
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

176,000 190M

TOP 1%154

6,500

Chapter

End-to-End Benchmarking of
Chiplet-Based In-Memory
Computing
Gokul Krishnan, Sumit K. Mandal, A. Alper Goksoy,

Zhenyu Wang, Chaitali Chakrabarti, Jae-sun Seo,

Umit Y. Ogras and Yu Cao

Abstract

In-memory computing (IMC)-based hardware reduces latency and energy con-
sumption for compute-intensive machine learning (ML) applications. Several
SRAM/RRAM-based IMC hardware architectures to accelerate ML applications have
been proposed in the literature. However, crossbar-based IMC hardware poses several
design challenges. We first discuss the different ML algorithms recently adopted in
the literature. We then discuss the hardware implications of ML algorithms. Next, we
elucidate the need for IMC architecture and the different components within a con-
ventional IMC architecture. After that, we introduce the need for 2.5D or chiplet-
based architectures. We then discuss the different benchmarking simulators proposed
for monolithic IMC architectures. Finally, we describe an end-to-end chiplet-based
IMC benchmarking simulator, SIAM.

Keywords: in-memory compute, SRAM, RRAM, network-on-chip,
network-on-package, convolutional neural networks, artificial intelligence

1. Introduction

1.1 Modern-day AI algorithms

Machine learning (ML) and artificial intelligence (AI) significantly impacted soci-
ety. AI algorithms, such as deep neural networks (DNNs), achieved accuracy that
exceeded human-level perception for various applications, including medical imaging,
natural language processing, and computer vision [1–3]. The popularity of AI algo-
rithms was mainly driven by the availability of big datasets (for various applications
like image classification and object detection) [1, 4, 5], as well as the increased
computing power provided by the next-generation ML hardware accelerators and
general-purpose computing platforms. Figure 1 illustrates the taxonomy of ML algo-
rithms, which could be broadly categorized into supervised and unsupervised

1

learning. Unsupervised learning involved extracting features from a distribution
without data annotation, including selecting samples, denoising data, and clustering
data into groups. The unsupervised learning algorithm aimed to find the optimal
representation of the data that preserved maximum information about the input data
x while ensuring the representation was simpler than the data itself, utilizing con-
straints such as lower-dimensional, sparse, or independent representation [6, 7]. Some
popular unsupervised learning techniques were clustering, principal component anal-
ysis (PCA), autoencoders, and Gaussian potential functions.

Supervised learning involves training the ML model using a set of labeled training
data and then testing it using a labeled testing set. There are two types of supervised
learning: classical approaches and deep learning. Classical approaches use conven-
tional techniques that employ a probabilistic model to determine the next state based
on a set of parameters. Some popular classical techniques are decision trees, support
vector machines (SVM), Markov chains, and maximum likelihood estimation (MLE)
[8–11]. However, classical techniques had limitations such as difficulty in scaling, lack
of generalization, and the need for significant data engineering for each algorithm.
Classical techniques serve as the foundation for deep learning algorithms, which
overcome their limitations. This chapter focuses on deep learning techniques used in
supervised learning. Convolutional neural networks (CNNs) stand out for their supe-
rior performance in various machine-learning tasks, including computer vision, object
detection, and object segmentation. Additionally, recurrent neural networks (RNNs)
excel in processing temporal data, while graph convolutional networks (GCNs) com-
bine graphs and neural networks for various applications. The chapter covers recent
advancements in CNNs, RNNs, and GCNs, discussing their structures, training
methods, and execution efficiency for training and inference operations.

Figure 1.
Taxonomy showing different ML with different learning techniques.

2

Neuromorphic Computing

Conventional CNNs consist of layers connected either sequentially or with skip
connections. Besides convolutional layers, ReLU, pooling, and batch-normalization
methods are commonly used to enhance performance. Figure 2 illustrates the typical
structure of a convolutional and fully connected (FC) layer. Sequential layers usually
involve a stack of convolution (conv) layers that extract features from the input.
Convolution layer kernels may include 7 � 7, 5 � 5, 3 � 3, and 1 � 1. Additionally, as
proposed in MobileNet [12], depthwise convolutions divide a given N � N convolution
into two parts: first, a N� 1 convolution is performed, followed by a 1� N convolution.
Depth-wise convolution yields better accuracy and lower hardware complexity. Pooling
layers are periodically utilized to reduce the feature map size and eliminate noisy input.
In order to perform classification on extracted features, a set of FC layers or classifier
layers are utilized. These layers, along with the Conv layers, have a set of weights that
are trained to achieve the best accuracy. Popular CNN structures, such as AlexNet [1],
GoogleNet [13], ResNet [14], DenseNet [15], MobileNet [12], and SqueezeNet [16],
utilize a combination of convolutional, pooling, and FC layers to achieve high accuracy
in a variety of ML tasks. Additionally, CNNs like DenseNet and ResNet utilize skip
connections from previous layers to create a highly branched structure, which aims to
improve the feature extraction process. These skip connections are present within the
conv layers only. In contrast, conventional CNNs face several limitations, such as the
vanishing gradient problem, higher hardware costs during training and inference, and
over-parameterization [17–19]. To address these issues, network architecture search
(NAS) was introduced to automatically find the optimal neural network architecture
based on the specific design point for the target application. Different design points,
such as higher accuracy, better generalization, higher hardware efficiency, and lower
memory access, have been proposed for NAS. Popular techniques like NasNet [20],
FBNet [21], AmoebaNet [22], PNAS [23], ECONas [24], and MNasNet [25] have been
developed to address these issues.

RNN is a commonly used deep learning technique that offers an effective solution
for modeling data with sequential or temporal structures and variable length inputs
and outputs in various applications [26–28]. It processes sequential data one element
at a time, using a connectionist model that selectively passes information. This enables
RNNs to model input and/or output data consisting of a sequence of dependent
elements. Additionally, RNNs can simultaneously model both sequential and time
dependencies at different scales. They employ a feedforward network that includes
edges connecting adjacent time steps, which introduces time to the model. While
conventional edges do not have cycles, recurrent edges that connect adjacent time

Figure 2.
(a) Convolution layer consisting of the input feature map (IFM), kernel, and the output feature map (OFM),
(b) FC layer in a CNN.

3

End-to-End Benchmarking of Chiplet-Based In-Memory Computing
DOI: http://dx.doi.org/10.5772/intechopen.111926

steps can form cycles. Modern RNN architectures can be categorized into two
main types. The first is long-short-term memory (LSTM), which includes a memory
cell, a computation unit that replaces traditional nodes in the hidden layer of a
network [29]. The second variant of RNNs is bi-directional RNNs (BRNNs), as
proposed in [30].

As more applications rely on graphs to represent data, using CNNs and RNNs to
capture hidden patterns within Euclidean data becomes limited. For instance, in e-
commerce, a graph-based learning system can use interactions between users and
products to recommend highly accurate products. However, graphs’ complexity and
irregularities pose significant challenges to existing DNNs. To address this issue,
Graph Neural Networks (GNNs) were introduced and categorized into three types:
Recurrent GNNs (RecGNNs) [31–33], Convolutional GNNs (CGNNs) [34–36], and
Graph Autoencoders (GAE) [37–39]. RecGNNs use recurrent neural architectures to
learn node representations, while CGNNs generalize convolution operations to graph
data by aggregating features from neighboring nodes. GAEs map nodes into a latent
feature space, preserving the node’s topological information with a low-dimensional
vector. Finally, GAEs learn network embeddings using an encoder and a decoder to
enforce the preservation of graph topological information.

1.2 Hardware implications of DNNs

State-of-the-art DNNs, such as CNNs, RNNs, and GCNs, have diverse structures
that lead to significant demands on compute and memory resources. Achieving higher
accuracy with these machine-learning models requires increased computational com-
plexity and model size, which, in turn, require more memory to store both the weights
and activations. The increased model size and complexity also lead to a larger volume
of on-chip data movement. For instance, the ImageNet dataset’s [1] ResNet-50 [14]
requires 50 MB of memory and 4 GFLOPs per inference, while DenseNet-121 [15]
requires 110 MB of memory and 8 GFLOPs per inference. Conventional architectures
that separate memory and computation lead to a considerable number of external
memory accesses, which reduce energy efficiency and performance. The average cost
of an external memory access is 1000 times higher than the energy required for
computations [40]. When considering the total energy spent on performing inference
for VGG-16 and ResNet-50 using conventional von Neumann architectures, a
floating-point 32-bit (FP-32) multiplication results in 3.2pJ, while an FP-32 add
requires 0.9pJ in the 45 nm technology node [41]. Therefore, performing inference for
one image consumes 65 mJ of energy using the VGG-16 CNN, while ResNet-50
consumes 16 mJ. Scaling the computation energy up, for 1000 inference performs,
VGG-16 takes 65 J while ResNet-50 consumes 16 J of energy. In conclusion, the higher
accuracy achieved by DNNs results in higher computational complexity, increased
memory requirements, more off-chip memory access, and lower energy efficiency.

This chapter delves into in-memory computing (IMC) as an alternative to tradi-
tional von-Neumann architecture, which offers improved energy efficiency, better
performance, and reduced off-chip memory access. IMC has emerged as a promising
solution to tackle the memory access, energy efficiency, and performance bottlenecks
encountered by DNN applications. Hardware architectures for IMC, such as those
based on SRAM and nanoscale nonvolatile memory (e.g., resistive RAM or RRAM),
provide a dense and parallel structure to achieve high performance and energy effi-
ciency [42–57]. Additionally, the chapter introduces chiplet-based IMC architectures,
as well as a benchmarking simulator for this architecture. The SIAM simulator and the

4

Neuromorphic Computing

associated architecture enabled through SIAM are described in detail. Overall, this
chapter explores various benchmarking simulators for IMC architectures.

