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Chapter

Role of Dopamine Receptors in 
Olfaction Learning Success
Muhammad Fahad Raza

Abstract

Several biogenic amines neurotransmitters are involved in various social 
behaviors, including olfaction learning behavior, cast differentiation, generation 
overlapping and sociability in honeybees. One of the brain’s primary functions is 
remembering and learning the information related to food and odor. Dopamine (DA) 
is an important signaling molecule derived from the amino acid tyrosine. It is also 
known as a key neurohormone, neuromodulator and neurotransmitter in vertebrates 
as well as invertebrates and several studies indicated their important role in olfaction 
success, rewarding prediction, learning, memory, motor functions, sleep and arousal, 
aggression, and numerous other behaviors. Evidence suggests that DA plays several 
roles in honeybees, especially in olfaction success. Three DA receptors, AmDOP1, 
AmDOP2 and AmDOP3, have been characterized and clones. In this chapter, I focus 
on the regulation and involvement of the DA in olfactory learning behavior, locomotor 
function, motivation, and happy memories. This chapter represents an attempt to 
associate the role of dopamine receptors in olfaction success in honeybees.

Keywords: honeybees, neurotransmitters, dopamine receptors, olfactory learning 
behavior, olfaction success

1. Introduction

As the population of human grows, habitat loss caused by anthropogenic landscape 
changes endangers the health and survival of several species. Because of the rising need 
for food and biofuels due to human population growth, more land must be devoted 
to agricultural output [1]. To accommodate this need, the usage of land has changed 
globally, with natural areas and smaller-scale agricultural operations being converted 
into high-yielding monocultures, but at a cost [2, 3]. Monocultures may significantly 
affect water, soil, and air quality. When combined with the destruction of natural, 
noncrop habitats, this type of agriculture has been linked to pollinator population 
decreases [4]. Concerns have been raised about diminished pollination of crops and 
wild plants, which might lead to decreased agricultural productivity and ecological 
service delivery. Honeybees are known as the most economical and important pollina-
tor insects worldwide [5]. Like other pollinating bee species, recently, honeybees faced 
harsh environmental factors that caused as high as 65% colony losses worldwide. This 
rate is more significant than apiculturist believes acceptable because of higher expenses 
for hired pollination services. Several stresses, including genetic, neuroscience, biotic, 
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abiotic, nutritional shortage, and pesticide exposure, are known as potentially interact-
ing stressors, and all are correlated with anthropogenic influence [6].

All social insects interact with our environment for survival through olfactory 
learning behavior. Among all social insects, Honeybees are important insects of 
biodiversity on which our planet depends for survival; they provide us with high-
quality food and other product such as royal jelly, honey, pollen, beeswax, bee venom 
and propolis [7]. The honeybee is an essential pollinator for our planet’s survival. 
Honeybees have olfaction behavior for their survival and food seeking. The seeking of 
food and water resources exposes honeybees to conspecific competition and preda-
tion, leading to learning behavior responses to smell, visual cues, specific locations 
and other relevant stimuli [8, 9]. The olfactory learning behavior is more critical for 
the survival of the colony and seeking of nectar, pollen and water. This form of learn-
ing plays a significant role in foraging and food collection [10].

2. Types of learning behaviors in honeybees

For neuroethological research, insects are considered favorable organisms due to 
their nervous system and tiny brain. Insects’ central nervous system CNS is highly 
organized, with distinct separations between multisensory neuropils in the brain and 
sensory-motor neuropils in the ventral cord [11].

