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Chapter

Organic Farming to Mitigate
Abiotic Stresses under Climate
Change Scenario
Saikat Biswas, Rupa Das and Lay Lay Nwe

Abstract

Climate change is resultant from modern-day chemical agriculture, which is cre-
ating negative impacts on crop production. Global agriculture is now facing various
problems arising due to abiotic stresses such as flood, drought, temperature extremes,
light extremes, salinity, heavy metal stress, nutrient toxicity/deficiency. These stresses
not only hamper the growth and production but also reduce the quality of crops
through morphological, physiological, biochemical changes and synthesis of ROS.
Further, they negatively impact on entire environment specially soil health. Deterio-
ration of yield and quality often occurs due to lack of essential inputs to plants under
abiotic stresses. Although plants adopt defensive mechanisms, such abiotic stresses
need to be addressed properly with various eco-friendly organic farming approaches.
Different organic inputs like organic manures, biofertilizers, bio-priming with micro-
organisms, bio-stimulants (seaweed extracts, humic acid, micro-organisms, etc.),
mulches, biochar are known to alleviate abiotic stresses under climate change sce-
nario. Further, various organic agronomic practices viz. crop rotation, intercropping,
tillage, sowing methods and time, nutrient, water and intercultural operations, use of
PGPB, organic formulations, grafting, selection of resistant/tolerant varieties and
other scientific/wise uses of organic inputs can mitigate/escape the negative impacts
of abiotic stresses resulting in upliftment in crop production as well as the quality of
produce.

Keywords: abiotic stresses, agronomic management, climate change, crop growth,
organic farming practices, production

1. Introduction

Food scarcity is a major challenge in today’s agriculture. In order to meet the food
demand of ever-increasing population, worldwide, farmers are aiming to improve
agricultural productivity at the expanse of environment through application of chem-
ical fertilizers and pesticides. Unscientific and over use of chemicals and other man-
agement practices degrades soil, water and other valuable natural resources leading to
climate change scenario which is a great concern for sustainable agriculture. Further,
shrinkage of agricultural land due to population growth, aim/migration for alternative
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job, urbanization, deforestation, anti-environmental anthropogenic activities, etc. are
creating major issues of agriculture and urging for improvement of agricultural pro-
ductivity and fulfillment of this urge is questionable under climate change scenario as
plant has sessile growth habit. Crop growth mostly depends on interaction between
genetic trait of variety with growing environment. Climate change, therefore, exerts
various stresses on crops and affects crop negatively. The stresses can be biotic
(living) and abiotic (non-living) stresses which often put both sole and combined
impact on crop.

Abiotic stresses such as drought, flood, salinity, temperature extremes (hot/cold),
heavy metals, light, wind, nutrients/chemicals, etc. due to climate change decide
distribution of plants in various environmental conditions [1] and thereafter, affect
crop growth especially at reproductive stage resulting in poor crop productivity
throughout the world [2]. Abiotic stresses also trigger various biotic stresses leading to
poor crop productivity through disruption of seed germination, vegetative growth,
dry matter production and its translocation to reproductive parts [3]. World experi-
ences around 70% yield loss due to abiotic stresses [4]. Severity in abiotic stresses
causes imbalance between demand and supply of nutrients, inactivation of enzymatic
activities, suppression of various genes responsible for the quality expression, etc. [5]
resulting loss of yield and quality of crop through hampering crop from morphological
to molecular levels [6].

These abiotic stresses indeed are serious barriers in front of food security of global
population and therefore, suitable strategies are highly needed to cope with these and
to achieve good crop growth, yield and quality under climate change scenario.
Although few mechanisms like escaping stress, stress avoidance and stress tolerance
are done by plants through making various molecular, cellular and physiological
changes, there is need to explore and adopt various strategies like traditional and
modern breeding approaches, agronomic management practices, exogenous applica-
tions of stress tolerating compounds, etc. to mitigate harmful impacts of abiotic
stresses on crop to a high extent. Agronomic management strategies cover various
technologies including organic farming approaches to alleviate abiotic stresses.
Organic farming consists of chemical excluded farming practices which mostly rely
on natural and organic inputs/products to improve crop growth and yield as well as
other allied sectors. Various organic farming inputs (manures, biofertilizers, crop
residues, bio-stimulants, etc.) and practices (selection of varieties, tillage, sowing,
nutrient, weed, water management practices, etc.) play a key role in addressing
various abiotic stresses and allows the crop to grow well by coping up the climate
change situation. Although the published information is less in this regard, an
insight knowledge on organic farming activates against abiotic stresses is highly
needed. Therefore, an attempt was made in this chapter to highlight negative
impacts of abiotic stresses on crop and their mitigation strategies through various
organic farming approaches.

2. Various abiotic stresses

Abiotic stress is resulted due to the negative influence of physical or chemical
environment on biological organisms either alone or in various forms of interaction. In
agriculture, crop production is highly hampered due to abiotic stresses. They individ-
ually or as combination impair the normal metabolisms and other physiological func-
tions in plants and thereby, affect crop growth and development. Combined influence
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of various stresses is more pronounced on crop production than their individual
adverse effect. There are different types of stresses viz. drought, flood, heat and cold
stresses, heavy metals, toxicity due to nutrients and pesticides, high light, low light,
UV exposure, photo-inhibition, shade, wind velocity, air pollution, etc. which nega-
tively impact on crop plants (Figure 1). In the following section, these stresses are
briefly highlighted.

2.1 Drought stress

Among the different natural resources, water is now highly precious and scarce for
living organisms including crop. Water regulates various physiological and biochem-
ical activities of plant like photosynthesis, transpiration, nutrient uptakes, transloca-
tion of assimilates, etc. Plant growth, internal activities are seriously hampered if
water availability deviates from normal which is now a common phenomenon
throughout the globe as an effect of climate change due to unscientific, non-eco-
friendly anthropogenic activities. Water stress mostly occurs in the form drought and
flood. Drought or water scarcity may arise due to various reasons such as long period
of no occurrence or less intensity of rainfall from usual, low river and stream flows,
reduced ground water table, etc. in a region. In agriculture, during crop growth stages,
drought may arise due to late onset and early cessation of rainfall, break of monsoon
for long period, less availability of irrigation water, faulty or no water conservation
practices/structures resulting in serious damage to crop growth and yield. Moreover,
Under the situation of soil moisture availability, if salt concentration is high in soil,
plant can’t uptake water from soil properly and even, exosmosis occurs. This situa-
tion, thus creates apparent drought. High temperature triggers evapotranspiration as a
part of internal cooling process, resulting in drought or water deficiency. Further,
drought can also be resulted from low temperature, under which water freezes in the
intercellular spaces creating protoplasmic dehydration and death of cell and
eventually, the plant. Altogether, drought affects plant’s germination and normal
functioning.

2.2 Flood stress

When water availability becomes unnecessarily high as compared to normal for a
particular period in an area, flood occurs. It may be resulted from sudden outburst of
cloud coupled with excessive rainfall for a short time period (flash flood) or due to

Figure 1.
Classification of various biotic and abiotic stresses [7].
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continuous rainfall for few days or high water-table or overflow of river, ponds and
dams associated with less drainage facility. Flash flood lasts for a very less time period
from a day to only few weeks. However, deep water flood lasts for a longer period of
time.