2. IMC architectures

In the preceding section, we examined the hardware implications of modern
DNNs, specifically the memory and computation complexity associated with von
Neumann architectures. For instance, dense structures such as DenseNet require

roughly 2:7 � 107 off-chip memory accesses to process an image frame [15]. This
elevated number of off-chip memory access negatively impacts the energy efficiency
of the overall system. IMC architectures provide a promising alternative to traditional
von Neumann architectures. Figure 3 depicts a generic block diagram of an IMC
architecture with RRAM/SRAM memory cells. IMC uses analog- or digital-domain
computation to carry out multiply-and-accumulate (MAC) operations. The crossbar-
based IMC structure efficiently combines memory access and analog-domain compu-
tation into a single unit, resulting in faster execution of DNN workloads. The superior
energy efficiency is primarily due to a full-custom design, higher density, and higher
memory bandwidth [44, 45, 58]. Consequently, IMC-based systems are becoming
increasingly popular for implementing compute- and memory-intensive AI applica-
tions. This section will examine various IMC architectures in depth using both SRAM
and RRAM memory cells.

2.1 RRAM/SRAM-based IMC architectures

2.1.1 RRAM Device

RRAM-based IMC architectures consist of an RRAM memory cell at each
crosspoint within the IMC crossbar array. RRAM is a two-terminal device with pro-
grammable resistance representing the neural network’s weights. It has high integra-
tion density, fast read speed, high memory accessing bandwidth, and good
compatibility with CMOS fabrication technology. For example, the RRAM device
stack can include a TiN bottom electrode, HfO2 mem-resistive switching layer, a PVD
Ti oxygen exchange layer (OEL), and � 40 nm TiN top electrode [59, 60]. This
specific stack is implemented between the M1 and M2 metallization layers using a
FEOL-compatible process flow.

Figure 3.
Generic block diagram of an IMC architecture for DNN acceleration. It consists of an array of IMC tiles connected
by an NoC with each tile consisting of a number of IMC arrays [44, 45].

5

End-to-End Benchmarking of Chiplet-Based In-Memory Computing
DOI: http://dx.doi.org/10.5772/intechopen.111926

Each RRAM cell can be characterized by the number of resistance levels accessed
within them. Broadly, RRAM can be classified into single-level cells (SLC) and multi-
level cells (MLC). SLC only has two resistance levels, that is, they can store only
binary data. On the other hand, MLC cells have multiple resistance levels that repre-
sent higher precision data. The number of available resistance levels is governed by
the ratio of the off resistance Roffð Þ to the on resistance Ronð Þ ratio [61]. The ratio
provides the range of resistances accessible for the given RRAM device. The overall
resistance range can be divided into two main states, a low resistance state (LRS) and
a high resistance state (HRS). LRS deals with the lower spectrum within the resistance
band, while the HRS deals with the upper band of resistance of the RRAM device.

To program the RRAM device, a series of steps need to be followed [62]. First, the
RRAM device is formed by applying a large voltage across the two terminals. This
process breaks the barrier and allows for electron flow across the terminals. Next, the
RRAM is programmed to the required resistance by passing a specific current (com-
pliance current) through the two electrodes. The RRAM can be programmed at dif-
ferent resistances depending on the compliance current. Furthermore, different
resistance levels can be achieved depending on the RRAM device (SLC or MLC).
Finally, once the RRAM device is programmed, we can perform a read by applying a
voltage across the device electrodes. For the RRAM device proposed in [59, 60], a read
voltage of up to 0.4 V can be sustained by the RRAM device. Applying a higher
voltage damages the device or goes into the write state, changing the programmed
resistance level.

2.1.2 IMC Architecture

Studies involving crossbar architectures have demonstrated that a 100� to 1000�
improvement in energy efficiency is achieved as compared to traditional CPU and
GPU architectures [44, 45, 47, 49, 50, 52, 63–67]. Figure 3 shows the block diagram of
a IMC architecture with an RRAM/SRAMmemory cell. The architecture consists of an
array of IMC tiles connected by a network-on-chip (NoC). The architecture also
consists of a global pooling unit, nonlinear activation unit, accumulator, and input/
output buffers. A global control logic performs the architecture’s overall handling of
the blocks.

Each tile consists of an array of processing elements (PEs), where each PE is an
IMC crossbar array with either an SRAM or an RRAM cell. Each IMC crossbar array
consists of a set of peripheral circuits that enable the MAC computations.

Figure 4 shows the generic block diagram for a single RRAM-based IMC crossbar
array. In the case of RRAM IMC, a transistor connects the gate to the wordline (WL)
of the IMC crossbar array [60]. The WL connects to the access transistors for the
SRAM-based IMC with a conventional 6 T structure. The IMC crossbar arrays consist
of a wordline (WL) decoder, WL driver, a column multiplexer, analog-to-digital
converter (ADC) or a sense amplifier, shifter and add circuit, control logic, and input/
output buffers. The WL decoder turns on and off the WL for the IMC crossbar array.
Meanwhile, the WL driver and level shifter ensure the driver can turn on the memory
cell. Next, for an N � N IMC crossbar array, M columns are shared across the read-out
circuit. The read-out circuit consists of the ADC, shift and add circuit, and the
precharge circuit for the read operation. To enable the sharing of M columns, a
column multiplexer is used. Finally, a custom control logic is utilized to drive the
control signals during the operation of the IMC crossbar array. We will now go over
the operation for both the SRAM and RRAM-based IMC architectures. First, we will

6

Neuromorphic Computing

detail the working of the RRAM-based IMC architecture. Figure 4 shows the generic
block diagram for a single RRAM-based IMC crossbar array. The RRAM devices are
programmed by connecting the two terminals to a given voltage. To facilitate this, the
terminals are connected to the bitline (BL) and the selectline (SL). By applying a
voltage across the BL and the SL, forming, programming, and reading operations are
performed cell-by-cell. Each cell is chosen during the write state of the IMC, and then
the write is performed. During the compute state, the RRAM undergoes the read
operation. Two kinds of read-out are performed, parallel and serial. During the paral-
lel read-out, all/multiple WLs are turned on simultaneously, and the output is accu-
mulated across the BL. Two kinds of input schemes are employed for single and multi-
bit inputs. The first method uses a digital-to-analog converter (DAC) to convert the
input vector to an analog voltage and performs the computation in the charge domain
[44]. The second method is to perform bit-serial computing, where each bit in the
input vector is computed one at a time. Each input vector’s bit significance is handled
using a shift and add circuit [45, 49, 63].

Depending on the resistance stored in the RRAM, an output current/charge is
generated by the product of the voltage and resistance (conductance). This operation
is analogous to the multiply with the MAC. This current/charge is then accumulated
across all rows for a given column to perform the addition in the MAC. In the case of
the serial read-out, row-wise access of the IMC array is performed for MAC compu-
tations. Overall, the final MAC output is generated by accumulating across all rows of
the IMC crossbar array.

Figure 5 shows the generic block diagram for a single SRAM-based IMC crossbar
array. Next, we will discuss the operation for an SRAM-based IMC architecture
[48, 49, 51, 52, 68–70]. Depending on the SRAM bit-cell type and the degree of
parallelism, the IMC design can be largely divided into three categories [71]: 6 T bit-
cell with parallel computing, 6 T bit-cell with local computing, and (6 T + extra-T) bit-
cell with parallel computing. Initially, SRAM-based IMC architecture employed the

Figure 4.
Block diagram of a RRAM-based IMC crossbar array. An array of RRAM cells form the IMC crossbar array.
Peripheral circuits such as bitline (BL)/select line (SL)/column multiplexer (MUX), precharge circuit, wordline
(WL) decoder and driver, buffers, level shifters, ADC, and shift and add circuit complete the RRAM-based IMC.

7

End-to-End Benchmarking of Chiplet-Based In-Memory Computing
DOI: http://dx.doi.org/10.5772/intechopen.111926

6 T bit-cell with a parallel computation [72, 73]. The parallel computation was
achieved by turning on all the WL together to perform the MAC operations. The WL
is driven by the input vector where a one means it turns on that cell, while a zero
means the cell is turned off. Next, a 6 T bit-cell with a local compute structure is
utilized where a special compute engine is designed to perform the MAC operation
[70]. Here, the MAC operation is performed row-by-row, similar to the serial read-out
in RRAM-based IMC. Finally, in addition to the 6 T cell, extra transistors are added in
each bit-cell to perform parallel compute [51, 68, 69]. In addition to the bit-cell
structure, peripheral circuits such as precharge circuits, ADCs, write drivers, column
multiplexers, row decoders, and row drivers are used.

2.1.3 Challenges with IMC Architectures

IMC architectures are known for their improved energy efficiency and through-
put, but they have some drawbacks. One such drawback is the limited precision of the
IMC crossbar array, particularly in the memory cell and ADC, which can affect the
accuracy of DNN inference [74, 75]. Additionally, noise within analog computation
can also harm DNN inference accuracy. The challenges associated with an RRAM-
based IMC architecture are discussed next. RRAM devices suffer from several non-
idealities, including limited resistance levels, device-to-device write variations, stuck-
at-faults, and limited Roff=Ron ratio, which make it difficult to design reliable RRAM-
based IMC architectures [60, 61, 76–84]. These non-idealities can cause programmed
weight values (resistance value) to deviate, significantly reducing post-mapping
accuracy for DNNs. Moreover, the limited array size of the IMC crossbar structure
necessitates the splitting of large convolution (conv) or FC layers into partial opera-
tions, which can introduce additional errors due to the limited precision of the
peripheral circuits (ADC and shift and add) of the RRAM-based IMC crossbar.