The insects have rich behaviors, including visual, space, time, mechanical commu-
nication, chemical communication, and complicated motor functioning for olfactory 
learning walking, flying, nest building, defense, swimming, learning and memory; 
however, these behaviors are not generally regarded as strengths of insects [12]. 
After all, genetically designed neural circuitry frequently considers insect behaviors 
highly standardized and tightly controlled. This viewpoint, however, does not do 
credit to the insect group Hymenoptera (wasps, bees, ants). Most insect species 
of Hymenoptera care for their brood either as a female social group or individual 
females. Subsequently, they return to their nesting site on a daily basis to protect, 
feed, store food, feed to larvae and defend themself from unfavorable environmental 
circumstances [13]. Because they seek food (pollen, prey and nectar on blossoms) 
in unexpected places, they must learn terrestrial and celestial cues that drive their 
long-distance foraging trips and enable them to locate their nest locations [14]. The 
forager’s bees learn to position of sun and the pattern of the sky of polarized sunlight 
to the time of day [15] and locations are remembered in connection to the nesting spot 
using the time-compensated sun compass. The bees communicate the distance and 
direction of a food place to colony mates by performing waggle dance (a performed 
body movement). Associative learning is essential to dance communication and bee 
foraging activity [15]. Colony mates observing a dance show recognize the odor emit-
ted by the dancing bee and seek it out at the designated food location. Flowers’ color, 
shape and odor are remembered when the individual bees learn this stimulus shortly 
before discovering water and food (pollen, nectar) [16]. This appetitive form of 
learning behavior in honeybees has several traits of associative learning famous from 
research on the learning behavior of mammals [17]. It follows the principles of oper-
ant and classical conditions, respectively, so behavioral or stimuli acts are related to 
evaluating motivation. Because associative learning, particularly classical associative 
learning, is well explained at the operational and phenomenological levels, it offers 
a promising strategy in the hunt for the neural substrate underpinning learning and 
memory [18]. The homeostasis, survival and progress of honeybee colonies always 
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rely on the coordination’s and contribution of each bee in a hive. Several studies 
have been conducted on the social behavior response of honeybees and also on other 
Hymenopteran insects [19].

3. Olfactory learning behavior

The appetitive associative behavior type is crucial in foragers’ honeybee’s species. 
The foragers’ bees quickly learn to associate olfactory and visual stimuli with sugar 
solution/food reward, establishing a long-lasting remembrance of this association. 
Under controlled laboratory conditions, the worker bees can also remember/learn 
to respond to odor stimuli. In what has known as PER paradigm or proboscis exten-
sion response [20]. Usually, A bee harnessed in a metal or plastic tube learns to link 
a sucrose reward with an odor stimulation presented directly before the reward is 
given. Memory formation is evidenced when the harnessed bee extends its proboscis in 
response to the learned odor in anticipation of the sucrose reward. This form of classi-
cal conditioning has been successfully used to characterize multiple characteristics of 
associative learning and has shown potential in Apis florea and Apis cerana [21, 22].

4. Role of biogenic amines in the olfaction success of honeybee

Natural selection has shaped the brain to learn to associate cues that predict the 
occurrence of nutritious food. Sensory input is organized to produce memory traces 
for food stored for retrieval when animals are hungry so that animals can identify 
signals associated with nutritional rewards and avoid irrelevant or intoxication signals. 
Numerous biogenic amines receptors play a significant role in different types of 
behavior, such as social behavior [7]; among all biogenic amine receptors, dopamine, 
octopamine and serotonin receptors are considered primary biogenic amine receptors. 
The biogenic amines (BAs) neurotransmitters are key modulators and perform biologi-
cal activities in animals, plants and microorganisms, BAs are responsible for executing 
and regulating the multiple behavioral and physiological activities in the body of 
honeybees as neurotransmitters, neurohormones and neuromodulators (Figure 1).

Figure 1. 
Schematic diagram of dopamine receptor subtypes.
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Receptors Function Location Mechanism Type Selective agonist Selective antagonist