2.3 Salinity stress

Throughout the globe specially during arid and semi-arid areas, salinity is a major
issue. It arises in areas where potential evapotranspiration is greater than the rainfall
as well as insufficient leaching of salts beyond rhizospheric zone owing from poor
rainfall. Presence of excess salts in soil drastically hampers the crop growth [8]. Soil
salinity can be developed by both natural phenomena (Weathering of rocks, flooding
and intrusion of sea water to agricultural land, seepage of saline water, wind blow,
etc.) and human induced activities (poor water quality of irrigation, deforestation,
overgrazing, intensive cropping, etc.). Salinity is indicated by electrical conductivity
(EC). Usually, soil having EC > 4 dS/m, exchangeable sodium percentage (ESP)
< 15.0 and pH <8.5 is called as saline soil [9]. Saline soil contains chloride, sulfate salts
of sodium, magnesium and calcium ions. Presence of these salts in excessive quantities
deteriorates soil health through changing cation exchange capacity, negatively
impacting soil micro-organisms’ survival, multiplication and activities, disrupting
soil physical properties through deflocculation and reduction of hydraulic
conductivity, etc.

2.4 Temperature stress

Temperature stress indicates both rise and fall of temperature from normal. Sud-
den change in temperature occurs due to climate change. Specifically, heat stress or
high temperature situation arise due to due to global warming and anthropogenic
activities resulting in change biodiversity, crop ecosystem, impairment of crop growth
and production especially in areas of tropics and sub-tropics. Heat stress results in
respiration greater than photosynthesis causing starvation injury through deficit of
food reserves in plants. According to different degree of high temperature tolerance,
plants are categorized as psychrophiles (up to 15–20°C), mesophiles (up to 35–45°C)
and thermophiles (up to 45–100°C) [10].

In contrast to heat stress, an opposite phenomenon known as cold stress or low
temperature occurs mostly in temperate areas. There are two types of cold stress viz.
chilling stress and freezing stress both affecting the crop’s physiological, biochemical
activities and eventually, hampering crop’s growth, yield and quality. Similar to heat
stress, plants are also grouped into three based on cold stress tolerance: Chilling
sensitive (Plants are extremely sensitive above 0°C and below 15°C), chilling resistant
(plants can tolerate low temperature but highly suffer under formation of ice crystals
in intra and inter cellular spaces) and frost resistant (plants are tolerant to extremely
low temperature).

2.5 Heavy metal toxicity

Heavy metals impart mutagenic effects on plants by contaminating irrigation
water, food chain and environment [11]. These are inorganic, non-biodegradable
compounds with atomic mass >20 and density >5 g/cm3. The source of heavy metals
in the soil is use of irrigation water from contaminated area, excessive application of
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chemical fertilizer and pesticides. Plants absorb heavy metals from soil through roots.
Ag, Cr, Cd, As, Sb, Pb, Se, and Hg are some major heavy metals which at high
concentrations are non-essential and thereby, hamper soil quality and plant’s normal
functioning. Other than these, there are some essential elements viz. Zn, Cu, Ni, Fe,
Co, etc. which at high concentrations create heavy metal toxicity in soil and plant.

2.6 Light stress

Light is essential resource not only for plant growth but also for all life. In fact,
harnessing of high amount of solar energy is the prime aim of crop production.
However, excessive or low light can cause negative impact on crop such as poor crop
growth, wilting, dwarfing, less photosynthesis, cell damage, low productivity and
quality and even death of the plant.

2.7 Wind velocity

Wind plays a major role in maintenance of aeration, pollination, etc. in crop’s
microclimate. However, high wind velocity over the cropped area can exert stress on
crop. Wind velocity occurs due to movement of wind from one direction to other at a
particular speed. It can create high evapo-transpiration, sand injury, crop lodging,
pollen shedding, loss of pollen through desiccation, etc.

2.8 Chemical toxicity

Continuous dependence on chemical based inorganic fertilizers and pesticides
specially after green revolution is a great concern now in present day intensive agri-
culture condition. Further, rapid industrialization and excessive use of untreated
sewage water hampers crop’s growth and productivity through exerting detrimental
impacts of the chemical toxicity on the soil- plant-atmospheric continuum.

2.9 Nutrient toxicity/deficiency

Nutrient toxicity or deficiency resulted from excessive or scarce application of
fertilizers and manures as well as soil own nutritional status impairs plant growth,
productivity and quality of the crop. This situation is very common in today’s inten-
sive agriculture due to non-judicious, unscientific nutrient management practices by
the farmers.

3. Negative impacts of abiotic stresses on crop

Plants are negatively impacted by abiotic stress. In most cases, abiotic stresses
exert combined impact on crop plants and it causes more harm over individual impact
of stress. Hydrogen peroxide, hydroxyl radicals, superoxide radicals, singlet oxygen
and other reactive oxygen species (ROS) are synthesized under various abiotic
stresses, specially under drought stress. In combinations, these cause lipid peroxida-
tion, protein oxidation etc. and affect nucleic acids and enzyme activity resulting in
death of cell. Accordingly, plants adopt defensive mechanisms against stresses. For
instance, under drought stress, partial or complete closure of stomata is the one such
adoptive approach by plants, which further restricts entry of sunlight, CO2 and
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impairs electron flow through electron transport chain, resulting in decline in photo-
synthesis. Various negative impacts of abiotic stress on plants are shown in Figure 2
and Table 1 and highlighted hereunder.

3.1 Drought stress

Drought stress arises under water scarcity. It hampers seed germination as well as
early stand establishment of a crop arising through depletion of seed reserves and
mechanical obstruction by the hard soil under drought, resulting in poor vegetative
growth and yield of crop. The various impacts of drought on physiological and bio-
chemical activities of plants are shown in Figure 3. When drought arises, cell solutes
concentrations increase due to less water uptake and it not only causes high intra- and
inter-competitions for water among crop plants and between crop and weeds, but also
exerts toxicity on plants. Further, under drought condition, nutrients show variations
in their availability for plant’s uptake. Few nutrients become more available (viz.
nitrogen) and few become unavailable or less available (viz. phosphorus), while no
distinct impact of drought occurs on some nutrients (viz. potassium). This creates
alterations in nutrient uptake by plants resulting in impairment of nutrient metabo-
lisms in cell [36]. Under drought stress, as the activities of enzymes such as nitrate
reductase, glutamine synthetase, etc. decrease, ammonia assimilation to organic form
is restricted. Among the different categories of plants, C4 ones suffer more than C3

plants due to closure of stomata resulting in less photosynthesis [37].

3.2 Flood stress

When flood occurs, anaerobic situation arises due to water logging or submer-
gence, which further causes depletion in oxygen as well as restriction of movement of
oxygen and other gases in root zone of plant. As a consequence, chlorosis of plant
leaves and decay/death of cell occur. Less root respiration, poor root proliferation and

Figure 2.
Influence of abiotic stress on plant [7].
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other physiological disorders are some common phenomena visible under flood
condition. Various negative impacts of flood are shown in Figure 3.