Figure 5.
Block diagram of a SRAM-based IMC crossbar array. An array of SRAM cells 6 T or 6 T + additional circuit)
form the IMC crossbar array. Peripheral circuits such as bitline (BL) and bitline bar (BLB) precharge and
conditioning circuits, row decoder andWL driver, column multiplexers, buffers, write drivers, ADC, and shift and
add circuit complete the SRAM-based IMC.

8

Neuromorphic Computing

Previous research has proposed several methods to address the post-mapping
accuracy loss associated with RRAM-based in-memory acceleration of DNNs. Two
methods that have been proposed are Closed-Loop-on-Device (CLD) and Open-
Loop-off-Device (OLD), which involve iterative read-verify-write (R-V-W) opera-
tions at the RRAM device until the resistance converges to the desired value [85, 86].
Other methods, such as in References [78, 87], utilize variation-aware-training (VAT)
based on known device variation (σ) characterized from RRAM devices. In [76], VAT
is combined with dynamic precision quantization to mitigate the post-mapping accu-
racy loss. Another approach proposed in [75] involves injecting RRAM macro mea-
surement results that include variability and noise during the DNN training process to
improve the DNN accuracy of the RRAM IMC hardware. [88] proposes post-mapping
training by selecting a random subset of weights and mapping them to an on-chip
memory to recover the accuracy. [79] utilizes knowledge distillation and online adap-
tation for accuracy mitigation, using an SRAM-based IMC as the parallel network,
while [88] proposes to use a register file and a randomization circuit. Finally, [77, 80]
propose a custom unary mapping scheme by mapping the most significant bit (MSB)
and least significant bit (LSB) of the weights to RRAM devices based on individual cell
variations and bit significance.

Next, we discuss the challenges associated with SRAM-based IMC
architectures. A compromise between parallelism and reliability is employed for
best performance. In a conventional 6 T SRAM IMC architecture, parallel
computation is achieved by turning on all or multiple rows. The higher
parallelism raises the critical issue of read disturbance, resulting in the WL voltage
being driven with a lower voltage [72, 73, 89]. To mitigate this, reduced parallelism is
employed by exploiting the local compute engine [70]. The reduced parallelism results
in reduced throughput for DNN inference. [51, 68, 69] proposes to utilize additional
transistors that isolate the bit-cell and employ parallel computation. Such a solution
comes at the cost of increased area overhead, thus limiting the density of the SRAM-
based IMC architecture. The additional transistor solution is typically implemented
using a resistance or a capacitance. The resistive IMC method implements a multi-bit
MAC operation by utilizing a resistive pull-up/down using transistors [51, 68, 69]. The
pull-up/down characteristics of the transistors exhibit a non-linear behavior for the
read bitline (RBL) transfer curve across different voltage ranges, thus reducing reli-
ability. At the same time, the capacitive SRAM-based IMC utilizes a capacitor per bit-
cell and charge sharing and capacitive coupling to perform the MAC operations [52].
The capacitive SRAM IMC exhibits a more linear transfer characteristic on the RBL
but at the cost of a capacitor per bit-cell. Finally, the limited precision of the ADC and
the noise on the bitline (BL) requires careful algorithm design to achieve the best
inference accuracy [89].

2.2 2.5D/Chiplet-based AI accelerators

The area of monolithic hardware accelerators increases with the increasing number
of parameters of AI algorithms. The higher silicon area of a single monolithic system
reduces the yield, increasing fabrication cost [46]. The chiplet-based system solves the
issue of higher fabrication cost by integrating multiple small chips (known as chiplets)
on a single die. Since the area of each chiplet in the system is considerably lower than a
monolithic chip (for the same AI algorithm), the yield of the chiplet-based system
increases, which reduces the fabrication cost. The communication between chiplets is
performed through network-on-package (NoP), as shown in Figure 6. Several works

9

End-to-End Benchmarking of Chiplet-Based In-Memory Computing
DOI: http://dx.doi.org/10.5772/intechopen.111926

in the literature propose NoP for chiplet-based systems considering different perfor-
mance objectives (e.g., latency, energy) [42, 46, 90–92].

Kite is a family of NoP proposed in [90], mainly targeted for general-purpose
processors. In this work, three topologies are proposed—Kite-Small, Kite-Medium,
and Kite-Large. First, an objective function is constructed with a combination of the
average delay between the source and destination, diameter, and bisection bandwidth
of the NoP. Experimental evaluations on synthetic traffic show that the proposed Kite
topologies reduce latency by 7% and improve the peak throughput by 17% with
respect to other well-known interconnect topologies. A chiplet-based system with a
96-core processor, INTACT, is proposed in [91]. The chiplets are connected through a
generic chiplet-interposer interface (called 3D-plugs in the paper). 3D-plugs consist of
micro-bump arrays. However, both Kite and INTACT are not specific to AI work-
loads.

Shao et al. designed and fabricated a 36-chiplet system called SIMBA for deep
learning inference [92]. The chiplets in the system are connected through a mesh NoP.
Ground-referenced signaling (GRS) is used for intra-package communication. The
NoP follows a hybrid wormhole/cut-through flow control. The NoP bandwidth is 100
GBps/chiplet, and the latency for one hop is 20 ns. Extensive evaluation on the
fabricated chip shows up to 16% speed up compared to baseline layer mapping for
ResNet-50. A simulator for the chiplet-based systems, SIAM, is proposed in [46],
targeting AI workloads. In this simulator, a mesh topology is considered for NoP. It is
shown that up to 85% of the total system area is contributed by NoP. In this work,
multiple studies were performed by varying NoP parameters. For example, it is shown
that increasing the NoP channel width increases the energy-delay product of the NoP
for ResNet-110. This phenomenon is demonstrated for systems with 25 and 36
chiplets. However, none of the prior works considered any workload-aware optimi-
zation for the NoP. Therefore, there is ample opportunity for future research consid-
ering NoP optimization for AI accelerators.

3. Benchmarking simulators

3.1 Monolithic AI benchmarking simulators

Numerous researchers have put forth assessment frameworks for evaluating the
performance of IMC-based AI accelerators. One such framework is NeuroSim [93],
the first simulator designed to evaluate the performance of IMC-based AI accelerators.
It includes various performance evaluation metrics such as area, latency, and power

Figure 6.
Chiplet-based IMC architecture [46, 64] that includes an NoP for on-package communication, NoC for on-chip
communication within each chiplet, and a point-to-point network like H-Tree for within tile communication.

10

Neuromorphic Computing

consumption of an IMC system under a given workload of DNN. NeuroSim is highly
flexible and allows users to assess the performance of IMC-based AI accelerators
under different system specifications, considering both traditional CMOS-based
memory technology (such as SRAM) and emerging nonvolatile memory technologies
(like ReRAM and STTMRAM) for the in-memory compute elements. NeuroSim
assumes a tile-based architecture [44], consisting of multiple tiles where processing
elements (PEs) and IMC-based crossbar arrays reside. Predictive Technology Model
(PTM) [94] is used to simulate lower-level components, such as buffers, ADC, and
multiplexers, and verified against circuit simulation (e.g., SPICE), reaching more than
90% accuracy. The interface between NeuroSim and popular ML frameworks such as
PyTorch and TensorFlow has also been created to make it more user-friendly [95].
However, one major drawback of NeuroSim is that it assumes H-Tree based bus
interconnect for inter-tile communication, which can consume up to 90% of the total
energy consumption of DNN inference [96]. To overcome this issue, Krishnan et al.
[97] (Figure 7) proposed an evaluation framework for IMC-based AI accelerators that
considers cycle-accurate network-on-chip (NoC) simulation [98]. Similarly, MNSIM
[99] also evaluates the performance of IMC-based systems to execute AI applications
like NeuroSim. In addition, MNSIM integrates software-hardware co-design tech-
niques in the evaluation framework. GeneiX, proposed by Chakraborty et al. [78], is
another evaluation framework for crossbar-based IMC accelerators considering the
non-idealities in the memory elements.

While it is essential to evaluate hardware performance under AI workloads, it is
also important to assess the accuracy of the AI workload when implemented on-chip.
Memory imperfections can lower the accuracy of DNNs. RxNN [100] and SpikeSim
[66] are frameworks that evaluate the accuracy of DNN workloads in the presence of
memory imperfections. These techniques focus on evaluating the performance of IMC
systems executing DNN inference. However, emerging edge devices require online
learning, which involves training the DNN. Therefore, evaluating the performance of
AI accelerators while executing DNN inference alone is insufficient. An evaluation
framework for IMC-based AI accelerators with on-chip training is introduced in
[101]. The authors incorporate non-linearity, asymmetry, device-to-device, and
cycle-to-cycle variation of weight update into the Python wrapper and peripheral
circuits for error/weight gradient computation in NeuroSim core for a given AI

Figure 7.
Block diagram on an IMC benchmarking simulator proposed in [97]. The simulator consists of a circuit part and
an interconnect part that perform system-level benchmarking of IMC architectures.

11

End-to-End Benchmarking of Chiplet-Based In-Memory Computing
DOI: http://dx.doi.org/10.5772/intechopen.111926

workload. The training framework is based on the authors’ prior work [102], where
they proposed an SRAM-based transposable function. Since SRAM-based arrays can
perform write operations quickly while consuming minimal energy, the weight-
gradient computation function is implemented through SRAM-based arrays rather
than other nonvolatile memory technologies.

3.2 SIAM: Chiplet-based AI benchmarking simulator

This section introduces SIAM [46], a benchmarking simulator for IMC architec-
tures based on chiplets. SIAM supports both generic or homogeneous and custom
chiplet-based IMC architectures. A homogeneous architecture has a fixed number of
chiplets that the user determines. On the other hand, a custom architecture comprises
a specific number of chiplets required to map the DNN under consideration. In both
cases, the chiplet structure contains a fixed number of user-defined IMC crossbar
arrays. Figure 6 illustrates a homogeneous chiplet-based IMC architecture SIAM uses.

