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Chapter

Gamma Irradiation as Tool for
Mutation Breeding in Wheat
Eben von Well, Mardé Booyse and Annabel Fossey

Abstract

Mutation breeding is used to modify a specific character of a plant, while all other
characteristics remain the same. Adaptation obtained through mutation breeding to
biotic (disease and insect pest resistance) and abiotic (aluminum toxicity, drought,
high temperature, salt tolerance) stresses leads to better harvest growth, yield and
quality. The main aim is to promote the efficiency of energy conversion into growth as
a tool for the prediction of the optimal gamma irradiation dosage for mutation breed-
ing in wheat. Cytogenetic analysis done on Triticum turgidum ssp. durum cv. Orania
will be presented in the form of nucleolar activity to determine incomplete mitosis as
well as in the form of bridges, fragments, micronuclei and ring chromosomes that will
be compared with the efficiency of energy conversion into growth. Studies done on
two Triticum aestivum cultivars, namely Ratel and Kwartel, included observation of
double spikes, reduction in fertility and determination of the window for the optimal
dosage for mutation breeding. Cultivars/breeding lines that are more resistant to
gamma irradiation have a wider window for the optimal dosage range for mutation
breeding. The ideal gamma irradiation dosage range for the three cultivars, namely,
Orania, Ratel and Kwartel were determined.

Keywords: chromosomal abnormalities, double spike, efficiency of energy
conversion into growth. fertility, gamma irradiation, ideal dosage range for mutation
breeding, incomplete mitosis, mitotic index, mutation breeding, nucleolar activity,
sterility

1. Introduction

Mutation breeding is used to modify a specific character of a plant, while all other
characteristics remain the same. Adaptation to biotic (disease and insect pest resis-
tance) and abiotic (aluminum toxicity, drought, high temperature, salt tolerance)
stresses leads to better growth, yield and quality of the harvest. Better resistance has
been obtained for rust, powdery mildew and Fusarium head blight resistance [1–7].
Higher yield had been obtained due to increased salt, drought and aluminum tolerance
[8–12]. Higher yield combined with better spaghetti quality in Triticum turgidum ssp.
durum L. [13, 14] and better bread baking quality including amino acid composition
changes in Triticum aestivum L. [15–21] has also been obtained. Dwarf and semi-dwarf
mutations, induced by irradiation, reduced fall over of wheat [22–24]. Enhancement
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of androgenesis and plant regeneration has also been obtained by making use of
gamma irradiation [25].

Gamma irradiation is widely used as a modification agent for improving genetic
diversity in agriculture for breeding purposes due to its high penetration ability.
Gamma irradiation of kernels is regularly performed as a method to induce mutations
[26, 27]. Its exploitation in agriculture is limited due to uncertainty in the dosage of
irradiation, which varies for different crops and applications [28, 29]. However,
mutation induction treatment is convenient because large quantities of kernels can be
irradiated in one session, and irradiated kernels can easily be stored and shipped [30].

Research has shown that high gamma irradiation dosages given to kernels slow
down the physiology of the seedlings resulting in lower growth rate. Modest stress can
be absorbed by the plants without the flexibility capability being restricted [31]. It is
still unclear what causes the slower growth rate [32]. Various studies have been
undertaken to document the effects of gamma irradiation on the development and
growth of seedlings. Large differences in shoot and root lengths among Basmati rice
cultivars were observed after gamma irradiation of the seed [33]. Root growth was
also found to be more sensitive than shoot growth in gamma irradiation of onion seed
[34] and wheat seed [35].

Interphase chromosome volume and DNA content per chromosome influence the
sensitivity to gamma irradiation. Different diploid species have demonstrated differ-
ent sensitivities to gamma irradiation [36]. Interphase chromosome volume had a
positive association with the ranking of resistance to gamma irradiation in Triticum
monococcum L. and various Aegilops species [37, 38]. However, a negative correlation
was found to exist between DNA content per chromosome and the LD50 values for ten
species of plants by Baetcke et al. [39]. In contrast, Degani and Pickholtz [40] could
not find a correlation between nuclear volume and irradiation sensitivity. Evaluations
of low gamma irradiation dosages on the development of seedlings are well-studied.
Hormesis is a term used to describe the positive response or stimulus of biological
systems by low doses of an agent that is poisonous when the dosages increase.
Hormesis can also be defined as “any physiological effect that occurs at low doses
which cannot be anticipated by extrapolating from toxic effects noted at high doses”
[41]. Adaptive protection that follows low-dosage irradiation causes DNA damage
prevention, repair and immune stimulation in animals [42]. An increase in shoot
growth in Triticum turgidum ssp. durum L. was observed at 50 Gy gamma irradiation
by VonWell et al. [43]. This is supported by an increase in mitotic index in root apical
meristem at 50 Gy gamma irradiation [43]. Comparable results were observed in
hexaploid wheat with low gamma irradiation dosages increasing and high dosages
leading to retardation in plant growth and development [44, 45]. Inter-cultivar dif-
ferences to gamma irradiation were observed for the growth parameters.

