were mentioned in the previous section, three driving
cycles, FTP-75, NEDC and WLTP, for analyzing robustness performance analysis of the
EKF SOC estimator. Vehicle constraints, including “volume and weight, depend on
vehicle type, weight, and payload” [33]. In the case study, the power source refers to the
selection of a Li-ion battery such that its terminal voltage, rated capacity, and rated
power are adapted to the electric motor of certain EVs. A traditional DC motor drive
typically needs a commutator and brushes to “feed current into the armature, making it
less reliable and unsuitable for maintenance-free operation and high speed” [33]. Also,
the “wound-excited DC motors have a low specific power density”; however, “because
of their mature technology and simple control, DC motor drives have been prominent
in electric propulsion systems” [33]. Five constructive configurations of DC motors are
manufactured: series excited, shunt excited, and compound excited, separately excited
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and permanent magnet (PM) excited motors, as mentioned in [33]. For “proof of
concept” and simulation purposes, this section is limited to a specific nonlinear DC
motor drive model, focusing on the main aspects, such as nonlinearities, feedback
linearization, challenges/issues when faced with the presence of singularities, the design
and implementation in MATLAB Simulink of suitable nonlinear control strategies to be
applied in realistic environments for a large range of EVs. If the results obtained will
satisfy the expectations, an extension of them to AC motor drives will be a big chal-
lenge. A nonlinear third-order separately excited DC motor drive model (i.e., three
internal states: armature current, field current and rotor speed) is adopted for the case
study.

4.1 Field controlled DC motor drive-nonlinear model
4.1.1 DC motor drive — physical model

Applying Kirchhoff’s voltage law (KVL) for both armature circuit and the field
circuit, the DC motor drive model is described in continuous time by the following
equations [35]:

For the field circuit: i is the field current, vy is the field voltage:

dt

For the armature circuit: i, is the armature current, v, means the armature voltage,
and er = cywir represents the back electromotive force (emf) induced in the armature
circuit:

di,

L_
* dt

= v, — Ryiy — cro0ir (20)

For shaft motion: T' = ¢yi,if is the torque due to the interaction of armature current
with the field circuit flux:

do ..
T2 = oy (21)
State-output equation:
Yy =w (22)

4.1.2 DC motor drive: State space representation

After some mathematical manipulations the DC motor drive is described in a
simple form of state space representation [32, 33]:

dxy
dt
dxz

dt

= —ax,1+u (23)

= —bxy; —cx1x3+ ¢ (24)
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dx
—p = txa, (25)
Y = X3 (26)
where
X1 =1f, X0 = g, X3 = @ (27)

and, the numerical values are set to the same values as in [35]:

R
aZ;L:mawab:§%:%4mM¢:£1:1%4=ﬁ?zﬁzﬁ% (28)

f a a a

9:%:2%7@mm:1ﬁ%q (29)

The DC motor drive model given by Eqgs. (23)-(26) is nonlinear since the

product x1x3 appears in the second equation, and the product x1x, appears in the third
equation.

4.1.3 DC motor drive: State feedback linearization

The DC motor drive model can be writing in a general vectorial field form:

6% =f(x)+g(x)u (30)
¥ =h(x) (31)

where the field vectors f(x), g(x) and h(x) have the vectorial form:

f1(x) —ax, 1
flx)=|fox) | = | =bxs —cxix3+q |,g(x)= |0 |[,h(x)=][0 0 1] (32)
5(%) Ox 12 0

Preliminaries: Feedback Linearization, Lie derivative definition, Diffeomorphism —
Definitions.

Definition 1. A nonlinear system described in a state space representation (30)
and (31), where the nonlinear functions f: Dg—R",g : Do—R" are sufficiently smooth
on a domain Dy C R" is said to be feedback linearizable (or input-state linearizable) if
there exists a diffeomorphism, T : Do—R" such that Dz = T'(Dg) contains the origine
and the change of variable z = T'(x) transforms the system given by Egs. (30) and (31)
into a linear system of the form

% = Az + By(x)[u — a(x)] (33)

that has the pair of the matrices (A, B) controllable and y(x) inversible (or
nonsingular) for all x € Dy,as is also mentioned in [34].
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Remark 2. If linearizing the state equation does mean that at a same time is also
linearized the output equation [34].