3.3 Salinity stress

Salinity creates two prime impacts on plants viz. osmotic stress and ion toxicity.
Under the situation of salinity, drought stress is aggravated due to limited water
uptake by plants from the soil resulting from greater osmotic pressure to root cell
(osmotic pressure of soil solution > osmotic pressure in plant’s cell sap). Oxidative
damage due to soil salinity include detrimental impact on protein, nucleic acid and
certain enzymes of plant as there is synthesis of ROS [38]. Under soil salinity, even if

Crop Abiotic

stress

References Crop Abiotic

stress

References

Lentil Drought
stress

[12] Lentil Heat
stress

[13]

Chick pea [14] Wheat [15–18]

Soybean [19] Rice [20]

Common bean [21] Ground nut [13]

Mung bean [22] Chick pea [13]

Faba bean [23] Pea [24]

Barley [5] Pigeon pea [13]

Wheat [25] Cow pea [13]

Cotton [26] Soybean [13]

Maize [27] Mung bean [24]

Spotted bean [12] Common bean [28]

Black gram [29] Broad bean [24]

Cow pea [30] Lupin [24]

Pigeon pea [23] Groundnut, chickpea, green gram,
soybean, pigeon pea

Cd stress [31]

Lupin [23] Grass pea, chick pea Pb stress [31]

Soybean Salinity
stress

[31] Chick pea, green gram Cr stress [31]

Chick pea [31] Pea, lentil, soybean, black gram Hg stress [31]

Lentil [31] Pea, chick pea, cowpea, green gram Cu stress [31]

Mung bean [32] Chick pea, cowpea, pigeon pea Ni stress [31]

Faba bean [33] Cowpea, chick pea Zn stress [31]

Wheat [34] Pea, chick pea As stress [31]

Soybean Cold
stress

[28]

Rice [35]

Broad bean, Pea [28]

Chick pea [28]

Table 1.
Negative impacts of abiotic stresses on production of various crops.
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uptake of water takes place, there is also intrusion of various salts (Na+, Cl�, etc.)
inside the plant along with water, which exert negative impact on plant’s cell through
by impairing activities of various essential enzymes. Plants show burnt like visual
symptoms on leaves under excessive salt uptake. Salt stress not only increases the Na+,
Cl�, etc., but also causes deficiency of various essential elements like calcium (Ca2+),
potassium (K+), magnesium (Mg2+), nitrate (NO3

�), etc. in rhizospheric zone of soil.
Calcium (Ca2+), potassium (K+), magnesium (Mg2+), nitrate (NO3

�) are known to
influence photosynthesis and therefore, their limited uptake by plants under soil
salinity results in less photosynthesis and translocation of assimilates from source to
sink. Some major impacts of soil salinity include less leaf expansion, stunted growth,
less dry weight of plant, sterility of florets, loss of pollen viability, high epidermal
thickness, mesophyll thickness, palisade cell length and diameter, spongy cell diame-
ter, reduction of intercellular space in leaves of plant [7]. Partial or complete of
stomata under high salt situation causes less transpiration and cell division resulting in
reduction in plant’s growth, defoliation and senescence of aerial parts and eventually,
plant dies [39]. Under salinity stress, Na+/K+ ratio of the cell is excessively increased,
resulting in reduction in cell turgidity, enzyme activity and membrane potential of
plant. Further, due to abundance of Na+ in cell, various essential enzymatic activities
get downregulated resulting in impairments of cell expansion as well as division,
membrane stability and cytosolic metabolism.

3.4 Temperature stress

High temperature or heat stress increases evapotranspiration loss of water
resulting in drought like situation. This is further triggered under increase of soil
temperature coupled with drought. Due to high temperature, respiration exceeds
photosynthesis resulting in depletion of food reserve or loss of carbon (respiration rate
doubles with each 10°C rise in tissue temperature). It is also observed that sudden
temperature rise causes relatively more harm than gradual increase in temperature
due to higher reductions of biochemical, physiological and molecular activities of the
plant by sudden temperature rise. Among the categories of plant, C3 plants suffer
comparatively more than C4 plants due to fluctuations in energy supply and carbon
metabolisms under high temperature (Figure 4) [40].

Figure 3.
Negative impacts of water stress (drought and flood) on plants.
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On the other hand, cold stress or low temperature causes chilling and freezing
injuries to the plant. Chilling injury results in disfunctioning of physiological proper-
ties, while freezing injury results in cell dehydration. Some major impacts of cold
stress on plant include Wilting, bleaching through pigment photo-oxidation, leaf
necrosis, browning, cell death, etc.

3.5 Heavy metal toxicity

When there is abundance of heavy metals in soil, plant’s physiological, morpho-
logical, biochemical, molecular activities are highly affected. After being taken up by
the plant’s roots, these metals (Pb, Cu, Hg, etc.) move inside the plant through xylem
due to transpiration pool and negatively impact nutrient distribution, photosynthesis,
enzyme activities, Cu/Zn-SOD, ethylene receptors, etc. resulting in reduction of
molecular oxygen content and increment of ROS [41]. Synthesis of ROS thereafter,
damages the plant at cellular level.

3.6 Other abiotic stresses

Chemical toxicity/persistence in environment is a great concern today, which
results from excessive and unscientific application of chemicals. Environmental haz-
ard or pollution under chemical toxicity leads to poor ecosystem health and diversity.
These chemicals not only include pesticides but also cover inorganic fertilizer.
Unnecessary use of pesticides and fertilizers are creating climate change resulting in
reductions of crop growth, yield and quality. Specifically, complete dependence on
chemicals for crop production results in damage of soil health and eventually, soil
productivity declines. Contamination of underground fresh water as well as surface
water, air pollution, land pollution, etc. is commonly associated with chemical toxic-
ity. Plants known to be grown in an area earlier, are facing trouble in adaptation to

Figure 4.
Negative impacts of temperature stress (heat and cold) on plants.
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changing climate in the same area. Changing climate is linked with various biotic and
abiotic stresses which exert detrimental impacts on crop’s germination, photosynthe-
sis, translocation of assimilates, etc. and thereby, reduces crop yield. On a contrary,
nutrient deficiency arises due to scarcity of nutrients in soil, resulting in their less
uptake by plant roots and translocation inside the plants. As a consequence, plants
show various deficiency symptoms and its growth diminishes, leading to poor yield
and quality of crop.

When wind blows at high velocity over the crop field, plants specially the tall
growing or weaker one lodges down, resulting in poor growth, shedding of flower,
pollen, grains and thereby, reduction in yield. High wind velocity also causes soil
erosion and washes the essential nutrients away from plants. Further, there is an
increase in evapotranspiration loss of water under high wind velocity, which demands
for frequent water application leading to high cost of cultivation and failure of supply
of water leads to poor growth and yield of crop.