Figure 8 illustrates how the comprehensive framework provided by SIAM can be
used to benchmark the performance of chiplet-based in-memory compute (IMC)
architectures. SIAM generates a chiplet-based IMC architecture based on user-defined
inputs. It assesses the corresponding hardware performance by computing various
performance metrics, including area, energy, latency, energy efficiency, power, leak-
age energy, and IMC utilization. The SIAM framework is developed using Python and
C++ programming languages and has a top-level Python wrapper that integrates the
different components of the simulator. Additionally, SIAM is designed to interface
with widely used deep learning frameworks, such as PyTorch and TensorFlow, and
supports a range of network structures in current literature. Therefore, SIAM can be
used to explore neural architecture search (NAS) techniques. Table 1 describes the
user inputs and their associated parameters for the SIAM benchmarking tool. SIAM
consists of four engines:

• Partition and mapping engine (Python)

• Circuit and NoC engine (C++)

• NoP engine (Python and C++)

• DRAM engine (Python and C++)

The individual engines within SIAM operate independently on various subsets of
user inputs and communicate with each other through the top-level Python wrapper.
Figure 8 provides an overview of the simulation flow used by SIAM to provide a

Figure 8.
Block diagram of the chiplet-based IMC architecture simulator SIAM [46].

12

Neuromorphic Computing

better understanding of the framework. Firstly, the partition and mapping engine is
used to perform layer partition and mapping onto the chiplets and IMC crossbars,
which generates the IMC architecture structure, the number of required chiplets and
IMC tiles per layer, the IMC architecture utilization, the volume of intra-chiplet and
inter-chiplet data movement, and the number of global accumulator accesses. Next,
the circuit and NoC engine evaluate the intra-chiplet and global circuit performance,
respectively, providing hardware performance metrics such as area, energy, and
latency. Meanwhile, the NoP engine evaluates the cost of chiplet-to-chiplet data
movement. Lastly, the DRAM engine assesses the memory access cost, providing
energy and latency performance metrics. Except for the partition and mapping
engine, all engines operate concurrently, resulting in shorter simulation times. Addi-
tionally, SIAM can be used to benchmark traditional monolithic IMC architectures. In
the following sections, we provide detailed information on the four engines that
comprise SIAM’s core functionality.

3.3 Partition and mapping engine

The operational steps of the partition and mapping engine are explained in Algo-
rithm 1. The engine is responsible for partitioning the DNN layers and mapping them
onto the IMC chiplets and crossbar arrays. The partitioning and mapping are carried
out layer by layer for the entire DNN. The engine takes various user inputs such as

User input Description User input Description

Intra-chiplet architecture Inter-chiplet architecture

ADC

resolution

Bit-precision of flash ADC Chiplet size Number of IMC tiles within each

chiplet

Read-out

method

Sequential or parallel Total chiplet count Fixed count or DNN specific custom

count

Crossbar size IMC crossbar array size Chip mode Monolithic or chiplet-based IMC

architecture

Buffer type SRAM or register file Chiplet structure Homogeneous or custom chiplet

structure

NoC width Number of channels in the

NoC

NoP frequency Frequency of the NoP driver and

interconnect

NoC topology Mesh or tree Global accumulator

size

Size of global accumulator

Frequency Frequency of operation NoP channel width Number of parallel links for TX and

RX

DNN algorithm Device and technology

Data precision Weights and activation

precision

Memory cell RRAM or SRAM

Network

structure

DNN network structure Tech node Technology node for fabrication

Sparsity DNN layer-wise sparsity Bits/cell Number of levels in RRAM

Table 1.
Definition of the user inputs to SIAM.

13

End-to-End Benchmarking of Chiplet-Based In-Memory Computing
DOI: http://dx.doi.org/10.5772/intechopen.111926

DNN structure, the precision of DNN weights, the mapping scheme for IMC chiplets,
the size of IMC chiplets, and the size of IMC crossbars.

To begin with, we will describe the IMC mapping approach that is employed in
SIAM. Suppose we have a layer i with weight matrix Wi represented by Kxi � Kyi �
Nif i �Nof i, where Kx and Ky indicate the kernel size, Nif refers to the number of
input features, and Nof denotes the number of output features. SIAM uses the same
mapping scheme presented in [44, 45]:

Nr
i ¼

Kxi � Kyi �Nif i
PExð Þ

� �

;Nc
i ¼

Nof i �Nbits

PEy

� �

& ’

(1)

The equation given above calculates the required number of rows and columns for
the IMC crossbars to map layer i of the DNN. Nr

i and Nc
i represent the number of rows

and columns required, while Nbits, PEx, and PEy denote the DNN weight precision and
the number of rows and columns in the IMC crossbar array. To find the total number
of required IMC crossbar arrays to map layer i of the DNN, one can multiply Nr

i and

Nc
i together, which gives NTotal

i (line 7 of Algorithm 1).
SIAM can create homogeneous and custom chiplet-based IMC architectures using

two types of chiplet partitions. The partition and mapping engine generates architec-
tures based on the assumption that each DNN layer cannot be divided across multiple
chiplets and that each chiplet can support multiple layers for optimal chiplet utiliza-
tion. To map an entire layer of the DNN, multiple chiplets with IMC crossbar arrays
are required due to numerous multi-bit weights in each layer. Dividing a layer across
multiple chiplets increases overhead in control logic required for routing inputs,
higher chiplet-to-chiplet communication energy and latency, and greater inter-chiplet
data communication volume. The engine uniformly divides the layer across
multiple chiplets during partitioning to prevent workload imbalance issues. The
engine determines the number of chiplets required to map layer i of the DNN based on

the total number of required IMC crossbar arrays, NTotal
i , using the equation

N
Chiplet
i ¼

NTotal
i

S

l m

, where S represents the total number of IMC crossbar arrays within a

chiplet (the chiplet size). The resulting architectures generated by the partition and
mapping engine can be seen in Figure 9.

After determining the number of required chiplets to map a layer of the DNN, the
next step is to determine the total number of chiplets in the architecture. This is done

Figure 9.
The figure illustrates two chiplet-based IMC architectures, namely homogeneous (left) and custom (right),
generated by SIAM for the same DNN. The homogeneous architecture is a generic architecture, whereas the custom
architecture is tailored for the specific DNN. The NoP router is denoted by R in both architectures.

14

Neuromorphic Computing

at line 9 of Algorithm 1. In the homogeneous chiplet partition scheme, the user inputs a
fixed number of chiplets to map the DNN. The engine compares the total number of

chiplets required to map the DNN NChiplet
� �

with the maximum available chiplets in
the architecture (C). If the number of required chiplets exceeds the maximum avail-
able chiplets, the engine throws an error and requests an increase in the number of
available chiplets. On the other hand, if the number of required chiplets is less than or
equal to the maximum available chiplets, the engine continues with the partition and
mapping process for the subsequent layers in the DNN.

The custom partition scheme in SIAM creates a chiplet-based IMC architecture
tailored to the specific DNN being considered without any upper limit on the number
of chiplets used. Each chiplet in this scheme has a consistent structure with a fixed
number of IMC tiles containing IMC crossbar arrays and peripheral circuitry. On the
other hand, the homogeneous partition scheme uses a fixed number of chiplets (user
input) to map the DNN in a generic manner. SIAM allows for the comparison of both
architectures on a single platform. After partitioning and mapping the layers onto the
IMC chiplets, the engine calculates the total amount of data communicated within and
across the chiplets, taking into account instances where a layer is partitioned across
multiple chiplets. The global accumulator is used to generate the layer output in such
cases. The engine also determines the number of additions performed by the global
accumulator and the number of global buffer accesses required. The engine output
includes the layer partition across chiplets, the necessary number of chiplets and IMC
crossbars, IMC crossbar utilization, intra- and inter-chiplet data movement volume,
and the number of the global accumulator and buffer accesses. This information is
then used by the circuit, NoC, and NoP engines to evaluate the performance of the
chiplet-based IMC architecture.

3.4 Circuit and NoC engine

After the partitioning and mapping of the DNN, the next step in SIAM is to
arrange the inter- and intra-chiplet components in a floorplan and place them. This
process leads to the final design of the chiplet-based IMC architecture. Once the
architecture is determined, the circuit and NoC engine estimate the performance of
the hardware, as illustrated in Figure 10. The engine uses a model-based estimator to

Figure 10.
Block diagram of the circuit and NoC engine within SIAM. The engine utilizes a separate circuit and NoC
simulators that perform the overall hardware performance estimation.

15

End-to-End Benchmarking of Chiplet-Based In-Memory Computing
DOI: http://dx.doi.org/10.5772/intechopen.111926

evaluate the circuit aspect, while it employs a trace-based estimator for the intercon-
nect portion.

3.4.1 Circuit estimator

The circuit estimator evaluates the hardware performance of the chiplets, global
accumulator, and global buffer in the entire chiplet-based IMC architecture. To per-
form this evaluation, the engine considers a range of inputs such as the placement of
components within and across chiplets, the number of chiplets and IMC crossbars per
layer, the IMC utilization per layer, the technology node, the operating frequency, the
type of IMC cell, the number of bits per cell, and the ADC precision. The intra-chiplet
circuits include the IMC crossbar array, buffer, accumulator, activation unit, and
pooling unit. In contrast, the peripheral circuits consist of the ADC, multiplexer
circuit, shift and add circuit, and decoders. The circuit estimator is calibrated using
NeuroSim [95].