Remark 3. The state feedback control or partially feedback linearizable systems is
an excellent control tool that can solve both system stabilization and reference track-
ing control [34].

Definition 2. If the DC motor drive described by Egs. (30) and (31) can be put in
the form given by Eq. (33) then it can be linearized via the state feedback, choosing
for the input u the following control law [34]

= alx) + px) (34)

and

plx) =y(x)"! (35)

To stabilize the DC motor drive model, the new control law v introduced in
Eq. (34) is designed as

v=—Kx (36)

such that the matrix (A - BK) is Hurwitz, equivalent to say that the pair (A, B) is
controllable (stabilizable).
The original nonlinear stabilizing state feedback control in closed-loop is given by

u = a(x) — fx)Kx (37)

Remark 4. The DC motor drive state feedback linearized (FL) model is not unique
and depends on the choice of the state variables.

Definition 3. (Lie derivative operator). Assuming that the vector field functions
f(x), g(x) and h(x) are sufficiently smooth in a domain Dy C R”, then the mapping
functions f and g on Dy C R" and the first derivative of the output variable % can be
put in the following form [34-36]

dy dydx oh N
T de At ox (x) +g(x)u]=Leh(x) + Loh(x)u (38)
were the Lie derivative operators L¢h and Lyh defined as

Leh(x) axf ah &) (39)

are called the Lie derivatives of h to respect to f (or equivalent, along f), and of h to
respect to g (along g), respectively.

In fact, the notation Leh(x) = gf; (x)is an adapted concept of the derivative of h
along the trajectories of the system % = f(x). It is an appropriate formal procedure for

repeating the calculation of the derlvatlve with respect to the same vector field or a
new one [34], such as

o(Lsh)
ox

LgLeh(x) = g(x),LJ?h(x) = h(x),L]%h(x) = LeLgh(x) (40)

Or, in a general repetitive form given by

22



Investigations of Different Approaches for Controlling the Speed of an Electric Motor...
DOI: http://dx.doi.ovg/10.5772/intechopen.112383

Lih(x) = LeLf 'h(x) = ———=f(x) (41)
Remark 5. The repetitive notation (41) applied on DC motor drive output y, leads
to the following main result of using the full state feedback linearization (FSFL):
If Lyh(x) = 0, it means that

d
2 = Lh(x), (42)

and can be interpreted as independence of function ‘jl—yt with respect to the input u.
If LLsh(x)=0, then

h) dx
ot (8) S LB oo

Then, the final result is

y(z) = ngh(x) + Lgth(x)u = L%h(x) (44)

and it means that the second derivative of the outputy(?, is also independent of
input u.

Iteratively, by repeating the procedure, and

IngLJ]f’lh (x)= 0, fork =1,p — 1, and LgLJ’Z*lh(x) # 0, therefore in the first (p — 1)
derivatives of the output y the input u does not appear, it only occurs in the last
derivative y(/’) [34]

Y = LEh(x) + LeLy h(x)u (45)
The last equation (45) is showing without doubt that the model is input-output

linearizable, of p the relative degree, and is in the required form given in Egs. (30) and
(31). The control law u, can be written in the following form

LCh(x)
__f _qp
T L L ) L) +0] (46)

that leads to a following form for the input-output map [34]
y =0 (47)

as the result of a chain of p integrators applied to the output y.
For the normal canonical form, the new control law v from Eq. (46) is chosen as

v = —Kx (48)

where, the feedback gain K is calculated using a pole placement procedure, using
the following MATLAB code line:

K :place<A,B, [pl,pz, ...,pp]) (49)

23



Electric Vehicles — Design, Modelling and Simulation

where p;,p,, ..., p, represent the poles’ locations in the left-half plane of the
complex domain, such as the matrix (A — BK) is Hurwitz (the system in closed-loop
and canonical form is stable).