Polyploid wheat species are, as a norm, more resistant to gamma irradiation in
comparison to diploid wheat. The effect of gamma irradiation is dependent on and
described according to what you want to irradiate. A gamma irradiation dosage that
stimulates growth in a tetraploid wheat, while decreasing growth in a diploid wheat,
can be described as low with regards to the tetraploid and medium to high in the
diploid [46]. Genetic redundancy is the accumulation of genomes and together with
different combinations of genomes that differ in susceptibility/resistance to gamma
irradiation make the polyploid species more resistant. Differences in gamma irradia-
tion resistance between diploid and polyploid species of the same genus as well as
differences among these species and cultivars of the same species are well documented
[47–53].
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There are two methods used to predict the ideal gamma irradiation dosage for
mutation breeding: (1) 50% growth reduction of seedling height (GR50) and (2) Mmax.
Both are used to obtain the ideal dosage when dormant kernels with a moisture
content of 14% are given gamma irradiation. GR50 is generally used because it is easy
to be determined. In wheat (grown in sowing trays), shoot height is measured when
seedlings are 10 to 14 days old with a shoot height of 11–20 cm. Measurements are
taken from soil level to the end of the primary leaf. Studies over the years have shown
that GR50 predicts a value that is higher than ideal. In Triticum turgidum ssp. durum L.
the predicted ideal gamma irradiation values by using GR50 is 350 Gy – 500 Gy, but
better results with mutation breeding were obtained by using gamma irradiation
dosages of 150 Gy – 300 Gy [54]. Secondly, determination of Mmax is a different
viewpoint for the prediction of the ideal dosage for mutation breeding by using the
following equation [55]:

Mmax ¼ kmDmax (1)

where the maximummutation rate (Mmax) is the product of mutation rate per unit
dose (km) and the maximum dosage applicable (Dmax).

M1 trades that are measured for the determination of Mmax are germination rate,
seedling growth, root growth, survival rate, number of spikes and seed fertility.
Higher mutagen dosages given to an object result in more severe damage. These
injuries become fatal and place a threshold to the increase in dosage that leads to the
prediction of the value of Dmax [55].

We created the “efficiency of energy conversion into growth” as a predictor of the
ideal dosage for mutation breeding to replace seedling height (GR50) and the Mmax

[35]. It makes use of a reduction in growth as well as the amount of energy (reserved
food in the caryopsis) used to obtain that growth. Respiration rate measures the effect
of an external factor on the efficiency of energy usage for growth. It is calculated by
making use of the following formula [56]:

Respiration rate ¼ initial kernel dry weight– actual dry weights of the shootþ roots
�

þ caryopsis during a specific period of growthÞ

(2)

Respiration rate is dependent on metabolic activity that decreases with an increase
in gamma irradiation dosage and can, therefore, not be used to determine the ideal
dosage for mutation breeding [35]. The efficiency of energy conversion into growth
can be calculated using the following formula:

¼
combined shoot and root dry weight

� �

� original embryo dry weight
� �

original caryopsis dry weight
� �

� actual dry weight of caryopsis at a particular point of time
� �

(3)

By dividing the actual growth rate by the energy used to obtain the specific growth
rate, the decreased metabolic activity due to increased gamma irradiation dosages
does not influence the prediction of the efficiency of energy conversion into growth.
The (GR50) makes only use of shoot length growth, while the efficiency of energy
conversion into growth makes use of shoot length and width growth as well as root
growth, making the efficiency of energy conversion into growth more sensitive to
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gamma irradiation [35]. The growth period for the determination of the efficiency of
energy conversion into growth is taken from 60 hours (when active growth of roots
and shoots and therefore energetic metabolic activity have commenced) to 132 hours
(recovery of the lower gamma irradiation dosages have taken place and deterioration
of the higher dosages) of growth.

A threshold value determines the maximum damage that meristematic cells can
handle for complete repair of the cells. Above the threshold value incomplete repair
takes place and the damaged cells may stop dividing and may even be eliminated. The
efficiency of energy conversion into growth depends on the effectiveness of the
recovery process. Full repair of meristematic cells leads to an initial decrease in the
efficiency of energy conversion into growth, followed by a recovery of the efficiency
of energy conversion into growth. As the percentage of meristematic cells that are
repaired and actively divide during mitosis of the cell division cycle decreases, so does
the efficiency of energy conversion into growth decreases. To measure the damaging
effect of the gamma irradiation, the effect on firstly: nucleolar activity, chromosomal
abnormalities (bridges, fragments, ring chromosomes, and micronuclei), mitotic
activity and incomplete mitosis as studied in tetraploid Triticum turgidum ssp. durum
L. cv. Orania will be discussed. Secondly, the effect of gamma irradiation on double
spikes, fertility and mutations concerning resistance to stem rust in two Triticum
aestivum L. cultivars (Ratel and Kwartel) will be discussed. The relationship between
the efficiency of energy conversion into growth and the above-mentioned character-
istics will be discussed as well as the determination of the ideal dosage range for
mutation breeding.