Light is one of the prime requisites for photosynthesis and therefore excessive light
can disrupts photosynthetic apparatus (photoinactivation and photodamage), while
scarcity of light reduces photosynthesis and dry matter production. Plant’s growth
reduces when light is less or shading by taller plants/trees or other structures occurs.
Due to hot sunlight intensity, heat stress or drought stress occurs which alone or
together, affects the crop growth. UV ray impairs DNA and causes leaf bleaching,
oxidative stress through synthesizing ROS. Under excessive light, breakdown of D1
protein of PS II and decrement of PS I polypeptides like PsaA, PsaB, and PsaC occurs
in plants [42].

4. Organic farming and its components

Sustainable agriculture greatly relies on non-chemical, eco-friendly organic farm-
ing approaches. Organic farming is defined as holistic production management system
which promotes and improves agro-ecosystem health covering bio-diversity, biologi-
cal cycle and soil biological properties. It completely or largely excludes the use of
synthetic off-farm inputs like fertilizers, pesticides, growth regulators, livestock feed
additives, etc. and mostly relies on on-farm agronomic, biological and mechanical
inputs such as crop rotations, crop residues, organic manures, biofertilizers, green
manuring, organic wastes, mineral grade rock additives, biological means of nutrient
mobilization and plant protection (botanical pesticides), etc. leading to improvement
of soil health, crop growth and yield as well as safety of environment. The major
components of organic farming are briefly highlighted below.

4.1 Organic manures and biochar

Organic manures are the sources of nutrients produced by decomposition of
organic waste materials (crop residues, plant-based wastes from house/farm/market,
etc., animal-based wastes like urine, dung, litter, excreta, etc.) through microbial
actions. These are known as bulky organic manures (FYM, vermicompost, poultry
manures, common compost, night soil, sewage and sludge, kitchen compost, etc.) as
their requirements are high. Besides, there are concentrated organic manures like
oilcakes, bone meal, blood meal, horn and hoof meals, fish meal, meat meal, etc. in
which more nutrients are present and they, therefore, supply different nutrients
relatively in large quantities from unit quantity applied than bulky ones. Apart from
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solid organic manures, there are various organic liquid manures/ITK formulations
such as Jiwamrit, Beejamrit, Amrit pani, Kunapajala, Panchagavya, Sanjeevani, etc. are
also used to improve soil health and thereby, crop growth.

Biochar is an excellent soil ameliorant produced under high temperature through
controlled pyrolysis of organic substances. Quality of biochar depends on feedstock,
temperature and pyrolysis conditions and time. Application of biochar improves plant
growth and yield by reviving soil health.

4.2 Crop rotation and other agronomic practices

Crop rotation involves diversification of crops, that is, growing of different crops
in succession on same field to avoid pest, disease and weed infestation, improve soil
fertility, recycle nutrient reserves, utilize different resources properly, enhance crop
productivity, profitability, etc. Besides, there are various other agronomic practices
such as variety selection, land preparation, mulching, crop residue retention on soil
surface, manure application, time and method sowing, seed rate, spacing and depth,
physical, cultural or biological methods of weed, pest and disease control, timely and
adequate irrigation, timely harvest and post-harvest operations, followed in organic
farming to enhance crop productivity, quality and profitability in production.

4.3 Crop residue

Crop residue is the remaining left after harvesting and separating the economic
part from the entire plants. These residues are often burnt leading to environmental
pollution. There can be multiple uses of these crop residues like mulching materials,
livestock feed, raw materials for manure preparation, substrates for mushroom culti-
vation, roof thatching, etc. Crop residues can conserve soil moisture, reduce weed
infestation and promote crop protection.

4.4 Bio-fertilizers

These are the substances containing living organisms, that is, micro-organisms
which are helpful for crop growth and productivity by improving soil health and
fertility as well as uptake of nutrients and water by the plants. Seed inoculation or soil
application of biofertilizer containing various bacteria (rhizobium, azotobacter,
azospirillum, etc.), fungi (VAM, AMF, Penicillium sp., Aspergillus awamori, etc.),
azolla, blue green algae, etc. can help the crop growth either by drawing nutrients and
water near rhizospheric zone from distant area or by fixing atmospheric nitrogen in
soil leading to enhancement of soil fertility.

4.5 Bio-pesticides and other protection measures

Bio-pesticides such as nicotine, pyrethrum, rotenone, subabilla, ryanin, margosa,
neem, etc. are natural plant-based products containing secondary metabolites like
alkaloids, terpenoids, phenolics and minor secondary chemicals. Besides, resistant
variety selection, myco-pesticides, release of natural enemies or growing trap crop or
plants which act as host for biocontrol agents can protect crops from disease and pest
damages. Further, various agronomic approaches like mulching, soil solarization, stale
seed bed technique, timely and line sowing, crop rotation, intercropping, smother
crops, use of botanical extracts, etc. can suppress weed problem.
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5. Different organic farming approaches to mitigate abiotic stresses

Over the years, organic farming has served as an eco-friendly approach to improve
agricultural productivity in a sustainable manner. Further, it acts as buffer against
various biotic and abiotic stresses which are often less highlighted. In the following
section, different organic farming practices having the potential to mitigate various
abiotic stresses are mentioned.

Mulching: In organic farming, mulching with straw, compost and other crop resi-
dues plays a key role in mitigating drought stress along with associated salt accumu-
lation on soil surface. Further, it reduces the chances of loss of surface soil nutrients by
restricting the soil erosion arising due to direct impact of rainfall or high runoff
velocity. Mulch materials also act as insulators which keep the soil cool during warm
weather and hot during winter months and thereby, solving the issues of heat and cold
injuries to a high extent. Decrease of soil temperature by 1–2°C has been reported by
Král et al. [43]. Apart from their role in soil and moisture conservation and checking
different abiotic stresses, mulch materials like crop residues, compost, etc. can
improve soil microbial activities and add essential nutrients through decomposition
over the time [43]. In reality, abiotic stresses are most often associated with biotic
stresses. Mulching, beside alleviation of various abiotic stresses, also suppresses vari-
ous weed infestations in crop field. All these benefits are directly reflected to high crop
growth, yield and quality under climate change scenario.

Sea weed extracts: Sea weed extracts are now emerging as one of potential sources
of nutrients in organic farming for crop production. They contain nutrients, plant
growth promoting substances, enzymes as well as antioxidants which help the crop
cope up with salinity, heat and drought stresses. Besides, the use of sea weed extracts
for cold tolerance as well as associated nutrient deficiency is now emerging. Algal
extracts trigger a number of pathways to enhance stress tolerance through scavenging
ROS. These extracts improve soil properties to conserve water well and thus, allow
crop to survive under drought. Earlier, the use of these extracts was successful on
Kentucky bluegrass (Poa pratensis L. cv. Plush) to mitigate salinity stress also [44].

Organic manures and biochar: Organic manures as well as green manure plants
contain various nutrients, growth regulators, micro-organisms, etc. which not only
improve soil fertility by solving nutrient scarcity stress but also improve overall soil
health to a high extent. Increasing soil porosity, aggregate stability, reduction of
compactness, etc. increase water holding capacity of the soil and thereby, address the
issues of drought stress. Further, moderation of soil temperature, greater aeration in
root zone, beneficial micro-organisms’ activities in soil improves crop growth and
yield. It has been widely noted that organic matter through decomposition releases
humic and fulvic acids which alleviate abiotic stresses.