If the relative degree p = n = dim(x € R*), the state-space dimension, then the sys-
tem is full-state linearizable (FSL) and stabilizable. Also, the transformation T : Dy+—R"
with z = T(x) that convert the system given by Egs. (30)-(31) into the form defined in
Eq. (33) is a diffeomorphism. The new variables z are defined as follows [34]:

[ h(x)

z="T(x) = _ (50)

L"_l‘h (x)

that converts the system into normal minimal form defined by [34]

% _ A+ Byl — alx) (51)

dr
y=Cxz (52)
The following choice of the input u [21, 22]

u=alkx)+yx) " (53)
brings the system in a canonical form [34-36]

d_z =Axz+Bw,y=Cz (54)
dt

Therefore, the state transformation defined in Eq. (50) is a full-state linearization,
and in the same time also, is an input-output linearization [34].

In the case when the relative degree p <7 then the state feedback linearization
problem is brining some complications (issues) such singularities and instability. In this
case the transformation 2 = T'(x) converts the original system into following form [34]

1 (x)
]7 ¢7’L—p (x) @(X)
g=Tx)=| ....| =777 = . (55)
: o (o)
Lfl’l (x)
] L7 h(x) |
where the functions ¢;(x), ¢,(x), ... ... s ¢y, (x)are selected such that the transfor-

mation T'(x) still to remains a diffeomorphism. Additionally, in [34] is stated that such
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of functions ¢;(x),i = 1,7 — p, do exist at least locally, satisfying the following condi-
tions:

%D(Cx)g(x) —0,Yi=1,m—p (56)

The transformation given by Eq. (55) converts the system into the following
canonical form

d
7 =fowd) (57)
dé
2 — A+ Bl alx) 58)
y=0C< (59)
u=alx)+y@x) v (60)
and,
Add(x)  0D(x) —Lih(x)
Foltr) = = S g rle) = ybghle) o) = (6

The following main valuable results can be extracted from this general modeling
approach:

1.Internal dynamics of the system, described by the Eq. (57)
dn
U foln®)

It is noticeable that this dynamic is unobservable for the system output y,
therefore it does not directly affect the other states & or the system output y since it
does not appear in Eq. (58) or Eq. (59).

For the internal dynamics of the system is required to solve the stabilization
problem around the origin of its zero dynamics

2.Zero dynamics of the internal dynamics of the system

It is obtained for ¢ = 0, and first equation of the system dynamics in normal form
becomes

fon,0)=0

3.Input-output linearization of the system

The system defined by Egs. (58) and (59) is a linear system for which two critical
closed-loop problems can be solved:

a. Stabilization problem
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b. Tracking problem to an input reference, constant or time varying, with
zero steady-state error.

Interestingly, by solving the tracking problem for the linear part of the system
dynamics described by Egs. (58) and (59), the general tracking problem for the nonlinear
system is also solved, but only if the internal dynamics of the same system is stable at the
origin of zero dynamics of the internal dynamics of the system given by f,(#, 0) = 0.

Repeating the Lie derivative operator in the Eq. (45) three times on DC motor
drive output y, the following results are obtained

dy dx; d’y  dx dx;
E — % — 0X1X2, ﬁ =0— dt Xy + 9.%'1 dt M(.X'l,Xz, ) —|—N(.’)C1,X2,X3) (62)
where

M(x1,u) = 0(—ax1 + u)x,, depends on u, instead.

N(x1,%2,%3) = Ox1(—bx3 + q — cx1x3) it is not dependent on u.

therefore,

ifx, # 0, then % “# # 0, and since u appears in the second derivative the relative
degree of the DC motor drive model is p = 2. In conclusion, the DC motor drive model
has p = 2 on the set D = {x €R’|x, # 0}, so it is worth to notice a singularity of the
DC motor drive model when the state x, = 0.

A transformation of state variables z = T'(x) such is defined in Eq. (55) has the form

¢ (x)
z = T(x) = h(x) (63)
th(x)

By calculation,

—ax1
oh
Lrh(x) dxf = [001] | —=bx; — cx1x3 +q | = Ox1x2

9x1x 2

1
% (x) = [g% % %’ﬂ 0| = g%l = 0, according to the constraint given in Eq. (56)
0
to exist the function ¢, (x) and the transformation g = T'(x) to be diffeomorphism on
the set D = {x €R3]x2 #0}.
The equatlon = 0 shows an independence of function ¢;(x) on x;. A simpler

solution for this equatlon is only ¢ (x) = x2, V¢p1(x) = x3, but the second solution is
not good since the transformation z = T(x) is not more a diffeomorphism.