2. Nucleolar activity in Triticum turgidum ssp. durum

Nucleolar activity during interphase can be used as a measurement of metabolic
activity [57–61]. Nucleolar organizing regions (NORs) are responsible for the synthesis
and processing of ribosomal RNA (rRNA) in the nucleolus. Nucleoli are prevalent in
interphase cells, from telophase (Figure 1a, b) to late prophase (Figure 1c, d), during
which time active transcription of ribosomal genes (rDNA) occurs [62–64]. During the
S phase, the DNA goes through a process of unfolding and DNA replication takes place.
This puts a temporary halt on rDNA transcription. After DNA replication, rDNA tran-
scription recommences in S phase. Due to the unfolding of the DNA, rDNA loci that
have been inactive and completely folded during the G1 phase can now become active,
as observed in the activation of the 5D NORs by Von Well and Fossey [57] in Triticum
aestivum L. after DNA replication. Most of the rDNA transcription takes place during S
and G2 phases. During early prophase the rDNA transcription decreases and terminates
during late prophase. At this stage, the nucleoli are not discernible because of the
disassociation of the nucleolar subcomplexes. During late telophase, the nucleolar
subcomplexes reassemble and rRNA transcription resumes [62–67].

NOR activity differs between the A, B and D genomes as well as between chromo-
somes of the same genome in the wheat polyploid complex. The allopolyploidization
process was accompanied by asymmetric epigenetic modification and elimination of
certain rDNA sequences between different donor genomes to produce stable allo-
polyploid wheat with increased differentiation and diversity [68, 69]. These changes
lead to the deletion of part of the 1A and 5A NORs so that the 1A NOR is inactive in the
polyploid species and the 5A NOR is not functional in the polyploid species. In the
tetraploid T. turgidum ssp. durum L. (AABB) the NOR of 1B is dominant over 6B,
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while the 1A NOR remains dormant due to methylation of cytosine of the NORs. A
maximum of four nucleoli are therefore present in T. turgidum ssp. durum L, [70, 71].
The genes that are responsible for the inactivation are located on the short arm of
chromosome 1A, the long arm of chromosome 6B and at least 13 other nonnucleolar
chromosomes. The methylation process and the function of the genes that are part of

Figure 1.
Nucleoli in the nucleus and in micronuclei in Triticum turgidum ssp. durum cv. Orania. Nucleoli in micronuclei
during telophase (a, b). Nucleolus in micronucleus during early prophase (c, d). Large fused and medium sized
nucleoli in nucleus and one medium and one small-sized (1A) nucleoli in separate micronuclei (e). Two large
nucleoli in the nucleus, as well as a medium size nucleolus in a micronucleus and one small nucleolus (1A) in a
micronucleus (f). Bar = 10 μm.
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it is still unclear [71]. Intergenic ribosomal spacer variability in length and repetitions
can also play a role in activity of different NOR sites [72, 73].

The effect of gamma irradiation on nucleolar activity was studied in Triticum
turgidum ssp. durum L. cv. Orania. NOR’s are fully functional in micronuclei and the
NOR on chromosome 1A is active in micronuclei (Figure 1e, f). This study showed
that all the NOR sites on chromosomes 1B, 6B and 1A are active in micronuclei. This
also showed that the number of nucleoli formed by the 1B and 6B NORs in the nucleus
could be used to observe incomplete mitosis.

Nucleolar activity at higher dosages is associated with a drop in the number of
nucleoli than observed in control, indicating a decline in rDNA transcription in these
cells (Figure 2). The decrease in metabolism/growth and cellular activity is also
reflected in retarded onset of mitosis in irradiated material [74, 75].

The appearance of the Chromosome 1A nucleoli is only a qualitative observation
since no markers for the 1A NOR site were used. We can only conclude that it is active
since we observed more than eight and a maximum of 11 nucleoli per cell. The NOR
on chromosome 1A is active in the micronuclei since it does not have to compete with
the longer intergenic ribosomal spacers that occur in more repetitions on chromo-
somes 1B and 6B [73]. The major NORs on chromosomes 1B and 6B have adjacent
regions distal to them that may play a crucial role in their autoregulation as well as
silencing of minor NORs [76].

Micronuclei with an active nucleolus indicate that the proteins that bind to the
DNA to keep it unfolded after DNA replication are present in the NOR sites as well as
the proteins that make up the rDNA transcription complex. Eight percent of
micronuclei contained nucleoli over the whole spectrum of dosages, indicating that
chromosomal breakages occurred at the rate for chromatin regions containing NOR
sites as well as for regions without NOR sites.