The circuit estimator evaluates the performance of the entire chiplet-based IMC
architecture, where each layer of the DNN is considered separately, and each chiplet is
responsible for computations for a subset of layers. The partition and mapping engine
provides the chiplet count, IMC crossbar count, and IMC utilization values for each
layer. The estimator estimates the area, energy, and latency from the device level to
the circuit and architecture levels, using user inputs such as technology node, IMC cell
type, IMC crossbar size, ADC precision, and read-out mode. For each IMC crossbar
within the chiplet, the cost of a single crossbar and its peripheral circuits are evaluated
to obtain the total area, energy, and latency of the IMC chiplet, which includes the
buffer cost, shift and adder circuitry, accumulator, pooling, and activation units. The
global accumulator and global buffer accumulate the partial sum of a layer across
chiplets at the chiplet-level. The estimator utilizes the number of additions performed,
data volume from each chiplet, and the accumulator size to determine the global
accumulator and buffer’s area, energy, and latency. Finally, the estimator repeats the
estimation for all chiplets required for a given layer of the DNN to determine the
overall hardware performance.

3.4.2 NoC Estimator

Effective communication is essential for achieving optimal hardware performance
in DNN accelerators [63]. In [103], communication-intensive DNN accelerators are
extensively discussed. Every layer of a DNN transmits a significant amount of data to
other layers. Studies have demonstrated that communication can account for up to
90% of the total inference latency in DNNs [45]. Therefore, it is vital to develop an
efficient communication protocol for DNNs. To achieve this goal, we incorporate the
cost of communication between multiple layers within a chiplet. As NoC is the stan-
dard interconnect fabric used in the SoC-domain [104], we consider using an NoC for
intra-chiplet communication. We customize a cycle-accurate NoC simulator, BookSim
[98], to evaluate NoC performance. First, we generate a trace file for each chiplet
following Algorithm 2. The algorithm considers the number of tiles, input activations,
chiplets, layer-to-chiplet mapping, quantization bit-precision, and bus width. We
then determine the source and destination tile information for each layer in each
chiplet. Next, we calculate the number of packets for each source-destination pair and
generate a trace file as a tuple consisting of the source tile ID, destination tile ID, and

16

Neuromorphic Computing

timestamp. Finally, we simulate the trace file using BookSim to obtain the area,
energy, and latency for on-chip communication within each chiplet.

3.5 NoP engine

Using specialized signaling techniques and driver circuits, the NoP handles on-chip
data movement between different chiplets. This is achieved through a silicon inter-
poser or organic substrate, as shown in [105, 106]. Figure 11 (left) shows the cross-
sectional image of a 2.5D integration with chiplets and an interposer. However,
modeling the NoP’s performance can be challenging due to its complex interconnect
structure, specialized driver architectures, and corresponding signaling techniques. To
accurately estimate performance, the NoP engine models each component of the NoP.
Figure 11 (right) shows different NoP implementations with the corresponding
energy-per-bit Ebitð Þ proposed in prior works. The NoP performance evaluation com-
prises two main components: (1) NoP latency estimation and (2) NoP area and power
estimation. To estimate NoP latency, the engine uses a cycle-accurate simulator to
evaluate the interconnect. It generates the NoP trace using Algorithm 2, similar to the
one used for NoCs, based on the chiplet-to-chiplet data volume generated by the
partition and mapping engine. The generated traces are simulated using a cycle-
accurate simulator or the NoP estimator to determine the latency of the NoP inter-
connect. To estimate NoP area and power consumption, the engine obtains intercon-
nect parameters such as wire length, pitch, width, and stack-up. The engine then
determines the interconnect capacitance and resistance using the PTM interconnect
models [107]. Based on these parameters, it generates timing parameters for the
interconnect and compares them to the target bandwidth. If the timing parameters do
not meet the bandwidth requirements, the NoP engine chooses the maximum allow-
able bandwidth.

The NoP engine evaluates the NoP transmitter/receiver (TX/RX) circuits, which
includes clocking circuitry, based on the energy per bit (Ebit), number of TX/RX
channels, bandwidth, chiplet-to-chiplet data volume, and operating frequency to
estimate the energy and latency cost of the TX/RX circuits. The energy calculation for
the NoP driver is provided in Algorithm 3. The NoP engine first calculates the number
of bits being transferred between chiplets. It then retrieves the energy per bit Ebitð Þ
from previous research, which is illustrated in Figure 11 (right). The total energy for
the TX/RX channel is computed by multiplying the number of bits and the energy per
bit, as indicated in line 9 of Algorithm 3. Afterward, the NoP engine determines the
NoP driver area using the NoP driver area cost from previous implementations

Figure 11.
(Left) Cross-sectional image of the NoP interconnect. The NoP is routed within the interposer connecting different
chiplets across the architecture.Μ bumps connect the chiplets to the interposer, (Right) Energy per bit for different
NoP driver circuit and signaling techniques proposed in prior works.

17

End-to-End Benchmarking of Chiplet-Based In-Memory Computing
DOI: http://dx.doi.org/10.5772/intechopen.111926

(Figure 11). Finally, the engine integrates the interconnect and driver performance
metrics to determine the overall NoP performance.

The functional flow of the NoP engine is summarized below:

• NoP trace generation based on the chiplet placement, inter-chiplet data transfer
volume, and inter-chiplet layer partition,

• NoP interconnect evaluation using a cycle-accurate simulator to generate energy,
latency, and area metrics,

• NoP router modeling and TX/RX driver based on real measurements. Finally, the
NoP engine combines the NoP driver and the interconnect metrics to generate
the overall NoP performance.

3.6 DRAM engine

The architecture of the IMC based on chiplets includes a DRAM chiplet that serves
as the external memory for the IMC chiplets. The DRAM engine estimates the external
memory access required for this architecture. The assumption is that the DRAM will
transfer the entire set of weights to the chiplet only once before performing the
inference task. This assumption remains constant across different architectural con-
figurations and inference runs for a specific DNN model. The DRAM engine includes
a DRAM request generator, RAMULATOR [108] for estimating the latency for DRAM
transactions, and VAMPIRE [109] to estimate the DRAM transaction power. The
DRAM choice depends on user input and currently supports DDR3 and DDR4
[110, 111]. For a given DNN model, the DRAM engine generates the required traces
and memory requests with timestamps, which include the location within the DRAM
memory and the operation. SIAM uses a customized version of the cycle-accurate
simulator RAMULATOR and the model-based power analysis tool VAMPIRE. To
reduce simulation time, the DRAM engine estimates smaller sets of instructions,
which are then multiplied by the total number of sets required to represent all the
weights in the DNN. An experiment was performed to calibrate the method (Fig-
ure 12(a) and (b)), which showed that a reduction of 50% of DRAM instructions to
the engine results in less than 2% EDP accuracy degradation than that at 100%
instructions. The overall EDP for different networks across different datasets for

Figure 12.
(a) The accuracy of EDP prediction for different numbers of instructions processed to represent 3000 DRAM
instructions. Reduction in the number of instructions to half results in less than 2% EDP accuracy degradation for
half the simulation time. (b) EDP of DRAM transactions (DDR4) for different DNNs. There is an exponential
increase in DRAM cost with an increase in DNN model size.

18

Neuromorphic Computing

DDR4 shows an exponential increase in EDP with the increase in the model size of the
DNN. The DRAM engine provides a fast and accurate estimation of external memory
access for the entire range of DNNs through this method. To summarize, the DRAM
engine’s execution involves the following essential steps:

• Generate DRAM requests based on the data precision and DNN model size,

• Calculate the latency cost of DRAM transactions using a customized version of
RAMULATOR, and calculate the power consumption by utilizing a customized
version of VAMPIRE,

• Combine the results to produce the total cost of DRAM access.

4. SIAM dataflow

This section outlines the default dataflow of the SIAM chiplet-based IMC architec-
ture. The computation dataflow is illustrated in Figure 13. Before starting the infer-
ence task, the weights are obtained from the DRAM and allocated to the IMC chiplets
according to the partition and mapping engine described in Section III-C. There are
two possible scenarios based on this: either no layer is spread across several chiplets, or
a layer is distributed across multiple chiplets. Let us consider the case where layer N of
the DNN is assigned to the first chiplet, as depicted in Figure 13(a). During compu-
tation, the entire layer is processed within one chiplet, generating the computed
output activations for layer N. The global accumulator and buffer are not utilized
during this process and are turned off. When the computation is done, the output
activations are sent to the chiplets that execute layer N + 1. If two chiplets are required
to map the weights for layer N + 1, the NoP transfers the output activation from layer

Figure 13.
Computation dataflow within the chiplet-based IMC architecture in SIAM. Two cases arise: (a) no layer is
partitioned across two or more chiplets and (b) a layer is partitioned across two or more chiplets.

19

End-to-End Benchmarking of Chiplet-Based In-Memory Computing
DOI: http://dx.doi.org/10.5772/intechopen.111926

N to both chiplets, as shown in Figure 13(a). Figure 13(b) presents the computation
flow for layer N + 1, where both chiplets execute computations in parallel. The
mapping ensures that an equal number of weights are assigned to each chiplet,
avoiding any workload imbalances. After the computation is completed, the generated
partial sums are aggregated using the global accumulator and buffer. Then, the accu-
mulated outputs from layer N + 1 are transferred to the chiplets that hold the weights
for layer N + 2. This process is repeated until all layers are processed and the final
output is generated. The algorithmic implementation of the dataflow used in the SIAM
IMC chiplet architecture is explained in Algorithm 4.

5. Conclusion

In this chapter, we discussed benchmarking chiplet-based IMC-based AI accelera-
tors. We discuss various IMC architectures proposed in the literature. CMOS- (e.g.,
SRAM) and memristor- (e.g., RRAM) based IMC architectures are discussed.
Although IMC improves the energy efficiency of computing elements, it increases on-
chip communication volume. To address this, we discuss chiplet-based in-memory
architectures. We also discuss different benchmarking simulators for monolithic and
chiplet-based IMC architectures in detail. Finally, we dive deeply into SIAM, a chiplet-
based IMC benchmarking simulator. SIAM provides a unified framework for perfor-
mance benchmarking of chiplet-based IMC architectures. SIAM supports both homo-
geneous (generic) and custom chiplet-based IMC architectures. Finally, SIAM interfaces
with popular deep learning frameworks such as PyTorch and TensorFlow and can be
integrated with modern NAS techniques.