Apart from the organic manures, biochar application can alleviate various abiotic
stresses specially drought stress. Shashi et al. [45] observed positive result on maize
from rice husk @ 20 t/ha biochar under drought condition by enhancing bacterial and
fungal communities in soil. Biochar specially from poultry manure shows excellent
properties to mitigate salinity stress by reducing Na and increasing CEC and SOC
contents in soil. Further, biochar can protect plants from high and low temperatures
as well as alleviates metal toxicity by immobilizing heavy metals, followed by reduc-
ing their mobility. Positive impact of biochar in mitigating different abiotic stresses in
rice is summarized in Table 2.

Biofertilizers and bio-stimulants: Biofertilizer is known to improve soil fertility and
overall soil health through accelerating beneficial micro-organisms’ activities. Besides,
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biofertilizer is one of the key components of organic farming to alleviate various
abiotic stresses. Various types of biofertilizer helps the crop to tolerate or overcome
stresses resulting in good growth and productivity under stress situation. It has been
also found that seed bio priming with micro-organisms alleviates various abiotic
stresses through improving germination and early plant stand establishment [60]. Bio
priming increases the osmolyte concentrations leading to high cell wall elasticity and
turgid weight to dry weight ratio. Further, endophytic synthesis of alkaloids protects
macromolecules through ROS scavenging activities. Plant growth promoting
rhizobacteria (PGPR) improves drought responsive genes’ expression through high
ROS scavenging activities. It also synthesizes phytohormones like IAA, GA3, etc.
resulting in high plant growth under stress. PGPR also synthesizes exopolysaccharides
resulting in good soil structure and uptakes of nutrients and water. Various endo-
phytic micro-organisms also confer abiotic stress tolerance in plants through activat-
ing host stress response as well as through synthesizing biochemicals against stresses.
A specific category of microorganisms known as arbuscular mycorrhizal fungi (AMF)
is well known to mitigate negative impacts of various abiotic stresses on crop by
improving soil health and plant’s defense mechanism. It makes symbiotic relationship
with roots of around 90% of the plant types. Use of AMF as biofertilizer/bio-inoculant
is an emerging strategy specially under climate change scenario. The fungal network
extends as secondary root system and helps the crop to draw nutrients and water from
distant areas. Further, it plays a key role in regulating anti-oxidant activities (CAT,
POX, SOD, GST, etc.) of plants under specific or combined stress situation resulting in
scavenging of ROS and improvement crop growth, yield and quality. Various stress
alleviating properties of micro-organisms in the form of biofertilizers/priming are
shown in Table 3.

Bio-stimulants are organic or inorganic substances rich in bioactive compounds
and/or micro-organisms, which improve crop growth through developing root for

Abiotic stresses Biochar type References

Acidity Sewage sludge [46]

Salinity Bamboo [47]

Salinity Rice husk [48]

Nutrient deficiency Rice straw [49]

Saline-sodic stress Wheat straw [50]

Saline-sodic stress Groundnut shell [51]

Cold stress Bamboo [52]

Nutrient deficiency Rice residue [53]

Cold stress Bamboo [54]

Nutrient deficiency Rice husk [55]

Heat stress Rice husk [56]

Heat stress Rice husk [57]

Cd stress Rice and maize residues [58]

Cd and Pb stresses Wheat straw [59]

Table 2.
Positive impact of biochar in mitigating different abiotic stresses in rice.
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Microorganisms Crop Abiotic

stress

Impacts References

Sinorhizobium

meliloti

Rice Temperature
stress

High endogenous hormone and
photosynthesis

[61]

Rhizobium trifolii Berseem Salinity stress High dry matter and nodulation [62, 63]

Pseudomonas putida Cotton Salinity and
alkalinity
stress

High seed germination, plant height,
fresh and dry weights through
increased uptake of K+, Mg2+ and Ca2+

and decreased uptake of Na+

[64]

Pseudomonas

alcaligenes, Bacillus

polymyxa,

Mycobacterium phlei

Maize High
temperature
and salinity
stresses

Calcisol produced by bacteria [65]

Achromobacter

piechaudii

Tomato,
pepper

Salinity and
water
stresses

High biomass production [66]

Pseudomonas

mendocina

Lettuce Salinity stress High shoot production [67]

Azospirillium spp.,
Phosphobacteria spp.,
Glucanacetobacter

spp.

Rice,
mangroves

Heavy metal
(Fe) toxicity

Improvement in crop growth [68, 69]

P. putida,

Pseudomonas

fluorescens

Canola,
barley

Cd toxicity Enhancement in IAA, siderophore and
1-aminocyclopropane-1-carboxylate
deaminase

[70]

Pseudomonas sp. Basil Water stress High antioxidant and photosynthetic
pigments

[71]

Arbuscular

mycorrhiza

Rice Drought
stress

High antioxidant and photosynthetic
efficiency

[72]

Inoculation with
AMF and PGPR

Date palm Drought
stress

High proline content and relative water
content; low SOD, CAT, GST and POX
activities in leaf

[73]

Glomus intraradices,

P. mendocina

Different
plants

Drought
stress

Low SOD activity [74]

Kluyvera ascorbata Tomato Ni, Pb, Zn
toxicity

Reduction in accumulation of heavy
metals in plants

[75]

Methylobacterium

oryzae, Burkholderia

sp.

Tomato Ni, Cd
toxicity

Less uptake and translocation of heavy
metals

[76]

Pseudomonas

brassicacearum,

Pseudomonas

marginalis,
Rhodococcus sp.

Pea Nutrient
deficiency

Stimulation of root and high nutrient
uptake

[77]

Rhizobium sp. Pea Zn and Ni
toxicity

Enhancement of plant growth
parameters

[78]

Arbuscular
mycorrhizal fungi

Olive Drought
stress

High turgor potential and mineral
nutrient uptake

[79]

Arbuscular
mycorrhizal fungi

Soybean Drought
stress

High leaf area index, photosynthesis,
growth and yield

[80]
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Microorganisms Crop Abiotic

stress

Impacts References

Rhizophagus

irregularis

Pangola
grass

Drought
stress

High stomatal conductivity, low lipid
peroxidation

[81]

Glomus mosseae Wheat Drought
stress

High chlorophyll, osmotic potential,
antioxidant activities

[82]

Glomus etunicatus Onion Drought
stress

High fresh and dry matter, phosphorus
content

[83]

G. intraradices Tomato Salinity stress High ion uptake, chlorophyll, growth
and dry matter

[84]

R. irregularis Tomato Salinity stress High root, shoot, leaf number, growth
hormone synthesis

[85]

Claroideoglomus

etunicatum

Aeluropus

littoralis

Salinity stress Stomatal conductance, root and shoot
dry matter, sugar content

[86]

Glomus fasciculate Acacia

nilotica

Salinity stress High root and shoot dry matter, Zn,
Cu, P uptakes

[87]

G. mosseae Cucumber Salinity stress High biomass, synthesis of antioxidant
enzymes and photosynthesis pigments

[88]

R. irregularis, Glomus

versiforme

Barley Temperature
stress

High survival rate [89]