D2 Reproductive behavior, 

Locomotion, Sleep, 

Attention

VTA, Olfactory bulb, 

Striatum, Cerebral 

cortex

Increased level of 

cAMP intracellular by 

activating adenylate 

cyclase

Gi-coupled • Bromocriptine

• Pergolide

• Cabergoline

• Ropinirole

• Haloperidol

• Raclopride

• Sulpiride

• Spiperone

• Risperidone

D3 Locomotion, Regulation 

of food intake, Impulse 

control, Cognition

Cortex Islands of Calleja 

Striatum

Gi-coupled • Nafadotride

• GR-103691

• GR-218231

• SB-277011A NGB-2904

• PG-01037ABT-127

• 7-OH-DPAT

• Pramipexole

• Rotigotine

• PD-128907

D4 • Attention

• Impulse control

• Reproductive behavior

• Hypothalamus

• Amygdala

• Frontal cortex

• Nucleus accumbens

Gi-coupled • A-381393

• FAUC213L-745,870

• L-750667

• A-412997

• ABT-670

• PD-168077

D1 • Attention

• Learning

• Locomotion

• Sleep

• Impulse control

• Regulation of renal 

function

• Memory

• Olfactory bulb

• Nucleus accumbens

• Striatum

• Amygdala

• Hippocampus

• Frontal cortex

• Substantia nigra

• Hypothalamus

Enhanced 

intracellular

cAMP through

activated adenylate 

cyclase

Gs-coupled • KF-81297

• SKF-38393Fenoldopa

• (SKF-82526)

• SCH-39166

• SKF-83566

• SCH-23390
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Receptors Function Location Mechanism Type Selective agonist Selective antagonist

D5 • Motor

• Learning

• Cognition

• Decision

• Making

• Renin

• Secretion

• Hypothalamus

• Substantia nigra

• Cortex

Adenylate cyclase Gs-coupled

Table 1. 
Functional and physiological knowledge of dopamine receptors.
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Several BAs, such as dopamine, serotonin, octopamine and tyramine, are crucial 
for olfactory learning behavior in honeybees [23]. Among all these BAs, dopamine 
is the major receptor and performs a vital role in the olfaction success of honeybees. 
In both vertebrates and invertebrates of the animal kingdom, dopamine receptors 
are present in the central nervous system and regulate multiple tasks. The dopa-
mine receptors are divided into two families D1-like family and D2-like families. 
The D1-like family (D1, D5) and D2-like family (D2, D3, D4) actively regulate and 
modulate cell proliferation, differentiation, the release of cyclic adenosine mono-
phosphate (cAMP) and other neurotransmitters also [24]. In this chapter, we focused 
on the learning behaviors of honeybees, especially olfactory learning behavior. Our 
focus is the practical functions of dopamine receptors, including olfactory learning, 
motivation, social behaviors, reward system, cognition, movement, emotion, etc., 
for forming appetitive and aversive learning [25]. Dopamine receptors catecholamine 
neurotransmitters work as catecholamine release, vascular tone, cardiovascular func-
tion, gastrointestinal motility, hormone secretion and renal function. The scientific 
community has been investigating over four decades that several diseases like schizo-
phrenia, hyperprolactinemia, Tourette’s syndrome and Parkinson’s disease have been 
associated with dysregulation (erratic breathing, heart rate, thinking and behavior) 
of transmission of dopamine neurotransmitters [26].

D1-like receptors (D1 and D5) are located in different body parts. Dopamine D1 
receptors are usually located at the Olfactory bulb, nucleus accumbens, striatum, 
amygdala, hippocampus, frontal cortex, substantia nigra, and hypothalamus and 
perform various functions, including Attention, learning, locomotion, sleep, impulse 
control, regulation of renal function and memory. Table 1 shows the details and 
knowledge of the function, location, mechanism, type, selective agonist and selective 
antagonist of all dopamine receptors.

Dopamine receptors control olfactory learning behaviors and insect reproduction 
[27]. These receptors are responsible for various bodily functions, but dopamine 
receptors’ major functions are reward-seeking, learning and other physiological 
properties. These receptors have distinct patterns and functional properties to 
compose the learning and memory in the brain. In insects like honeybees, Drosophila 
melanogaster and rodents, dopamine receptors and the basolateral amygdala are 
critically important for learning behavior. The mushroom bodies (MB) of Drosophila 
melanogaster and honeybees have a rich center for dopamine for olfactory learn-
ing and olfaction success and also provide a tractable mechanism to investigate the 
interaction between olfactory learning and dopamine receptors [28, 29]. This chapter 
will provide the basic interaction of dopamine receptors and olfactory learning 
behavior; olfactory learning behavior is important for colony survival. The functions 
of dopamine provide concrete evidence of how dopamine receptors are crucial and 
contribute to honeybees’ olfactory behavior. Further study is required to investigate 
the role of dopamine receptors in managing the pest varroa mites of honeybees by 
using grooming behavior.
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