Author details

Gokul Krishnan1, Sumit K. Mandal2, A. Alper Goksoy3, Zhenyu Wang1,
Chaitali Chakrabarti1, Jae-sun Seo1, Umit Y. Ogras3 and Yu Cao1*

1 School of Electrical, Computer, and Energy Engineering, Arizona State University,
Tempe, USA

2 Indian Institute of Science, Bangalore, India

3 University of Wisconsin-Madison, Madison, USA

*Address all correspondence to: yu.cao@asu.edu

©2023TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

20

Neuromorphic Computing

References

[1] Krizhevsky A, Sutskever I,
Hinton GE. Imagenet classification with
deep convolutional neural networks.
Advances in Neural Information
Processing Systems. 2012;1:1097-1105

[2]Deng L, Hinton G, Kingsbury B. New
types of deep neural network learning
for speech recognition and related
applications: An overview. In: 2013 IEEE
International Conference on Acoustics,
Speech and Signal Processing.
Vancouver, Canada: IEEE; 2013.
pp. 8599-8603

[3] Litjens G, Kooi T, Bejnordi BE,
Setio AAA, Ciompi F, Ghafoorian M,
et al. A survey on deep learning in
medical image analysis. Medical Image
Analysis. 2017;42:60-88

[4] Lin T-Y, Maire M, Belongie S,
Hays J, Perona P, Ramanan D, et al.
Microsoft coco: Common objects in
context. In: European Conference on
Computer Vision. Springer; 2014.
pp. 740-755

[5]Hamilton W, Ying Z, Leskovec J.
Inductive representation learning on
large graphs. Advances in Neural
Information Processing Systems. 2017;
30:1025-1035

[6] Liu B, Chen Y, Liu S, Kim H-S. Deep
learning in latent space for video
prediction and compression. Proceedings
of the IEEE/CVF Conference on
Computer Vision and Pattern
Recognition. 2021:701-710

[7]Rubinstein R, Bruckstein AM, Elad M.
Dictionaries for sparse representation
modeling. Proceedings of the IEEE.
2010;98(6):1045-1057

[8] Gagniuc PA. Markov Chains: From
Theory to Implementation and

Experimentation. John Wiley & Sons;
2017

[9]Kotsiantis SB. Decision trees: A recent
overview. Artificial Intelligence Review.
John Wiley & Sons Publisher; 2013;
39(4):261-283

[10] Pisner DA, Schnyer DM. Support
vector machine. In: Machine Learning.
Elsevier; 2020. pp. 101-121

[11]Goodfellow I, Bengio Y, Courville A.
Deep Learning. MIT Press; 2016

[12]Howard AG, Zhu M, Chen B,
Kalenichenko D, Wang W, Weyand T,
et al. Mobilenets: Efficient convolutional
neural networks for mobile vision
applications. arXiv Preprint arXiv:
1704.04861. 2017

[13] Szegedy C, Liu W, Jia Y, Sermanet P,
Reed S, Anguelov D, et al. Going deeper
with convolutions. In: Proceedings of the
IEEE Conference on Computer Vision
and Pattern Recognition, Boston. 2015.
pp. 1-9

[14]He K, Zhang X, Ren S, Sun J. Deep
residual learning for image recognition.
In: Proceedings of the IEEE Conference
on Computer Vision and Pattern
Recognition, Las Vegas. 2016.
pp. 770-778

[15]Huang G, Liu Z, Van Der Maaten L,
Weinberger KQ. Densely connected
convolutional networks. In: Proceedings
of the IEEE Conference on Computer
Vision and Pattern Recognition, Hawaii.
2017. pp. 4700-4708

[16] Iandola FN, Han S, Moskewicz MW,
Ashraf K, Dally WJ, Keutzer K.
Squeezenet: Alexnet-level accuracy with
50x fewer parameters and¡ 0.5 mb model

21

End-to-End Benchmarking of Chiplet-Based In-Memory Computing
DOI: http://dx.doi.org/10.5772/intechopen.111926

size. arXiv Preprint arXiv:1602.07360.
2016

[17] Krishnan G, Ma Y, Cao Y. Small-
world-based structural pruning for
efficient FPGA inference of deep neural
networks. In: 2020 IEEE 15th
International Conference on Solid-State
& Integrated Circuit Technology
(ICSICT). IEEE; 2020. pp. 1-5

[18] Krishnan G, Du X, Cao Y. Structural
pruning in deep neural networks: A
small-world approach. arXiv Preprint
arXiv:1911.04453. 2019

[19]Du X, Krishnan G, Mohanty A, Li Z,
Charan G, Cao Y. Towards efficient
neural networks on-a-chip: Joint
hardware-algorithm approaches. In:
2019 China Semiconductor Technology
International Conference (CSTIC).
Shanghai, China: IEEE; 2019. pp. 1-5

[20] Zoph B, Vasudevan V, Shlens J,
Le QV. Learning transferable
architectures for scalable image
recognition. In: Proceedings of the IEEE
Conference on Computer Vision and
Pattern Recognition, Salt Lake City,
Utah. 2018. pp. 8697-8710

[21]Wu B, Dai X, Zhang P, Wang Y,
Sun F, Wu Y, et al. Fbnet: Hardware-
aware efficient convnet design via
differentiable neural architecture search.
In: Proceedings of the IEEE/CVF
Conference on Computer Vision and
Pattern Recognition, Long Beach,
California. 2019. pp. 10734-10742

[22] Real E, Aggarwal A, Huang Y,
Le QV. Regularized evolution for image
classifier architecture search.
Proceedings of the AAAI Conference on
Artificial Intelligence. 2019;33(01):
4780-4789

[23] Liu C, Zoph B, Neumann M,
Shlens J, Hua W, Li L-J, et al. Progressive

neural architecture search. In:
Proceedings of the European Conference
on Computer Vision (ECCV), Munich,
Germany. 2018. pp. 19-34

[24] Zhou D, Zhou X, Zhang W, Loy CC,
Yi S, Zhang X, et al. Econas: Finding
proxies for economical neural
architecture search. In: Proceedings of
the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2020.
pp. 11396-11404

[25] Tan M, Chen B, Pang R,
Vasudevan V, Sandler M, Howard A,
et al. Mnasnet: Platform-aware neural
architecture search for mobile. In:
Proceedings of the IEEE/CVF
Conference on Computer Vision and
Pattern Recognition, Long Beach,
California. 2019. pp. 2820-2828

[26] Jordan MI. Serial order: A parallel
distributed processing approach.
Advances in Psychology. 1997;121:
471-495

[27] Sutskever I, Vinyals O, Le QV.
Sequence to sequence learning with
neural networks. Advances in Neural
Information Processing Systems. 2014;2:
3104-3112

[28] Lipton ZC, Berkowitz J, Elkan C. A
critical review of recurrent neural
networks for sequence learning. arXiv
Preprint arXiv:1506.00019. 2015

[29]Hochreiter S, Schmidhuber J. Long
short-term memory. Neural
Computation. 1997;9(8):1735-1780

[30] Schuster M, Paliwal KK.
Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing.
1997;45(11):2673-2681

[31]M. Gori, G. Monfardini, and F.
Scarselli, A new model for learning in

22

Neuromorphic Computing

graph domains. In: Proceedings 2005
IEEE International Joint Conference on
Neural Networks. Vol. 2. Montreal,
Canada: IEEE; 2005. pp. 729–734

[32] Scarselli F, Gori M, Tsoi AC,
Hagenbuchner M, Monfardini G. The
graph neural network model. IEEE
Transactions on Neural Networks. 2008;
20(1):61-80

[33]Gallicchio C, Micheli A. Graph echo
state networks. In: The 2010
International Joint Conference on Neural
Networks (IJCNN). Barcelona, Spain:
IEEE; 2010. pp. 1-8

[34] Liu Z, Chen C, Li L, Zhou J, Li X,
Song L, et al. Geniepath: Graph neural
networks with adaptive receptive paths.
Proceedings of the AAAI Conference on
Artificial Intelligence. 2019;33(01):
4424-4431

[35] Xu K, Hu W, Leskovec J, Jegelka S.
How powerful are graph neural
networks? arXiv Preprint arXiv:
1810.00826. 2018

[36] Chiang W-L, Liu X, Si S, Li Y,
Bengio S, Hsieh C-J. Cluster-gcn: An
efficient algorithm for training deep and
large graph convolutional networks. In:
Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge
Discovery & Data Mining, Anchorage,
Alaska. 2019. pp. 257-266

[37] Simonovsky M, Komodakis N.
Graphvae: Towards generation of small
graphs using variational autoencoders.
In: International Conference on Artificial
Neural Networks. Springer; 2018.
pp. 412-422

[38]Ma T, Chen J, Xiao C. Constrained
generation of semantically valid graphs
via regularizing variational
autoencoders. arXiv Preprint arXiv:
1809.02630. 2018

[39]De Cao N, Kipf T. Molgan: An
implicit generative model for small
molecular graphs. arXiv Preprint arXiv:
1805.11973. 2018

[40]Horowitz M. Computing’s energy
problem (and what we can do about it).
IEEE ISSCC. 2014:10-14

[41] Gholami A, Kim S, Dong Z, Yao Z,
Mahoney MW, Keutzer K. A survey of
quantization methods for efficient
neural network inference. arXiv Preprint
arXiv:2103.13630. 2021

[42] Krishnan G, Goksoy AA, Mandal SK,
Wang Z, Chakrabarti C, Seo J-s, et al. Big-
little chiplets for in-memory acceleration
of DNNS: A scalable heterogeneous
architecture. In: Proceedings of the 41st
IEEE/ACM International Conference on
Computer-Aided Design, San Diego,
California. 2022. pp. 1-9

[43]Wang Z, Nair GR, Krishnan G,
Mandal SK, Cherian N, Seo J-s, et al. AI
computing in light of 2.5 d interconnect
roadmap: Big-little chiplets for in-memory
acceleration. In: 2022 International
Electron Devices Meeting (IEDM). San
Francisco, California: IEEE; 2022.
pp. 23-26

[44] Shafiee A et al. ISAAC: A
convolutional neural network
accelerator with in-situ analog
arithmetic in crossbars. ACM SIGARCH
Computer Architecture News. 2016;
44(3):14-26

[45] Krishnan G, Mandal SK,
Chakrabarti C, Seo J-s, Ogras UY, Cao Y.
Interconnect-aware area and energy
optimization for in-memory acceleration
of DNNS. IEEE Design & Test. 2020;
37(6):79-87

[46] Krishnan G, Mandal SK, Pannala M,
Chakrabarti C, Seo J-s, Ogras UY, et al.