Funneliformis sp. Maize Temperature
stress

Maintenance of PS II heterogeneity [90]

R. irregularis Cucumber Temperature
stress

High photosynthetic rate [91]

Funneliformis mosseae Elymus

nutans

Temperature
stress

High plant growth, chlorophyll and
antioxidants, low oxidative damage

[92]

Glomus isolates Maize Heavy metal
stress

High Mg, P and K contents in plants,
dry matter

[93]

F. mosseae Trigonella

foenum-

graceum

Heavy metal
stress

High crop growth and yield [94]

G. versiforme Lonicera

japonica

Heavy metal
stress

Low Cd content in root and shoots [95]

R. irregularis Populus

alba

Heavy metal
stress

Low Zn and Cu toxicity [96]

G. mosseae Trifolium

pratense

Heavy metal
stress

Low root and shoot concentrations, Zn
uptake

[97]

Acaulospora trappei,

Glomus leptotichum

Panicum

hemitomon

Flood stress High P content in plant [98]

G. intraradices Pterocarpus

officinalis

Flood stress High growth and P content in leaves [99]

Glomus geosporum Aster

tripolium

Flood stress High sugar and proline content [100]

Table 3.
Micro-organisms in the form of biofertilizers/priming against abiotic stresses.
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high absorption and assimilation efficiency of nutrients, regulating proper water
balance in plants as well as tolerating various abiotic stresses by synthesizing proline,
simple sugars, alcohols, abscisic acid, osmotic compounds and antioxidants (to scav-
enge ROS) [101]. Role of bio-stimulants in plants is shown in Figure 5. It increases the
contents of carotenoids, phenolic compounds and other secondary metabolites in
plants as defense against stresses. It is applied as soil drench (directly/through irriga-
tion) or foliar spray or treatment of seeds. Mitigation of various abiotic stresses by bio-
stimulants is listed in Table 4.

Crop rotation and various agronomic interventions: Crop rotation is one of the key
principles of conservation agriculture. It is always suggested to add leguminous crop
in rotation to revive soil fertility after cultivation of a soil exhaustive crop through
fixing atmospheric nitrogen. Further, biomass incorporation in soil results in addition
of SOC content and thereby, causes improvement of soil porosity, water holding
capacity, soil fertility, etc. leading to protection of plants against drought, salinity,
high temperature stress as well as nutrient deficiency. Growing a shallow rooted crop
after deep rooted crop helps in utilization of nutrients and water from various depths
of soil profile so that plant can’t experience nutrient and water scarcity.

Various other agronomic practices also can protect the crop from being affected by
abiotic stresses under climate change scenario (Figure 6, Table 5). For instance,
proper selection of resistant/tolerant crop and varieties under a prevalent abiotic
stress is one useful strategy. To achieve this, breeding activities should include identi-
fication of responsive genes. Grafting is another one, which is widely used in horti-
culture to counter various abiotic stresses specially, salinity, nutrient or water
deficiency, heavy metal toxicity, etc. Here, scion susceptible to stress is grafted to
stress tolerant root stock. Exogenous application of plant components such as amino
acid, sugars, etc. and phytohormones such as ABA, GA3, jasmonic acid, salicylic acid,
brassinosteriods, etc. protects crop from abiotic stresses. Application of citric acid and
vitamin C exhibit antioxidant properties which inactivates heavy metals such as Cu,
Pb, Al, etc. as well as helps crop to overcome salinity and drought stresses through
ROS scavenging activities. Soil and foliar applications of humic substances, beneficial
fungi, bacteria, chitosan, sea weed extracts, etc. can combat abiotic stresses. Tillage
also plays key role in conserving moisture and nutrients as well as breaking hard pan
and high percolation of water and thereby, mitigates drought, flood and salinity.
Keeping the land fallow for a season or year can rejuvenate the soil fertility and

Figure 5.
Role of bio-stimulants in plants.
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Abiotic

stress

Crop Bio-stimulants Impacts References

Cold
stress

Coriander Asahi SL @0.1% High chlorophyll a and carotenoids [102]

Tomato Flavobacterium glaciei,

Pseudomonas

frederiksbergensis,

Pseudomonas vancouverensis

High shoot and root length and
biomass, low electrolyte leakage,
lipid peroxidation, proline
accumulation, SOD, CAT, APX ,
POD and GR activities

[102]

Strawberry Pepton 85/16 @ 2 L/ha or
4 L/ha

New root initiation, more flowering
and fruiting

[103]

Lettuce Pepton 85/16 @ 04, 0.8,
1.6 g/L

High fresh and dry weights, relative
growth rate

[104]

Lettuce Terra-Sorb Foliar High root fresh weight, green cover
%

[105]

Chilli 5-Aminolevulinic acid High chlorophyll, relative water
content, shoot and root biomass,
SOD activity, low membrane
permeability

[106]

Pepper Serratia nematodiphila High plant growth and regulation of
endogenous GA4, abscisic acid,
jasmonic acid and salicylic acid

[107]

Drought
stress

Tomato Megafol @ 2 ml/L Increased leaf area [108]

Spinach Ascophyllum nodosum

@0.50%
Increased leaf area, fresh and dry
weights

[109]

Pea P. putida, P. fluorescens High root and shoot lengths, pods/
plant, chlorophyll content and grain
yield

[109]

Tomato,
chilli

A. piechaudii Low ethylene synthesis, high fresh
and dry weights of seedling

[110]

Tomato A. nodosum @0.33% High relative water content, plant
growth, foliar density, proline and
sugar contents, chlorophyll content,
low lipid peroxidation

[111]

Mustard A. nodosum + amino acids Increase in chlorophyll activity [112]

Tomato VIVA High shoot and root biomass [113]

Basil Pseudomonades, Bacillus

lentus, Azospirillum

brasilens

High CAT, GPX and chlorophyll
activities

[114]

Pumpkin Moringa leaf extract High growth, harvest index, water
use efficiency, low electrolyte
leakage

[115]

Soybean Sphingomonas sp. High growth, chlorophyll content,
amino acid, sugar, low ABA and JA

[116]

Wheat Bacillus subtilis Enhancement in IAA, decrease in
ABA

[117]

Lucerne Enterobacter ludwigii and
Bacillus megaterium

Low electrolyte leakage, ABA level,
high growth, chlorophyll content,
relative water content, nutrient
concentrations

[118]
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Abiotic

stress

Crop Bio-stimulants Impacts References

Foxtail
millet

P. fluorescens ACC deaminase production, high
seedling growth

[119]

Potato B. subtilis High tuber weight, soluble sugar and
CAT, POD, SOD activities

[120]

Tobacco Arbuscular mychorrhizal
fungi and PGPR

High growth, chlorophyll content,
phenol and flavonoid levels

[121]

Finger
millet

P. fluorescens, P.

palleroniana

High plant growth, nutrient
contents, leaf pigment and proline
contents, SOD, CAT, GPX activities,
low lipid peroxidation

[122]

Maize (Bacillus pumilus, Bacillus

cereus, Pseudomonas sp., and
Proteus sp. and protein
hydrolysates

High ABA, IAA, GA, relative water
content, protein content,
photosynthetic pigments