The activation process of dormant 1A NORs in micronuclei can be explained by:
(1) 1A NORs are activated in the absence of suppressor genes that are responsible for
methylation of the RDNA as well as in the absence of NORs with a competitive
advantage [71, 73, 77]. Activation of the dormant 1A NORs takes place during the S
phase after DNA replication in the micronuclei. The findings of Klein and Grummt

Figure 2.
Mean number of nucleoli in nuclei and micronuclei combined in 500 interphase cells in Triticum turgidum ssp.
durum cv. Orania.
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[66] that most of the rDNA transcription takes place during S and G2 phases of the cell
cycle supports the activation of 1A NORs during the S phase. The newly synthesized
DNA remains unmethylated due to the absence of suppressor genes and remains
unfolded by the binding of regulatory proteins to promoters and A Repeats in
intergenic regions. This forms the platform for the binding of transcription factors
and polymerase I so that rDNA transcription can be initiated [78].

3. Mitotic index and incomplete mitosis in Triticum turgidum ssp.
durum L.

The mitotic index (MI) measures mitotic activity and is positively or negatively
affected by gamma irradiation. The effect of gamma irradiation on MI and incomplete
mitosis was studied in Triticum turgidum ssp. durum L. cv. Orania. The onset of
mitosis was retarded in all the gamma irradiation dosages (50 Gy, 150 Gy, 250 Gy and
350 Gy) in comparison to the control as indicated by the dosage by time interaction on
the total number of nucleoli and the mitotic index (Table 1; Figure 3). This may be
due to checkpoints in the G2 phase for the repairing of damaged DNA before the cells
enter mitosis, as observed in studies of the effect of irradiation treatments on cancer
cells [79–81]. There are two G2 checkpoints for the repair of damaged DNA. The first
checkpoint is for the repairing of cells that are in the G2 phase during the irradiation
treatment and is temporary and dosage independent. The second checkpoint is for the
repairing of cells that are in G1 and S phases during irradiation treatment and is dosage
dependent. The accumulation of cells in G2 takes place later than the accumulation
due to the first checkpoint. Accumulation due to both checkpoints was observed in the
present study. This study is the first to report on the second checkpoint in plant
material.

The onset of mitosis was differently affected by the DNA damage that needed to be
repaired because of the gamma irradiation spectrum. Fifty Gy gamma irradiation
treatment was less affected by the retardation effect of the first G2 blockage, due to
fewer cells needing to be repaired (Figure 3). This is supported by (1) a higher MI and
(2) higher nucleolar activity at 50 Gy as well as (3) a larger number of micronuclei
containing nucleoli and a larger number of micronuclei per cell containing nucleoli in
the higher dosages. The first G2 checkpoint led to a later peak in prophase cells at
almost the same time in 150 Gy and the higher irradiation dosages compared to
the control and 50 Gy (Figure 4). Another study in wheat also found a decrease in
NOR activity associated with a decrease in MI [82]. The dosage-dependent second G2

block resulted in a second increase and peak in prophase at different times for the
different irradiation dosages as well as the increase in the number of nucleoli at
35 hours.

Incomplete mitotic division (where the DNA content of the nucleus is twice as much
as normal after mitosis) occurs in all the gamma irradiation dosages. There is an increase
with an increase in irradiation dosage [83]. This is supported by the occurrence of up to
six nucleoli per nucleus and up to eleven nucleoli per cell (Figures 4 and 5). The
number of nucleoli above four (1B NORs +6B NORs = 4 nucleoli) in the nucleus is
unlikely to be activated by the NOR sites on 1A, as previously explained. Incomplete
mitosis is also supported by the highly significant reduction in cells in telophase when
comparing the control with the irradiation dosages (Figure 4). The time and time by
dosage interaction on MI can also be responsible for the reduction of cells in telophase
(Table 1). In a similar study, an increase in prophase and a decrease in anaphase and
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telophase together with cells with twice the normal amount of chromatin were observed
which supports this study [84].

A decrease in growth at high gamma irradiation dosages can be attributed to:
firstly, reduced mitotic activity partly caused by radiation-induced senescence

Source DF Type 1SS Mean Square F Value Pr > F

Nucleoli in nucleus and micronuclei combined

Block 4 4094.7815 1023.6954 0.97 0.422

Time 12 230241.5323 19186.7944 18.25 <0.01

Dosage 4 85009.0892 21252.2723 20.22 <0.01

Time x Dosage 48 329029.3908 6854.7790 6.52 <0.01

Mitotic index

Block 4 357.3200 89.3300 0.59 0.672

Time 11 41989.5467 3817.2315 25.09 <0.01

Dosage 4 1213.1533 303.2883 1.99 0.096

Time x Dosage 44 23959.4867 544.5338 3.58 <0.01

Incomplete mitosis

Block 4 2.776 0.694 1.13 0.34

Dosage 4 108.816 27.204 44.28 <0.01

Time 9 27.636 3.071 5.00 <0.01

Dosage � Time 36 75.664 2.102 3.42 <0.01

Table 1.
Two-way ANOVA showing sources of variation for the average number of nucleoli in the nucleus and micronuclei
combined and for the mitotic index in Triticum turgidum ssp. durum cv. Orania.