23

End-to-End Benchmarking of Chiplet-Based In-Memory Computing
DOI: http://dx.doi.org/10.5772/intechopen.111926

SIAM: Chiplet-based scalable in-memory
acceleration with mesh for deep neural
networks. ACM Transactions on
Embedded Computing Systems (TECS).
2021;20(5s):1-24

[47] Song L, Qian X, Li H, Chen Y.
Pipelayer: A pipelined ReRAM-based
accelerator for deep learning. In: 2017
IEEE International Symposium on High
Performance Computer Architecture
(HPCA), Austin, Texas. 2017. pp. 541-552

[48] Valavi H, Ramadge PJ, Nestler E,
Verma N. A 64-tile 2.4-mb in-memory-
computing CNN accelerator employing
charge-domain compute. IEEE Journal of
Solid-State Circuits. 2019;54(6):
1789-1799

[49] Yin S, Zhang B, Kim M, Saikia J,
Kwon S, Myung S, et al. Pimca: A 3.4-MB
programmable in-memory computing
accelerator in 28 nm for on-chip DNN
inference. In: 2021 Symposium on VLSI
Technology. Kyoto, Japan: IEEE; 2021.
pp. 1-2

[50] Yin S, Jiang Z, Kim M, Gupta T,
Seok M, Seo J-s. Vesti: Energy-efficient
in-memory computing accelerator for
deep neural networks. IEEE Transactions
on Very Large Scale Integration (VLSI)
Systems. 2019;28(1):48-61

[51] Yin S, Jiang Z, Seo J-s, Seok M.
XNOR-SRAM: In-memory computing
SRAM macro for binary/ternary deep
neural networks. IEEE Journal of Solid-
State Circuits. 2020;55(6):1733-1743

[52] Jiang Z, Yin S, Seo J-s, Seok M.
C3SRAM: An in-memory-computing
SRAM macro based on robust capacitive
coupling computing mechanism. IEEE
Journal of Solid-State Circuits. 2020;
55(7):1888-1897

[53] Chih Y-D, Lee P-H, Fujiwara H, Shih
Y-C, Lee C-F, Naous R, et al. An 89tops/

w and 16.3 tops/mm 2 all-digital SRAM-
based full-precision compute-in memory
macro in 22nm for machine-learning
edge applications. In: 2021 IEEE
International Solid-State Circuits
Conference (ISSCC). Vol. 64. San
Francisco, California: IEEE; 2021.
pp. 252-254

[54] Kim H, Yoo T, Kim TT-H, Kim B.
Colonnade: A reconfigurable SRAM-
based digital bit-serial compute-in-
memory macro for processing neural
networks. IEEE Journal of Solid-State
Circuits. 2021;56(7):2221-2233

[55] Yue J, Liu Y, Yuan Z, Feng X, He Y,
Sun W, et al. Sticker-IM: A 65 nm
computing-in-memory NN processor
using block-wise sparsity optimization
and inter/intra-macro data reuse. IEEE
Journal of Solid-State Circuits. 2022;57
(8):2560-2573

[56] Fujiwara H, Mori H, Zhao W-C,
Chuang M-C, Naous R, Chuang C-K,
et al. A 5-nm 254-tops/w 221-tops/mm 2
fully-digital computing-in-memory
macro supporting wide-range dynamic-
voltage-frequency scaling and
simultaneous mac and write operations.
In: 2022 IEEE International Solid-State
Circuits Conference (ISSCC). Vol. 65.
San Francisco, California: IEEE; 2022.
pp. 1-3

[57] Spetalnick SD, Chang M, Crafton B,
Khwa W-S, Chih Y-D, Chang M-F, et al.
A 40nm 64kb 26.56 tops/w 2.37 mb/mm
2 rram binary/compute-in-memory
macro with 4.23 x improvement in
density and 75% use of sensing dynamic
range. In: 2022 IEEE International Solid-
State Circuits Conference (ISSCC).
Vol. 65. San Francisco, California: IEEE;
2022. pp. 1-3

[58]Mao M et al. MAX2: An ReRAM-
based neural network accelerator that
maximizes data reuse and area

24

Neuromorphic Computing

utilization. IEEE Journal on Emerging
and Selected Topics in Circuits and
Systems. 2019;9(2):398-410

[59] Liehr M, Hazra J, Beckmann K,
Rafiq S, Cady N. Impact of switching
variability of 65nm CMOS integrated
hafnium dioxide-based ReRAM devices
on distinct level operations. In: IIRW.
IEEE; 2020. pp. 1-4

[60] Krishnan G, Sun J, Hazra J, Du X,
Liehr M, Li Z, et al. Robust RRAM-based
in-memory computing in light of model
stability. In: IRPS. IEEE; 2021. pp. 1-5

[61] Krishnan G, Yang L, Sun J, Hazra J,
Du X, Liehr M, et al. Exploring model
stability of deep neural networks for
reliable RRAM-based in-memory
acceleration. IEEE Transactions on
Computers. 2022;71(11):2740-2752

[62]He W, Yin S, Kim Y, Sun X,
Kim J-J, Yu S, et al. 2-bit-per-cell
RRAM-based in-memory computing for
area-/energy-efficient deep learning.
IEEE Solid-State Circuits Letters. 2020;3:
194-197

[63]Mandal SK, Krishnan G,
Chakrabarti C, Seo J-s, Cao Y, Ogras UY.
A latency-optimized reconfigurable
NOC for in-memory acceleration of
DNNS. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems.
2020;10(3):362-375

[64] Krishnan G, Wang Z, Yang L, Yeo I,
Meng J, Joshi RV, et al. IMC architecture
for robust DNN acceleration. In: 2022
IEEE 16th International Conference on
Solid-State & Integrated Circuit
Technology (ICSICT). IEEE; 2022.
pp. 1-4

[65] Krishnan G, Wang Z, Yeo I, Yang L,
Meng J, Liehr M, et al. Hybrid RRAM/
SRAM in-memory computing for robust
DNN acceleration. IEEE Transactions on

Computer-Aided Design of Integrated
Circuits and Systems. 2022;41(11):
4241-4252

[66]Moitra A, Bhattacharjee A, Kuang R,
Krishnan G, Cao Y, Panda P. Spikesim:
An end-to-end compute-in-memory
hardware evaluation tool for
benchmarking spiking neural networks.
arXiv Preprint arXiv:2210.12899. 2022

[67] Krishnan G. Energy-Efficient In-
Memory Acceleration of Deep Neural
Networks Through a Hardware-Software
Co-Design Approach [Technical Report].
Arizona State University; 2022

[68] Si X, Chen J-J, Tu Y-N, Huang W-H,
Wang J-H, Chiu Y-C, et al. 24.5 a twin-8t
SRAM computation-in-memory macro
for multiple-bit CNN-based machine
learning. In: 2019 IEEE International
Solid-State Circuits Conference-
(ISSCC). San Francisco, California:
IEEE; 2019. pp. 396-398

[69] Dong Q, Sinangil ME, Erbagci B,
Sun D, Khwa W-S, Liao H-J, et al. 15.3 a
351tops/w and 372.4 GOPS compute-in-
memory SRAM macro in 7 nm finfet
CMOS for machine-learning
applications. In: 2020 IEEE International
Solid-State Circuits Conference-
(ISSCC). San Francisco, California:
IEEE; 2020. pp. 242-244

[70] Su J-W, Si X, Chou Y-C, Chang T-
W, Huang W-H, Tu Y-N, et al. 15.2 a
28nm 64kb inference-training two-way
transpose multibit 6t sram compute-in-
memory macro for ai edge chips. In:
2020 IEEE International Solid-State
Circuits Conference-(ISSCC). San
Francisco, California: IEEE; 2020.
pp. 240-242

[71] Seo JS, Saikia J, Meng J, He W, Suh
HS, Liao Y, et al. Digital Versus Analog
Artificial Intelligence Accelerators:

25

End-to-End Benchmarking of Chiplet-Based In-Memory Computing
DOI: http://dx.doi.org/10.5772/intechopen.111926

Advances, trends, and emerging designs.
IEEE Solid-State Circuits Magazine.
2022;14(3):65-79

[72] Kang M, Kim Y, Patil AD,
Shanbhag NR. Deep in-memory
architectures for machine learning–
accuracy versus efficiency trade-offs.
IEEE Transactions on Circuits and
Systems I: Regular Papers. 2020;67(5):
1627-1639

[73] Zhang J, Wang Z, Verma N. In-
memory computation of a machine-
learning classifier in a standard 6t sram
array. IEEE Journal of Solid-State
Circuits. 2017;52(4):915-924