One of the possible solutions can be chosen ¢;(x) = x,, even if exist other choices,
but not simple than this last selection [34].

X2 h
So, we can write thatz = T'(x) = | x3 | = | & | and after some math manipu-
Ox1x, &

lations the dynamics in the new variables can be written as
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a. The internal dynamics is given by:

d
= b g S = fo(n £, = () (64)

b. The normal form of the DC motor drive dynamics is given by:

dé
praaly! (65)
d
;2_9x2<u—(a+b)x1 +q—— x;—?) (66)
y==& (67)

For a simple choice of the input u to cancel all the nonlinearities in Eq. (66) such as
x
u=@+b)x1—q—+c—+—v (68)

For this selection of the input u, the normal form of the DC motor drive dynamics
is linear and described by two linear first order differential equations and a linear state
output equation

de‘ 52

d
1= =&, =vy=4 (69)

Since the DC motor drive model is linearized, both stabilization and tracking
problems will be easily solved, but only if the stability of internal dynamics must
be ensured, required to ensure the existence of the function ¢,(x) = x3, and the
transformation z = T'(x) to be diffeomorphism [34]. The analysis of the internal
stabilization of the DC motor drive model dynamics is performed by checking if
the equation

d
= b+ — e = f 9 70)

is asymptotic stable around the origin &£ = (&;,&;) = (0, 0), known also as zero
dynamics, given by the following equation.
fo(n,0) = 0, so equivalent for asking that the equation given below is stable

around an equilibrium point (1, &) = (7, =%,£=0).

dn

Lemma 1. “The origin of the closed loop system is asymptotic stable if the origin of
zero dynamics is asymptotic stable”, as is stated in [34].

According to this Lemma, the DC motor drive connected in closed-loop is asymp-
totic stable only if the origin of its zero dynamics model is asymptotic stable. In other
words, the asymptotic stability of zero dynamics guarantees the asymptotic stability
of closed loop linearized system.
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4.2 Zero dynamics interpretation

As long as b > 0, the origin of zero dynamics (71) of the DC motor drive model is
exponentially asymptotic stable since the solution of the homogeneous equation (71)
is given by:

no(t) = ¢~"n(0) (72)

since 7y (¢) — 0, whent — oo, then the origin of zero dynamics is exponentially
asymptotic stable, and according to Lemma 1, the origin of the closed-loop system is
also asymptotic stable.

Conclusion: If zero dynamics of the system is not asymptotically stable then the
linearization of the nonlinear system is not possible to be realized.

In closed loop, the input u (DC motor armature voltage) is defined in the original
state variables x1,x,, x3 as

1
u=(a+bpri—q_+c= =0, A= —(ké + ko) (73)

and replacing &, &, by &; = x3, &, = 6x1x2, u becomes:

u=(a+bx— q + %5 L s 4 delres) (74)
X? sz

The Simulink model of the open loop and closed loop of the DC motor drive is
shown in Figure 11.

The MATLAB Simulink simulations results for the nonlinear DC motor drive
(DCMD) connected in open loop are shown in Figure 12a and b for field current
ir = X1, armature current i, = x,, and DCMD speed w=x3 [rad/s] for a step input
voltage test, u = 12 [V].

o (]

P+
»- x1

1 >
e =
L »o  InPUT p—a X3
e ] gl . !
T : e
s (] u
Y

DCM Nonlinear Model

4
PDs)

Figure 11.
DCM drive — Simulink nonlinear model, closed-loop control loop and PID control law for reference tracking.
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In Figure 12a are presented the DCMD field and armature currents and in
Figure 12b is depictured the DCM speed in rad/s. It is noticeable that the current field
remains constant when the DCMD is running and the armature current increases from
initial condition value at approximative 1.5 A and then during the steady-state
decreases to zero when RPM speed of DCMD is stabilized in steady state to approxi-
mate 314 rad/s.

In closed loop for DCMD state feedback linearized whose dynamics is described in
Eq. (69) and the new input v is given by

v =—K&=—ki& — k&, (75)

and the values of the coefficients k1, k;are obtained through a pole placement
technique that stabilizes the linearized system (69)

0 1

0
,B. = yk1 =10,k =7 76
0 N[ rok=7 00

k
|:k1:| :plﬂce(Ac,Bc, [_2; _5])’AC = |:
2

The MATLAB simulation results of the DCMD in closed loop canonical form (69)
in the new state variables (7, &, &,) are shown for the evolution of each variable
and for actuator effort (v to stabilize these state variables are shown in the
Figure 13a and b.