Figure 3.
Mitotic index at specific times at different gamma irradiation dosages in Triticum turgidum ssp. durum cv.
Orania.
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Figure 4.
Frequencies of cells in mitosis in (a) 0 Gy, (b) 50 Gy, (c) 150 Gy, (d) 250 Gy and (e) 350 Gy gamma irradiated
material in Triticum turgidum ssp. durum cv. Orania.

Figure 5.
Nucleoli in interphase cells in Triticum turgidum ssp. durum cv. Orania. (a) Five nucleoli in the nucleus as well
as small nucleoli in micronuclei. (b) Five nucleoli in the nucleus. Bar = 10 μm.
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(a condition of permanent cell cycle arrest induced by irradiation) in meristematic
tissues and secondly, mitotic catastrophe (cell death, which arises after cells that are
not able to perform correct mitosis enclose their condensed metaphase chromosomes
in many small chromatin fragments [85]). Mitotic catastrophe takes place over a
period and was not present during the cytogenetic investigation period, as seen in the
occurrence of interphase cells with twice the number of chromosomes than normal
cells as well as no observed fragmentation of chromatin. Mitotic catastrophe can occur
over a few days [45, 86–89].

Avanzi and Deri [90] determined the durations of the mitotic cycle in two Triticum
turgidum ssp. durum L. cultivars as 14 hours for Aziziah and 14 hours and 15 minutes
for Capelli. Kaltsikes [91] measured a mitotic cell cycle duration of 13 hours and
45 minutes in a Triticum turgidum ssp. durum L. cultivar. According to the mitotic
activity of the control, the control started with a second mitotic cycle (Figure 4). At
the end of the 132 hours for the determination of the efficiency of energy conversion
into growth, the control would have completed 6–7 mitotic cycles, while 50 Gy,
150 Gy, 250 Gy and 350 Gy would have completed 4–6 cycles. These cycles are enough
for mitotic catastrophe to take place by means of apoptosis, as seen in the deteriora-
tion of the efficiency of energy conversion into growth as observed in 250 Gy and
350 Gy over time.

4. Cytogenetic abnormalities in Triticum turgidum ssp. durum L.

Gamma irradiation effects on chromosomal level, which can lead to physiological
effects as well as cell death, are observed by means of cytogenetic analysis. The
following abnormalities can be observed during mitosis in plants after X-ray and
gamma irradiation: (1) stickiness and clumping of chromosomes, (2)
diplochromosomes or pseudochiasma, (3) ring(s), (4) fragment(s), (5) bridge(s) with
or without fragment(s), (6) micronuclei, (7) giant cells, (8) cellular shape deformi-
ties, (9) nuclear shape deformities, disrupted equatorial plate and (10) uncoiling
chromosomes at metaphase [83, 92]. Over time micronuclei can be extruded from the
cell, reincorporated in the nucleus, degraded or persisted in the cytoplasm of the cell.
Ring chromosomes are also carried over separately from one cell cycle to another
(Figure 6f; [93, 94]). These micronucleated cells may survive several cycles of mitosis
or are eliminated by means of apoptosis [95].

The effect of gamma irradiation on the presence of chromosomal abnormalities was
studied in Triticum turgidum ssp. durum L. cv. Orania. The presence of bridges
(Figure 6a, b), fragments (Figure 6c), ring chromosomes (Figure 6d–f) and
micronuclei (Figure 6g, h) because of chromatid and chromosome breaks due to
gamma irradiation treatments were observed. Anaphase bridges (Figure 6a) result from
chromosome (when cells are in S and G2 phase) and chromatid (when cells are in G1

phase) breaks caused by gamma irradiation/X-rays that join as sticky ends resulting in
chromosomes with two centromeres. These bridges break in late telophase and can be
observed as broken bridges (Figure 6b). Acentric fragments (Figure 6c) are chromo-
somes without centromeres and become micronuclei at late telophase when nucleus
membranes are formed. There is a highly significant increase in bridges andmicronuclei
at 150 Gy, 250 Gy and 350 Gy in comparison to 50 Gy (Table 2). Ring chromosomes
originate by breaks in both chromosome/chromatid arms and increase at a lower level
than bridges and fragments over the dosage spectrum. There is a highly significant
increase at 250 and 350 Gy gamma irradiation in ring chromosomes in comparison with
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50 Gy (Table 2). These results are supported by a study making use of eight winter
wheat cultivars and gamma irradiation dosages of 100, 150, 200 and 250 Gy. The more
susceptible cultivars had a larger reduction in mitotic activity and more chromosomal
aberrations [96]. Oney-Birol and Balkan [92] also observed a decrease in mitotic index
in two out of three bread wheat cultivars over a dosage range of 100 Gy–300 Gy gamma
irradiation. Azer [97] concluded that a dosage less than 100 Gy was needed to induce