[123]

Rice Commercial seaweed
extract (A. nodosum)

High plant biomass, yield, leaf area
index, chlorophyll content

[124]

Tomato Protein hydrolysate High plant growth, pollen viability,
leaf water potential, lycopene
content

[125]

Flood
stress

Sesame Pseudomonas veronii High fresh and dry biomass, root and
shoot length, chlorophyll content

[126]

Wheat Trichoderma asperellum Low ethylene synthesis, high
seedling growth

[127]

Heat
stress

Common
bean

Brassinosteroids @ 25, 50
and 100 ppm

High plant growth, leaves, branches
and shoots/plant, fresh and dry
weights, nutrient contents

[128]

Green
gram

Glutathione @ 0.5 Μm High chlorophyll, proline contents,
low ROS

[129]

Chick pea Proline @ 5, 10, 15Μm High germination, shoot and root
lengths, proline content, chlorophyll
synthesis, low electrolyte leakage,
lipid peroxidation

[130]

Chick pea Abscisic acid @ 2.5Μm High shoot length, chlorophyll
content

[131]

Tomato B. cereus High growth, APX, SOD, GSH
activities, ion uptake (Fe, P, K),
chlorophyll content.

[132]

Chinese
cabbage

Bacillus tequilensis High shoot, leaf developments, JA
and salicylic acid production, low
ABA

[133]

Rice Brassinosteroids, amino
acids, nitophenolatres, or
botanical extracts

High photosynthesis, stomatal
conductance, low lipid peroxidation
and proline content

[134]

Tomato Commercial seaweed
extracts

Improved root system, chlorophyll
content, high growth

[135]

Fe
deficiency

Strawberry Actiwave (A. nodosum) @
10 ml/20 ml water

High vegetative growth, chlorophyll
content, stomatal density,

[136]
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Abiotic

stress

Crop Bio-stimulants Impacts References

photosynthesis, fruit production,
berry weight

NPK
deficiency

Tomato Amino acids @ 0.1, 0.2 ml/
L water

High plant growth, root and leaf [137]

Okra Kelpak (Ecklonia maxima)
@ 0.40%

More number of leaves, roots, stem
thickness, shoot weight, root weight,
leaf area

[138]

Garlic Bio-Cozyme @ 2 kg/ha High bulb yield, plant height,
nutrient in leaves

[139]

Salinity Lettuce A. brasilense High germination, seedling growth,
chlorophyll, dry mass

[140]

Chilli A. brasilense/Pantoea

dispersa

High plant dry weight, carbon di
oxide assimilation, nitrate
concentration

[141]

Pea Rhizobium leguminosarum High plant growth [142]

Pumpkin Bacillus pumilis,

Trichoderma harzannum,

Paenibacillus azotoformans

High fresh weight, potassium
uptake, low sodium uptake

[143]

Common
bean

Humic acid@ 0.05%, 0.1% High nitrogen and phosphorus, plant
root and shoot growth, low electrical
conductivity, electrolyte leakage

[144]

Strawberry Acadian (A. nodosum) High growth and yield [145]

Lettuce Super Fifty (A. nodosum) @
0.4, 1, 2.5, 10 ml/L

High root, stem and total plant
biomass

[146]

Lettuce Protein hydrolysates @
2.5 ml/L

High plant shoot and root growths,
fresh yield, low oxidative stress

[147]

Tomato A. piechaudii High fresh and dry weights, uptakes
of phosphorus and potassium, water
use efficiency, low ethylene
production

[148]

Cucumber A. nodosum @ 1, 2 g/kg High fruit yield [149]

Common
bean

Licorice root extract @
0.50%

Plant growth, yield, relative water
content, total soluble sugars, low
electrolyte leakage

[150]

Common
bean

Propolis and maize grain
extract @ 1%, 2%

High germination, seedling growth,
proline, total soluble sugars, low
electrolyte leakage, ABA, lipid
peroxidation

[151]

Common
bean

Moringa oleifera High shoot and root growths, total
soluble sugars, proline, SOD, APX,
GR activities

[152]

Chick pea Sargassum muticum and
Jania rubens @ 1%

High chlorophyll, carotenoids, plant
growth, soluble sugars, CAT, SOD,
POD, APX activities, low MDA

[153]

Tomato Dunaliella salina

exopolysaccharides @
0.1 g/L

High protein, chlorophyll, low
proline

[154]
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Abiotic

stress

Crop Bio-stimulants Impacts References

Onion Bee-honey based bio-
stimulant @ 25–50 g/L

High water use efficiency, bulb yield,
antioxidants, photosynthetic
pigments

[155]

Chilli Humic acid @ 50, 100,
150 mg/kg

High fresh and dry weights, nutrient
uptakes, low membrane damage

[156]

Pea Acinetobacter bereziniae, E.

ludwigii, Alcaligenes faecalis

Low electrolyte leakage, high
proline, chlorophyll, total soluble
sugar, plant growth

[157]

Tomato Pseudomonas oryzihabitans Increase plant growth and
photosynthetic characters

[158]

Ground
nut

Stenotrophomonas

maltophilia

High growth, auxin and total amino
acids, low proline, electrolyte
leakage, lipid peroxidation

[159]

Common
bean

Aneurinibacillus

aneurinilyticus

High root and shoot length and
weight, chlorophyll content

[160]

Soybean Arthrobacter woluwensis,

Microbacterium oxydans,

Arthobacter aurescens, B.

megaterium, B. aryabhattai

High antioxidant (SOD, GSH)
activities, chlorophyll content

[161]

Wheat Trichoderma reesei High plant biomass, chlorophyll,
carotenoids, uptake of nutrients, low
Na, ABA contents

[162]

Wheat Trichoderma

longibrachiatum

High root and shoot length and
weight, relative water content,
chlorophyll content, antioxidant
(SOD, POD, CAT) activities

[163]

Soybean Porostereum spadiceum High seedling growth [164]

Cucumber C. etunicatum, Rhizophagus

intraradices, and F. mosseae

High biomass, SOD, CAT, APX and
GR activities, JA, SA contents, low
lipid peroxidation, electrolyte
leakage

[88]

Maize Humic acid High photosynthesis rate, plasma
membrane proton pumps activity

[165]

Rice Panchagavya High plant growth, chlorophyll,
carotenoid, anthocyanin contents,
low CAT, SOD, POX activities

[166]

Tomato Seaweed extract (Ulva

lactuca)
High plant growth, soluble sugar,
total protein, chlorophyll content,
carotenoids, low hydrogen peroxide,
APX activity

[167]

Wheat Exiguobacterium

aurantiacum

High plant growth, nutrient content,
proline contents, CAT and POD
activities

[168]

Heavy
metal
stress

Rice E. ludwigii and
Exiguobacterium indicum

High growth, chlorophyll content,
SA, low ABA, Ni and Cd

[169]

Cucumber Pseudomonas psychrotolerans High growth, chlorophyll content,
IAA and GA