[74] Krishnan G, Hazra J, Liehr M, Du X,
Beckmann K, Joshi RV, et al. Design
limits of in-memory computing: Beyond
the crossbar. In: 2021 5th IEEE Electron
Devices Technology & Manufacturing
Conference (EDTM). Chengdu, China:
IEEE; 2021. pp. 1-3

[75] Cherupally SK, Meng J, Rakin AS,
Yin S, Yeo I, Yu S, et al. Improving the
accuracy and robustness of rram-based
in-memory computing against rram
hardware noise and adversarial attacks.
Semiconductor Science and Technology.
2022;37(3):034001

[76] Long Y, She X, Mukhopadhyay S.
Design of reliable DNN accelerator with
un-reliable ReRAM. In: DATE. Grenoble
France: IEEE; 2019. pp. 1769-1774

[77]Ma C et al. Go unary: A novel
synapse coding and mapping scheme for
reliable Reram-based neuromorphic
computing. In: DATE. Grenoble France:
IEEE; 2020. pp.1432-1437

[78] Chakraborty I, Ali MF, Kim DE,
Ankit A, Roy K. Geniex: A generalized
approach to emulating non-ideality in
memristive Xbars using neural networks.
In: 2020 57th ACM/IEEE Design

Automation Conference (DAC), San
Francisco, California. 2020. pp. 1-6

[79] Charan G et al. Accurate inference
with inaccurate RRAM devices:
Statistical data, model transfer, and on-
line adaptation. In: DAC. San Francisco,
California: IEEE; 2020. pp. 1-6

[80] Sun Y et al. Unary coding and
variation-aware optimal mapping
scheme for reliable ReRAM-based
neuromorphic computing. TCAD.
2021;40(12):2495-2507

[81] Zhou C, Kadambi P, Mattina M,
Whatmough PN. Noisy machines:
Understanding noisy neural networks
and enhancing robustness to analog
hardware errors using distillation. arXiv
Preprint arXiv:2001.04974. 2020

[82] Yang X et al. Multi-objective
optimization of ReRAM crossbars for
robust DNN inferencing under
stochastic noise. In: ICCAD. IEEE/ACM;
2021. pp. 1-9

[83] Joshi V et al. Accurate deep neural
network inference using computational
phase-change memory. Nature
Communications. 2020;11(1):2473

[84] Charan G, Mohanty A, Du X,
Krishnan G, Joshi RV, Cao Y. Accurate
inference with inaccurate RRAM
devices: A joint algorithm-design
solution. IEEE Journal on Exploratory
Solid-State Computational Devices and
Circuits. 2020;6(1):27-35

[85]Hu M, Li H, Chen Y, Wu Q,
Rose GS. BSB training scheme
implementation on memristor-based
circuit. In: IEEE CISDA. Singapore: IEEE;
2013. pp. 80-87

[86] Liu B et al. Reduction and IR-drop
compensations techniques for reliable

26

Neuromorphic Computing

neuromorphic computing systems. In:
ICCAD. San Jose, CA: IEEE; 2014.
pp. 63-70

[87] Chen L et al. Accelerator-friendly
neural-network training: Learning
variations and defects in RRAM crossbar.
In: DATE. Lausanne, Switzerland: IEEE;
2017. pp. 19-24

[88]Mohanty A et al. Random sparse
adaptation for accurate inference with
inaccurate multi-level RRAM arrays. In:
IEDM. San Francisco: IEEE; 2017. pp. 3-6

[89] Saikia J, Yin S, Cherupally SK,
Zhang B, Meng J, Seok M, et al. Modeling
and optimization of sram-based in-
memory computing hardware design. In:
2021 Design, Automation & Test in
Europe Conference & Exhibition
(DATE). IEEE; 2021. pp. 942-947

[90] Bharadwaj S, Yin J, Beckmann B,
Krishna T. Kite: A family of
heterogeneous interposer topologies
enabled via accurate interconnect
modeling. In: 2020 57th ACM/IEEE
Design Automation Conference (DAC).
San Francisco, California: IEEE; 2020.
pp. 1-6

[91] Vivet P, Guthmuller E, Thonnart Y,
Pillonnet G, Fuguet C, Miro-Panades I,
et al. IntAct: A 96-core processor with six
chiplets 3D-stacked on an active
interposer with distributed interconnects
and integrated power management.
IEEE Journal of Solid-State Circuits.
2020;56(1):79-97

[92] Shao YS, Clemons J, Venkatesan R,
Zimmer B, Fojtik M, Jiang N, et al.
Simba: Scaling deep-learning inference
with multi-chip-module-based
architecture. In: Proceedings of the 52nd
Annual IEEE/ACM International
Symposium on Microarchitecture,
Columbus, Ohio. 2019. pp. 14-27

[93] Chen P-Y, Peng X, Yu S. Neurosim:
A circuit-level macro model for
benchmarking neuro-inspired
architectures in online learning. IEEE
Transactions on Computer-Aided Design
of Integrated Circuits and Systems. 2018;
37(12):3067-3080

[94] Zhao W, Cao Y. New generation of
predictive technology model for sub-45
nm early design exploration. IEEE
Transactions on Electron Devices. 2006;
53(11):2816-2823

[95] Peng X, Huang S, Luo Y, Sun X,
Yu S. DNN+ NeuroSim: An end-to-end
benchmarking framework for compute-
in-memory accelerators with versatile
device technologies. In: 2019 IEEE
International Electron Devices Meeting
(IEDM), San Francisco, California. 2019.
pp. 32-35

[96] Krishnan G, Mandal SK,
Chakrabarti C, Seo J-s, Ogras UY, Cao Y.
Impact of on-chip interconnect on in-
memory acceleration of deep neural
networks. ACM Journal on Emerging
Technologies in Computing Systems
(JETC). 2021;18(2):1-22

[97] Krishnan G, Mandal SK,
Chakrabarti C, Seo J-s, Ogras UY, Cao Y.
Interconnect-centric benchmarking of
in-memory acceleration for DNNS. In:
2021 China Semiconductor Technology
International Conference (CSTIC).
Shanghai, China: IEEE; 2021. pp. 1-4

[98] Jiang N et al. A detailed and flexible
cycle-accurate network-on-chip
simulator. In: 2013 IEEE International
Symposium on Performance Analysis of
Systems and Software (ISPASS). Austin,
Texas: IEEE; 2013. pp. 86-96

[99] Zhu Z, Sun H, Qiu K, Xia L,
Krishnan G, Dai G, et al. MNSIM 2.0: A
behavior-level modeling tool for
memristor-based neuromorphic

27

End-to-End Benchmarking of Chiplet-Based In-Memory Computing
DOI: http://dx.doi.org/10.5772/intechopen.111926

computing systems. In: Proceedings of
the 2020 on Great Lakes Symposium on
VLSI, Beijing, China. 2020. pp. 83-88

[100] Jain S, Sengupta A, Roy K,
Raghunathan A. RxNN: A framework for
evaluating deep neural networks on
resistive crossbars. IEEE Transactions on
Computer-Aided Design of Integrated
Circuits and Systems. 2020;40(2):326-338

[101] Peng X, Huang S, Jiang H, Lu A,
Yu S. DNN+ NeuroSim V2. 0: An end-to-
end benchmarking framework for
compute-in-memory accelerators for on-
chip training. IEEE Transactions on
Computer-Aided Design of Integrated
Circuits and Systems. 2020;40(11):
2306-2319

[102] Jiang H, Huang S, Peng X, Su J-W,
Chou Y-C, HuangW-H, et al. A two-way
SRAM array based accelerator for deep
neural network on-chip training. In:
2020 57th ACM/IEEE Design
Automation Conference (DAC), San
Francisco, California. 2020. pp. 1-6

[103]Nabavinejad SM, Baharloo M, Chen
K-C, Palesi M, Kogel T, Ebrahimi M. An
overview of efficient interconnection
networks for deep neural network
accelerators. IEEE Journal on Emerging
and Selected Topics in Circuits and
Systems. 2020;10(3):268-282

[104] Jeffers J et al. Intel Xeon Phi
Processor High Performance
Programming. Knights Landing Edition;
2016

[105] Poulton JW et al. A 0.54 pJ/b 20Gb/
s ground-referenced single-ended short-
haul serial link in 28nm CMOS for
advanced packaging applications. In:
2013 IEEE ISSCC. San Francisco,
California: IEEE; 2013. pp. 404-405

[106] Lin M-S et al. A 7-nm 4-GHz
Arm1-core-based CoWoS1 chiplet design

for high-performance computing. IEEE
Journal of Solid-State Circuits. 2020;
55(4):956-966

[107] Sinha S, Yeric G, Chandra V,
Cline B, Cao Y. Exploring sub-20nm
FinFET design with predictive
technology models. In: DAC 2012. San
Francisco, California: IEEE; 2012.
pp. 283-288

[108] Kim Y, Yang W, Mutlu O.
RAMULATOR: A fast and extensible
DRAM simulator. IEEE Computer
Architecture Letters. 2015;15(1):45-49

[109] Ghose S et al. What your
DRAM power models are not telling
you: Lessons from a detailed
experimental study. Proceedings of
the ACM on Measurement and
Analysis of Computing Systems. 2018;
2(3):1-41

[110]MICRON, Datasheet for DDR3
model, 2011. Available at: https://media-
www.micron.com/-/media/client/global/
documents/products/data-sheet/dram/
ddr3/2gb_ddr3l-rs.pdf?rev=f43686e
89394458caff410138d9d2152 (Accessed
March 29, 2021).

[111]MICRON, Datasheet for DDR4
model. 2014. Available at: https://www.
micron.com/-/media/client/global/doc
uments/products/data-sheet/dram/dd
r4/4gb_ddr4_dram_2e0d.pdf [Accessed
March 29, 2021].

28

Neuromorphic Computing