Figure 6.
Bridges, fragments, ring chromosomes and micronuclei in Triticum turgidum ssp. durum cv. Orania. (a, b)
bridges in telophase. (c) Fragments in metaphase. (d – f) ring chromosomes in prophase, metaphase and late
anaphase, respectively. (g – h) micronuclei in interphase cells. Bar = 10 μm.
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50% abnormal cells in two bread wheat cultivars, while a dosage between 300 Gy –

400 Gy was needed to induce the same effect in another cultivar. Silva-Barbosa et al.
(2005) [98] obtained small differences in the presence of micronuclei, bridges (dicen-
trics) and fragments in lymphocyte cultures of five healthy people after exposure to
0.08 Gy gamma irradiation. After exposure of identical lymphocyte cultures to 1.8 Gy
large differences were observed in the presence of micronuclei, bridges (dicentrics) and
fragments among the five healthy people’s lymphocyte cultures.

Correlations between the effects of gamma irradiation on efficiency of energy con-
version into growth on the one side and the frequency of cells with different numbers of
bridges and the frequency of cells with different numbers of micronuclei on the other
(Table 3) were done to determine the relatedness between the characteristics. The
efficiency of energy conversion displayed highly significant correlations with two to
three bridges per cell, with the highest correlation with three bridges per cell. The
efficiency of energy conversion into growth had highly significant correlations with one
to seven micronuclei, with the best correlation with four micronuclei per cell. These
bridges and micronuclei are present at 250 Gy and 350 Gy. This is the irradiation dosage
with a highly significant increase in incomplete mitosis in comparison with 50 Gy.

5. Double spike in Triticum aestivum L. in M1 generation

Radiomorphosis, induced by different mutagens such as gamma irradiation, EMS
and 32P, are present at certain dosages that lead to infertility. These radiomorphs occur
only in the M1 generation and are not heritable. The mutagens can vary in the

P values of least squares means comparison

T. turgidum ssp. durum L. cv. Orania

Average number of Bridges Average number of Ring Chromosomes

Average: 0.00 1.33 4.47 7.15 9.13 0.00 0.16 0.53 0.75 1.09

Dosage (Gy) 0 50 150 250 350 0 50 150 250 350

0 0.03 <0.01 <0.01 <0.01 0.26 <0.01 <0.01 <0.01

50 <0.01 <0.01 <0.01 0.01 <0.01 <0.01

150 <0.01 <0.01 0.13 <0.01

250 <0.01 0.01

Average number of Micronuclei Average number of Interphase cells with

Incomplete Mitosis

Average: 0.00 26.25 109.36 200.36 315.67 0.00 0.12 0.24 1.22 1.64

0 <0.01 <0.01 <0.01 <0.01 0.44 0.13 <0.01 <0.01

50 <0.01 <0.01 <0.01 0.44 <0.01 <0.01

150 <0.01 <0.01 <0.01 <0.01

250 <0.01 0.01

Nonsignificant differences in bold p = 0.05 significant effect and p < 0.01 highly significant effect.

Table 2.
P values of pairwise comparisons of gamma irradiation dosage for average number of bridges, ring chromosomes,
micronuclei and interphase cells with incomplete mitosis in Triticum turgidum ssp. durum L. cv. Orania.
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abundance and types of radiomorphs that they induce [99–101]. The radiomorphs
can take different forms, such as double spike, branched spike, branched tiller,
double peduncle and double kernel. Plant species react differently to the various
mutagenic treatments in the formation of radiomorphs [101]. Double spikes are
observed at specific gamma irradiation dosages and absent in others in a specific
cultivar [102].

These changes are due to physiological disturbance of cell materials or the rate of
production of specific growth hormones due to physiological imbalances [103].
Growth hormone imbalances [101] that lead to the formation of radiomorphs and
abnormal growth in plants may occur between auxins and cytokinins. Cell culture
studies have shown that different ratios between auxins and cytokinins can lead to
altered growth patterns. Auxins and Cytokinins determine the size of the meriste-
matic regions in shoots and roots [104], shoot and root growth and development
[105–107] as well as the formation of inflorescence [108–110]). Ahn et al. [111] have
shown that an in vitro inflorescence can develop directly from a bud on the base of the
first leaf derived from the plumule after hormone-induced formation in Panax ginseng.

The effect of gamma irradiation on the presence of double spikes in M1 was studied
in Triticum aestivum L. cultivars Ratel and Kwartel. V-Shaped double spikes were
observed in Ratel at 200 Gy (Figure 7) and 250 Gy gamma irradiation, while only one
V-shaped double spike was observed in Kwartel at 200 Gy (Table 4). Double spikes
were observed at dosages where the shoot/root ratio was at its highest (Table 4).