Figure 13a reveals the evolution of the states during the transient and in steady
state, where zetal and zeta2 are stabilized to zero, and eta is stabilized to the equilib-
rium point (close to 1.49, that isy,, = £, thus it validates the zero dynamics result). In
Figure 13b is presented the actuator effort to stabilize all three variables around the
equilibrium point of zero dynamics (17, =% =1.49,& = 0,&, = 0.

The MATLAB simulation results for closed loop partial state feedback linearization
and state feedback input u given by Eq. (74) are shown in Figure 14a—c.

In Figure 14a is depicted the DCMD speed stabilized in steady state at equilibrium
point of the closed system, similar as for zero dynamics. Figure 14b reveals the field
and armature currents stabilized at same equilibrium point as for zero dynamics. In
Figure 14c is visualized the effort of the actuator to keep stabilized the nonlinear

15 Field if and armature ia currents 350 DCMD speed [rad/s]
IfIA]
la[A] | e
A 300 //
250 /
1 =
. /
z 5 200 /
5 3
z o
= o 150
=
05 Q
100 /
50
0 10 20 30 40 50 80 0 10 20 30 40 50 80
time [s] time [s]
(a) (b)

Figure 12.
MATLAB Simulink simulations vesults: (a) field and armature currents; (b) DCMD speed [rad/s].
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Figure 13.

MATLAB closed-loop simulations for DCMD model in canonical form: (a) the evolution of the new states (eta,
zeta1, zetaz); (b) the actuator effort for stabilization.
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Figure 14.

MATLAB simulation results in closed-loop by feedback linearization; (a) the DCMD speed stabilization; (b) field
and armature currents stabilization at equilibrium point; (c) the actuator effort to stabilize the DCMD in steady-
state at equilibrium point.
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system at an equilibrium point, same as for zero dynamics, therefore the result of
Lemma 1 is now validated.

Tracking problem can be solved similar as stabilization but we need to substract
from the output the reference input », such that the error:

e(t) =y(t) —r(t) — 0, when t — oo (77)

In Figure 11 it can be seen both options for reference tracking of the DCM drive
speed r = 100 rad/s. First option is an integration of the DCM nonlinear model in a
unit output feedback closed loop that compares the output measured value to the
desired track reference value r = 100 rad/s. The MATLAB Simulink simulations results
are depictured in Figure 15a and c, as follows, field and armature currents in
Figure 15a, the DCM Driver speed in rad/s revealed in Figure 15b, and the actuator
effort is visualized in Figure 15c.

The second control law is a PID traditional law for which the MATLAB Simulink
simulation results are presented in Figure 16a and d, with same significance as in

DCM Driver Closed loop control using output feadback

DCM Fleld and Armature currents In closed-loop -Treking problem

16
— —ﬂ
E 1. — |3 80)
= @
= T
£ £
c
£ ia
go.a &
5 ®
] £
£ 06 a
g 24
: g
504
z
8
i

02 0

20
) 10 2 w 40 50 60 o 10 20 30 40 50 80
time (saconds) time (seconds)
(a) (b)

DCM Driver closed-loop control speed - Tracking problem

100

@
S

-2}
S

.
<

DCM Driver speed (rad/s)

|

0 10 20 30 40 50 60
time (seconds)

(c)
Figure 15.

DCM driver closed-loop control speed — MATLAB Simulink simulation vesults: (a) field and armature currents;
(b) DCM driver tracking speed in rad/s; (c) actuator control effort.
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Figures 15a and c, and the tuning settings values of PID controller parameters KP, K;
and Kp are shown in Figure 16d. Comparing the results obtained by using both
closed-loop controls it is worth to notice that for first option the DCM speed is an
aperiodic fast response (sharply) but with a big actuator effort, instead the PID
controller response is slightly slower and smooth with a smaller actuator effort.