[170]
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moisture content for next crop. Timely and properly sowing, adequate seed rate,
spacing and depth, seed treatment also allows the crop to grow and utilize resources
properly resulting in surviving and withstanding of climate change scenario. For
instance, wheat, if sown on time, can escape terminal heat stress. Further, adequate
and timely water, nutrient and interculture (weeding) managements accelerate crop
growth by conservating water, nutrients, light, etc. which otherwise could be utilized
by weeds and thereby, mitigate drought, salinity, nutrient deficiency, etc. Tall variety
is susceptible to lodge by high wind velocity, while dwarf, robust variety can with-
stand the wind stress. Shelterbelt also protects the crop from high wind. Sometimes,
crop suffers from hot sunlight and requires shading from tall growing crop and thus,
intercropping or agroforestry is beneficial. On a contrary, shading of tall weeds on
crop affects crop growth and therefore, timely weed management is needed. Under
saline condition, frequent flooding with irrigation water or irrigation to root by drip
method, scraping of surface salts, application of plant growth promoting bacteria, etc.
are the key mitigation practices. PGPB alleviates salinity through hydraulic conduct,
osmotic accumulation, toxic sodium removal, higher osmotic activity. Further, use of
organic product such as brewer’s spent grain as soil amendment not only improves soil

Abiotic

stress

Crop Bio-stimulants Impacts References

Soybean B. cereus High shoot and root growth, SA,
chlorophyll content, low ABA, POD
activities, low Cd accumulation

[171]

Sunflower Arbuscular mycorrhizal
fungi

High growth, antioxidant activities,
fatty acid contents

[172]

Table 4.
Mitigation of abiotic stresses through various bio-stimulants.

Figure 6.
Abiotic stress mitigation through various organic farming practices.
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fertility but also alleviates heavy metal, nutrient deficiency, salinity, drought stresses,
etc. Intercropping/Mixed cropping also conserves soil and water, suppresses weeds,
reduces salt accumulation on surface through evaporation and thereby, alleviates
various stresses. Sometimes, allelopathic potential of many crops on weeds are utilized
to suppress weeds resulting in conservation of resources and good crop growth. Under
the scarcity of water, precise and wise use of water, clipping of leaves (to reduce
transpiration water loss), organic anti-transpirants (like wax, panchagavya)

Abiotic

stresses

Agronomic management practices in

organic farming

Abiotic

stresses

Agronomic management

practices in organic farming

Drought • Use of resistant/tolerant variety
• Mulching or cover cropping or inter/

mixed cropping to reduce
evaporation loss of water (moisture
conservation)

• Sowing in ridge and furrow bed
• Alternate/skip furrow irrigation or

partial root drying
• Skip row planting
• Use of sprinkler/drip or any other

micro irrigation/water saving
options

• Less application of manures
• Use of bio-fertilizers and seed

priming
• Nipping or pinching apical portion

to arrest shoot growth and
consequently, transpiration rate

Flood • Use of resistant variety
• Drainage of excess water
• Growing of water loving crops
• Double transplanting in rice
• Growing tall plants to avoid

complete submergence

Salinity • Use of resistant/tolerant variety
• Incorporation of green manure

crop in soil before sowing
• Exogenous applications of non-

synthetic ABA and/or jasmonic
acid

• Seed treatment with non-
synthetic polyamines viz.,
putrescine, spermidine,
spermine, etc.

High
temperature

• Use of resistant/tolerant variety
• Shading on the plant canopy
• Use of mulch or residue retention to

avoid heat stress at early growth
stages

• Application of non-synthetic
salicylic acid or glycine betaine or
ethylene or gibberellic acid

• Irrigation on the canopy to restrict
sun scorching

• Drip irrigation to reduce soil
temperature at root zone depth

• Timely sowing of winter crops to
avoid heat stress during anthesis and
seed formation phases

Low
temperature

• Use of resistant/tolerant variety
• Seed treatment with non-

synthetic gibberellic acid or
proline

• Use of non-synthetic
cryoprotectants, ABA,
paclobutrazol, uniconzole, etc.

• Timely sowing of monsoon crops
to avoid terminal cold stress

Heavy
metal
toxicity

• Construction of wetlands
• Reduction of chemical based

intensive farming approach
• Substitution of chemicals with

biofertilizer, compost and bio-
pesticides

Wind
velocity

• Use of windbreaks/shelterbelts
• Use of dwarf crop varieties

Low light • Use of sun loving or tall varieties Excess
chemicals
and
nutrients

• Promotion of organic farming
practices

• Growth of nutrient exhaustive
crops

High light • Use of shade loving or dwarf
varieties

Nutrient
scarcity

• Application of nutrients through
manures to correct the deficiency

Table 5.
Agronomic management practices in organic farming to mitigate specific abiotic stress.
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application, broadcasting of seeds, closer spacing, more plant population/hill, double
transplanting, etc. are useful. Apart from drainage, double transplanting is also bene-
ficial for flood condition where main field is too flooded to transplant seedlings on
time. It is well known fact that various biotic stresses like pest, disease and weeds
trigger abiotic stresses. Addressing these biotic stresses by botanical extracts, bio-
pesticides, release of natural enemies or living organisms, trap cropping, etc. can help
the crop to avoid various abiotic stresses.

6. Conclusion

Abiotic stress is creating detrimental effect on living organisms specially on plants
since long. Its negative impact on crop is becoming prominent in recent days in the
context of climate change scenario. In most of the cases, an abiotic stress combines
with other abiotic or biotic stresses to exert combined impact on crop growth, yield
and quality and the extent of impact on crop varies from mild to severe resulting in
hampering crop growth accordingly. Although plants adopt some internal defensive
mechanisms to counter these stresses, in most of the times, they require external
stimuli/practices/inputs to mitigate abiotic stresses. Due to population rise, crop yield
loss through abiotic stresses cannot be accepted at this moment or future and there-
fore, suitable agronomic and breeding interventions are highly needed. Since
chemical-based farming is a barrier against sustainable agricultural production as it
deteriorates soil health and is hazardous to the environment due to toxic chemical
footprint, organic farming is emerging as its potential alternative. Various organic
farming inputs such as organic manures, biofertilizers, bio-priming with micro-
organisms, bio-stimulants (seaweed extracts, humic acid, micro-organisms etc.),
mulches, biochar etc. have the potential to mitigate abiotic stresses under climate
change scenario. Further, organic farming practices like crop rotation, inter cropping,
tillage, time and method of sowing, nutrient, water and intercultural operations, use
of PGPB, organic formulations, grafting, selection of resistant/tolerant varieties and
other scientific/wise uses of organic inputs can help the crop to mitigate/escape the
detrimental effects of various abiotic stresses to a great extent. Still, there is need on
proper research or study on the abiotic stress potential of organic farming further.
Available organic farming technologies as well as information/awareness about them
are very also scanty at this moment. Therefore, proper multi-locational research
experiments, transfusion of modern practices/awareness through strong extension
services, policy interventions and advanced breeding approaches are highly required
to address harmful abiotic stresses as well as to get high crop growth, yield and
quality. Various strategies should be jointly implemented rather than using individu-
ally to get the best result from organic farming in making crop to cope up successfully
with climate change scenario.
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