Double spikes in association with sterility were also observed by Gill and Sethi
[102] in one variety of Triticum aestivum L. at 500 Gy, by Larik [112] in one variety of

Bridges Efficiency of energy conversion into growth

P value Pearson’s correlation coefficient

1 Bridge per cell 0.06 �0.44

2 Bridges per cell <0.01 �0.65

3 Bridges per cell <0.01 �0.68

4 Bridges per cell 0.89 0.05

5 Bridges per cell 0.22 �0.53

Micronuclei Efficiency of energy conversion into growth

P value Pearson’s correlation coefficient

1 Micronucleus per cell <0.01 �0.59

2 Micronuclei per cell <0.01 �0.77

3 Micronuclei per cell <0.01 �0.83

4 Micronuclei per cell <0.01 �0.86

5 Micronuclei per cell <0.01 �0.84

6 Micronuclei per cell <0.01 �0.77

7 Micronuclei per cell <0.01 �0.62

Table 3.
Correlations between the effects of gamma irradiation on efficiency of energy conversion into growth on the one side
and the frequency of cells with different numbers of bridges and the frequency of cells with different numbers of
micronuclei on the other in Triticum turgidum ssp. durum L. cv. Orania.
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Triticum aestivum L. at 250 Gy, and by Din and Khan [113] in three wheat (Triticum
aestivum L.) varieties at 350 Gy gamma irradiation treatment.

6. Fertility/sterility in Triticum aestivum L. in M1 generation

Sterility, of which the number of seed set is the most used criterion in quantifying
sterility, is another one of the eight parameters used to estimate the degree of plant
injury in the M1 generation. The most common manifestations of reduced fertility
when reproductive structures are present in the M1 are: (1) pollen is not viable or (2)
fertilization occurs, but embryos abort before maturity. The sterility in the M1 plants
is caused by: (1) chromosome mutations, (2) gene mutations, (3) cytoplasmic muta-
tions and (4) physiological effects [114].

Sterility/fertility in combination with seedling length, root length and chlorophyll
mutations in M2 plants were mostly used in studies for measuring the effects of the
gamma irradiation dosages applied to seed when the emphasis is placed on sterility as
measurement. Seedling length reduction and an increase in sterility did not display a
good relationship with one another, and this may be the reason why sterility is seldom
used as a parameter [114]. In a study of the effect of gamma irradiation on seedling
height and fertility in Triticum monococcum L. var. flavescensa large reduction in

Figure 7.
Six V-shaped double spikes in Triticum aestivum L. cv. Ratel in M1 generation at 200 Gy gamma irradiation.

Ratel Kwartel

Dosage (Gy) 150 200 250 150 200 250

Number of double spikes 0 6 4 0 1 0

Shoot/Root ratio 1.19 1.22 1.31 1.12 1.14 1.04

Table 4.
Number of double spikes and shoot/root ratio in Triticum aestivum L. cultivars Ratel and Kwartel.
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seedling height was obtained from 100 Gy (84,9% of control) to 200 Gy (14.4%)
gamma irradiation with a reduction from 69–59% fertility respectively for the two
dosages [115]. Sasikala and Kalaiyarasi [116] used shoot and root length and fertility
for the determination of the effect of gamma irradiation in six rice cultivars. They
obtained a decrease of up to 16.2% in shoot length at 100 Gy with a 45,7% decrease at
250 Gy, a decrease of up to 38.8% in root length at 100 Gy with a 63.7% decrease at
250 Gy and a decrease of up to 3.7% in fertility at 100 Gy with a 14% decrease at
250 Gy. Sakin and Sencar [117] used the detection of fertility of M1 plants and
chlorophyll mutations in M2 plants to determine the efficiency of gamma irradiation
treatment in two Triticum durum Desf. cultivars. They obtained a mutagenic effi-
ciency of 2.80 with a sterility of 8.39% at 50 Gy gamma irradiation and a mutagenic
efficiency of 3.08 with a sterility of 35.01% at 100 Gy in one of the cultivars. In the
other cultivar, a mutagenic efficiency of 0.73 with sterility of 19.49% at 50 Gy was
obtained.

The effect of gamma irradiation on sterility/fertility in M1 was studied in Triticum
aestivum L. cultivars Ratel and Kwartel. The percentage values of seedling height were
most affected by the gamma irradiation dosages, followed by fertility and finally by
efficiency of energy conversion into growth (Table 5). The reduction in fertility was
accompanied by almost similar reductions in efficiency of energy conversion into
growth.

7. Screening for resistance against wheat stem rust race Ug99 and
determination of the ideal dosage range for mutation breeding

M2 kernels of the two cultivars (Ratel and Kwartel) had been selected to be sent to
Kenya to Chepkoilel Campus, University of Eldoret, Eldoret, Kenya for screening
against stem rust (Puccinia graminis f. sp. tritici) race Ug99. A thousand M2 kernels per
entry were planted in rows according to the cultivars and the gamma irradiation
dosages. Screening for resistance/susceptibility against Ug99 started at Zadoks growth
stage 73 [118], and plants that were moderately susceptible, moderately resistant and
resistant were recorded (Table 6).