The feedback linearization can be performed also by taking advantage of deep
training learning techniques to build intelligent neuro controllers. In MATLAB
Simulink the Deep Learning Toolbox includes three interesting block sets to develop
intelligent neuro controllers, namely NARMA-L2, Model Predictive and Reference
Model. The end of this section is an introduction to nonlinear autoregressive moving
average (ARMA), similar to SOC and battery terminal voltage, for which an intelli-
gent NARX neural network estimator was developed in the Section 3. The NARMA-L2
smart controller is a brilliant tool for feedback linearization of nonlinear systems, such
as the DCM drive described in this section, designed for use in possible EV applica-
tions. This intelligent neuro controller is data-driven, so does not require an accurate

Field and armature currents DCM Driver PID control speed
1.5 120 \
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u = Figld current If 3 /
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10 § Main  [ntiokzation Sstwabion DataTypes State Attributes
| Controller parameters L
Source: intemal
8 Proportional (P): 0.1
\ Integral (I): 0011 § [ Use I*Ts (optimal for eodegen)
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Figure 16.

MATLAB Simulink simulation results for DCM driver tracking problem using a PID control law: (a) field and
armature currents; (b) DCM driver speed (rad/s); (c) PID actuator control law effort; (d) PID parameters
tuning values settings.
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MATLAB Simulink simulation vesults duving learning step of DCM drive nonlinear model (feedback
linearization): (a) process training results; (b) the best validation performance reached at epoch 5; (c)training
phase process; (d) regression performance; (e) validation phase process; (f) testing phase process.
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Figure 18.
MATLAB Simulink model of the DCM drive speed control in closed-loop using a NARMA-L2 controller.

model to perform well, and therefore the impact of some modeling imperfections
will be significantly attenuated. To design such a controller, two steps must be
followed. In the first step, the Deep learning Simulink block is trained separately to
learn the nonlinear model, which is to be feedback linearized. In the second step, the
trained neural network will be connected to the NARMA-L2 neuro controller to
perform a reference tracking problem, similar to nonlinear feedback linearization.
So, all the nonlinearities will be canceled in the first step, and in the second step, the
controller solve a reference tracking problem. The main reason for finishing this
research is to open some exciting research directions in developing intelligent neuro
controllers that deal with all types of nonlinearities. Only the first step is solved in
this research, i.e., the Simulink neuro controller block learns the nonlinear model of
the DCM drive to be connected to the neuro controller for performing the reference
tracking problem. The MATLAB Simulink simulation results are presented in
Figure 17a-f, with the following meaning, training process results in Figure 17a, the
best validation performance during the training process in Figure 17b, training data
phase in Figure 17c, regression performance in all the stages (training, validation and
test), is shown the in Figure 17d, validation data phase in Figure 17e, and test data
phase in Figure 17f.

The Simulink model block of NARMA-L2 controller is illustrated in Figure 18.

5. Conclusion

The following results are worth highlighting among the authors’ main contribu-
tions to this book chapter.

e 2RC ECM Li-ion battery model selection, design and implementation, a rigorous
performance analysis.
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* EKF SOC estimation and terminal voltage prediction design, implementation,
and performance analysis in terms of SOC accuracy and robustness.

* An intelligent advanced NARX neural network deep learning SOC estimator,
terminal voltage predictor, and curve fitting of nonlinear Li-ion battery
characteristics OCV = f(SOCQ).

* A DCM drive nonlinear model selection with a detailed description of nonlinear
linearization techniques such as full and partial state feedback, input-output
linearization and advanced intelligent NARMA-L2 neuro-controller. The main
issues/challenges problems were revealed, focussing on possible singularities,
internal dynamics, zero dynamics, closed loop stabilization and reference
tracking problems to be solved.

* Closed-loop DCM drive speed control techniques, such as full state feedback
linearization, the closed-loop output unit negative feedback, PID controller, and
performance comparison.

All the algorithms’ implementation and extensive simulations were conducted on
MATLAB Simulink R2023b software platform, a valuable and the strongest imple-
mentation tool from the software engineering market, in a beautiful and user-friendly
environment. The MATLAB Simulink simulation results proved that the advanced
intelligent estimators outperform the traditional ones. For future work, the research
continues in the direction of design and implementation of new advanced intelligent
learning techniques and neuro controllers such as NARMA-L2, Model Predictive and
Model Reference neuro controllers. The energy management performance of the Li-
ion battery connection to the DCM drives will be further investigated.
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