Steps were taken for the determination of the ideal dosage for mutation breeding
by making use of the efficiency of energy conversion into growth. In Triticum
monococcum L. the 100 Gy and higher gamma irradiation treatments were not
entangled with the control for the efficiency of energy conversion into growth. The
100 Gy treatment differed from the control with p = 0.01 in Triticum monococcum
[35]. The 100 Gy determination for the optimal dosage for mutation breeding is in line
with the suggested dosages (100 Gy – 200 Gy) for practical mutation breeding in

Ratel Kwartel

Dosage (Gy) 0 150 200 250 0 150 200 250

Fertility (%) 100 99.70 93.38 89.22 100 93.24 84.23 82.50

Seedling height (%) 100 94.82 91.73 84.24 100 94.76 89.40 75.81

Efficiency of energy conversion into growth (%) 100 98.25 91.23 89.47 100 94.83 87.93 81.03

Table 5.
Fertility, seedling height and efficiency of energy conversion into growth as percentages in Triticum aestivum L.
cultivars Ratel and Kwartel.
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Triticum monococcum L. by the FAO/IAEA [54]. Firstly, the LSD value at p = 0.01 for
Triticum aestivum L. cultivars Ratel and Kwartel must be determined. The LSD values
were determined as 0.031 and 0.04, respectively. Secondly, the LSD value must be
subtracted from the control values to obtain the x-axis value of the graph. Thirdly, a
linear equation must be obtained by plotting the efficiency of energy conversion into

Treatment name Resistant Moderately resistant Moderately susceptible

Ratel

150 Gy 3 5

200 Gy 1 3

250 Gy 3 7

Kwartel

150 Gy 4 6

200 Gy 1

250 Gy 1

Table 6.
Resistance/susceptibility scoring against stem rust race Ug99 in Triticum aestivum L. cultivars Ratel and
Kwartel, where the controls were susceptible.

Figure 8.
Determining the ideal gamma irradiation dosage range for Triticum monococcum L. cultivar Einkorn, Triticum
turgidum ssp. durum L. cultivar Orania and Triticum aestivum L. cultivars Ratel and Kwartel.
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growth values on the x-axis and the corresponding gamma irradiation dosage values
on the y-axis (Figure 8). Fourthly, by making use of the equation, the ideal dosage for
mutation breeding will be obtained (Table 7).

The ideal dosage range for mutation breeding was obtained by using α = 0.00001
for the determination of the upper limit for Ratel (Table 7). The value obtained of
230.83 Gy falls in the range of moderately resistant/susceptible plants obtained for
Ratel. The optimal dosage range for Triticum monococcum L. cultivar Einkorn,Triticum
turgidum ssp. durum L. cultivar Orania and Triticum aestivum L. cultivar Kwartel were
determined accordingly (Table 7).

Triticum turgidum ssp. durum L. cultivar Orania displayed the best resistance
against gamma irradiation with the widest ideal dosage range (86.2 Gy), followed
by Triticum aestivum L. cultivar Ratel with the second widest dosage range
(80.03 Gy), followed by Kwartel with the third widest dosage range (64.79 Gy) and
finally Triticum monococcum L. cultivar Einkorn with the narrowest dosage range
(56.45 Gy).

8. Conclusion

The efficiency of energy conversion into growth could be used to determine the
optimal gamma irradiation dosage range for mutation breeding. Triticum turgidum
ssp. durum L. cultivar Orania had the highest resistance to gamma irradiation and the
widest optimal dosage range. The upper limit for Triticum turgidum ssp. durum L.
cultivar Orania was beneath 250 Gy. This is the dosage where there is a highly
significant increase in ring chromosomes and incomplete mitosis. Triticum aestivum L.
cultivar Ratel had the second highest resistance to gamma irradiation and the second
widest optimal dosage range, followed by Kwartel with Triticum monococcum L. culti-
var Einkorn that had the lowest resistance to gamma irradiation and the narrowest
optimal dosage range. The differences between Ratel and Kwartel are supported by
the differences in seedling height, fertility and dosages where double spikes were
present and the number of double spikes present at these dosages.

Cultivar Ideal dosage range

according to FAO/IAEA

[54]

Ideal dosage range for mutation

breeding

α = 0.01 α = 0.00001

Triticum monococcum L. 100–200 Gy

Einkorn 100.85 Gy 157.30 Gy

Triticum turgidum ssp. durum L. 150–300 Gy

Orania 151.25 Gy 237.45 Gy

Triticum aestivum L. 150–350 Gy

Ratel 150.80 Gy 230.83 Gy

Kwartel 123.45 Gy 188.24 Gy

Table 7.
Ideal dosage range for mutation breeding in Triticum monococcum L. cultivar einkorn, Triticum turgidum ssp.
durum L. cultivar Orania and Triticum aestivum L. cultivars Ratel and Kwartel.
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